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Abstract—This position paper introduces a Dynamic Data
Driven Open Radio Access Network System (3D-O-RAN). The
key objective of 3D-O-RAN is to support congested, contested and
contaminated tactical settings where multimedia sensors, applica-
tion constraints and operating wireless conditions may frequently
change over space, time and frequency. 3D-O-RAN is compliant
with the O-RAN specification for beyond 5G cellular systems
to reduce costs and guarantee interoperability among vendors.
Moreover, 3D-O-RAN integrates computational, sensing, and
cellular networking components in a highly-dynamic, feedback-
based, data-driven control loop. Specifically, 3D-O-RAN is de-
signed to incorporate heterogeneous data into the network control
loop to achieve a system-wide optimal operating point. Moreover,
3D-O-RAN steers the multimedia sensor measurement process
in real time according to the required application needs and
current physical and/or environmental constraints. 3D-O-RAN
uses (i) a semantic slicing engine, which takes into account the
semantic of the application to optimally compress the multimedia
stream without losing in classification accuracy; (ii) a dynamic
data driven neural network certification system that translates
mission-level constraints into technical-level constraints on neural
network latency/accuracy, and occupation of hardware/software
resources. Realistic use-case scenarios of 3D-O-RAN in a tactical
context demonstrate system performance.

I. INTRODUCTION

Ensuring U.S. dominance in next-generation wireless tech-
nologies is a key priority to ensure national security in the
next few years. The Presidential Memorandum on Developing
a Sustainable Spectrum Strategy for America’s Future [1],
released on October 25, 2018, states: “It is the policy of the
United States to use spectrum as efficiently and effectively
as possible to help meet our economic, national security,
science, safety, and other Federal mission goals now and
in the future.” Moreover, U.S. defense forces are expected
to increasingly rely on wireless technologies such as 5G/6G
to implement the Joint All-Domain Command and Control
(JADC2) concept [2], [3]. Critically, 5G/6G networks will
necessitate fast, reliable, effective and efficient administration
of computation and radio resources to operate at an optimal
operating point. In other words, achieving wireless dominance
will bring the U.S. closer to multi-domain (space, air, land, sea,
and cyberspace) coordination.

While the U.S. remains at the top of the global wireless
innovation hierarchy, several nations are fast approaching.
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Unmitigated adversarial spectrum usage, coupled with exten-
sive commercial use, will yield an increasingly congested,
contested, concealed and contaminated (4C) spectrum envi-
ronment, where adversarial actions, commercial development,
and regulatory constraints will necessarily impede freedom of
action in the spectrum. As mentioned in the Memorandum,
“Freedom of action in the spectrum [...] is a required precursor
to the successful conduct of operations in all domains and to
allow systems to share data seamlessly”.

Ensuring spectrum freedom will require radically novel
wireless networking paradigms, where intelligence, adapt-
ability, flexibility and security are deeply embedded in the
wireless communications systems. To this end, the Open
Radio Access Network (O-RAN) paradigm can bring to-
gether open interfaces, softwarization of network components
and multi-vendor interoperability [4]-[6]. Specifically, O-RAN
will provide a platform where tactical services can be dynami-
cally deployed on-demand in a matter of seconds via plug-and-
play software containers. The O-RAN capability will empower
a concrete solution to enable dynamic data driven network
control, so as to promptly respond to emergencies, threats
and mission requirements. Moreover, O-RAN is by definition
platform-independent, so (i) data-driven control algorithms can
be deployed in vendor-agnostic O-RANSs, ultimately reducing
costs to develop and operate the network; (ii) network intelli-
gence can be used to operate secure network slices with diverse
latency, throughput and reliability requirements and regulate
coexistence with other networks. In February 2022, the House
passed the America COMPETES Act, which recognizes the
importance of O-RAN in establishing supply chain resiliency,
by establishing future O-RAN programs and a Public Wireless
Supply Chain Innovation Fund [7].

To achieve assured operations through O-RANs, systems
will need real-time spectrum and situational awareness
through the gathering and processing of heterogeneous
sensor data. To this end, future products are expected to
extensively rely on artificial intelligence (AI) to automate
strategic decision-making in a cost-effective manner [8]. How-
ever, as Al becomes such a critical system component, it is
imperative to guarantee certifiability of Al techniques through
explainability of the outputs, interpretability of the process-
ing, and accountability of the decision-making process [9].
Specifically, the Al capabilities are expected to have “explicit,
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well-defined uses, and the safety, security, and effectiveness
of such capabilities will be subject to testing and assurance
within those defined uses across their entire life-cycles” [10].
To attest to the criticality of Certifiable Al, on March 5, 2021,
the National Security Commission on Artificial Intelligence
(NSCAI) has mentioned in its final report [11] the need to “[...]
include an evaluation of technical standards and production
and transmission pipelines”, while on November 15, 2021,
the Defense Innovation Unit (DIU), in its initial “Responsible
Al Guidelines” document, indicated the need to “[...] create
a task force to study the use of Al and complementary
technologies, including the development and deployment of
standards and technologies, for certifying content authenticity
and provenance* [12].

II. DYNAMIC DATA DRIVEN OPEN RAN SYSTEM

Our vision is simple: Addressing these issues requires
a fundamentally novel approach at the intersection of
networking, computing, and optimization. As such, this
paper introduces a new concept in wireless networking, which
we refer to as Dynamic Data Driven Open Radio Access
Network System — in short, 3D-O-RAN. Figure 1 shows a
high-level overview of 3D-O-RAN. At its core, 3D-O-RAN
is a dynamic data driven application system (DDDAS) [13],
[14] where the computational, sensing, and networking com-
ponents are tightly integrated in a highly-dynamic, feedback-
based control loop. Specifically, 3D-O-RAN is designed to
achieve the following goals: (i) incorporate heterogeneous
sensor data (e.g., spectrum, multimedia) into the control loop
to dynamically achieve a system-wide optimal operating point;
(i) dynamically steer the multimedia sensor measurement
process according to the required application needs and current
physical and/or environmental constraints. Ultimately, 3D-O-
RAN supports settings where multimedia sensors, application
constraints and operating wireless conditions may dynamically
change over space, time and frequency [15], [16].

Spectrum Multimedia
’—v Sensing mn\‘-II\\\|||HH“HH“MH“‘ Sensing
y ! Network Application b--- 3
Network Performance Performance Multimedia
Controller i T Controller
i ¥ v %
: 3D-O-RAN C
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Controller
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Figure 1: Overview of 3D-O-RAN.

As shown in Figure 1, the 3D-O-RAN system is logically
composed by three control engines, namely, the Network Con-
troller (NC), the Multimedia Controller (MC) and the Certifi-
able Al Controller (CC). Specifically, the NC and MC will (i)
acquire real-time information from spectrum and multimedia
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sensors for situational awareness; and (ii) influence the phys-
ical environment (i.e., spectrum utilization) and the sensing
processes (i.e., spectrum sensing and multimedia sensing) with
their control decisions. As such, the NC and MC will be highly
data driven in nature, and will leverage state-of-the-art Al
techniques to perform their functions. Since Al will be deeply
embedded into 3D-O-RAN, it becomes fundamental to ensure
that its Al algorithms will certifiably achieve Key Performance
Indicators (KPIs) such as latency, accuracy, and robustness. To
this end, it would be highly unrealistic to assume that the Al
will always deliver the same KPIs as when first deployed,
especially when operating in congested, contested, concealed
and contaminated (4C) environments. For this reason, the CC
will dynamically modify the AI contained in the NC and MC
according to the current applications and systems constraints,
thus effectively implementing polymorphic, adaptable, and
certifiable Al algorithms.

III. DYNAMIC CERTIFIABLE Al IN 3D-O-RAN

Mission-critical requirements on end-to-end deep neural
network (DNN) latency and accuracy of operations are
expected to continuously change in real-world tactical
scenarios. 3D-O-RAN is well poised to be responsive to data
availability variations. The key challenge that sets 3D-O-RAN
apart from traditional systems is that mission-critical require-
ments have to be satisfied in highly-dynamic, highly-contested
and resource-constrained environments, where (i) system input
data (both images/frames and spectrum waveforms), as well
as the wireless channel, will be subject to noise/interference,
both intentional and unintentional; (ii) the available computa-
tional resources, both in terms of hardware and software, are
extremely limited and may change dynamically. This implies
that dynamic neural networks architectures have to be certified
to meet Al-specific constraints (e.g., accuracy), device-specific
constraints (e.g., energy/resource consumption) and mission-
critical constraints (e.g., end-to-end latency).

Figure 2 shows the block diagram of our proposed Dynamic
Data Driven DNN Certification System (in short, 4D-CS). The
key innovation of 4D-CS is that mission-driven objectives such
as end-to-end latency and accuracy are translated into dynamic
technical constraints on network latency, hardware/software
(HW/SW) resources, and DNN-level accuracy. Ultimately, the
objective of 4D-CS is to establish a dynamic Al certification
system, where the Al adapts itself to heterogeneous objectives.
Specifically, 4D-CS operates within a data-driven control loop,
where technical constraints are continuously fed to a dynamic
DNN search engine (DSE), whose objective is to refine the
DNN architecture throughout the system lifetime. A core chal-
lenge is that in 3D-O-RAN the inference process is distributed
and the DNN input data is subject to noise/interference,
which further complicates the DNN certification process. In
stark contrast with existing work, the DSE will be tasked
to dynamically find the right DNN architecture given (i)
current 3D-O-RAN computation/network slicing allocation;
(i1) current HW/SW resources on the HW platform; and (iii)
current noise/interference levels in the DNN input. For this
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Figure 2: AI Certification System through Dynamic Data Driven DNN Design and Optimization.

reason, the DSE leverages a high-level HW synthesis engine
(HSE) to translate a software-defined neural network to an
field-programmable gate array (FPGA)-compliant circuit [17],
as shown in prior work [18]-[20]. The optimal DNN structure
is then incorporated into the DNN for real-time operation in
the field. 4D-CS is fed the certified DNN output to determine
whether the DNN is still maintaining acceptable performance.

IV. 3D-O-RAN: A TACTICAL APPLICATION SCENARIO

We consider the application scenario depicted in Figure 3,
where User Equipments (UEs) and Mobile Sensors (MSs) are
deployed in a spectrum sharing zone (SSZ). It is assumed
that UEs and MSs are trusted devices — e.g., through tra-
ditional cryptography authentication — and may connect to
3D-O-RAN for 5/6G network access. Such trusted devices
coexist with Concealed Assets (CAs), whose characteristics
such as physical location (e.g., GPS coordinates) and spectrum
access technique (e.g., waveform type, modulation, etc) are
unknown to the trusted devices. Notice that CAs may be either
allied or adversarial devices. The challenge is that trusted
devices should identify hostile devices and deny them access
to the shared spectrum. 3D-O-RAN is compliant to O-RAN
specification, and thus disaggregated into a radio unit (RU), a
distributed unit (DU) and a central unit (CU) controlled by a
near real-time RAN intelligent controller (RIC).

The UEs contribute to the spectrum sensing process by
submitting the sensed spectrum state to the non-real time
(NRT) and near-real-time (RT) RICs of 3D-O-RAN. The NRT-
RIC collects this information to train data-driven models for
classification and control. The RT-RIC leverages the 3D-O-
RAN Controller (RANC) to perform beam shaping, network
slicing, and MS control. We assume that for sensing, naviga-
tion and surveillance purposes, the MSs will generate streams
of multimedia sensing data — i.e., video frames and/or audio
samples. Frames and samples are then analyzed by state-of-
the-art DNNs running at the edge for real-time situational
awareness and control [21]. For example, although paths are
usually pre-selected, drones are always at risk of signifi-
cant drift due to adverse weather conditions, loss of power
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Figure 3: System model and key components of 3D-O-RAN.
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and/or GPS connectivity [22], [23]. Therefore, drones require
constant monitoring of their surroundings to detect sudden
obstacles and correct the trajectory in real time [24], [25].
The fundamental issue is that on one hand, the MSs should
submit the highest possible data quality, in order to guarantee
the best possible inference through DNNs. On the other hand,
continuously streaming high-quality multimedia data could
quickly saturate the radio and edge computation capabilities
of 3D-O-RAN. Thus, 3D-O-RAN includes the data semantics
into the optimization process.

V. 3D-O-RAN: EXPERIMENTAL RESULTS

Mission-critical operations such as obstacle detection and
object tracking will depend on the execution of complex
computer vision (CV)-based algorithms based on LiDAR or
wide-area motion imagery (WAMI) sensor data [26], [27].
However, continuously sending high-resolution multimedia
data may eventually saturate the radio resources of 3D-O-
RAN. For example, a WAMI image is usually 144 megapixels
(216 MB in Lossless JPEG format). If CV-based inference
needs to be executed each second by 100 MSs, the traffic
load on 3D-O-RAN would be 21 GB/s. Moreover, some
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Figure 4: Example of different compression tolerance for different object classes. The original image size is 62.4 KB, and is shown
in subfigure “a”. We apply the YOLOX model on the images. Lighter compression rates (0.47x, 29.5 KB output) makes the objects still
detectable (subfigure “b”). With stronger compression (0.04x, 2.3 KB output), some objects (e.g., bycicle) are not detected anymore (subfigure

“c”)

MSs may require simpler DNN tasks, while others may require
significantly more complex tasks, e.g., target recognition [28].
To this end, network/edge slicing allows to virtualize and
allocate computational and networking resources according to
mission-driven needs [29]-[33]. Existing work in RAN slicing
either does not support O-RAN or treats CV tasks equally,
which eventually leads to overprovisioning of resources and/or
suboptimal performance.
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Figure 5: Mean Average Precision (mAP) as a function of the
compression scaling factor for different application classes in the
COCO dataset.

Our intuition is that object classification tasks have not
only different accuracy and delay constraints, but can also be
inherently “harder” or “simpler”. For example, as shown in
Figure 4, classifying cars at an intersection is semantically
less difficult than classifying bicycles, thus car images can be
compressed more aggressively than bicycle images. Thus, we
can semantically differentiate and compress the images sent to
the 3D-O-RAN edge accordingly. To this point, Figure 5 shows
the mean Average Precision (mAP) obtained on the widely-
known Common Objects in Context (COCO) dataset [34]
with the state-of-the-art object detection model YOLOX [35].
For the “urban” applications, we selected the classes bicycle,
car, motorcycle, bus, truck, traffic light, stop sign, person;
for “bags”: handbag, backpack, suitcase; for “animals”: bird,
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cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe. We
notice that the “animals” class is the “easiest” to be classified,
while “bags” is the hardest. Therefore, different compression
values may be used to reach the same average mAP. Moreover,
tactical applications are expected to be extremely heteroge-
neous. An autonomous navigation mission could require image
segmentation tasks with a minimum expected accuracy of
0.90 mAP and maximum expected delay of 10 ms, while
object surveillance might have less stringent accuracy and
delay requirements (0.75 and 100 ms). Thus, semantic slicing
is fundamental for proper optimization. In other words,
3D-O-RAN semantically differentiates tasks and compresses
the data accordingly, thus saving networking resources. For
example, by assuming an average image size of 100KB
and task rate of 50 frames/sec, a semantic-agnostic slicing
algorithm would generate 40 Mbit/s of traffic. Conversely,
with our semantic-based approach, if the class “animals” is
selected with 0.4 mAP, then the images can get compressed
by a factor of 0.1, thus reducing by 10 times the traffic.

VI. RELATED WORK

Thanks to its promise of creating new markets in the
telecommunication landscape while drastically improving net-
work performance, Radio Access Network (RAN) slicing has
attracted a significant amount of attention over the last years
[29], [30], [32]. Moreover, as the RAN gets softwarized,
Mobile Edge Cloud (MEC) becomes fundamental to address
the ever-stringent latency demands of mobile applications [36],
[37]. We refer the interested reader to the following sur-
veys [38], [39]. Specific to slicing of edge resources, Castel-
lano et al. [40] proposed a framework to allow the instan-
tiation of multiple virtual network functions on the same
infrastructure. However, the framework in [40] was proposed
for wired networks only. Van Huynh et al. [41] presented a
mechanism for slicing of computation, networking and storage
through a deep dueling neural network that provides slices
admission while avoiding over-provisioning and maximizing
the network operator’s reward. Ndikumana et al. [42] con-
sider the allocation of heterogeneous resources for MEC task
offloading, while in [43] Liu et al. propose a framework
for MEC-enabled wireless networks called Distributed Cross-
Domain Resource Orchestration in Cellular Edge Computing
(DIRECT), which however does not consider the case when
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MEC and networking resources are on the same edge node.
The latter has been investigated by Blasch et al. [44], [45], who
modeled the compression-induced information loss in terms of
the National Imagery Interpretability Rating Scale (NIIRS),
and presented the Compression Degradation Image Function
Index (CoDIFI) to predict the NIIRS degradation. However,
these approaches do not consider the effect of compression on
CV/DL tasks, nor are they O-RAN-compatible, which is one
of the primary objectives of this paper.

Recently, Bonati et al. [46] have developed deep reinforce-
ment learning (DRL) agents running in O-RAN xApps on the
near-real-time RIC to select the best-performing scheduling
policy for each RAN slice. In our work, we do not select
scheduling policies but instead focus on RAN slicing. D’Oro
et al. [47] proposed an orchestration mechanism to select the
optimal deep learning (DL) models and execution location for
each model complying with timescale requirements, resource
and data availability. Conversely, we focus on properly slicing
end/network resources for timely execution of CV-based DL
models under strict accuracy constraints. Existing work of
dynamic Al can be broadly classified under the term neural
architecture search (NAS) [48], [49], which attempts to find
the best neural architecture for a given classification problem.
Usually, NAS algorithms operate under the assumption of
unlimited computational resources [50]-[52], which is not
the case in 3D-O-RAN. Hardware-aware NAS approaches
where latency [53], [54] or energy [55] are optimized in
resource-constrained devices [56]-[58] have been proposed
[59]. However, these approaches assume static datasets and
static classification tasks. Moreover, they are not taking into
account uncertainty in the wireless communication process,
which require lifelong adjustment of the neural network.

VII. CONCLUSIONS

This paper introduces the Dynamic Data Driven Open Radio
Access Network System (3D-O-RAN) to integrate compu-
tational, sensing, and networking components in a control
loop. 3D-O-RAN is compliant with the O-RAN specification
for 5G and beyond systems to reduce costs and guarantee
interoperability among vendors. 3D-O-RAN incorporates het-
erogeneous data into the control loop to dynamically achieve
a system-wide optimal operating point, and steers the mul-
timedia sensor measurement process in real time according
to the required application needs and current physical and/or
environmental constraints. 3D-O-RAN includes a semantic
slicing engine and a dynamic data driven neural network
certification system. Finally, we have provided a realistic use-
case scenario of 3D-O-RAN in the context of a tactical setting.
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