Witnessability of Undecidable Problems

SHUO DING, Georgia Institute of Technology, USA
QIRUN ZHANG, Georgia Institute of Technology, USA

Many problems in programming language theory and formal methods are undecidable, so they cannot be
solved precisely. Practical techniques for dealing with undecidable problems are often based on decidable
approximations. Undecidability implies that those approximations are always imprecise. Typically, practitioners
use heuristics and ad hoc reasoning to identify imprecision issues and improve approximations, but there is a
lack of computability-theoretic foundations about whether those efforts can succeed.

This paper shows a surprising interplay between undecidability and decidable approximations: there exists
a class of undecidable problems, such that it is computable to transform any decidable approximation to a
witness input demonstrating its imprecision. We call those undecidable problems witnessable problems. For
example, if a program property P is witnessable, then there exists a computable function fp, such that fp takes
as input the code of any program analyzer targeting P and produces an input program w on which the program
analyzer is imprecise. An even more surprising fact is that the class of witnessable problems includes almost
all undecidable problems in programming language theory and formal methods. Specifically, we prove the
diagonal halting problem K is witnessable, and the class of witnessable problems is closed under complements
and many-one reductions. In particular, all “non-trivial semantic properties of programs” mentioned in Rice’s
theorem are witnessable. We also explicitly construct a problem in the non-witnessable (and undecidable)
class and show that both classes have cardinality 280

Our results offer a new perspective on the understanding of undecidability: for witnessable problems,
although it is impossible to solve them precisely, it is always possible to improve any decidable approximation
to make it closer to the precise solution. This fact formally demonstrates that research efforts on such
approximations are promising and shows there exist universal ways to identify precision issues of program
analyzers, program verifiers, SMT solvers, etc., because their essences are decidable approximations of
witnessable problems.

CCS Concepts: « Theory of computation — Computability; Program reasoning; Automated reasoning.
Additional Key Words and Phrases: Mathematical Logic, Program Semantics, Automated Theorem Proving

ACM Reference Format:
Shuo Ding and Qirun Zhang. 2023. Witnessability of Undecidable Problems. Proc. ACM Program. Lang. 7,
POPL, Article 34 (January 2023), 21 pages. https://doi.org/10.1145/3571227

1 INTRODUCTION

Many problems in programming language theory and formal methods (program analysis [Landi
1992; Reps 2000], program verification [Abdulla and Jonsson 1996; Dima and Tiplea 2011], SMT
solving [Bonacina et al. 2006; Day et al. 2018], type systems [Hu and Lhotak 2020; Pierce 1992;
Wells 1999], etc.) consider complicated objects such as programs written in Turing-complete lan-
guages, and those problems are proved to be undecidable. It has been well-known since Turing and
Church [Church 1936; Turing et al. 1936] that undecidable problems cannot be solved precisely.

Authors’ addresses: Shuo Ding, Georgia Institute of Technology, Atlanta, USA, sding@gatech.edu; Qirun Zhang, Georgia
Institute of Technology, Atlanta, USA, qrzhang@gatech.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART34

https://doi.org/10.1145/3571227

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

https://doi.org/10.1145/3571227
https://doi.org/10.1145/3571227

34:2 Shuo Ding and Qirun Zhang

In practice, perhaps the best-known technique for handling undecidable problems is utilizing
decidable approximations [Cousot and Cousot 1977; Hu and Lhotak 2020; Kildall 1973]. Undecid-
ability implies that all approximations must be imprecise on infinitely many inputs—although
theoretically important, it is a relatively discouraging result, and it does not shed light on improving
the approximations encountered in practice.

This paper goes beyond previous work by presenting a surprising interplay between undecid-
ability and decidable approximations. Specifically, we show that for a large class of undecidable
problems, there exist computable functions that take as input the implementation (source code) of a
decidable approximation and output a witness on which the approximation is imprecise. At first
glance, this result appears counter-intuitive because, due to the nature of undecidability, for any
arbitrarily given input, there is no general way to tell whether the approximation is imprecise on
it. Otherwise, the problem would be decidable. Our result shows that there exists an algorithm
that can compute imprecise inputs from the approximations. Our result does not aim to decide
whether the approximations are imprecise on arbitrary inputs, thus bypassing the undecidability.
Furthermore, this enables an iterative process: after computing a witness and improving the existing
approximation, our result shows that we can always obtain a new witness, i.e., the iterative process
leads to more and more precise approximations. Note that this is fundamentally different from
the idea of CounterExample-Guided Abstraction Refinement (CEGAR) [Clarke et al. 2000]: (1) in
program verification, CEGAR often refines abstractions for each input program while we refine
the program verifier itself; and (2) even if we apply the idea of CEGAR to refine a sound! program
verifier when the verifier fails to prove the correctness of a program, it is, in general, undecidable
to know whether that is a false positive. On the contrary, our approach directly constructs correct
programs that cannot be proved correct by the verifier.

We state and prove our results using the terminology of computability theory. In the literature,
computability theory has been primarily discussed using formal languages [Sipser 2012] and sets
of natural numbers [Asperti 2008; Cutland 1980], and the two approaches are equivalent. Our work
adopts the second approach: undecidable problems and their decidable approximations are both
modeled as sets of natural numbers. Our result is general and applies to any Turing-complete
programming language. In particular, natural numbers can encode any finite amount of information
by computable encodings [Godel 1931; Liang et al. 2014]. Consider an undecidable problem P and
its decidable approximations Q in Figure 1. Different approximation abstractions can lead to several
set relationships between P and Q: Q is a subset of P (Figure 1a), Q is a superset of P (Figure 1b),
Q intersects with P but is neither a subset nor a superset of P (Figure 1c), Q is disjoint from P
(Figure 1d). To discuss all cases uniformly, we call the symmetric difference PAQ = (P\ Q) U (Q\ P)
the imprecision of the approximation. For example, if Q is an under-approximation of P, then
PAQ = P\ Q, which represents the area of P not covered by Q. Utilizing the symmetric difference
PAQ makes our results more general because the approximations are not restricted to under-
approximations (Figure 1a) or over-approximations (Figure 1b).

We say an undecidable problem P is witnessable if and only if there exists a partial computable
function wp only depending on P, such that for any decidable approximation Q and its characteristic
function” ¢, (the program implementing ¢, is encoded as a natural number q), wp(q) is defined
(denoted as wp(q) |) and wp(q) € PAQ. Therefore, wp(q) is an imprecision witness of Q and wp is
a witness function of P. Our definition resembles the definition of productive sets in computability

1“Sound” means if the verifier concludes the program is correct, then the program is indeed correct. In other words, the
verifier forms an under-approximation of the set of correct programs, which is typically implemented by over-approximating
programs’ behaviors (thus rejecting some correct programs). This convention is used throughout this paper.

2Recall that a set S’s characteristic function is a 0-1 valued function f such that f(x) = 1 if and only if x € S.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

Witnessability of Undecidable Problems 34:3

Y
P / A
[/ \
J |
L I
\ /
(a) Under-approximation. (b) Over-approximation.
P - L
// \
I 1
\ /
(c) Non-disjoint. (d) Disjoint.

Fig. 1. Four cases of an undecidable problem P and its decidable approximation Q. The grey areas (PAQ)
represent the imprecision. The trivial case of Q = 0 could be classified as either case (a) or case (d). The
rectangle surrounding each case represents the set of all natural numbers.

theory [Soare 1999], but we focus on decidable approximations and do not require the approximation
Q to be a subset of P.
This paper proves the following main results.

(1) The diagonal halting problem® K = {i | ¢;(i) |} is witnessable (Theorem 2);
(2) If P is witnessable, then its complement P¢ is also witnessable (Theorem 3);
(3) If P, is witnessable and P; is many-one reducible to P,, P; is also witnessable (Theorem 4).

These facts show that witnessable problems cover many undecidable problems in programming
language theory and related fields. In particular, all “non-trivial semantics properties of programs”
mentioned in Rice’s theorem [Cutland 1980] and all “non-trivial complexity cliques” mentioned
in intensional Rice’s theorem [Asperti 2008] are witnessable. The satisfiability and validity of
first-order logic formulas [Turing et al. 1936] and the Post correspondence problem [Post 1946]
are also witnessable. Witnessability cannot be achieved via simple enumeration: in Figure 1b, by
naively enumerating all programs and checking each of them using the characteristic function of
Q, we are only guaranteed to find programs in Q or Q. But for programs in Q, we may never know
whether they are in the symmetric difference area PAQ (marked as grey in Figure 1) because P is
undecidable. Our approach, however, can directly compute a program that belongs to PAQ.

The implications of our result are threefold.

(1) It shows the existence of universal ways to identify the precision issues of many algorithms
in programming language theory and formal methods, including but not limited to program
analyzers, program verifiers, SMT solvers, etc. In particular, the only restriction is that the
algorithms should be total (i.e., they terminate on every input).

(2) It shows common undecidable problems encountered in programming language theory and
formal methods are more “tangible” than the folklore intuition of “being impossible to solve.”
In particular, although they are undecidable, the process of improving any given decidable
approximation is computable. This provides a theoretical foundation for justifying why
research efforts targeting those problems are promising and work well in practice.

3The diagonal halting problem and the traditional halting problem [Sipser 2012] are many-one reducible to each other.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

34:4 Shuo Ding and Qirun Zhang

(3) Many mathematical methods used in undecidability proofs are commonly regarded as ways
to prove negative results (e.g., undecidability). However, our results show that they also give
ways to improve any given decidable approximation (thus, they also have positive effects).

The rest of this paper is organized as follows. Section 2 explains our basic notations and reviews
computability theory. Section 3 gives our main results about witnessable problems. Section 4
explicitly constructs a non-witnessable problem. Section 5 shows the cardinalities of the two classes
of problems. Section 6 uses two examples (program analyzers and SMT solvers) to discuss the
implications for programming language theory and related fields. Section 7 presents discussions.
Section 8 surveys related work. Section 9 concludes and discusses future research directions.

2 PRELIMINARY

Section 2.1 reviews basic set theory notations, Section 2.2 reviews computability theory, and
Section 2.3 introduces our definition of decidable approximations.

2.1 Set Theory

To formulate computability theory concepts, we adopt the standard set theory notations [Jech
2013]: the “belongs to” relation €, the strict subset relation C, the non-strict subset relation C, the
set difference operator \, and the set symmetric difference operator A. In addition to that, we use
N to denote the set of all natural numbers. Upper case letters X, Y, Z - - - denote subsets of N, and
lower case letters x,y, z - - - denote natural numbers. Given a set S C N, the complement of S with
respect to N is denoted as S¢, the power set of S is denoted as P (S), and the characteristic function
xs of S is a function from N to the set {0, 1} defined as follows:

(x) = 1 if xe$
XSWI=0 0 if x¢s.

2.2 Computability Theory

Two common ways to formulate computability theory are formal languages [Sipser 2012] and sets
of natural numbers [Asperti 2008; Cutland 1980]. We follow the second approach: studying the
(possibly relative) computability of subsets of N and partial functions from N to N.

2.2.1 Partial Computable Functions. We use the standard notion of k-ary partial computable
functions (from N¥ to N, 1 < k < +00), which are partial functions computable by Turing machines,
lambda calculus, or any equivalent models of computation [Cutland 1980; Sipser 2012]. The default
arity of a partial computable function is one if it is not specified, and we mainly focus on 1-ary
partial computable functions in this paper. In general, discussing 1-ary functions in computability
theory suffices because a k-tuple of natural numbers can be computably converted to a single
natural number and also be computably converted back (e.g., Godel’s encoding [Gddel 1931]).
Given a partial computable function ¢ and a specific input X, the notation “¢(X) |” means that
¢ is defined on X and the notation “¢(¥) 1” means that ¢ is undefined (or divergent) on X. As an
analogy, the undefined case of partial computable functions corresponds to the error state or the
non-termination state of computer programs on a specific input. A partial computable function
is total if and only if it is defined on every input. The domain of a partial computable function ¢
is the set of inputs on which ¢ is defined: {X | ¢(X) |}. If two partial computable functions f and
g have the same domain and output the same value on every input from the domain, then f = ¢
because they are the same partial computable function.

2.2.2 Numberings. For each arity k, we fix an admissible numbering [Rogers 1958] (enumer-
ation) of k-ary partial computable functions (e.g., the one generated by Kleene’s normal form

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

Witnessability of Undecidable Problems 34:5

theorem [Cutland 1980], or the one corresponding to an enumeration of all Turing machines):
k 1k 1k
bos 12
where each ¢Ik i € N is a partial computable function from N¥ to N. If k = 1 we write ¢;, i € N. An
index i in the numbering is analogous to a “program (code)” implementing the corresponding partial
computable function, and ®(i, x) = ¢;(x) is analogous to an interpreter for the corresponding
programming language. Note that there are infinitely many different indices corresponding to
any single partial computable function, resembling the fact that there are infinitely many ways to

implement the same function in common programming languages. This fact holds for all admissible
numberings according to Rogers’ equivalence theorem [Rogers 1958].

2.2.3 Computational Problems. A (computational) problem is formulated as a subset of N. For
example, the diagonal halting problem K = {i | ¢;(i) |} is the set of natural numbers representing
programs that halt on themselves. The two names “problem” and “set” (of natural numbers) are
used interchangeably throughout this paper. A problem is decidable if and only if its characteristic
function is a total computable function, where any index for the characteristic function is called a
decider for the problem. Otherwise, the problem is undecidable. The following two facts are used in
the proofs of our main results.

FacT 1. Decidable sets are closed under complements, finite unions, finite intersections, and addi-
tion/removal of finitely many natural numbers. In particular, any finite set is decidable.

Proor. Those operations can easily be implemented using any Turing-complete programming
language. By the Church-Turing thesis, the proof is completed. O

Fact 2. If P is an undecidable problem, then both P and P¢ are infinite.
Proor. If P or P¢ is finite, then P is decidable by Fact 1, which is a contradiction. O

We use the standard definition [Cutland 1980] of computably enumerable (c.e.) problems (also
called recursively enumerable (r.e.) problems). A problem is c.e. if and only if it is the domain of a
partial computable function. A problem is co-c.e. if and only if its complement is c.e.

2.24 Many-One Reductions. We use many-one reductions [Cutland 1980] to propagate imprecision
witnesses among different problems.

DEFINITION 1 (MANY-ONE REDUCTIONS). A problem P is many-one reducible to another problem
Q (written as P <,,, Q) if and only if there exists a total computable function f such that the following
holds. f is called a many-one reduction from P to Q.

VxeN,xe P & f(x) € Q.

Intuitively, a set P is many-one reducible to a set Q shows that Q is harder than P. In the above
definition, to decide whether a natural number x belongs to P, we can first apply f on x and then
test whether f(x) belongs to Q. Thus if we can decide Q, we can also decide P.

2.25 5-M-N Theorem. We extensively use the S-m-n theorem [Cutland 1980] in our proofs. This
theorem is analogous to partial evaluation [Jones et al. 1993] in programming languages.

THEOREM 1 (S-M-N). For any m,n € N, there exists an (m + 1)-ary total computable function '
such that the following holds for all i,x1,- -+ ,Xm, Y1, - ,Yn € N.

O sy (U1 2 Un) = S X Y1 2 Yn)-
Y corresponds to partial evaluators in programming languages. A trivial implementation of ¢

is wrapping the code of ¢/"*" (which is i) using fixed values of the first m inputs.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

34:6 Shuo Ding and Qirun Zhang

2.3 Decidable Approximations

Decidable approximations are commonly used in program analysis, program verification, etc., to
deal with undecidable problems. Technically, for an undecidable set P, any decidable set of natural
numbers could be regarded as an approximation of P, and different approximations have different
precision/guarantees (Figure 1).

DEFINITION 2 (DECIDABLE APPROXIMATIONS). Given an undecidable set P, any decidable set
Q C N is a decidable approximation of P. In addition, if Q C P, then Q is called a decidable under-
approximation of P; if P C Q, then Q is called a decidable over-approximation of P.

Fact 3. If P is an undecidable set, Q is a decidable approximation of P, then PAQ is infinite.

Proor. If PAQ is finite, because Q is decidable, P is also decidable by Fact 1, which contradicts
the assumption that P is undecidable. O

3 WITNESSABLE PROBLEMS

This section formally defines witnessable problems and presents three main results in Section 3.1,
Section 3.2, and Section 3.3, respectively. Section 3.4 demonstrates that we can iteratively compute
infinitely many imprecision witnesses for each decidable approximation.

DEFINITION 3. We say an undecidable problem P € P (N) is witnessable if and only if there exists
a partial computable function wp, such that for any decidable approximation Q C N and any natural
number q such that ¢4 = yo, wp(q) is defined and wp(q) € PAQ. The partial computable function
wp is called a witness function of P, and wp(q) is called an imprecision witness of Q.

The definition of wp is general. First, it only depends on the problem P and works on any
“implementation” (index) g of any decidable approximation Q. Second, it does not require the
witness function wp to be total computable: it only requires that wp is defined on all indices of
characteristic functions of decidable sets. This definition gives us more flexibility to construct such
witness functions. In this paper, however, all constructed witness functions are total computable
functions. Third, it only requires the existence of wp. Whether there exists computable functions
mapping P to wp depends on how P is represented. In particular, many undecidability proofs [Asperti
2008; Cutland 1980; Ganesh et al. 2012] rely on many-one reductions from the halting problem
or its complement. If P is given together with such a many-one reduction, then we can directly
construct wp from the given reduction (Theorems 2, 3, and 4).

Another important observation is that we can decide whether the imprecision witness is a false
positive or a false negative. Indeed, because Q is decidable, if yo(wp(q)) = 0, then wp(q) € P\ Q;
if yo(wp(q)) = 1, then wp(q) € Q \ P. This observation enables iterative imprecision witness
computation described in Section 3.4.

3.1 Diagonal Halting Problem is Witnessable

Our proof idea is inspired by reconsidering the classical undecidability proof [Cutland 1980; Sipser
2012] of the diagonal halting problem K based on diagonalization. Specifically, replacing the
hypothetical decider for K with an actual decider for any of K’s decidable approximation Q yields
an index in KAQ.

THEOREM 2 (WITNESSABILITY OF HALT). K = {i | ¢;(i) |} is witnessable.

Proor. It is well-known that K is undecidable [Cutland 1980; Sipser 2012]. For any decidable
approximation Q C N and a natural number g such that ¢, is the characteristic function of Q, we

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

Witnessability of Undecidable Problems 34:7

construct a 2-ary partial computable function f using the universal function (interpreter) for all
1-ary partial computable functions (which interprets g as ¢):

(1 gem =1
f(q’x)"{o if ngZ(x):O.

Because f is a 2-ary partial computable function, there exists an index j such that (g, x) = tj)JZ (g,x)
for all g, x € N. By the S-m-n theorem, there exists a 2-ary total computable function ¢ such
that ¢12.(q, x) = ¢y (j,q (x) for all g, x € N. Next, we claim that /(j,q) € KAQ by case analysis. To
demonstrate this, we show that ¥(j,q) € KN Q and ¥/(J, q) ¢ (K U Q)¢ both by contradiction, and
these two facts imply ¥/(j, q) € KAQ.

(1) f¢(j,q) € KN Q, then naturally ¥(j,q) € Q, so we have

$q(¥(j.q) =1
= flqgy(.9) T
= gy 1T
= PyioWU.a)T.

However, because /(j, q) € K, we have ¢y ;¢ (¥(J,q)) |, which is a contradiction.
(2) ¢ (j,q) € (KU Q)S, in particular (j,q) ¢ Q, so we have

$q(Y(J.q) =0
= f(q.¥(j.q9) =0
= $:(q¥(j.9) =0
= Py WU.q) =0.
But on the other hand, since ¥/(j,q) ¢ K, we have ¢y ;4 (¥(j,q)) T, which is a contradiction.

Combining the above two facts, we conclude that /(j, q) € KAQ. The witness function can be set
as wg (q) = ¥(j, q). In particular, this wg is a total function. O

The above theorem shows K is witnessable by constructing a valid witness function wg. However,
there exists more than one witness function for K as discussed in Section 7.1. Moreover, we show
in Sections 3.2 and 3.3 that the class of witnessable problems is closed under complements and
many-one reductions. In that sense, K is the starting point for deriving witnessable problems, but
this does not mean that K is the only such starting point.

3.2 Witnessability is Closed under Complements

The proof expresses the witness function for the complement problem P¢ using the witness function
for the original problem P.

THEOREM 3 (COMPLEMENT CLOSURE). If an undecidable problem P is witnessable, then its comple-
ment P€ is also witnessable.

Proor. Suppose P is witnessable, and then there exists a partial computable function wp such
that for any decidable set Q and any natural number g such that ¢, computes yo, wp(q) is defined
and wp(q) € PAQ. Now consider P€. For any decidable set R and any natural number r such that
¢, computes yg, consider the following 2-ary partial computable function:

o if ¢(x)=1
g(r,X) - { 1 if ¢r(x) =0.

Without loss of generality, assume that g(r,x) = ¢lz(r, x). By the S-m-n theorem, there exists a
2-ary total computable function ¢ such that (;512(7‘, x) = ¢y (x) for all r, x € N. Clearly, ¢y, (x)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

34:8 Shuo Ding and Qirun Zhang

is the characteristic function of R°. Now consider wp(i/(1, r)): according to the definition of wp,
wp(¥(l, 7)) is defined and wp(/(I,r)) € PAR® = P°AR. Thus, we can set wpe(r) = wp(¥(I,r)). O

3.3 Witnessability is Closed under Many-One Reductions

Assume that P; <,,, P, and P; has a witness function; we show that P, also has a witness function.
The proof composes a decidable approximation Q, of P, with the reduction from P; to P,; this
gives a decidable approximation Q; of P;. Because we assume P; has a witness function, we can
use that witness function to compute an imprecision witness for Q1, and finally convert it back to
an imprecision witness for Q.

The main technique used in our proof of Theorem 4 shares the same insight with Myhill [1957]’s
proof showing that if A is a creative set, A <,, B, and B is c.e., then B is creative. But Myhill [1957]’s
proof only targets one set relation (by definition, the productive function only considers c.e. subsets
of the creative set’s complement), while our proof handles symmetric difference, which covers all
possible relations between a witnessable problem and its decidable approximations.

THEOREM 4 (MANY-ONE REDUCTION CLOSURE). If an undecidable problem Py is witnessable, and
P; <, Ps, then Py is also witnessable.

Proor. Because P, is witnessable, there exists a witness function wp, for P;. With the assumption
Py <, Py, let f be a many-one reduction (a total computable function) from P; to P,. According to
the definition of many-one reductions (Definition 1), Vx € N, x € P; & f(x) € P,. To prove that
P, is witnessable, we show that there exists a witness function wp,, such that for any computable
set Q; and any natural number g, such that ¢4, = xo,, wp,(q2) is defined and wp,(q2) € P2AQ;.
Consider the total computable function g(x) = ¢g, (f(x)). It is a total computable function with
function values in {0, 1}, so it is a characteristic function of some decidable set Q;. We can construct
the following partial computable function:

h(iy, iz, x) = ¢i, (¢i, ().
Suppose the index of A is j. By the S-m-n theorem, there exists a 3-ary total computable function i
such that h(iy, iy, x) = By (juiniz) (x) for all iy, iz, x € N. Because f is known, suppose it has an index
k, and we have g(x) = h(qa, k,x) = ¢y(j gk (x). Thus, we obtained an index q; = ¥/(j, g2, k) for
X0, By the definition of wp,, wp, (q1) € P1AQ;. Now we claim that f(wp, (q1)) € P2AQ,.

(1) If f(wp, (q1)) € P.NQo, then naturally we also have f(wp, (q1)) € Q2,50 wp,(q1) € f1(Q2) =
Q1. But on the other hand, because f(wp, (q1)) € Ps, according to the definition of f, wp, (¢1) €
P;. Combining those two, we have wp, (q1) € P; N Qy, which is a contradiction because
wp, (q1) € P1AQ).

(2) If f(wp, (q1)) € (P2UQ2)¢, then we have wp, (q1) ¢ f~1(Q2) = Q;. According to the definition
of f, we also have wp, (q;) ¢ P;. Combining those two, we have wp,(g;) € (P; U Q;)¢, which
contradicts the fact that wp, (q1) € P1AQ;.

Clearly, wp,(x) = f(wp, (¥(J, x, k))) is a witness function for P;, so P, is witnessable. O

There are many undecidable problems that can be proved by many-one reductions from K. In
particular, all non-trivial semantic properties of programs mentioned in Rice’s theorem are many-
one reducible from K [Cutland 1980], and thus they are all witnessable according to the above
theorem. Formally, an index set I is a subset of N satisfying Vi € ,Vj € N, (¢; =¢; = j€1I). An
index set I is non-trivial if and only if I # @ and I # N.

CoROLLARY 1. All non-trivial index sets are witnessable.

PRrOOF. Since there exists a many-one reduction from K to any non-trivial index set [Cutland
1980], this corollary immediately follows from Theorems 2 and 4. O

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

Witnessability of Undecidable Problems 34:9

Fig. 2. The iterative imprecision witness computation. For an undecidable problem P, starting from a decidable
under-approximation Qp, after computing an imprecision witness to for Qp, we incorporate ty to get a better
approximation Q1, and compute an imprecision witness t1 for Q1, and so on. The big rectangle surrounding P
represents the set of all natural numbers. Other kinds of approximations (Figure 1) are similar.

3.4 Iterative Imprecision Witness Computation

This section shows that we can compute infinitely many imprecision witnesses for each approxi-
mation of each witnessable problem: computing an imprecision witness, incorporating it into the
approximation (in possibly naive ways), and repeating this process. Figure 2 illustrates this process
based on under-approximations.

Note that a similar iterative process can also be done for productive sets and their c.e. sub-
sets [Soare 1999], but in that case, the iterative process can only be done for subsets by definition,
while our construction uses symmetric difference to handle more general set relations. This requires
our observation “P \ Q and Q \ P can be distinguished by the computable set Q,” so that we can
determine whether the witness is a false positive or a false negative.

THEOREM 5 (ITERATIVE WITNESSES). If a problem P is witnessable and Q is a decidable approx-
imation of P, then there is a 2-ary total computable function t such that for any ¢4 computing o,
{t(q,0),t(q,1),...} is an infinite list of different imprecision witnesses for Q.

Proor. We describe how t works. First, ¢(g, 0) is defined as wp(q). Let t, = t(g, 0). We mainly
discuss the case where ty € P \ Q and the other case (ty € Q \ P) is similar. The two cases can be
computably distinguished (because Q is decidable), so we can let ¢ choose the correct case.

When ¢, € P\ Q, we augment Q to obtain Q" = Q U {#o}. The index for yo can be obtained
using the following process. Consider the partial computable function g defined as follows:

1 if x=z
9(y,2.%) = { dy(x) if x#z
Obviously, h(x) = g(g, ty, x) computes yor. Suppose the index of g is j. By the S-m-n theorem we
have a 3-ary total computable function ¢ such that g(y, z, x) = ¢y 5,4:2) (x) for all y, z, x € N. Thus,
¥(J, g, to) is an index for yo. If we apply the witness function wp for P again on ¥/(j, g, t), then
we have wp(/(j, g,) € PAQ’, so ty = wp(¥/(J, ¢ o)) # to.

When ty € Q\ P, the set Q \ {#o} is also computable, and a similar construction of #; can be done.

We define t(g, 1) as t;. For any n € N and n > 1, repeating these computation steps n-times gives
the definition of (g, n). O

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

34:10 Shuo Ding and Qirun Zhang

The above theorem leads to an important implication: any witnessable problem must contain
an infinite c.e. set because we can start from letting Q = (. This serves as a cornerstone for our
construction of non-witnessable problems discussed in Section 4.

4 NON-WITNESSABLE PROBLEMS

Section 3 shows that witnessable problems include many undecidable problems. In this section, we
construct an undecidable problem that is non-witnessable.

LEmMMA 1. Given a witnessable problem P € P (N), there exists a computably enumerable set E C P,
such that both E and E€ are infinite.

ProoF. Suppose P is witnessable and let O = 0 be a decidable under-approximation of P.

According to Theorem 5, we can compute infinitely many imprecision witnesses ty, ty, tz, - -+ €
PAQ = P. This list is clearly computably enumerable, and we let E = {ty, t1, 15, - - - } € P. Because
P¢ is infinite by Fact 2 and E€ 2 P¢, it is immediate that E€ is infinite. O

Based on the above lemma, we can construct an undecidable problem X not containing any
c.e. set E such that both E and E€ are infinite. These sets are known as immune sets [Soare 1999].
Specifically, a set I ¢ N is immune if and only if I is infinite but does not contain any infinite c.e.
set. Instead of directly adopting this definition, we provide our own construction to form a basis
for proving Theorem 8 and make this paper more self-contained.

Our proof of Theorem 6 first lists all co-c.e. sets where both the sets and their complements are
infinite (there are only countably many co-c.e. sets). Then, by a diagonalization-style construction,
we can get a set X and prove that X is non-witnessable. The construction inherits some techniques
of the construction in Post [1944]. However, Post [1944] constructs a simple set (i.e., a c.e. set whose
complement is immune), so its construction process needs to be c.e. On the contrary, we construct
an immune set directly and do not require the construction process to be c.e.

THEOREM 6 (NON-WITNESSABLE PROBLEM). There exists a non-witnessable undecidable problem X.

Proor. We list all co-c.e. sets Cy, Cy, Cy, - - - such that for all i € N, both C; and Cy are infinite. It
is easy to see that we can make this list Cy, Cy, Cy, - - - and also this list is infinite, because there are
countably infinitely many c.e. sets such that both themselves and their complements are infinite.
Now we construct a set Y by the following (infinite) process.

e Pick an arbitrary number y, from Cj, and include y, into Y.
e For eachi € Nand i > 1, pick an arbitrary number y; from C{ such that y; > y;-; + 1, and
include y; into Y.
This process is infinite because Cy is infinite for every i € N. Now let X = Y*, and we claim that X
is non-witnessable.

(1) It is easy to see that both X and Y are infinite, because Y = {yo, y1, Y2, - - - } is an infinite set
and because we ensure that y; > y;_; + 1, the infinite set {yo + 1,y; + L,y + 1,- - - } is not
included in Y.

(2) We then show that X is undecidable. Indeed, if X is decidable, then Y = X*¢ is also decidable,
and because decidable sets are co-c.e., we have Y = C; for some j € N. However, due to the
construction, Y is different from every C; (because we pick at least one element from C{ and
include it into Y), which is a contradiction.

(3) Finally, we show that X does not contain any c.e. set E such that both E and E€ are infinite.
Suppose there exists such an E, then X 2 E, Y C E€, and E€ is an infinite co-c.e. set. Therefore,
there exists a j € N such that Y C C;. However, due to the construction of Y, we know that
Y contains at least one element from every C7, which is a contradiction.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

Witnessability of Undecidable Problems 34:11

Lemma 1 claims that every witnessable problem must contain an infinite c.e. subset whose comple-
ment is also infinite, but X does not contain such a subset, so X cannot be witnessable. m]

Explicitly constructing different kinds of “imprecision witnesses” is prevalent in mathematical
logic. For example, Cantor’s theorem states that for any set S, the cardinality of P (S) is strictly
greater than the cardinality of S, and the typical proof is for any given injection f from S to P(S),
we explicitly construct a set {x € S| x ¢ f(x)} that is not in f’s range [Jech 2013]. As another
example, in the classical proof of Godel’s first incompleteness theorem [Godel 1931], for each formal
system satisfying the conditions of that theorem, we can explicitly construct a “Godel sentence”
that is neither provable nor disprovable from the axioms of the formal system. In our case, witness
functions only exist for witnessable problems.

5 CARDINALITIES OF THE TWO CLASSES OF PROBLEMS

The classes of witnessable problems and non-witnessable problems are both large. This section
discusses the flexibility of constructing witnessable problems and non-witnessable problems and
then proves that both classes of problems have cardinality 2™,

We show that the class of witnessable problems has cardinality 2% based on the fact that this class
is closed under many-one reductions (Theorem 4). Indeed, for the diagonal halting problem K, it is
easy to construct a many-one reduction f from K to another problem such that N'\ (f(K) U f(K*¢))
is infinite. The exact boundary between f(K) and f(K¢) can vary a lot: we can construct continuum
many problems reducible from K. An immediate consequence is that many witness functions are
shared by different witnessable problems, because the number of witness functions is countable.

THEOREM 7 (WITNESSABLE CLASS’ CARDINALITY). There are 2™ witnessable problems.

Proor. By Theorems 2 and 4, we know that any problem P such that K <,,, P is witnessable. We
show that there are continuum many such problems. First, it is easy to construct a decidable set
H such that H is infinite and H C K. This could be done, for example, by letting H be all Godel
numbers of terms that do not use the unbounded minimization operator. Pick a G6del number
Jj € K\ H (so ¢; is a total recursive function and the term corresponding to j uses the unbounded
minimization operator) and consider the following total computable function:

f(x):{j if xeH

x else.

It is easy to verify that f(K) = K \ H and f(K°) = K°. Now, we can map the elements in the
set 21 (whose elements are countably infinite sequences of 0’s and 1’s) to the subsets of H in a
straightforward way, using an injection 5 from 2" to P (H). For each point s in 2", we obtain a
unique witnessable set f(K) U 5(s), because K <., f(K) U n(s) by the above total computable
function f. On the other hand, it is clear that there is an injection from the class of witnessable
problems to P (N). Because both P (H) and P (N) have the cardinality 2%, due to the Cantor-
Bernstein theorem [Jech 2013], the cardinality of the class of witnessable problems is 280 O

The fact that there are continuum many non-witnessable problems is established by considering
the diagonalization-style construction of X in Theorem 6: we are free to tweak the choice of each
element in X so that we have two choices on each step. This gives continuum many versions of X.

THEOREM 8 (NON-WITNESSABLE CLASS’ CARDINALITY). There are 280 non-witnessable problems.

PROOF. Similar to the proof of Theorem 7, we only need to construct an injection from 2" to
the class of non-witnessable problems. To this end, we generalize the construction of the set Y in
Theorem 6 as follows.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

34:12 Shuo Ding and Qirun Zhang

e Pick two arbitrary numbers yo ¢ and yo; from C;, and include either v or yo; into Y.
e For each i € N and i > 1, pick two arbitrary numbers y; and y;; from C{ such that
min(y; 0, yi1) > max(yi-1,0, Yi-11) + 1, and include either y; or y;; into Y.
Because there are two choices for each step and there are countably infinitely many steps for
constructing Y, we can easily correspond different elements in 2 with different constructed
versions of Y, resulting in different versions of X = Y. This is indeed an injection from 2N to the

class of non-witnessable problems, and it completes the proof. O

Because the two classes of undecidable problems have the same cardinality, we can regard
these two classes as “having the same size” Because witnessable problems can be regarded as
having a computable property (we can computably construct imprecision witnesses for any given
approximation), this fact contrasts with decidable sets: the cardinality of the class of decidable sets
is 8o, which is strictly “smaller” than the cardinality of the class of undecidable sets (2™0).

6 CASE STUDIES

This section presents two examples to demonstrate witness constructions using a simple program-
ming language (defined in Section 6.1). Specifically, we convert the code of a sound sign analyzer to
a program on which the analyzer is imprecise (Section 6.3), and convert the code of a sound string
solver to a string formula on which the solver is imprecise (Section 6.4).

The constructions are not restricted to the two case studies. Moreover, the constructions are
independent of the implementations of the program analyzers and SMT solvers. The analyzers
and solvers do not need to be sound or complete. The only requirement is that they are written in
Turing-complete programming languages and are total. In practice, both program analyzers and
SMT solvers can be designed to run forever on certain cases, but it is easy to convert them to total
programs by reporting "unknown" when their executions exceed certain resource limits.

Finally, the constructions discussed in this section do not intend to be the most cost-effective
realizations to be used in practice, but show the theoretical possibility of computing such imprecision
witnesses. Also, Section 7.1 shows that we can apply code optimizations on many steps during the
construction, which creates more possible ways to realize this construction.

6.1 The Lang Programming Language

We discuss the construction based on a simple, but Turing-complete dynamically-typed program-
ming language Lang defined in Figure 3. Lang resembles a very small subset of Racket [Flatt and PLT
2010]. Lang supports two basic types: (unbounded) integers and strings. Data structures definable
in other programming languages can be encoded to (or decoded from) integers or strings.

The term (# ex) in Lang’s definition represents all basic operations on basic types (such as
integer arithmetic and comparisons). In the extreme case, we can stipulate ¥ to represent all total
computable functions, which is similar to Bruni et al. [2020]’s language definition.

We show our construction using Lang, but our construction is completely language-agnostic, i.e.,
specific language features such as syntax, semantics, and type systems do not affect our construction
as long as the language is Turing-complete.

6.2 Overview of Constructions

Figure 4 gives an overview of our case studies. Without loss of generality, we assume the analyzers
and solvers are sound, meaning that they give under-approximations for the corresponding deci-
sion problems. Similar constructions can always be done for other kinds of approximations. Our
construction consists of five steps based on our proofs of Theorems 2, 3, and 4.

(1) Problem Construction (Figure 4a). Construct a target decision problem D.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

Witnessability of Undecidable Problems

var €
e u=

Var
var |a € Int | s € Str | (lambda (varx=) e)

(F ex)

(ifeee)
(calleex)

“ %

(a) Syntax of Lang. The notation
more times.

34:13

,|_
| (letrec((vare)x)e)
|
|

*” means the preceding symbol or parenthesized symbols occur zero or

[env,var] = deref[env[var]]
[env,a] = a
[env,s] = s

[env, (lambda (varx) e)]
[env, (F e)]

[env, (letrec ((var e;)*) ez)]
|Ienv, (lf €1 € 63)]]

[env, (call e; ez%)]

(env, (vars,e))

F [env,] *]

[env + bindrec[env, varx, e =], e;]
ite[[[env, e,], env, e, e;]

[envo + {(var — new[[env, e;]1)+), eo]

where (envy, (varx,ey)) = [env, e;]
bindrec[env, vars,ex] = (deref[envy [var]] « [env + envy, e])*; envy
where env; = {(var — new|[undefined])=}

ite[true, env, e1,€5] = [env,e;]
ite[false, env, e1,e5] = [env, es]
new|val] = Memory «— Memory U {loc — val};loc
deref[loc] = Memory[loc]

(b) Semantics of Lang. [env, e]] means the evaluation result of the expression e in the environment env
(mapping variables to memory locations). The order in env realizes variable shadowing. The initial environment
is empty. () means pairs. a; b means sequencing (evaluating from left to right and returning the last value).

Fig. 3. Syntax and semantics of the simple programming language Lang. Any case not defined in the semantics
is considered invalid where the program is treated as divergent (non-terminating).

(2) Problem Reduction (Figure 4b). Construct a many-one reduction from the diagonal halting
problem K or its complement K¢ to D.

(3) Approximation Construction (Figure 4c). Propagate the under-approximation of D to an under-
approximation of K or K¢.

(4) Witness Construction (Figure 4d). Construct an imprecision witness in K or K°¢.

(5) Witness Mapping (Figure 4e). Map the imprecision witness in K or K¢ back to an imprecision
witness in D.

Theorem 2 give the starting point for constructing witnesses, and Theorems 3 and 4 gives the
flexibility to propagate witness constructions along complements and many-one reductions. Our
construction steps follow these theorems. Overall, the construction steps specify an algorithm (the
witness function) taking as input the under-approximating program for D (which is obtained by
simply wrapping the code of the given program analyzer/SMT solver), and producing an output
on which the original program analyzer/SMT solver is imprecise. Once the problem D and the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

34:14 Shuo Ding and Qirun Zhang

K or K¢ K or K¢ K or K¢ K or K¢

®
G

>

o
ws

o
>

S

D

(a) Problem. (b) Reduction. (c) Approximation. (d) Witness. (e) Mapping back.

Fig. 4. Construction overview: (a) constructing a decision problem D, (b) constructing a many-one reduction
<m from K to D, (c) constructing an approximation for K (the dashed circle in K) based on the approximation
for D (the dashed circle in D), (d) constructing a witness in K (the black point in K), (¢) mapping the witness
in K back to a witness in D (the black point in D).

many-one reduction from K or K¢ to D is fixed, this algorithm is also fixed, which is independent
of any specific under-approximating program analyzers/SMT solvers.

6.3 Case Study 1: Program Analyzers

Given the code of a sound sign analyzer for Lang programs, we construct a program on which this
analyzer is imprecise.

Analyzer Model. We stipulate that a sign analyzer takes as input a program and returns the
following analysis results.

N

Specifically, “=” “0,” and “+” denote that the input program, on every input, always halts and
produces a negative integer, the integer 0, and a positive integer, respectively. The special value “top”
indicates either the program does not satisfy any of the aforementioned cases or the sign analyzer is
unable to determine the program’s output sign. In particular, practical program analyzers typically
produce error messages on invalid programs, and our construction can wrap those analyzers so
that they return “top” on invalid programs.

The Construction. Our construction requires a sound sign analyzer written in Lang for Lang
programs and a Lang interpreter written in Lang. Their internal implementations are unconstrained.
The sign analyzer is a (total) lambda taking an arbitrary Lang lambda (represented as a string) as

» 6 G

input, and outputting “+,” “=, “0,” or “top.”

1 (lambda (program)
2 (...code_of_analyzer...))

The Lang interpreter is a (partial) lambda that takes as input a single-parameter Lang lambda
(represented as a string) with its input (also represented as a string), and returns the execution
result of running the input lambda on the input (if it terminates). If the input is invalid* or a runtime
error occurs during the interpretation, the interpreter enters an infinite loop.

4The interpreter can also perform static type checking before the execution.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

Witnessability of Undecidable Problems 34:15

1 (lambda (program, input)
2 (...code_of_interpreter...))

Step 1: Problem Construction. We convert the sign analysis problem to the problem D of verifying
whether the input program returns a positive integer on every input. The sign analyzer can be
converted to a program verifier for D, which is shown as follows. The return values of the verifier
could be “correct” or “unknown.” By the soundness of the sign analyzer, the verifier is an under-

«

approximation of D. Note that “=” is one of the basic operations ¥ in Lang’s definition.

1 (lambda (program)

2 (letrec ((analyzer

3 (lambda (program)

4 (...code_of_analyzer...))))

5 (if (= (call analyzer program) "+")
6 "correct"
7 "unknown")))

Step 2: Problem Reduction. We construct a many-one reduction from the diagonal halting problem
to the problem D constructed in Step 1. The reduction, assuming that the input is the code of a
program pq, returns the code of another program p, such that p; returns a positive integer on every
input if and only if p; terminates on itself. The function format denotes filling placeholders (r1) in a
string with extra string arguments (preserving quotes). For example, (format "ALIc" "b") evaluates to
"a\"b\"c". Note that format is one of the basic operations ¥ in Lang’s definition.

1 (lambda (program)

2 (format

3 "(lambda (input)

4 (letrec ((interpreter

5 (lambda (program, input)

6 (...code_of_interpreter...))))
7 (if (call interpreter []1 [1)

8 1

9 0)))"

10 program program))

Step 3: Approximation Construction. Using the reduction in Step 2, we convert the verifier in Step
1 to the following program q that under-approximates K.

1 (lambda (program)

2 (letrec ((verifier (...code_of_verifier...))

3 (reduction (...code_of_reduction...)))

4 (if (= (call verifier (call reduction program)) "correct")
5 "terminating"

6 "unknown")))

Step 4: Witness Construction. Now we have the code of ¢ that under-approximates K. Based on
the proof of Theorem 2, we construct the following imprecision witness (program) witnessing the
imprecision of g: the code of this program is in K, but ¢ returns “unknown” on it.

1 (lambda (program)

2 (letrec ((q (...code_of_q...)))

3 (if (= (call q program) "terminating")

4 (letrec ((loop (lambda () (call loop)))) (call loop))
5 0)))

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

34:16 Shuo Ding and Qirun Zhang

Step 5: Witness Mapping. According to the definition of the reduction in Step 2, the returned
string of the following function call is an imprecision witness for the verifier that we constructed
in Step 1, meaning that this witness terminates and returns a positive integer on every input, but
the verifier returns “unknown” on it. As a result, the sign analyzer returns “top” on it.

1 (letrec ((reduction (...code_of_reduction...)))
2 (call reduction "(...code_of_the_witness_for_K...)"))

6.4 Case Study 2: SMT Solvers

This section discusses our construction for a specific type of SMT solvers: string solvers. Specifically,
we consider the validity problem of the set of sentences written as a V3 quantifier alternation
applied to positive word equations described in Ganesh et al. [2012]’s work. For simplicity, we use
S to denote the set of such sentences. Given the code of a sound solver for the validity problem of
S sentences, we construct a valid S sentence on which the solver cannot conclude its validity.

Solver Model. We stipulate that a string solver takes an S sentence and returns either “valid,”
“invalid,” or “unknown.” Because the validity problem of S sentences is undecidable [Ganesh et al.
2012], any such solver must return “unknown” for some actually valid sentences.

The Construction. Our construction only requires a sound S solver written in Lang. The solver
is a (total) lambda taking an S sentence (represented as a string) as input and outputting “valid,”
“invalid,” or “unknown.” If the input is not an S sentence, the solver should return “unknown”

1 (lambda (sentence)
2 (...code_of_solver...))

Step 1: Problem Construction. The first step is to construct a decision problem D: the validity
problem of S sentences. Because we assume the solver can return three different values, we wrap it
into a lambda that returns only two values: “valid” or “unknown” By the soundness of the original
solver, the wrapped solver results in an under-approximation of D.

1 (lambda (sentence)

2 (letrec ((solver

3 (lambda (sentence)

4 (...code_of_solver...))))

5 (if (= (call solver sentence) "valid")
6 "valid"

7 "unknown")))

Step 2: Problem Reduction. The second step is to construct a many-one reduction from K¢ to
the problem D constructed in Step 1. This step is based on a result due to Ganesh et al. [2012].
Specifically, given a two-counter machine M and a finite string w, Ganesh et al. [2012] construct
an S sentence such that M does not halt on w if and only if this sentence is valid, and we denote
this construction as f. For simplicity, we encode M and w into a single string Mw. On the other
hand, because two-counter machines can simulate arbitrary Turing machines [Ganesh et al. 2012],
we also have a computable function g such that for any pair of Lang program and input (L, v), both
of which are represented as strings, g((L,v)) = Mw is a string encoding a two-counter machine
and its input such that M applied to w behaves the same as L applied to v. Finally, we construct the
following reduction from K° to D using f and g. Specifically, the input Lang program does not halt
on itself if and only if the output is a valid S sentence.

1 (lambda (program)

2 (letrec ((f (lambda (Mw) (...code_of_f...)))
3 (g (lambda (L v) (...code_of_g...))))
4 (call f (call g program program))))

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

Witnessability of Undecidable Problems 34:17

Step 3: Approximation Construction. Using the reduction in Step 2, we convert the wrapped solver
in Step 1 to the following program g that under-approximates K*.
1 (lambda (program)
2 (letrec ((wrapped_solver (...code_of_wrapped_solver...))
3 (reduction (...code_of_reduction...)))
4 (if (= (call wrapped_solver (call reduction program)) "valid")
5 "non-terminating"
6 "unknown")))

Step 4: Witness Construction. Now we have the code of g that under-approximates K°. Based on
the proofs of Theorem 2 and Theorem 3, we construct the following imprecision witness (program)
witnessing the imprecision of ¢: its code is in K¢ but q returns “unknown” for it.

1 (lambda (program)

2 (letrec ((g (...code_of_qg...)))

3 (if (= (call g program) "non-terminating")

4 0

5 (letrec ((loop (lambda () (call loop)))) (call loop)))))

Step 5: Witness Mapping. According to the definition of the many-one reduction in Step 2, the
returned string of the following function call is an imprecision witness for the wrapped solver
that we constructed in Step 1, meaning that it is a valid S sentence but the wrapped solver returns
“unknown” on it. As a result, the original solver also returns “unknown” on it.

1 (letrec ((reduction (...code_of_reduction...)))
2 (call reduction "(...code_of_the_witness_for_Kc...)"))

7 DISCUSSIONS
7.1 The Flexibility of Constructing Imprecision Witnesses

In general, the construction of imprecision witnesses is flexible. For example, for a specific undecid-
able problem P such that K <, P (via the many-one reduction f), the construction of imprecision
witnesses for a decidable approximation Q of P is parameterized by at least the following factors:

e Different programs (indices) of Q;

e Different programs (indices) of f~1(Q); and

e Different reductions f from K to P.
In particular, we can apply program optimizations on the program of Q and the program of f~(Q).
In addition, Theorem 5 states that we can perform iterative construction of imprecision witnesses
indefinitely, where the method to “improve” the approximation at each step is also flexible.

Moreover, as mentioned in Section 3.1, K might not be the only starting point of the reduc-

tion. In particular, the construction of imprecision witnesses for K might be generalized to other
diagonalization-based undecidability proofs, which we leave for future work.

7.2 The Classification of Undecidable Problems

Degree structures (e.g., many-one degrees, and Turing degrees [Cutland 1980]) are commonly used to
classify problems based on their relative computability. Our witnessable/non-witnessable problems,
on the other hand, classify undecidable problems based on their “computable approximability”:
witnessable problems admit computable approximation improvements, while non-witnessable
problems do not. We can still design decidable approximations for non-witnessable problems, but
we do not have computable ways to automatically find imprecision witnesses.

We also compare our definition with several other classes of sets in computability theory. First,
the class of witnessable problems is indeed different from the class of productive sets [Soare

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

34:18 Shuo Ding and Qirun Zhang

1999] (despite the similarities between their definitions): productive sets cannot be recursively
enumerable, but the recursively enumerable set K is witnessable. Second, it is easy to see that our
class of witnessable problems is not contained in the class of all c.e. sets, because we prove that
the cardinality of the class of witnessable problems is 280 while there are only countably many
c.e. sets. One direct implication is that, in general, the infinite sequence of imprecision witnesses
constructed in Theorem 5 may not cover all points in the undecidable problem being approximated
(otherwise, the problem is c.e.). Third, our witnessable problems are different from the concept
of limit computability. Indeed, the limit lemma [Shoenfield 1959] states that a problem P is limit
computable if and only if P < @', i.e., P is Turing reducible to the first Turing jump of the empty
set, where actually (" = K. Our class of witnessable problems includes the set of indices of all
total functions L = {i | Vx € N, ¢;(x) |} (because L is a non-trivial index set and thus is many-one
reducible from K), and the Turing degree of L is 0”, so L is not Turing-reducible to 0’.

7.3 Non-Witnessable Problems in Practice

Section 4 explicitly constructs a non-witnessable problem but does not relate that problem to any
real scenarios in programming language theory and related fields. The spirit of that construction
is similar to constructions in typical proofs of the time/space hierarchy theorems [Sipser 2012]:
the constructed problems’ main goal is to serve as a theoretical example to support the theorem
instead of modeling any practical scenarios.

7.4 A Counter-Intuitive Fact: “Harder” Problems Do Not Prevent Witnessability

A counter-intuitive fact is that although many-one reduction is considered as a hardness comparison
(i.e, if A <, B then B is considered “harder” than A), accumulation of many-one reductions cannot
make a witnessable problem hard enough to be non-witnessable. Imagine a finite but arbitrarily
long chain of problems Py <,,, P; <y P <s +*+ <m Py, where A <, B is the strict version of
A <, B. Once we prove P, is witnessable, we know that P, is still witnessable, despite that the
many-one reductions show that P,, is much “harder” than P.

8 RELATED WORK

Extensive work exists on the undecidability of problems in programming language theory and
related fields [Abdulla and Jonsson 1996; Bonacina et al. 2006; Day et al. 2018; Dima and Tiplea 2011;
Hu and Lhotak 2020; Landi 1992; Pierce 1992; Reps 2000; Wells 1999]. Our work goes significantly
beyond that: we analyze the “computable approximability” of different problems and provides
computable imprecision witnesses for decidable approximations of certain undecidable problems.

There also exists work focusing on intensional aspects of computability results [Asperti 2008;
Baldan et al. 2021; Moyen and Simonsen 2019]. Our result does not focus on extensional aspects or
intensional aspects in particular, but rather on transforming the proofs of undecidability to witness
functions. In other words, our result is applicable to both the traditional Rice’s theorem [Cutland
1980] and some intensional versions of Rice’s theorem [Asperti 2008].

Giacobazzi et al. [2015] and Bruni et al. [2020] propose constructions of incomplete cases for
abstract interpretation, and abstract interpretation has been shown to be quite general to cover
some other apparently different techniques [Cousot and Cousot 1995]. Our approach is even more
general: we do not make any assumptions about what framework the program analyzer is based
on (it could be based on abstract interpretation, but could also be based on arbitrary combinations
of program analysis techniques [Aiken 1999; Cousot and Cousot 1977; Reps 1998] and arbitrary
heuristics), and we do not require the program analyzer to be sound or complete.

In computability theory, the classes of problems that are similar to our class of witnessable
problems include c.e. sets and limit computable sets, because they all describe certain kinds of

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

Witnessability of Undecidable Problems 34:19

“approximating” processes. In Section 7.2, we discussed the difference between those two classes
and our class, showing that our witnessable problems are indeed a new class of problems. Our
classification motivation is also different from classifications based on relative computability with
respect to oracles (such as Turing degrees and m-degrees): we classify undecidable problems based
on decidable approximability.

Some of our proofs share similar ideas and methods with existing work. First, diagonalization
and many-one reductions are standard techniques in computability [Cutland 1980], but we apply
them to the scenario of our new concept (witnessability). Our proofs of Theorems 4, 5, and 6
share similar ideas with existing work in creative sets [Myhill 1957] and simple sets [Post 1944].
However, our work targets the new concept (witnessability) and more general set relations (modeled
by the symmetric difference). The intent of our paper is not simply an extension of the existing
work. Instead, our focus is witnessability’s implications in programming language theory and
formal methods, which shows that real (undecidable) problems and their approximations have the
previously unknown “witness producing” computability property.

The word “approximation” is also used in algorithm design: for optimization problems, we can
design algorithms whose outputs approximate the optimal solution [Vazirani 2013], and relevant
approximability results are also developed [Arora 1998]. In contrast, our work focuses on decision
problems instead of optimization problems, and we use decidable decision problems to approximate
undecidable decision problems.

9 CONCLUSION AND FUTURE WORK

This paper defines witnessable problems, which are undecidable problems having computable
imprecision witnesses for arbitrary decidable approximations. The class of witnessable problems
has the same cardinality as the class of all undecidable problems. In particular, almost all problems
in programming language theory and formal methods are witnessable, and algorithms in those
areas are essentially decidable approximations of witnessable problems. Our results justify the
research efforts on decidable approximations of witnessable problems and show the existence of
universal ways to improve such approximations.

Witnessability is a newly developed concept that lies at the intersection of programming language
theory and computability theory. We briefly outline some future directions. First, as discussed
in Section 7.2, witnessable problems are different from many existing classes in computability
theory, and it could be interesting future work to study more precise relations between witnessable
problems and other known classes of problems [Cutland 1980; Myhill 1957; Post 1944; Soare 1999],
as well as to study potential equivalent definitions of witnessable problems. Second, the definition of
witness functions is very general, and in particular, we do not require witness functions to preserve
semantic equivalence of programs (so given two input programs p; and p; computing the same
function, a witness function wp does not guarantee that wp(p;) and wp(pz) still compute the same
function). It is thus interesting to study whether there always exist semantic-equivalence-preserving
witness functions. Third, witnessability only concerns computability, but we can also consider
extending it to involve complexity theory. Finally, we anticipate that the idea of the constructions
proposed in this paper (Theorems 2, 3, 4, and 5) can shed light on more practical constructions that
are useful in practice to improve decidable approximations.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback on earlier drafts of this paper. We also thank
Anton Bernshteyn for discussions about related topics in computability theory and descriptive
set theory. This work was supported, in part, by Amazon under an Amazon Research Award
in automated reasoning; by the United States National Science Foundation (NSF) under grants

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

34:20 Shuo Ding and Qirun Zhang

No. 1917924 and No. 2114627; and by the Defense Advanced Research Projects Agency (DARPA)
under grant N66001-21-C-4024. Any opinions, findings, conclusions, or recommendations expressed
in this publication are those of the authors and do not necessarily reflect the views of the above
sponsoring entities.

REFERENCES

Parosh Aziz Abdulla and Bengt Jonsson. 1996. Undecidable Verification Problems for Programs with Unreliable Channels.
Inf. Comput. 130, 1 (1996), 71-90. https://doi.org/10.1006/inc0.1996.0083

Alexander Aiken. 1999. Introduction to Set Constraint-Based Program Analysis. Sci. Comput. Program. 35, 2 (1999), 79-111.
https://doi.org/10.1016/S0167-6423(99)00007-6

Sanjeev Arora. 1998. The Approximability of NP-hard Problems. In Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998. ACM, 337-348. https://doi.org/10.1145/276698.276784

Andrea Asperti. 2008. The intensional content of Rice’s theorem. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008. ACM, 113-119.
https://doi.org/10.1145/1328438.1328455

Paolo Baldan, Francesco Ranzato, and Linpeng Zhang. 2021. A Rice’s Theorem for Abstract Semantics. In 48th International
Collogquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference)
(LIPIcs, Vol. 198). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 117:1-117:19. https://doi.org/10.4230/LIPIcs ICALP.
2021.117

Maria Paola Bonacina, Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, and Daniele Zucchelli. 2006. Decidability and
Undecidability Results for Nelson-Oppen and Rewrite-Based Decision Procedures. In Automated Reasoning, Third
International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings (Lecture Notes in Computer
Science, Vol. 4130). Springer, 513-527. https://doi.org/10.1007/11814771_42

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Isabel Garcia-Contreras, and Dusko Pavlovic. 2020. Abstract extensionality:
on the properties of incomplete abstract interpretations. Proc. ACM Program. Lang. 4, POPL (2020), 28:1-28:28. https:
//doi.org/10.1145/3371096

Alonzo Church. 1936. An Unsolvable Problem of Elementary Number Theory. American Journal of Mathematics 58, 2 (1936),
345-363. https://doi.org/10.2307/2268571

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-Guided Abstraction
Refinement. In Computer Aided Verification, 12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000,
Proceedings (Lecture Notes in Computer Science, Vol. 1855). Springer, 154-169. https://doi.org/10.1007/10722167_15

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977. ACM, 238-252. https://doi.org/10.1145/512950.512973

Patrick Cousot and Radhia Cousot. 1995. Formal Language, Grammar and Set-Constraint-Based Program Analysis by Abstract
Interpretation. In Proceedings of the seventh international conference on Functional programming languages and computer
architecture, FPCA 1995, La Jolla, California, USA, June 25-28, 1995. ACM, 170-181. https://doi.org/10.1145/224164.224199

N. Cutland. 1980. Computability: An Introduction to Recursive Function Theory. Cambridge University Press. https:
//books.google.com/books?id=wAstOUE36kcC

Joel D. Day, Vijay Ganesh, Paul He, Florin Manea, and Dirk Nowotka. 2018. The Satisfiability of Word Equations: Decidable
and Undecidable Theories. In Reachability Problems - 12th International Conference, RP 2018, Marseille, France, September
24-26, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11123). Springer, 15-29. https://doi.org/10.1007/978-3-
030-00250-3_2

Catalin Dima and Ferucio Laurentiu Tiplea. 2011. Model-checking ATL under Imperfect Information and Perfect Recall
Semantics is Undecidable. CoRR abs/1102.4225 (2011). https://doi.org/10.48550/arXiv.1102.4225

Matthew Flatt and PLT. 2010. Reference: Racket. Technical Report PLT-TR-2010-1. PLT Design Inc. https://racket-lang.org/tr1/.

Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin C. Rinard. 2012. Word Equations with Length Constraints:
What’s Decidable?. In Hardware and Software: Verification and Testing - 8th International Haifa Verification Conference,
HVC 2012, Haifa, Israel, November 6-8, 2012. Revised Selected Papers (Lecture Notes in Computer Science, Vol. 7857). Springer,
209-226. https://doi.org/10.1007/978-3-642-39611-3_21

Roberto Giacobazzi, Francesco Logozzo, and Francesco Ranzato. 2015. Analyzing Program Analyses. In Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015. ACM, 261-273. https://doi.org/10.1145/2676726.2676987

Kurt Gédel. 1931. Uber formal unentscheidbare Sitze der Principia Mathematica und verwandter Systeme 1. Vol. 38. Springer,
173-198. https://doi.org/10.1007/BF01700692

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

https://doi.org/10.1006/inco.1996.0083
https://doi.org/10.1016/S0167-6423(99)00007-6
https://doi.org/10.1145/276698.276784
https://doi.org/10.1145/1328438.1328455
https://doi.org/10.4230/LIPIcs.ICALP.2021.117
https://doi.org/10.4230/LIPIcs.ICALP.2021.117
https://doi.org/10.1007/11814771_42
https://doi.org/10.1145/3371096
https://doi.org/10.1145/3371096
https://doi.org/10.2307/2268571
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/224164.224199
https://books.google.com/books?id=wAstOUE36kcC
https://books.google.com/books?id=wAstOUE36kcC
https://doi.org/10.1007/978-3-030-00250-3_2
https://doi.org/10.1007/978-3-030-00250-3_2
https://doi.org/10.48550/arXiv.1102.4225
https://racket-lang.org/tr1/
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1007/BF01700692

Witnessability of Undecidable Problems 34:21

Jason Z. S. Hu and Ondrej Lhotak. 2020. Undecidability of d<: and its decidable fragments. Proc. ACM Program. Lang. 4,
POPL (2020), 9:1-9:30. https://doi.org/10.1145/3371077

T. Jech. 2013. Set Theory: The Third Millennium Edition, revised and expanded. Springer Berlin Heidelberg. https:
//books.google.com/books?id=70N-cgAACAA]

N.D. Jones, C.K. Gomard, and P. Sestoft. 1993. Partial Evaluation and Automatic Program Generation. Prentice Hall.
https://books.google.com/books?id=ZoBQAAAAMAA]

Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization. In Conference Record of the ACM Symposium on
Principles of Programming Languages, Boston, Massachusetts, USA, October 1973, Patrick C. Fischer and Jeffrey D. Ullman
(Eds.). ACM Press, 194-206. https://doi.org/10.1145/512927.512945

William Landi. 1992. Undecidability of Static Analysis. LOPLAS 1, 4 (1992), 323-337. https://doi.org/10.1145/161494.161501

Shuying Liang, Weibin Sun, and Matthew Might. 2014. Fast Flow Analysis with Godel Hashes. In 14th IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM 2014, Victoria, BC, Canada, September 28-29, 2014.
IEEE Computer Society, 225-234. https://doi.org/10.1109/SCAM.2014.40

Jean-Yves Moyen and Jakob Grue Simonsen. 2019. More Intensional Versions of Rice’s Theorem. In Computing with Foresight
and Industry - 15th Conference on Computability in Europe, CiE 2019, Durham, UK, July 15-19, 2019, Proceedings (Lecture
Notes in Computer Science, Vol. 11558). Springer, 217-229. https://doi.org/10.1007/978-3-030-22996-2_19

John Myhill. 1957. Creative sets. Journal of Symbolic Logic 22, 1 (1957). https://doi.org/10.2307/2964061

Benjamin C. Pierce. 1992. Bounded Quantification is Undecidable. In Conference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Albuquerque, New Mexico, USA, January 19-22,
1992. ACM Press, 305-315. https://doi.org/10.1145/143165.143228

Emil L Post. 1944. Recursively enumerable sets of positive integers and their decision problems. Bull. Amer. Math. Soc. 50, 5
(1944), 284-316. https://doi.org/10.1090/S0002-9904-1944-08111-1

Emil L Post. 1946. A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc. 52, 4 (1946), 264-268. https:
//doi.org/10.1090/S0002-9904-1946-08555-9

Thomas W. Reps. 1998. Program analysis via graph reachability. Inf. Softw. Technol. 40, 11-12 (1998), 701-726. https:
//doi.org/10.1016/S0950-5849(98)00093-7

Thomas W. Reps. 2000. Undecidability of context-sensitive data-dependence analysis. ACM Trans. Program. Lang. Syst. 22, 1
(2000), 162-186. https://doi.org/10.1145/345099.345137

Hartley Rogers. 1958. Godel numberings of partial recursive functions. The journal of symbolic logic 23, 3 (1958), 331-341.
https://doi.org/10.2307/2964292

Joseph R Shoenfield. 1959. On degrees of unsolvability. Annals of mathematics (1959), 644-653. https://doi.org/10.2307/
1970028

M. Sipser. 2012. Introduction to the Theory of Computation. (2012). https://books.google.com/books?id=H94]JzgEACAA]

RI Soare. 1999. Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets.
Springer Berlin Heidelberg. https://books.google.com/books?id=917P100LU5gC

Alan Mathison Turing et al. 1936. On computable numbers, with an application to the Entscheidungsproblem. 7. of Math 58,
345-363 (1936), 5. https://doi.org/10.1112/plms/s2-42.1.230

V.V. Vazirani. 2013. Approximation Algorithms. Springer Berlin Heidelberg. https://books.google.com/books?id=
bJmqCAAAQBA]

J. B. Wells. 1999. Typability and Type Checking in System F are Equivalent and Undecidable. Ann. Pure Appl. Log. 98, 1-3
(1999), 111-156. https://doi.org/10.1016/S0168-0072(98)00047-5

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 34. Publication date: January 2023.

https://doi.org/10.1145/3371077
https://books.google.com/books?id=70N-cgAACAAJ
https://books.google.com/books?id=70N-cgAACAAJ
https://books.google.com/books?id=ZoBQAAAAMAAJ
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/161494.161501
https://doi.org/10.1109/SCAM.2014.40
https://doi.org/10.1007/978-3-030-22996-2_19
https://doi.org/10.2307/2964061
https://doi.org/10.1145/143165.143228
https://doi.org/10.1090/S0002-9904-1944-08111-1
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1145/345099.345137
https://doi.org/10.2307/2964292
https://doi.org/10.2307/1970028
https://doi.org/10.2307/1970028
https://books.google.com/books?id=H94JzgEACAAJ
https://books.google.com/books?id=9I7Pl00LU5gC
https://doi.org/10.1112/plms/s2-42.1.230
https://books.google.com/books?id=bJmqCAAAQBAJ
https://books.google.com/books?id=bJmqCAAAQBAJ
https://doi.org/10.1016/S0168-0072(98)00047-5

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Set Theory
	2.2 Computability Theory
	2.3 Decidable Approximations

	3 Witnessable Problems
	3.1 Diagonal Halting Problem is Witnessable
	3.2 Witnessability is Closed under Complements
	3.3 Witnessability is Closed under Many-One Reductions
	3.4 Iterative Imprecision Witness Computation

	4 Non-Witnessable Problems
	5 Cardinalities of the Two Classes of Problems
	6 Case Studies
	6.1 The Lang Programming Language
	6.2 Overview of Constructions
	6.3 Case Study 1: Program Analyzers
	6.4 Case Study 2: SMT Solvers

	7 Discussions
	7.1 The Flexibility of Constructing Imprecision Witnesses
	7.2 The Classification of Undecidable Problems
	7.3 Non-Witnessable Problems in Practice
	7.4 A Counter-Intuitive Fact: ``Harder'' Problems Do Not Prevent Witnessability

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

