


are sum-sum-product queries. The gradient ∇J(x) =
A>Ax− A>b + λx, for example, is the following sum-

sum-product query:

∇[i] :- ∑
j,k

a[k, i] ·a[k, j] · x[ j]+∑
j

−1 ·a[ j, i] ·b[ j]+λ · x[i]

The gradient has the same dimensionality as x, and the

group-by variable is i. Gradient descent is an algorithm

to find the solution of ∇J(x) = 0, or equivalently to solve

for a fixpoint solution to the Datalog◦ program x = f (x)
where f (x) = x−α∇J(x) for some step-size α.2

EXAMPLE 1.2. The all-pairs shortest paths (APSP)

problem is to compute the shortest path length P[x,y]
between any pair x,y of vertices in the graph, given the

length E[x,y] of edges in the graph. The value space of

E[x,y] can be the reals R or the non-negative reals R+.

The APSP problem in Datalog◦ can be expressed very

compactly as:

P[x,y] :- min(E[x,y],min
z
(P[x,z]+E[z,y])) (1)

where (min,+) are the “addition” and “multiplica-

tion” operators in the tropical semirings; see Ex. 3.1.

By changing the semiring, Datalog◦ is able to express
similar problems in exactly the same way. For example,
(1) becomes transitive closure over the Boolean semir-
ing, the p+ 1 shortest paths over the Trop+p semiring,
and so forth.

In Datalog, the least fixpoint semantics was defined
w.r.t. set inclusion [1]. To generalize this semantics for
Datalog◦, we generalize set inclusion to a partial order
over S-relations. We define a partially ordered, pre-

semiring (POPS, Sec. 3) to be any pre-semiring S [20]
with a partial order, where both ⊕ and ⊗ are monotone
operations. Thus, in Datalog◦ the value space is always
some POPS. Given this partial order, the semantics of a
Datalog◦ program is defined naturally, as the least fix-
point of the immediate consequence operator.

Optimizations. While Datalog is designed for iteration,
Datalog engines typically optimize only the loop body
but not the actual loop. The few systems that do, are lim-
ited to a small number of hard-coded optimizations, like
magic-set rewriting and semi-naïve evaluation. Datalog◦

supports these classic optimizations, and more. We de-
scribe these optimizations in Sec. 4.1, but give here a
brief preview, and start by illustrating how the semi-
naïve algorithm extends to Datalog◦. Consider the pro-
gram computing the transitive closure of E:

2In practice, the fixpoint computation for (non-accelerated)
gradient descent is more complicated, where α is dynamically
adjusted using variants of back-tracking line-search [37].

P(x,y) :- E(x,y)∨
∨

z

(P(x,z)∧E(z,y)) (2)

We use parentheses like E(x,y) for standard relations,
whose value space is the set of Booleans, and use square
brackets, like E[x,y], when the value space is something
else. The rule (2) deviates only slightly from standard
Datalog syntax, in that it uses explicit conjunction and
disjunction, and binds the variable z explicitly. After
initializing P0(x,y) = δ0(x,y) = E(x,y), at the t’th iter-
ation, the semi-naïve algorithm does the following:

δt(x,y) =

(

∨

z

(δt−1(x,z)∧E(z,y))

)

\Pt−1(x,y)

Pt(x,y) = Pt−1(x,y)∪δt(x,y)

(3)

By computing the δ relation so, we avoid re-deriving
many facts in each iteration. Another way to see this
is that, when δ is much smaller than P, then the join
between δ and E in (3) is much cheaper than the join
between P and E in (2). The set difference operation
aims precisely to keep δ small. Somewhat surprisingly,
the same principle can be extended to Datalog◦, as we
illustrate next.

EXAMPLE 1.3 (APSP-SN). The semi-naïve algo-

rithm for the APSP problem (Example 1.2) is:

δt [x,y] =

(

min
z

(δt−1[x,z]+E[z,y])

)

	Pt−1[x,y]

Pt [x,y] = min(Pt−1[x,y],δt [x,y])

(4)

The difference operator 	 is defined as follows:

b	a =

{

b if b < a

∞ if b≥ a

As in the standard semi-naïve algorithm, our goal is to

keep δ small, by storing only tuples with a finite value,

δ[x,y] 6= ∞. We use the 	 operator for that purpose.

Consider the rule (4). If b = δt−1[x,z] + E[z,y] is the

newly discovered path length, and a = Pt−1[x,y] is the

previously known path length, then b	a is finite iff b <

a, i.e. only when the new path length strictly decreases.

Correctness of the semi-naïve algorithm follows from

the identity min(a,b	a) = min(a,b). We note that, re-

cently, Budiu et al. [7] have developed a very general in-

cremental view maintenance technique, which also leads

to the semi-naïve algorithm, for the case when the value

space is restricted to an abelian group.

We have introduced in [47] a simple, yet very general
optimization rule, called the FGH-rule. The semi-naïve
algorithm is one instance of the FGH-rule, but so are
many other optimizations, as we illustrate in Sec. 4. For

SIGMOD Record, June 2022 (Vol. 51, No. 2) 7



a brief preview, we illustrate the FGH-optimization with
the following example:

EXAMPLE 1.4. Soufflé [24] is a popular open source

Datalog system that supports aggregates, but does not

allow aggregates in recursive rules. This means that we

cannot write APSP as in rule (1). The common work-

around is to stratify the program: we first compute the

lengths of all paths between each pair of vertices, then

take the minimum:

Pall(x,y,d) :- E(x,y,d).

Pall(x,y,d1 +d2) :- E(x,z,d1),Pall(z,y,d2).

P[x,y] = min
d
{d | Pall(x,y,d)}

Of course, this program diverges on graphs with cycles,

and is quite inefficient on acyclic graphs. The FGH-rule

rewrites this naïve program into (1).

Organization. Sec. 2 discusses related work; Sec. 3 in-
troduces the syntax and semantics of Datalog◦; Sec. 4
describes the FGH-framework for optimizing Datalog◦

programs, including magic-set transformation and semi-
naïve evaluation; finally, Sec. 5 concludes.

2. RELATED WORK

Researchers have extended Datalog in many ways to
enhance its expressiveness. Some of these extensions
also reveal opportunities for various optimizations. This
section surveys some existing research on Datalog ex-
tensions (Sec. 2.1) and their optimization (Sec. 2.2).

2.1 Datalog Extensions

Pure Datalog is very spartan: neither negation nor ag-
gregate is allowed. Therefore, the literature on Datalog
extensions is vast, and we will not attempt to cover the
whole space. Instead, we focus on extensions that aim
to support aggregates in Datalog. These include, but are
not limited to, the standard MIN, MAX, SUM, and COUNT

aggregates in SQL.
The main challenge in having aggregates is that they

are not monotone under set inclusion, yet monotonicity
is crucial for the declarative semantics of Datalog, and
optimizations like semi-naïve evaluation. Consider the
APSP Example 1.2. We could attempt to write it in Dat-
alog, by extending the language with a min-aggregation:

P(x,y,d) :- E(x,y,d)

P(x,y,min(d)) :- P(x,z,d1),E(z,y,d2),d = d1 +d2 (5)

However, the second rule is not monotone w.r.t. set in-
clusion. This is a subtle, but important point. For ex-
ample, fix E = {(b,c,20),(b′,c,10)}: if P is {(a,b,1)},
then the output of the rule is {(a,c,21)}, but when P

is the superset {(a,b,1),(a,b′,1)}, then the output is

{(a,c,11)}, which is not a superset of the previous out-
put, {(a,c,21)} 6⊆ {(a,c,11)}.

Approaches to resolve the tension between aggregates
and monotonicity mainly follow two strategies: break
the program into strata, or generalize the order relation
to ensure that aggregates become monotone.

Stratified Aggregates. The simplest way to add aggre-
gates to Datalog while staying monotone is to disallow
aggregates in recursion. Proposed by Mumick et al. [35],
the idea is inspired by stratified negation, where every
negated relation must be computed in a previous stra-
tum. Ex. 1.4 is stratified: the first two rules form the
first stratum and compute Pall to a fixpoint in regular
Datalog3, and the last rule performs the min aggregate
in its own stratum. Stratifying aggregates has the ben-
efit that the semantics, evaluation algorithms, and opti-
mizations for classic Datalog can be applied unchanged
to each stratum. However, stratification limits the pro-
grams one is allowed to write – Ex. 1.2 is not stratified,
and would therefore be invalid. Since Ex. 1.2 is equiv-
alent to but more efficient than Ex. 1.4, disallowing the
former leads to suboptimal performance. The stratifica-
tion requirement can also be a cognitive burden on the
programmer. In fact, the most general notion of stratifi-
cation, dubbed “magic stratification” [35], involves both
a syntactic condition and a semantic condition defined in
terms of derivation trees.

Generalized Ordering. In this article, we follow the
approach that restores monotonicity by generalizing the
ordering on which monotonicity is defined. The key idea
is that, although a program like that shown in Eq. (5) is
not monotone according to the ⊆ ordering on sets, we
can pick another order under which P is monotone. Ross
and Sagiv [39] define the ordering4 Pv P′ as:

∀(x,y,d) ∈ P,∃(x,y,d′) ∈ P′ : (x,y,d)v (x,y,d′)

where (x,y,d)v (x′,y′,d′)
def
= x = x′∧ y = y′∧d ≥ d′

That is, P increases if we replace (x,y,d) with (x,y,d′)
where d′ < d, for example {(a,c,21)} v {(a,c,11)}.
In general, to define a generalized ordering we need to
view a relation as a map from a tuple to an element in
some ordered set S. For example, the relation P maps a
pair of vertices (x,y) to a distance d. We will call such
generalized relations S-relations. Different approaches
in existing work have modeled S using different alge-
braic structures: Ross and Sagiv [39] require it to be a
complete lattice, Conway et al. [9] require only a semi-
lattice, whereas Green et al. [21] require S to be an ω-
continuous semiring. These proposals bundle the order-

3The second rule uses the built-in function +.
4If (x,y) is not a key in P, then v is only a preorder.
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ing together with two operations ⊗ and/or ⊕. In this ar-
ticle, we follow this line of work and ensure monotonic-
ity by generalizing the ordering. However, in contrast to
prior work we decouple operations on S-relations from
the ordering, and allow one to freely mix and match the
two as long as monotonicity is respected.

Other Approaches. There are other approaches to sup-
port aggregates in Datalog that do not fall into the two
categories above. We highlight a few of them here. Gan-
guly et al. [14] model min and max aggregates in Dat-
alog with negation, thereby supporting aggregates via
semantics defined for negation. Mazuran et al. [34] ex-
tend Datalog with counting quantification, which addi-
tionally captures SUM. Kemp and Stuckey [25] extend
the well-founded semantics [16, 15] and stable model
semantics [17] of Datalog to support recursive aggre-
gates. They show that their semantics captures various
previous attempts to incorporate aggregates into Data-
log. They also discuss a semantics using closed semir-
ings, and observe that under such a semantics some pro-
grams may not have a unique stable model. Semantics
of aggregation in Answer Set Programming has been ex-
tensively studied [12, 18, 2]. Liu and Stoller [33] give a
comprehensive survey of this space.

2.2 Optimizing Extended Datalog

New opportunities for optimization emerge once we
extend Datalog to support aggregation. We have already
seen one instance in Ex. 1.4 and Ex. 1.2. Intuitively, the
optimization can be seen as applying the group-by push-
down rule to recursive programs; or, it can be seen as a
variant of the magic-set transformation, where we push
the aggregate instead of a predicate into recursion. The
optimizations we study in this article are inspired by a
long line of work done by Carlo Zaniolo and his collab-
orators [14, 51, 50, 49]. Indeed, our FGH-rule is a gen-
eralization of Zaniolo et al.’s notion of pre-mappability
(PreM) [51], which evolved from earlier ideas on push-
ing extrema (min / max aggregate) into recursion [50].
A different and more recent solution to aggregate push-
down by Shkapsky et al. [42] is to use set-monotonic ag-
gregation operators. Unlike PreM, pushing monotonic
aggregates requires no preconditions, but may result in
slightly less efficient programs.

In addition to new optimizations like aggregate push-
down, classic techniques including semi-naïve evalua-
tion and magic-set transformation also exhibit interest-
ing twists in extended Datalog variants. For example,
Conway et al. [9] generalize the set-based semi-naïve
evaluation into one over S-relations where S is a semilat-
tice, and Mumick et al. [35] adapt magic-set transforma-
tion to work in the presence of aggregate-in-recursion.
In this article, we will show how the FGH-rule can cap-

ture both the magic-set transformation and the general
semi-naïve evaluation.

To evaluate a recursive Datalog◦ program is to solve
fixpoint equations over semirings, which has been stud-
ied in the automata theory [28], program analysis [10,
36], and graph algorithms [8, 32, 31] communities since
the 1970s. (See [40, 23, 29, 20, 52] and references
thereof). The problem took slighly different forms in
these domains, but at its core, it is to find a solution to
the equation x = f (x), where x ∈ Sn is a vector over the
domain S of a semiring, and f : Sn→ Sn has multivariate
polynomial component functions. A literature review on
this fixpoint problem can be found in [26].

3. DATALOG◦

Datalog◦ extends Datalog in two ways. First, all rela-
tions are S-relations over some semiring S. Second, the
semiring needs to be partially ordered; more precisely,
it needs to be a POPS.

POPS A partially ordered pre-semiring, or POPS, is
a tuple SSS = (S,⊕,⊗,000,111,v), where:

• (S,⊕,⊗,000,111) is a pre-semiring, meaning that ⊕,⊗
are commutative and associative, have identities 000 and
111 respectively, and ⊗ distributes over ⊕.

• v is a partial order with a minimal element, ⊥.

• Both ⊕,⊗ are monotone operations w.r.t. v.

Pre-semirings have been studied intensively [20], and
we need to straighten up some terminology before pro-
ceeding. A pre-semiring only requires ⊕ to be commu-
tative: if ⊗ is also commutative, then it is called a com-
mutative pre-semiring. All pre-semirings in this paper
are commutative. If x⊗ 000 = 000 holds for all x, then SSS is
called a semiring. We call ⊗ strict if x⊗⊥ = ⊥ for all
x; throughout this paper we will assume that ⊗ is strict.

When the relation x v y is defined by ∃z : x⊕ z = y,
then v is called the natural order. In that case, the min-
imal element is ⊥= 000. Naturally ordered semirings ap-
pear often in the literature [20, 21, 11], but we do not re-
quire POPS to be naturally ordered (see Example 3.2).

SSS-Relations Fix a POPS SSS, and a domain D, which,
for simplicity, we will assume to be finite. An SSS-relation

is a function R : Dk → S. We call Dk the key space and
SSS the value space. When SSS is the set of Booleans, which
we denote B, then a B-relation is a standard relation, i.e.
a set. Next, we need to define sum-product, and sum-

sum-product expressions, which are generalizations of
Conjunctive Queries (CQ), and Unions of Conjunctive
Queries (UCQ):

T [x1, . . . ,xk] ::=
⊕

xk+1,...,xp∈D

{A1⊗·· ·⊗Am |C} (6)

F [x1, . . . ,xk] ::= T1[x1, . . . ,xk]⊕·· ·⊕Tq[x1, . . . ,xk] (7)
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The sum-product expression (6) defines a new SSS-relation
T , with head variables x1, . . . ,xk. It consists of a summa-
tion of products, where the bound variables xk+1, . . . ,xp

range over the domain D, and may be further restricted
to satisfy a condition C. Each factor Au is either a rela-

tional atom, Ri[xt1 , . . . ,xtki
], where Ri is a relation name

from some given vocabulary, or an equality predicate,
[xt = xs]. The sum-sum-expression (7) is a sum of sum-
product expressions, with the restriction that all sum-
mands have the same head variables.

Datalog◦ The input to a Datalog◦ program consists
of m EDB predicates5 EEE = (E1, . . . ,Em), and the out-
put consists of n IDB predicates PPP = (P1, . . . ,Pn). The
Datalog◦ program has one rule for each IDB:

P1[vars1] :- F1[vars1]

. . .

Pn[varsn] :- Fn[varsn] (8)

where each Fi[varsi] is a sum-sum-product expression
using the relation symbols E1, . . . ,Em,P1, . . . ,Pn. We say
that the program is linear if each product contains at
most one IDB predicate.

Semantics The tuple of all n sum-sum-product ex-
pressions FFF = (F1, . . . ,Fn) is called the Immediate Con-

sequence Operator, or ICO. Fix an instance of the EDB
relations EEE. The ICO defines a function PPP 7→ FFF(EEE,PPP)
that maps the IDB instances PPP to new IDB instances.
The semantics of a Datalog◦ program is the least fixpoint
of the ICO, when it exists. Equivalently, the Datalog◦

program is the result returned by the following naïve
evaluation algorithm:

PPP0 =⊥; t = 0;

repeat PPPt+1 = FFF(EEE,PPPt);

t = t +1;

until PPPt = PPPt−1

The reader may have recognized that Datalog◦ is quite
similar to Datalog, with minor changes: the operations
∨,∧ are replaced with ⊕,⊕, and multiple rules for the
same IDB predicate are combined into a single sum-
sum-product rule. Importantly, Datalog◦ retains the same
simple fixpoint semantics, but it generalizes from sets to
SSS-relations. We illustrate this with two examples.

EXAMPLE 3.1. Consider the one-rule program:

P[x,y] :- E[x,y]⊕
⊕

z

(P[x,z]⊗E[z,y]) (9)

We will interpret it over several POPS and use it to com-

pute quite different things.

5EDB and IDB stand for extensional database and intentional
database respectively [1].

Booleans Choose B= ({0,1},∨,∧,0,1,≤) to be the

value space, where 0 ≤ 1. Then the program in Eq. (9)
becomes the transitive closure program in Eq. (2).

Tropical Semiring Trop+ = (R+,min,+,∞,0,≥) is

a naturally ordered POPS, called the tropical semiring.

When we choose it as value space, then the program in

Eq. (9) becomes the APSP program in Eq. (1). We briefly

illustrate its semantics on a graph with three nodes a,b,c

and edges (we show only entries with value < ∞):

E[a,b] =1 E[a,c] =10 E[b,c] =1

During the iterations t = 0,1,2, . . . of the naïve algo-

rithm, P “grows” as follows (notice that the order rela-

tion in Trop+ is the reverse of the usual one, thus ∞ is

the smallest value):

P[a,b] P[a,c] P[b,c]
t = 0 ∞ ∞ ∞
t = 1 1 10 1
t = 2 1 2 1

p-Tropical We can use the same program over a dif-

ferent POPS to compute the p + 1 shortest paths, for

some fixed number p ≥ 0. We need some notations. If

xxx = {{x0 ≤ x1 ≤ . . .≤ xn}} is a bag of numbers, then we

denote by minp(xxx)
def
= {{x0,x1, . . . ,xmin(p,n)}}. In other

words, minp retains the smallest p+ 1 elements of the

bag xxx. The p-tropical semiring is:

Trop+p
def
=(Bp+1(R+∪{∞}),⊕p,⊗p,000p,111p)

where Bp+1 represents bags of p+1 elements, and:6

xxx⊕p yyy
def
=minp(xxx] yyy) xxx⊗p yyy

def
=minp(xxx+ yyy)

000p
def
={∞,∞, . . . ,∞} 111p

def
={0,∞, . . . ,∞}

Trop+p is naturally ordered. Now the program (9) com-

putes the length of the p+1 shortest paths from x to y.

η-Tropical Finally, we illustrate how the same pro-

gram can be used to compute the length of all paths

that differ from the shortest path by ≤ η, for some fixed

η≥ 0. Given any finite set xxx of real numbers, define:

min≤η(xxx)
def
= {u | u ∈ xxx,u−min(xxx)≤ η}

In other words, min≤η retains from the set xxx the elements

at distance ≤ η from its minimum. Define the POPS:

Trop+≤η

def
=(P≤η(R+∪{∞}),⊕≤η,⊗≤η)

where P≤η is the set of finite sets xxx where max(xxx)−
min(xxx)≤ η, and:

xxx⊕≤η yyy
def
=min≤η(xxx∪ yyy) xxx⊗≤η yyy

def
=min≤η(xxx+ yyy)

000≤η
def
={∞} 111≤η

def
={0}

6For sets or bags xxx,yyy: xxx+ yyy
def
= {u+ v | u ∈ xxx,v ∈ yyy}.
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Trop+≤η is naturally ordered. The program (9) computes

now the length of all paths that differ by ≤ η from the

shortest.

EXAMPLE 3.2. Consider now the bill-of-material ex-

ample: the relation SupPart(x,z) represents the fact

that z is a subpart of x, and the goal is to compute, for

each x, the total cost of all its direct and indirect sub-

parts. This is written in Datalog◦ as follows:

Q[x] :- Cost[x]+∑
z

{Q[z] | SubPart(x,z)} (10)

We will interpret it over two different POPS:

Natural Numbers We start by interpreting the pro-

gram over the POPS (N,+,∗,0,1,≤). If the SubPart

hierarchy is a tree, then Eq. (10) computes correctly the

total cost, as intended. If SubPart is a DAG, then the

program may over-count some costs; we will return to

this issue in Ex. 4.5. For now, we consider termination,

in the case when SubPart happens to have a cycle: in

that case the program diverges.

Lifted Reals (or Lifted Naturals) Alternatively, con-

sider the following POPS: R⊥ = (R∪{⊥},+,∗,0,1,v
), where x+⊥= x×⊥=⊥ for all x, and av b if a = b

or a = ⊥. This POPS is not naturally ordered. When

we interpret the program in Eq. (10) over R⊥, then it

always converges, even on a graph with cycles, because

all nodes on a cycle will converge with Q[x] =⊥.

Note that, in the above examples, only R⊥ (likewise
N⊥) is a pre-semiring. All other POPS discussed here
are actually semirings.

4. OPTIMIZING DATALOGO

Traditional Datalog has two major advantages: first,
it has a clean declarative semantics; second, it has some
powerful optimization techniques such as the semi-naïve
evaluation, magic-set rewriting, and the PreM optimiza-
tion [51]. Datalog◦ generalizes both: we have seen its
semantics in Sec. 3, while here we show (following [26,
47]) that the previous optimizations are special cases of
a general, yet very simple optimization rule, which we
call the FGH-rule (pronounced “fig-rule”).

4.1 The FGH-Rule

Consider an iterative program that repeatedly applies
a function F until some termination condition is satis-
fied, then applies a function G that returns the final an-
swer Y :

X ← X0

loop X ← F(X) end loop (11)

Y ← G(X)

We call this an FG-program. The FGH-rule provides
a sufficient condition to compute the final answer Y by
another program, called the GH-program:

Y ← G(X0)

loop Y ← H(Y ) end loop (12)

The FGH-Rule [47] states: if the following identity
holds:

G(F(X)) = H(G(X)) (13)

then the FG-program (11) and the GH-program (12) are
equivalent. We supply here a “proof by picture” of the
claim:

X0
F
> X1

F
> X2 . . .

F
> Xn

Y0

G

∨
H
> Y1

G

∨
H
> Y2

G

∨
. . .

H
> Yn

G

∨

Our goal is to use the FGH-rule to optimize Datalog◦

programs, and we proceed as follows. Consider two
Datalog◦ programs Π1 and Π2 given below:

Π1 : X :- F(X)

Y :- G(X)
Π2 : Y :- H(Y )

Here X and Y are tuples of IDBs (for example X =
(P1, . . . ,Pn) with the notation in Sec. 3), and F,G,H rep-
resent sum-sum-product expressions over these IDBs.
In both cases, only the IDBs Y are returned. Then, if the
FGH-rule (13) holds, and, moreover, G(⊥) = ⊥, then
Π1 is equivalent to Π2. We notice that, under these con-
ditions, if Π1 terminates, then Π2 terminates as well.

We illustrate several applications of the FGH-rule in
Sec. 4.2, then describe its implementation in an opti-
mizer in Sec. 4.3.

4.2 Applications of the FGH-Rule

We start with some simple applications. Throughout
this section we assume that the function H is given; we
discuss in Sec. 4.3 how to synthesize H.

EXAMPLE 4.1 (CONNECTED COMPONENTS). We

are given an undirected graph, with edge relation E(x,y),
where each node x has a unique numerical label L[x].
The task is to compute for each node x, the minimum

label CC[x] in its connected component. This program

is a well-known target of query optimization in the lit-

erature [51]. A naïve approach is to first compute the

reflexive and transitive closure of E, then apply a min-

aggregate:

TC(x,y) :- [x = y]∨∃z(E(x,z)∧TC(z,y))

CC[x] :- min
y
{L[y] | TC(x,y)}
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TC(x,y)
F

> TC′(x,y) :- [x = y]∨∃z(E(x,z)∧TC(z,y))

CC[x] :- min
y
{L[y] | TC(x,y)}

G

∨
H

>

CC1[x] :- miny{L[y] | TC′(x,y)}
CC2[x] :- min(L[x],miny{CC[y] | E(x,y)})

G

∨

Figure 1: Visualization of the FGH-rule used in Example 4.1.

CC1[x]
def
= min

y
{L[y] | TC′(x,y)}

=min
y
{L[y] | [x = y]∨∃z(E(x,z)∧TC(z,y))}

=min(L[x],min
y
{L[y] | ∃z(E(x,z)∧TC(z,y))})

=min(L[x],min
y,z
{L[y] | E(x,z)∧TC(z,y)})

CC2[x]
def
= min(L[x],min

y
{CC[y] | E(x,y)})

=min(L[x],min
y
{min

y′
{L[y′] | TC(y,y′)} | E(x,y)})

=min(L[x],min
y′,y
{L[y′] | E(x,y)∧TC(y,y′)})

Figure 2: Computing CC1 and CC2 from Ex. 4.1.

An optimized program interleaves aggregation and re-

cursion:

CC[x] :- min(L[x],min
y
{CC[y] | E(x,y)})

We prove their equivalence, by checking the FGH-rule

which is shown in Fig. 1. More precisely, we need to

check that CC1
def
= G(F(TC)) = G(TC′) is equivalent to

CC2
def
= H(G(TC)) = H(CC), which is shown in Fig. 2.

EXAMPLE 4.2 (SIMPLE MAGIC). The simplest ap-

plication of magic-set optimization [5, 6] converts tran-
sitive closure to reachability, by rewriting this program:

Π1 : TC(x,y) :- [x = y]∨∃z(TC(x,z)∧E(z,y))

Q(y) :- TC(a,y) (14)
where a is some constant, into this program:

Π2 : Q(y) :- [y = a]∨∃z(Q(z)∧E(z,y)) (15)
This is a powerful optimization, because it reduces the

run time from O(n2) to O(n). Several Datalog systems

support some form of magic-set optimizations. We check

that (14) is equivalent to (15) by verifying the FGH-

rule. The functions F,G,H are shown in Fig. 3. One

can verify that G(F(TC)) = H(G(TC)), for any rela-

tion TC. Indeed, after converting both expressions to

normal form (i.e. in sum-sum-product form), we obtain

TC(x,y)
F
> [x = y]∨∃z(TC(x,z)∧E(z,y))

TC( a ,y)

G

∨
H
> [ a = y]∨∃z(TC( a ,z)∧E(z,y))

G

∨

Figure 3: Expressions F,G,H in Ex. 4.2.

G(F(TC)) = H(G(TC)) = P, where:

P(y)
def
=[a = y]∨∃z(TC(a,z)∧E(z,y))

Replacing TC(a,_) by Q(_) now yields precisely pro-

gram Π2 in (15). We show in the full version of our

paper [47] that, given a sideways information passing

strategy (SIPS) [6] every magic-set optimization [5] over

a Datalog program can be proven correct by a sequence

of FGH-rule applications.

EXAMPLE 4.3 (GENERAL SEMI-NAÏVE). The al-

gorithm for the naïve evaluation of (positive) Datalog

re-discovers each fact from step t again at steps t +
1, t + 2, . . . The semi-naïve algorithm aims at avoiding

this, by computing only the new facts. We generalize
the semi-naïve evaluation from the Boolean semiring to

any POPS SSS, and prove it correct using the FGH-rule.

We require SSS to be a complete distributive lattice and ⊕
to be idempotent, and define the “minus” operation as:

b	a
def
=

∧
{c | bv a⊕ c}, then prove using the FGH-rule

the following programs equivalent:

Π1 : Π2 :
X0 := /0; Y0 := /0;

∆0 := F( /0)	 /0; (= F( /0))
loop Xt := F(Xt−1); loop Yt := Yt−1⊕∆t−1;

∆t := F(Yt)	Yt ;

To prove their equivalence, we define:

G(X)
def
= (X ,F(X)	X)

H(X ,∆)
def
= (X⊕∆,F(X⊕∆)	 (X⊕∆))

Then we prove that G(F(X)) = H(G(X)) by exploit-

ing the fact that SSS is a complete distributive lattice. In
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practice, we compute the difference ∆t = F(Yt)	Yt =
F(Yt−1⊕∆t−1)	F(Yt−1) using an efficient differential

rule that computes δF(Yt−1,∆t−1) = F(Yt−1⊕∆t−1)	
F(Yt−1), where δF is an incremental update query for F,

i.e., it satisfies the identity F(Y )⊕δF(Y,∆) = F(Y ⊕∆).
Thus, semi-naïve query evaluation generalizes from

standard Datalog over the Booleans to Datalog◦ over

any complete distributive lattice with idempotent⊕, and,

moreover, is a special case of the FGH-rule.

We remark that the FGH-rule is a generalization of an
optimization rule introduced by Zaniolo et al. [51] and
called Pre-mappability, or PreM. The PreM property as-
serts that the identity G(F(X)) = G(F(G(X))) holds: in
this case one can define H as H(X) = G(F(X)), and the
FGH-rule holds automatically. The PreM rule is more
restricted than the FGH-rule, in two ways: the types of
the IDBs of the F-program and the H-program must be
the same, and the new query H is uniquely defined by
F and G, which limits the type of optimizations that are
possible under PreM.

Loop Invariants We now describe a more powerful
application of the FGH-rule, which uses loop invariants.
The general principle is the following. Let φ(X) be any
predicate satisfying the following three conditions:

φ(X0) (16)

φ(X)⇒ φ(F(X))

φ(X)⇒ (G(F(X)) = H(G(X)))

then the FG-program (11) and the GH-program (12) are
equivalent. This conditional FGH-rule is very powerful;
we briefly illustrate it with an example.

EXAMPLE 4.4 (BEYOND MAGIC). Consider the fol-

lowing program:

Π1 : TC(x,y) :- [x = y]∨∃z(E(x,z)∧TC(z,y))

Q(y) :- TC(a,y)

(17)

which we want to optimize to:

Π2 : Q(y) :- [y = a]∨∃z(Q(z)∧E(z,y)) (18)
Unlike the simple magic program in Ex. 4.2, here rule (17)
is right-recursive. As shown in [6], the magic-set opti-

mization using the standard sideways information pass-

ing optimization [1] yields a program that is more com-

plicated than our program (18). Indeed, consider a graph

that is simply a directed path a0→ a1→ ·· · → an with

a = a0. Then, even with magic-set optimization, the

right-recursive rule (17) needs to derive quadratically
many facts of the form T (ai,a j) for i ≤ j, whereas the

optimized program (18) can be evaluated in linear time.

Note also that the FGH-rule cannot be applied directly

to prove that the program (17) is equivalent to (18). To

see this, denote by P1
def
= G(F(TC)) and P2

def
= H(G(TC)),

and observe that P1,P2 are defined as:

P1(y)
def
=[y = a]∨∃z(E(a,z)∧TC(z,y))

P2(y)
def
=[y = a]∨∃z(TC(a,z)∧E(z,y))

In general, P1 6= P2. The problem is that the FGH-rule
requires that G(F(TC)) = H(G(TC)) for every input
TC, not just the transitive closure of E. However, the
FGH-rule does hold if we restrict TC to relations that
satisfy the following loop-invariant φ(TC):

∃z1(E(x,z1)∧TC(z1,y))⇔∃z2(TC(x,z2)∧E(z2,y)) (19)

If TC satisfies this predicate, then it follows immedi-

ately that P1 = P2, allowing us to optimize program (17)
to (18). It remains to prove that φ is indeed an invariant

for the function F. The base case (16) holds because

both sides of (19) are empty when TC = /0. It remains

to check φ(TC)⇒ φ(F(TC)). Denote TC′
def
= F(TC),

then we need to check that, if (19) holds, then the pred-

icate Ψ1(x,y)
def
= ∃z1(E(x,z1)∧TC′(z1,y)) is equivalent

to the predicate Ψ2(x,y)
def
= ∃z2(TC′(x,z2)∧ E(z2,y)).

Using (19) we can prove the equivalence of the predi-

cates Ψ1 and Ψ2.

We describe in [47] how to infer the loop invariant
given a program and constraints on the input.

Semantic optimization Finally, we illustrate how the
FGH-rule takes advantage of database constraints [38].
In general, a priori knowledge of database constraints
can lead to more powerful optimizations. For instance,
in [5], the counting and reverse counting methods are
presented to further optimize the same-generation pro-
gram if it is known that the underlying graph is acyclic.
We present a principled way of exploiting such a priori
knowledge. As we show here, recursive queries have the
potential to use global constraints on the data during se-
mantic optimization; for example, the query optimizer
may exploit the fact that the graph is a tree, or the graph
is connected. We will denote by Γ the set of constraints
on the EDBs. Then, the FGH-rule (13) needs to be be
checked only for EDBs that satisfy Γ, as we illustrate in
this example:

EXAMPLE 4.5. Consider again the bill-of-material

problem in Ex. 3.2. SubPart(x,y) indicates that y is

a subpart of x, and Cost[x] ∈ N represents the cost of

the part x. We want to compute, for each x, the total

cost Q[x] of all its subparts, sub-subparts, etc. Recall

from Ex. 3.2 that, if we insist on interpreting the pro-

gram (10) over the natural numbers or reals (and not

the lifted naturals N⊥ or lifted reals R⊥), then a cyclic

graph will cause the program to diverge. Even if the

subpart hierarchy is a DAG, we have to be careful not

to double count costs. Therefore, we first compute the

transitive closure, and then sum up all costs:
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Π1 : S(x,y) :- [x = y]∨∃z(S(x,z)∧SubPart(z,y))

Q[x] :- ∑
y

{Cost[y] | S(x,y)}

(20)

Consider now the case when our subpart hierarchy is

a tree. Then, we can compute the total cost much more

efficiently by using the program in Eq. (10), repeated

here for convenience:

Π2 : Q[x] :- Cost[x]+∑
z

{Q[z] | SubPart(x,z)} (21)

Optimizing the program (20) to (21) is an instance of se-
mantic optimization, since this only holds if the database

instance is a tree. We do this in three steps. First, we de-

fine the constraint Γ stating that the data is a tree. Sec-

ond, using Γ we infer a loop-invariant Φ of the program

Π1. Finally, using Γ and Φ we prove the FGH-rule, con-

cluding that Π1 and Π2 are equivalent. The constraint

Γ is the conjunction of the following statements:

∀x1,x2,y.SubPart(x1,y)∧SubPart(x2,y)⇒ x1 = x2

∀x,y.SubPart(x,y)⇒ T (x,y)

∀x,y,z.T (x,z)∧SubPart(z,y)⇒ T (x,y) (22)

∀x,y.T (x,y)⇒ x 6= y (23)

The first asserts that y is a key in SubPart(x,y). The

last three are an Existential Second Order Logic state-

ment: they assert that there exists some relation T (x,y)
that contains SubPart, is transitively closed, and ir-

reflexive. Next, we infer the following loop-invariant of

the program Π1:

Φ : S(x,y)⇒ [x = y]∨T (x,y) (24)

Finally, we check the FGH-rule, under the assumptions

Γ,Φ. Denote by P1
def
= G(F(S)) and P2

def
= H(G(S)). To

prove P1 =P2 we simplify P1 using the assumptions Γ,Φ,
as shown in Fig. 4. We explain each step. Line 2-3 are
inclusion/exclusion. Line 4 uses the fact that the term on
line 3 is = 0, because the loop invariant implies:

S(x,z)∧SubPart(z,y)

⇒([x = z]∨T (x,z))∧SubPart(z,y) by (24)

≡SubPart(x,y)∨ (T (x,z)∧SubPart(z,y))

⇒T (x,y)∨T (x,y)≡ T (x,y) by (22)

⇒x 6= y by (23)

The last line follows from the fact that y is a key in

SubPart(z,y). A direct calculation of P2 = H(G(S))
results in the same expression as line 5 of Fig. 4, proving

that P1 = P2.

P1[x] =∑
y

{Cost[y] | [x = y]∨∃z(S(x,z)∧SubPart(z,y))}

=Cost[x]+∑
y

{Cost[y] | ∃z(S(x,z)∧SubPart(z,y))}

−∑
y

{Cost[y] | [x = y]∧∃z(S(x,z)∧SubPart(z,y))}

=Cost[x]+∑
y

{Cost[y] | ∃z(S(x,z)∧SubPart(z,y))}

=Cost[x]+∑
y

∑
z

{Cost[y] | (S(x,z)∧SubPart(z,y))}

Figure 4: Transformation of P1
def
= G(F(S)) in Ex. 4.5.

4.3 Program Synthesis

In order to use the FGH-rule, the optimizer has to do
the following: given the expressions F,G find the new
expression H such that G(F(X)) = H(G(X)). We will
denote G(F(X)) and H(G(X)) by P1,P2 respectively.
There are two ways to find H: using rewriting, or us-
ing program synthesis with an SMT solver.

Rule-based Synthesis In query rewriting using views

we are given a query Q and a view V , and want to find
another query Q′ that answers Q by using only the view
V instead of the base tables X ; in other words, Q(X) =
Q′(V (X)) [22, 19]. The problem is usually solved by
applying rewrite rules to Q, until it only uses the avail-
able views. The problem of finding H is an instance
of query rewriting using views, and one possibility is
to approach it using rewrite rules; for this purpose we
used the rule engine egg [48], a state-of-the-art equality

saturation system [47].
Counterexample-based Synthesis Rule-based syn-

thesis explores only correct rewritings P2, but its space
is limited by the hand-written axioms. The alternative
approach, pioneered in the programming language com-
munity [43], is to generate candidate programs P2 from
a much larger space, then using an SMT solver to ver-
ify correctness. This technique, called Counterexample-
Guided Inductive Synthesis, or CEGIS, can find rewrit-
ings P2 even in the presence of interpreted functions, be-
cause it exploits the semantics of the underlying domain.

Rosette We briefly review Rosette [44], the CEGIS

system used in our optimizer. The input to Rosette con-
sists of a specification and a grammar, and the goal is to
synthesize a program defined by the grammar that sat-
isfies the specification. The main loop is implemented
with a pair of dueling SMT-solvers, the generator and
the checker. In our setting, the inputs are the query P1,
the database constraint Γ (including the loop invariant),
and a small grammar Σ, described below. The speci-
fication is Γ |= (P1 = P2), where P2 is defined by the
grammar Σ. The generator generates syntactically cor-
rect programs P2, and the verifier checks Γ |= (P1 = P2).
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In the most naïve attempt, the generator could blindly
generate candidates P2,P

′
2,P
′′
2 , . . ., until one is accepted

by the verifier; this is hopelessly inefficient. A first op-
timization in CEGIS is that the verifier returns a small
counterexample database instance X for each unsuccess-
ful candidate P2, i.e., P1(X) 6= P2(X). When considering
a new candidate P2, the generator checks that P1(Xi) =
P2(Xi) holds for all previous counterexamples X1,X2, . . .,
by simply evaluating the queries P1,P2 on the small in-
stance Xi. This significantly reduces the search space of
the generator. A second optimization is to use the SMT
solver itself to generate the next candidate P2, as fol-
lows. We assume that the grammar Σ is non-recursive,
and associate a symbolic Boolean variable b1,b2, . . . to
each choice of the grammar. The grammar Σ can be
viewed now as a Binary Decision Diagram, where each
node is labeled by a choice variable b j, and each leaf by
a completely specified program P2. The search space of
the generator is completely defined by the choice vari-
ables b j, and Rosette uses the SMT solver to generate
values for these Boolean variables such that the corre-
sponding program P2 satisfies P1(Xi) = P2(Xi), for all
previous counterexample instances Xi. This significantly
speeds up the choice of the next candidate P2.

Using Rosette To use Rosette, we need to define the
specification and the grammar. A first attempt is to sim-
ply provide the specification Γ |=(G(F(X)) = H(G(X)))
and supply the grammar of Datalog◦. This does not
work, since Rosette uses the SMT solver to check the
identity, and modern SMT solvers have limitations that
require us to first normalize G(F(X)) and H(G(X)) be-
fore checking their equivalence. Even if we could mod-
ify Rosette to normalize H(G(X)) during verification,
there is still no obvious way to incorporate normaliza-
tion into the program generator driven by the SMT solver.
Instead, we define a grammar for normalize(H(G(X)))
rather than for H, and then specify:

Γ |= normalize(G(F(X))) = normalize(H(G(X)))

Then, we denormalize the result returned by Rosette, in
order to extract H. In summary, our CEGIS-approach
for FGH-optimization can be visualized as follows:

P1
normalize
−−−−−−→ P′1

CEGIS
−−−→ P′2

denormalize
−−−−−−−→ P2 (25)

The choice of the grammar Σ is critical for the FGH-
optimizer. If it is too restricted, then the optimizer will
be limited too; if it is too general, then the optimizer will
take a prohibitive amount of time to explore the entire
space. We refer the reader to [47] for details on how we
constructed the grammar Σ.

4.4 Experimental results

We implemented an optimizer for Datalog◦ programs.
The input is a program Π1, given by F,G, and a database

constraint Γ, and the output is an optimized program
H. We evaluated it on three Datalog systems, and sev-
eral programs from benchmarks proposed by prior re-
search [41, 13]; in [47] we also propose new bench-
marks that perform standard data analysis tasks. We did
not modify any of the three Datalog engines. Our ex-
periments aim to answer the question: How effective is

our source-to-source optimization, given that each sys-

tem already supports a range of optimizations?

Setup There is a great number of commercial and
open-source Datalog engines in the wild, but only a few
support aggregates in recursion. We chose 2 open source
research systems, BigDatalog [41] and RecStep [13],
and an unreleased commercial system X for our exper-
iments. Both BigDatalog and RecStep are multi-core
systems. The commercial system X is single core. As
we shall discuss, X is the only one that supports all fea-
tures for our benchmarks. In this paper we cover 3 out of
the 7 benchmark programs used in [47]: Ex. 4.4 (BM),
Ex. 4.1 (CC), and Single-source Shortest Path (SSSP)
from [41]. The real-world datasets twitter, epinions, and
wiki are from the popular SNAP collection [30].

Run Time Measurement For each program-dateset
pair we measure the runtime of three programs: the orig-
inal, with the FGH-optimization, and with the FGH-
optimization and the generalized semi-naïve transfor-
mation (GSN). We report the speedups relative to the
original program in Fig. 5. Where the original program
timed out after 3 hours, we report the speedup against
3 hours. In some other cases the original program ran
out of memory and we mark them with “o.o.m.” in the
figure. All three systems already perform semi-naïve
evaluation on the original program expressed over the
Boolean semiring. But the FGH-optimized program is
over a different semiring (except for BM), and GSN has
non-stratifiable rules with negation, which are supported
only by system X; we report GSN only for system X.

Findings. Figure 5 shows the results of the first group
of benchmarks optimized by the rule-based synthesizer.
The optimizer provides significant (up to 4 orders of
magnitude) speedup across systems and datasets. In a
few cases, for BM and CC on wiki under BigDatalog,
and SSSP on wiki under X, the optimization has little
effect. This is due to the small size of the wiki dataset:
both the optimized and unoptimized programs finish in-
stantly, so the run time is dominated by optimization
overhead. We also note that (under X) GSN speeds up
SSSP but slows down CC (note the log scale). The latter
occurs because the ∆-relations for CC are very large, and
as a result the semi-naïve evaluation has the same com-
plexity as the naïve evaluation; but the semi-naïve pro-
gram is more complex and incurs a constant slowdown.
GSN has no effect on BM because the program is in the
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