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Abstract—This paper presents a sparse factorization for the
delay Vandermonde matrix (DVM) along with fast, exact, radix-
2, and recursive algorithms to compute the DVM-vector prod-
uct for wideband multi-beam antenna arrays. The proposed
algorithms enable low-complexity wideband beamformers in
emerging millimeter-wave wireless communication networks by
reducing the complexity of N-beam wideband beamforming from
O(N?) to O(Nlog N), where N = 2"(r > 1). As a result,
the algorithms are faster than the brute-force computation of
the DVM-vector product and more efficient than the direct
realization of true-time-delay-based multi-beam beamformers.
The proposed low-complexity algorithms’ signal flow graph
(SFG) is also presented to highlight their suitability for hardware
implementations. The 2-D frequency responses of DVM-based
beamformers are explained through an array signal processing
example. Simulation results suggest that integrated circuit (IC)
implementations of the SFG significantly reduce chip area and
power consumption.

Index Terms—Delay Vandermonde matrix, Radix-2, fast recur-
sive algorithms, algorithmic complexity, millimeter wave, wireless
communications, multi-beam beamforming.

I. INTRODUCTION

Wideband beamforming is important for cognitive radios,
legacy wireless networks, emerging mm-wave (mmW) com-
munication systems, radar, and ultrasound imaging. For exam-
ple, beamforming allows high-capacity wireless connections to
be established in multipath environments by overcoming path
loss [1], [2]. Many beamforming techniques can be efficiently
implemented using FFT-based algorithms, which may utilize
either time-domain pre-FFT schemes or frequency-domain
post-FFT schemes [3], [4]. However, use of the FFT results in
beams with frequency-dependent axes, and thus poor control
over beam orientations for broadband input signals [3]. This
fundamental issue is known as the beam-squint problem [5]-
[7]. Fortunately, true-time-delay (TTD) beamformers can gen-
erate wideband squint-free beams in both analog and digital
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signal domains. An example of such a wideband squint-free
multi-beam beamformer is a passive Rotman lens [8], but
such lenses are challenging to model and fabricate at mmW
frequencies. Recent advances in silicon technology, mmW
circuit/antenna/package design, and beamforming techniques
have allowed high-bandwidth active beamforming systems
(either digital or analog) to emerge as attractive alternatives.
Such TTD beamformers use a Vandermonde structure of
delay-based steering vectors to overcome the beam squint
problem, resulting in a DVM beamforming matrix [5]-[7], [9].

A single TTD beam is formed by delaying and summing N
elements such that constructive interference is emulated along
a particular direction. For example, consider receiving a signal
at a direction of arrival (DOA) 0, measured counter-clockwise
from the broadside direction, using an N-element uniform
linear array (ULA). The received signals uy(t), k = 1,2,...N,
must be combined according to y(t) = Z,If:l ug(t — k7)
where 7 = Auwxsinf/c, Az is the inter-element spacing
of the ULA, and c is the wave speed. In the frequency
domain, the TTD beamformer can be viewed as a tapped-
delay spatio-temporal 2-D filter Y (w;,w) = U(w,,w)[1 +
Z,ivzl ake=IwsF] where filter coefficients are defined using
a = e 7" € C. Here, w, is the independent spatial frequency
variable, and temporal frequency of interest w is a parameter.
The two spatial and temporal frequencies are related via
w; = wsin# for propagating far-field planar waves received
by the array. For a particular frequency w the directional
response against angle ¢ reduces to the normalized form
H(¢,w)=(1/N) Zg:o e Jwk(sin0=sind) ¢ C where 6 is the
beam angle. Typically, beams are plotted in the polar domain
as magnitude functions ||H (¢, w)]|| (i.e., array patterns).

Extending the formulation above to multiple output beams
requires a matrix-vector representation, where the matrix has
a DVM structure with each row containing progressive wide-
band phase-shifts for a particular beam. Thus, wideband multi-
beam beamforming requires computing the multiplication of a
DVM Ay by a vector x, s.t. y = Anx at times ¢ € R, where
x and y are input and output vectors containing time-domain
signals u(t) and yi(t) respectively. We denote the 1-D tem-
poral Fourier transform of wuy(t) as xp = fj;o uy(t)eIwtdt,
since adopting a frequency domain variable allows the repre-
sentation of TTDs of duration 7" as multiplications by e=/«7'
within the elements of the DVM. Readers are reminded that in
practice, signals ug(¢) are fed into a linear time invariant (LTT)
system to realize the necessary matrix-vector multiplication.
For example, direct realization of this operation requires LTI
combinations among N2 TTDs that describe the elements of



the DVM in the temporal frequency domain.

A. Relationship to Prior Work

Our earlier work [10] described entries of the DVM A  as
coefficients of a TTD-based multi-beam beamformer. Note that
Ay equals the discrete Fourier transform (DFT) matrix only
at a single temporal frequency. Since the DVM is a superclass
of the DFT matrix, we are generally unable to factorize it
to obtain a self-contained and radix-2 factorization, unlike
for the DFT matrix. Instead, we had obtained a bidiagonal
factorization for the DVM when N = 4. Next, we extended
the bi-diagonal factorization of the 4 x 4 DVM into an N x N
DVM in [5]. The bidiagonal factorization of the N-beam
DVM in [5] leads to a 60% reduction in circuit complexity
for IC implementations based on TTD blocks. Furthermore,
this N-beam DVM algorithm uses the product of complex
1-band upper and lower matrices, thus extending upon the
results in [11]-[13] by utilizing complex nodes instead of real
nodes. The DVM factorizations in [5], [10] do not utilize either
quasiseparability and displacement equations as in [14]-[16],
or a O(N3) algorithm to compute the SVD of polynomial
Vandermonde matrices as in [17]. On the other hand, we have
addressed error bounds and stability of the DVM algorithm for
nodes on, inside, and outside the unit circle in [5] by filling the
gaps of the bidiagonal factorization of Vandermonde matrices
in [11]-[13]. We recall here that an alternative bidiagonal
factorization for Vandermonde matrices having nodes inside
the unit circle was presented in [18].

In our later work [7], we developed an exact, efficient
(i.e., more efficient than brute-force multiplication of the
DVM by a vector, but not radix-2), and self-recursive DVM
algorithm by using a matrix factorization of the DVM and
a polynomial evaluation associated with its nodes to analyze
multi-beam antenna arrays. This exact DVM algorithm can
be used to reduce the complexity of RF N-beam analog
beamforming systems, but not to O(N log N). Although the
DVM algorithms proposed in [5], [7], [10] are more effi-
cient than brute force matrix-vector calculation, their order
of arithmetic complexity is still significantly greater than
O(N log N). On the other hand, our work in [6] is based on
stable and O(N log N) algorithms for Vandermonde matrices
having nodes on the unit-circle (not necessarily roots of unity)
and also nodes on a circle with the center as the origin
and a radius greater than unity. The computational efficiency
and rapid convergence of these algorithms enable their use
in narrowband communication systems. The existing DVM
algorithms are neither radix-2 nor can be utilized for wideband
communication systems. Thus, it is necessary to have a DVM
algorithm to reduce the algorithmic complexity of generating
N-parallel wideband beams from O(N?2) to O(NlogN) for
wideband multi-beam antenna arrays. This paper proposes a
novel factorization for the DVM followed by new O(NlogN)
algorithms to compute the DVM-vector product for wideband
multi-beam antenna arrays and describes its realization using
signal flow graphs and analog ICs. As described earlier, the
complexity of the DVM algorithms proposed in our previous
work [5], [7], [10] exceed O(N log N) operations. Also, the

stable and O(N log N) DVM algorithms in [6] were proposed
for narrowband multibeam beamforming. Moreover, the nodes
of the Vandermonde matrices in [6] are a special case, i.e.,
complex nodes are equally spaced on the unit circle (not
necessarily the primitive roots of unity) and any other circle
having a radius more than the unity. Thus, an O(N log N)
DVM algorithm enabling wideband multibeam beamforming
is still an open question. More importantly, there is no explicit
DVM algorithm that can execute recursively with the well-
known FFT algorithm to solve the beam-squint problem.
It has been mentioned in [15], [19] that the Vandermonde
matrix-vector product can be computed using an FFT-like
algorithm. However, an explicit and highly sparse factorization
for computing the Vandermonde matrix-vector product using
the DFT factorization, and the corresponding algorithms, are
missing. On the other hand, one could start from [15], [19] and
obtain an explicit and highly sparse factorization for the DVM
(having distinct nodes {a*}1_, s.t. a = e77*7 € C) utilizing
the well-known DFT matrix factorization. In this paper, we
propose a O(N log N) DVM algorithm which recursively
executes with the well-known FFT algorithm, thus enabling
wideband multibeam beamforming.

B. Overview of the Proposed Approach

There are several mathematical techniques available to
derive radix-2 and split-radix FFT algorithms, as described
in [20]-[23], [26], [27]. Even though the derivation of size-
N DFT into two size-% DFTs can be done easily, the
extension of this idea to the DVM is cumbersome because
the useful DFT matrix properties, like periodicity and unitary,
are not present in the DVM. However, we propose a radix-2
factorization for the DVM. To do so, we first factor the DVM
into a product of diagonal matrices and a Toeplitz matrix.
Thus, the problem of computing a O(NlogN) DVM algorithm
is transformed into the multiplication of diagonal and Toeplitz
matrices by a vector. Next, we use matrix embedding methods
from [28], [29] to transform the Toeplitz matrix into a circulant
matrix of double size. Next, the similarity transform of the
circulant matrix is obtained using the DFT matrices. Finally,
we scale the transformation by rectangular sparse matrices,
which compose of identity and zero matrices, to calculate
the matrix-vector product using O(N log N) operations. The
proposed fast DVM algorithm thus solves the longstanding
beam-squint problem while reducing the complexity of N-
beam wideband beamformers from O(N?) to O(N log N).

The rest of the paper is organized as follows. Section II
proposes a sparse factorization for the DVM leading to a
fast, exact, radix-2, and recursive algorithm, while Section III
derives the arithmetic complexity (quantified using the number
of necessary adders and gain-delay blocks) and associated nu-
merical results for the proposed DVM algorithm and compares
them with the brute-force matrix-vector product. In Section IV,
the proposed algorithm is implemented via signal flow graphs.
Section V presents an array processing example using the
proposed algorithm. Circuit implementations of the algorithm
for wideband wireless transceivers are discussed in Section VI,
while Section VII concludes the paper.



II. SPARSE FACTORIZATIONS FOR THE DVMS AND
RADIX-2 DVM ALGORITHMS

In this section, we introduce novel factorizations for DVM
and scaled DVM into sparse and orthogonal matrices. Let us
first introduce all the notations before discussing factorizations
for DVM and scaled DVM matrices.

A. Frequently Used Notations

Here we introduce notations for sparse and orthogonal
matrices which will frequently be used in this paper. We first
define the DVM by

Ay = [Aply = [F2T 2,

where N = 27(r > 1), {a,a?,...,a™} are distinct complex
nodes s.t. o = e=9%7, j2 = —1, w is the temporal frequency,
and 7 is the delay. The scaled DVM (by a diagonal matrix) is
defined as

Ay = [z‘xkﬂN = [@kl]kN,z_zlo-

For a given vector X = [zg,71, -+ ,2nx_1]7 € RN, let us
introduce an even-odd permutation matrix Py (N > 3) by

r N
PNX _ [x07x2a"' s IN—2,T1,T3," " 7xN—1] even 3
= T
[z0, %2, ,TN—1,71,%3, - ,¥N—2]" odd N.
. _ 1 KIN—1
We also define the DFT matrix by Fy = —= [wy]i,—

J

where wy = e_%, a scaled DFT matrix by FN = \/NFN
and its conjugate transpose by F73;, a highly sparse

IiN where M =

matrix by Jyxny = 0 2N, Iy is
N
the identity matrix and Oy 1s the zero matrix, a scaled
In In
orthogonal matrix by Hy = D; _Dg where
N N _
Dy = diag [wh] 12:01, and its conjugate transpose
by H?Z, diagonal matrices by Dy = diag[ak]g:_ol,
2 N—1

le = diag [a%] and ]3M = diag [FMC] where a

. L k=
circulant matrix Cjy c?eﬁned by the first column c s.t. ¢ =

_1 _won? o (ven?  ven)? _1*
1701 2,0, 2 71,(1 2 e 2 L 2

B. Sparse and Recursive Factorizations of DVMs

Toeplitz and Hankel matrices can be factored by using
Vandermonde and diagonal matrices [38], [39], [41]. In fact,
the factorization proposed in [39], [41] is a special case of
the Carathéodory parametrization of covariance matrices in
[40]. However, the factorization proposed in [38]-[41] requires
O(N?) operations to decompose Toeplitz and Hankel matrices
via Vandermonde matrices. As a result, the factorization pro-
posed in these papers can be used to compute the inverse of
the Vandermonde matrix or to solve the system of equations
having the Vandermonde as the coefficient matrix with O(N?)
arithmetic complexity [41]. Thus, the earlier factorization
algorithms for Vandermonde matrices do not obtain a sparse
factorization (as presented here), and their complexity is
significantly greater than O(N log N) operations. By contrast,
here we propose sparse and recursive factorizations for the

delay Vandermonde and scaled delay Vandermonde matrices
with O(N log N) complexity. To obtain a sparse factorization,
we transform the DVM into diagonal, sparse, and Toeplitz
matrices followed by the matrix embedding of Toeplitz into
a double-sized circulant matrix, as in [28], [29]. Finally,
we use the similarity transform of the circulant using the
DFT matrices followed by sparse factorization to compute the
matrix-vector product with O(N log N) complexity.

Before proceeding, we emphasize that the focus of our work is
to factorize the Vandermonde-structured DVM into sparse ma-
trices, resulting in a O(N log N') matrix-vector multiplication
algorithm. Related problems, such as computing the inverse
of a Vandermonde matrix (resulting in inversion formulas or
inversion algorithms) or solving systems of equations with a
Vandermonde matrix as the coefficient matrix [42]-[51], are
not considered in this paper.

Theorem IL1. Let the scaled DVM Ay = [akl]kN’ o be
defined by nodes {1,a, . .., aN " eC, N=2"(r>1)
and M = 2N. Then A N can be factored into

An = D[] FyDyFaydyvDy (1

Proof. The matrix :AN can be factored into a product of
matrices s.t.

Ay =DyTyDy, 2

where T is a symmetric Toeplitz matrix defined by its first
_(N-1)?
2

and D ~ 1s defined above.

We use matrix embedding to construct a circulant matrix using
Toeplitz matrices s.t.

_1
column |1,a72, -+, «

3)

Cy = |:TN TN:| 7

Ty Tn

where the symmetric Toeplitz matrix Ty is defined by its

_w-n?  (N2)? _1
first column |1, « z .« 2 ,---,a 2| . Weuse the

similarity transformation of the circulant matrix defined via the
non-singular DFT matrices s.t.

Cy =F5,DyFyy, 4)

where F%, = [Fy]T. Now, we scale the Cj; matrix by
rectangular sparse matrices to extract the T matrix s.t.

_ Iy
Thus by (2), (3), (4), and (5), we get the result. O

Corollary IL2. Let the DVM Ay = [o*|}"Y 1) be defined
by nodes {ca,a?,--- ,aN} and N = 2"(r > 1). Then the
DVM can be factored into

Ay =Ay Dy, (6)

where :&N is defined via (1).
Proof. This is trivial due to the scaling of (1) by Dy. O



C. Radix-2 and Recursive Algorithms for DVMs

Following the DVM factorizations proposed in Section II-B,
here we present radix-2 algorithms for DVM and scaled
DVM which execute recursively with scaled FFT algorithms
(to reduce the multiplication count). To further reduce the
multiplication counts in computing the matrix-vector product,
we have moved the factor \/% in Fp; and Fj; to the end

of the computation, and hence computed y = M Anz and
y=MAnpz.

Before stating algorithms explicitly, let us define all func-
tion notations and how the corresponding algorithms execute
recursively. y = sdum(z, N) is the function corresponding
to the algorithm sdvm. This function takes the input vector
z and scglar N, and produces the output vector y, where
y = MAnpz. This algorithm executes recursively with the
dft algorithm based on the function v; = dft(us, M) having
the input vector us and scalar M, and output vector vj.
The sdvm algorithm also executes recursively with the idft
algorithm based on the function y; = idft(ve, M) having
the input vector vy and scalar M, and output vector y;. The
dvm algorithm is based on the function y = dvm(w,N)
having input vector w and scalar N and computes the output
¥ = MAynw. This algorithm executes recursively with the
sdvm algorithm followed by dft and dft algorithms. We feed
a € C s.t. |a] =1 as the input for all these algorithms and
compute vectors in steps 1 and 3 of these algorithms. For
further clarification of the recursive procedure, we present a
block diagram in Fig 1.

sdvm inputs
N,a,z,¢c

dft inputs

Compute

Compute

P,;S1,82,V1
up
i &
Compute u,
uy
Compute vy idft inputs

Vo vo, M

Compute

Y2

Output
y

J7 Yes

Compute

Y1 q,b1, by, y;

Fig. 1. This block diagram shows the execution of the scaled DVM algorithm
corresponding to the function y = sdvm(z, N). This function takes vector
z and scalar NV as inputs and produces the output vector y = MAnz.
This function executes recursively with the functions vi = dft(uz, M) and
y1 = idft(ve, M). Thus, we can calculate the scale DVM by a vector using
the well-known sparse factorization of the DFT matrix.

Now, we state the explicit algorithm to compute the product
of a scaled DVM by a vector, i.e., y = M Az for a given
N, a,zeCN or RN and c € CM,

Algorithm sdvm
Input: N =2"(r > 1), M =2N,a € Cs.t. |a| =1,z € CV
or RV, and c € CM.
Output: y = MAyz.
Function: y=sdvm(z, N).
1) if N =2, then
1 1
y < 1 a z,
2) end i
3) if N > 4, then
u; <« ]jN ‘Z

us +J-uy,

vy < dft(ug, M),
Vo Dy - vy,
y1 « idft(va, M),

y2 <37y,
y < Dy -y,
4) end if
5) return y

The proposed sdum algorithm executes recursively with
scaled FFTs (we have scaled the DFT and inverse DFT at
the end to reduce the multiplication count) in [20], [30]. Let
us refer to the scaled FFT and scaled inverse FFT algorithms
by dft and idft, respectively.

Algorithm dft
Input: M = 2" (ry > 1), My = M/2, and up € CM.
Output: vi = Fus.
Function: v=dft(us, M).
1) if M = 2, then

V] —
2) end if
3) if M > 4, then
p<« Hy up
s1 < dft(p(1: My), M),
sy < dft(p(My +1: M), M),
T
Vi <—P]TV[- [slT sg] ,
4) end if
5) return v,

1 1
1 -1 ug,

Now, we can compute the DVM-vector product through the
following dvm algorithm. This algorithm executes recursively
with the sdvm, dft, and idft algorithms.

Example I1.3. Based on the proposed algorithms, we show
building blocks in the signal flow graph drawn for the 16-point
scaled DVM algorithm in Section 1IV. The sdvm algorithm is
stated based on the sparse factorization in Theorem II.1, and
hence the factorization for the scaled DVM can be stated as



Algorithm idft
Input: M = 2" (ry > 1), My = M/2, and vo € CM.
Output: y; = Fj,va.
Function: y,=idft(ve, M).

1) if M =2, then

- 1 1
Y1 1 -1 Va,
2) end if

3) if M > 4, then
q<— Py -vo

by < idft(q(l: M), My),
by «idft(q(M;y +1: M), My),
¥ <;Hf\/l : [b’{ bg}Ta

4) end if

5) return y;

Algorithm dvm
Input: N =2"(r > 1), a € Cs.t. |a| = 1, and w € CV or
RN,
Output: y = MAyw.
Function: y=dvm(w, N).
1) if N =2, then

OéW
Oé2

. 1

2) end i

3) if N > 4, then
z<+ Dy -w,

§ < sdum(z, N),

4) end if
5) return ¥
follows.
~ . .o [Tl -
32A16 = Dig [T16|016] F3,D32F 32 %}Dw,
1
. dy y
where Dyg = ) , D3 =
u i
do
dy -
, Fiy := the conjugate transpose

d3
of the scaled Fsy, and the sparse factorization for the Fs3o
can be obtained from [20].

Remark IL4. The proposed scaled DVM and DVM algorithms
can execute recursively the FFTs and scaled FFTs in [30]
and [23], and will be explored in future work.

ITII. COMPLEXITY OF DVM ALGORITHMS
Here we establish the arithmetic complexities of the pro-
posed scaled DVM and DVM algorithms. The number of
additions and multiplications counts are presented in corre-
spondence with the adders and gain-delay blocks, respectively.

The DVM describes TTDs of the input-vector of signals,
which are given by the Fourier transform property z(t —7) —
X (w)e™7*T. The TTD operations can in turn be represented
by linear convolutions x(t — 7) = x(t) x 6(t — 7), which
in turn establishes that the complex multiplicative elements
of the DVM are purely due to the representation of the
inputs in the temporal frequency domain. In fact, a time-
domain representation of N inputs ug(t),k = 1,2,...,N,
would result in a time domain DVM A, representation with
(n,m) matrix elements defined as 6(¢ — 7nm) and the output
vector vi(t),k = 1,2,...,N, found through matrix-vector
convolution v(t) = A; x u(t).

The presented multiplication counts (in frequency domain)
is a combination of gains and delays in the time domain.
TTDs require a separate TTD circuit in the analog domain. In
analog domain, delays are realized in continuous time analog
circuits. In the temporal frequency domain, true time delays
7 € R are represented by multiplicative terms e~ € C.
Ideally, such filters are represented by complex exponential
functions, which are infinite order when mapped to their
Taylor series polynomials. The use of analog all-pass filters
for approximating such delays requires setting a finite or-
der for the ration polynomials that present passive circuits
made from inductors, resistors, and capacitors. A typical
approximation using cascade of 1-st order all-pass filters is
~ papr(s) = [iﬁ} where m € Z7T and it can
be shown that typically Tr2LZ 3 is sufficient for acceptable
beamforming performance in real-world systems [24], [25].
Note, s € C is the Laplace variable, and the frequency
response of the system can be found by setting s = jw. In
the digital domain, the delays can be realized using fractional
delay filters, typically of type finite impulse response (FIR)
as this offers linea. Here, the delay 7 becomes a fraction of
the temporal sample period Fs such that 4 = 7Fg. The
digital FIR filter, for example, that implement a fractional
delay, takes the form Happ(z) = z*. For both analog
and digital realizations, the objective is to factor the original
DVM matrix into a product of sparse matrices, s.t., the total
number of adders and gain-delay blocks (all pass filters in
analog; fractional delay FIR filters in digital) reduce from
O(N?) to O(NlogN). Thus, we will show in the following
that the arithmetic complexities of the proposed algorithms
require O(NlogN) adders and gain-delay blocks.

In one realization, the analog TTDs are electronic all-pass
filters (APFs), and digital TTDs are fractional order filters of
order L. Therefore, in digital realizations, each TTD consists
of L real multipliers in a filter structure. Since these L
multipliers are necessary for both direct and sparse factorized
DVM algorithms, we can remove them from the complexity
calculation of the fast algorithm, keeping in mind that digital
realizations require L x more multipliers than the TTD count
of the DVM algorithm.

—ST

e

A. Arithmetic Complexity of DVM Algorithms

Let us obtain the number of additions (say #a) and num-
ber of multiplications (say #m), i.e., adders and gain-delay
blocks, respectively, required to compute the algorithms pro-



posed in Section II. Counts are obtained to compute the scaled
DVM and DVM algorithms which execute recursively with
the scaled FFTs (to reduce the multiplication counts) in [20].
Thus, we take the number of additions and multiplications
required to compute y = f‘Nz, where z € CV, as Nr and
1Nr— 3N +2, respectively, when the multiplications by +1
and +£7 are not counted.

Lemma IIL1. Let N = 2"(r > 1) be given. The scaled DVM
algorithm, i.e., Algorithm sdvm, can recursively be computed
using sdvm, dft, and idft algorithms with the following
arithmetic complexities (respectively, adders and gain-delay
blocks):

#a(sdvm,N) =4Nr + N,
#m(sdvm, N) = 2Nr + 2. @)

Proof. Referring to the scaled DVM algorithm, we get

#a(sdvm,N) =2 (#Q(FM)> +2 (#a(]jN))
+2(#a(J)) + #a(Du).

The similar equation holds for the number of multiplications
as well. Following the structures of Dy, J, and D, and the
multiplication of each matrix by a complex input, we have

#a(J)=0, #m (J) =0,
#a(f)N):o, 4m (Dy) =N -1,

#a (bM) =0, #m (bM) - M.

Multiplications of J from the right and left of the DFT do
not affect the multiplication counts, but do affect the addition
counts (due to 0 matrix). Hence, we have to subtract M + N
addition counts (due to no M and N additions after and before
Dy, respectively) from the total addition counts. By following
Nr additions and $ Nr — 2N + 2 multiplications to compute
y = Fyz with z € CV, we get addition and multiplication
counts as in (7) based on the computation of the proposed
scaled DVM algorithm. O

®)

The DVM algorithm is obtained by scaling the sdvm(z, N)
algorithm, and hence adders and gain-delay blocks needed to
compute y = M A yz can be obtained as follows.

Lemma IIL2. Let N = 2"(r > 1) be given. The DVM
algorithm, i.e., Algorithm dvm , can recursively be computed
using dvm, sdvm, dft, and idft algorithms with the following
arithmetic complexities (respectively, adders and gain-delay

blocks):

#a(dvm,N) =4Nr + N,
#m(dvm,N) =2Nr+ N + 1. )

Proof. This is trivial due to scaling. O

B. Numerical Results for the Complexity of DVM Algorithms

Numerical results for the arithmetic complexity, respectively
adders and gain-delay blocks, of the scaled DVM and DVM
algorithms derived via Lemma III.1 and II1.2 versus the direct
matrix-vector computations for matrix sizes varying from 4 x 4

to 4096 x 4096 are shown in Tables I and II. Here, we consider
the direct computation of the scaled DVM by a vector cost
of N(N — 1) additions (respectively adders) and (N — 1)2
multiplications (respectively gain-delay blocks), and the DVM
by a vector cost of N (N —1) additions and N multiplications.
These counts are calculated without considering the multipli-
cations by +1. The last column in Tables I and II shows the
percentage reduction (say Pr) of addition and multiplication
counts (a total of adders and gain-delay block counts) of the
proposed algorithm opposed to the brute-force matrix-vector
calculation. The values in these columns are obtained using
Pr = (1412 x 100%, where Td is the sum of adders and
gain-delay block counts in computing the direct matrix-vector
product and T'a is the sum of adders and gain-delay block
counts in computing the proposed algorithms.

TABLE I
ADDERS AND GAIN-DELAY BLOCK COUNTS OF THE SCALED DVM
ALGORITHM VERSUS THE DIRECT COMPUTATION OF THE SCALED DVM
BY A VECTOR

N Direct #a(sdvm) | Direct #m(sdvm) | Pr
add multiply
4 12 36 9 18 -157%
8 56 104 49 50 -47%
16 240 272 225 130 14%
32 992 672 961 322 49%
64 4032 1600 3969 770 70%
128 16256 3712 16129 1794 83%
256 65280 8448 65025 4098 90%
512 261632 18944 261121 9218 95%
1024 | 1047552 41984 1046529 20482 97%
2048 | 4192256 92160 4190209 45058 98%
4096 | 16773120 | 200704 16769025 | 98306 99%
TABLE I

ADDERS AND GAIN-DELAY BLOCK COUNTS OF THE DVM ALGORITHM
VERSUS THE DIRECT COMPUTATION OF THE DVM BY A VECTOR

N Direct #a(dvm) | Direct #m(dvm) | Pr
add multiply
4 12 36 16 21 -104%
8 56 104 64 57 -35%
16 240 272 256 145 16%
32 992 672 1024 353 49%
64 4032 1600 4096 833 70%
128 16256 3712 16384 1921 83%
256 65280 8448 65536 4353 90%
512 261632 18944 262144 9729 95%
1024 | 1047552 41984 1048576 21505 97%
2048 | 4192256 92160 4194304 47105 98%
4096 | 16773120 | 200704 16777216 | 102401 99%

Tables I and II show that the scaled DVM and DVM
algorithms require a very low number of adders and gain-delay
blocks compared to the brute-force calculation. When the size
of the matrices increases, we observe a significant reduction in
arithmetic complexity (equivalently, the total number of adders
and delay-gain blocks) for computing the proposed algorithms.
Tables I and II indicate that the proposed algorithms are not
efficient for matrices of sizes N = 4, 8, but significantly fast,
i.e. > 90% for matrices of sizes N > 256.



IV. SIGNAL FLOW GRAPH OF THE FAST DVM
ALGORITHM

Signal flow graphs (SFGs) can be used as a tool to analyze
and visualize fast algorithms, and also to design their VLSI
architectures. The sparse factorization and fast recursive algo-
rithm established in Section II results in relatively simple SFG,
as presented in this section. Implementing such simplified SFG
requires dramatically reduced chip area, cost, and power con-
sumption compared to conventional algorithms. To illustrate
the point, Fig. 2 presents 16-point SFG of the scaled DVM
algorithm (i.e., Algorithm sdvm). Ignoring the multiplications
by 1 and £ (exactly as followed in Section III), the addition
and multiplication counts (respectively adders and delay-gain
blocks) in the SFG matches exactly with the complexity results
proposed in Lemma III.1, Section III for N = 16.

Following the gain-delay blocks in Lemma III.1 and the
building blocks of the SFG shown in Fig. 2, the explicit
gains, delays, and total multiplication counts in computing the
scaled DVM algorithm are shown in the second, third, and the
last columns, respectively, of Table III. The fourth column of
the table shows the non-trivial anti-causal counts, which are
equivalent to the number of entries in the pre-computed matrix
D . Trivial anti-causal counts arise from the product of the
scaled DFT matrix F M by a vector c with entries of the form

e?*“7 where 7 is a delay, k = £, and p is a non-negative in-
teger. Slnce these counts are calculated in the pre-computation
stage of the algorithm, we have included only the non-trivial
anti-causal counts in Table III. To realize trivial anti-causal

counts, i.e., entries of ¢, we multiply every entry in c b2y the
—wv-p?|
largest magnitude of the anti-causal term, i.e., ‘a 2 , in

the pre-computation stage so that anti-causal terms are not
a problem for practical realizations. To exemplify, consider
the simplest transfer function P(w) = €/“7 + e~7“7. We can
obtain the same magnitude function by modifying P(w) to
P'(w) = 1+ =27, which is simply the original filter with
extra latency 7.

TABLE III
GAINS, DELAYS, AND ANTI-CAUSAL COUNTS OF THE SCALED DVM

ALGORITHM

N Gains | Delays | Anti-causal | #m(sdvm)

4 4 6 8 18

8 20 14 16 50

16 68 30 32 130

32 196 62 64 322

64 516 126 128 770

128 1284 254 256 1794

256 3076 510 512 4098

512 7172 1022 1024 9218

1024 | 16388 | 2046 2048 20482

2048 | 36868 | 4094 4096 45058

4096 | 81924 | 8190 8192 98306

V. DVM ARRAY SIGNAL PROCESSING SYSTEMS

A. Array Transceiver Architectures

Wideband transceivers for emerging 5G/6G wireless net-
works use large-scale arrays to provide high antenna gain, thus

compensating for high path loss [32]. The proposed DVM-
based multi-beam beamformer can reduce the size, weight,
power consumption, and cost (SWaP-C) of such array signal
processors. Here we focus on architectures for array receivers;
the discussion can be readily extended to transmitters.

The block diagram of a conventional N-element receiver us-
ing digital N-beam multi-beamforming is shown in Fig. 3(a).
The input plane-wave is received by an N-element ULA,
amplified by low-noise amplifiers (LNAs), and then digitized
using high-speed analog-to-digital converters (ADCs). The
digitized RF outputs are fed into a digital back-end processor
that implements the [N-beam DVM beamformer algorithm to
generate N RF beams. In practice most of the N parallel
output beams do not contain useful information and are
discarded before further processing. This step is performed
by a N : K beam selection multiplexer (where K < N)
whose switches are adaptively set by digital signal processing
(DSP) algorithms via a select (SEL) signal.

The all-digital array receiver design shown in Fig. 3(a)
suffers from two problems. The first is the need for ultra-high-
speed ADCs to digitize the wideband LNA outputs. These
ADC:s are also susceptible to saturation due to strong unwanted
interferers (known as blockers), which are unavoidable in
wireless channels. The second is high digital throughput and
power consumption because of the need to beamform all N
high-bandwidth ADC output streams in parallel. This step is
obviously inefficient when K < N (as is often the case),
since most of the N digital beams are discarded prior to
further processing. Fig. 3(b) shows a receiver architecture that
is potentially more energy-efficient. This design performs N-
beam multi-beamforming and beam selection in the analog
domain immediately after the LNAs, followed by frequency
down-conversion and low-speed, low-power ADCs. Our prior
work has demonstrated suitable analog-domain IC implemen-
tations of both FFT- and DVM-based multi-beamformers [2],
[5], [10], [33]-[35]. Another advantage of such hybrid analog-
digital array receiver architectures is that beam selection is
performed before the ADCs (using analog switches), allow-
ing blockers to be removed from the ADC inputs and also
significantly reducing the overall ADC count (to K < N).

B. Multidimensional Region of Support of Propagating Waves

Next, we analyze the spatiotemporal properties of plane-
waves incident on the array receivers described in the previ-
ous subsection. Let a 3-D spatiotemporal plane-wave signal
wa(x,y,ct) € R propagating in the Cartesian plane (z,7) €
R? be measured on the y = 0 line to yield a 2-D spacetime
signal w(z, ct) € R2. The DOA, measured counterclockwise
from the x = 0 axis, is given by 6 through the planar
equation p = —xsinf + c¢t such that w(z,ct) = f(p)
where f(p),p € R is a wideband plane-wave bandlimited
to B Hz and Az = ¢/(2B) is the inter-element distance
of a ULA located along y = 0. Let the 2-D discrete-
space Fourier transform be deﬁned within the 2-D Nyquist [J
via W(eds wy) = [ SN w(nAa, ct)eInes A0 d(ct).
The s1gnals are temporally bandlimited; therefore —27B <
wy < 2w B. Without loss of generality, normalize ¢ = 1, Az =
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Fig. 2. Signal flow graph for the 16-point scaled DVM algorithm, where wy , = e

component of D. Dotted lines represent a multiplication by —1.

1, and B = 1. The region of support (ROS) of W (e“=, w;)
is the part of the domain where the spectrum is not defined to
be zero. The ROS of W (e/*= wy,) is a line through the origin
of (wg,w;) € R? oriented at angle 3 = tan~!(sin#).

To demonstrate the ROS, we show in Fig. 4 an exam-
ple propagation scenario where 10 sinusoidal components
at f; = {0.4,0.7,0.9,1.0,2.4,3.0,3.5,4.0,5.8,6.0} GHz
propagate simultaneously in a single quadrant at angles
6 = {0°,20°,50°,90°} to form four wideband plane-
waves. Clearly, the temporal spectra are identical among
the four waves; however, the 2-D ROS lie along the
four directions 8 = {tan~!(sin0),tan~!(sin207/180),
tan™1 (sin 507 /180), tan~!(sin 907/180)}, radians, respec-
tively. The received spatially-discrete 2-D array signal is
w(n,t) = >, > cos(2mfi(—nsinb, +t)) where 0 < n <
N. The finite array size imposes a (sin 71w,)/7w, type win-
dow on the 2-D spectrum causing convolutional widening and
shaping of the spatial spectrum - readily observable in Fig. 4.

 2mk N N o
—155, j2 = —1, dy, is the kP component of D, and dj, is the kth

C. 2-D Frequency Responses of DVM Multi-Beamformers

The N x N DVM matrix represents a 2-D filter bank.
Let the k' filter be given by the impulse response
hi(l,e’*) = o', Therefore, the 2-D frequency response
can be comguted by first finding the spatial z—transform

Hy(2) =3, ~! and evaluating the spatial frequency
response by settlng z = eJ¥». The 2-D frequency response
function is Hy(e/%s, edr) = SOV T emjwmh/Nig=jual —

N1 emil(weth/N+ws)  Defining a plane A = w7k /N + w,

=0
we obtain the simplified form Hj, (e, e/*t) = ;\;01 e IN

. ; ; _e N ..
which reduces to Hy(e/“=,ei*t) = =< Normalizing
—e
7 = 1 as per convention and assuming —7 < w, < T
and —m < w; < w gives the frequency response function

as Hp(el¥r i) = Sml\f\’,\/éQe_J(N DAN/2 where N =
kw,/N + w;. Let the beam axis of the k" filter be ori-
ented at angle (; from the w; axis. Then, it follows that

Br = tan~! (k/N),k = 0,1,..., N — 1. Let the direction
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Fig. 3. Architectures for wideband array receivers: (a) using all-digital multi-
beamforming. Here, it is assumed that fully-wideband signals are directly
sampled at the full RF bandwidth. E.g., as in direct-RF to digital converters for
extremely wide bandwidth systems. Figure describes how the full-bandwidth
RF signal can be sampled, beamformed, and thereafter selected bandpass
signals can be extracted in real-time using digital down-conversion and
filtering stages. And in (b) using hybrid analog-digital multi-beamforming
where LNA = low-noise amplifier, LO = local oscillator, LPF = low-pass
filter.

0.5

Fig. 4. The 2-D magnitude spectra of four wideband plane-waves having
identical temporal frequency spectra arriving at 6 = {0°,20°,50°,90°}
where each ROS orientation is non-linearly related to DOA via tan 5 = sin 6.

of propagation of a far-field electromagnetic plane-wave be
given by —7/2 < 6 < x/2. Due to finite speed of light
(c ~ 3 x 10%ms~!) the apparent direction of arrival in
spacetime (z,ct) € R? is given by 8 = tan~!(sinf). The
angle for the k*® beam of the DVM filter bank is thus
0p = sin"!(tanfBy), k = 0,1,.., N — 1. As an example,
Fig. 5 shows the filter bank magnitude responses (i.e., 2-D
beam spectra) for a N = 16 beam DVM beamformer. Each
beam follows a straight line in the (w,,w;) plane, as expected.

VI. CIRCUIT IMPLEMENTATIONS OF DVMS FOR
WIDEBAND TRANSCEIVERS

In this section, we discuss circuit-level implementations of
the DVM multi-beamformers described in Section V. The
designs are more challenging than for conventional narrow-
band DFT-based beamformers due to the need to use TTDs
(unlike DFT-based schemes, which can use phase shifters) [5].
Additionally, frequency down-conversion (i.e., mixing to a
lower center frequency) cannot be performed prior to DVM-
based beamforming, unlike for narrowband methods. As a
result, the circuit must have sufficient bandwidth to handle
the highest-frequency RF or mmW signals of interest.

A. Realizing True Time Delays (TTDs)

Generating the k' squint-free DVM beam using an ULA
requires sin(f;) = (£=) k. For beam angles 6, € [—7, 5]
and an N-element array, sin(f;) = tan(8;) = 2k/N where
k=—N/2,..,N/2 — 1. Thus, the necessary TTDs should be
integer multiples of

2Ax N 1
CN ~ fma:EN’

(10)

where f,,,4. i1s the maximum signal frequency (corresponding
to the minimum wavelength \,,;,) and we have used the
fact that Ax &~ \,;,/2 to avoid spatial aliasing. Thus, the
required delay resolution increases both with operating fre-
quency and array size. For example, a N = 16 element array
at 28 GHz requires 7 = 2.2 ps. In digital realizations of DVM
beamformers, such high-resolution TTDs can be implemented
using linear-phase fractional-delay FIR filters. Such digital
filters are part of the larger class of digital interpolation
filters and are straightforward to design. Digital FIR fractional
delay interpolation filters can be realized using low-complexity
polyphase forms for processing RF bandwidths B that are
greater than half the clock rate of a typical DSP system.

Analog-domain implementations of wideband DVM beam-
formers are more energy-efficient, as described in Section V-A.
For such systems, the TTDs should ideally be linear-phase de-
lay lines having transfer functions x(t — 1) < X (jw,)e 99T,
These can either be passive transmission lines (which are
linear and noiseless, but consume significant chip area) or
active approximations (which are nonlinear and noisy, but
area-efficient). For example, first-order APFs can be cascaded
to approximate TTDs on CMOS ICs [31].
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Fig. 5. The 2-D magnitude frequency response of the /N-beam DVM beamformer (here N = 16). Each beam extracts wideband plane-wave signals based on
its direction of arrival (DOA) 6 where sin @ = tan 3. Broadside waves fall on the broadside beam (DV M bin#0), while waves from the end-fire direction

fall on the 8 = 45° beam (DV M bin#15).

B. Realizing DVM Multi-Beam Beamformers

Analog-domain implementations of DVM beamformers can
operate in either continuous time (CT) or discrete time
(DT) [36]. CT realizations have higher bandwidths, elimi-
nate issues with high-frequency clock distribution, and avoid
temporal aliasing. However, they are less accurate since the
transfer functions (TFs) of CT TTD elements are sensitive to
unavoidable device mismatch and process-voltage-temperature
(PVT) variations in IC processes. On the other hand, DT
realizations have lower bandwidths but are more accurate
because i) TTD delays can be set by an accurate external clock,
and ii) TF errors due to device mismatch can be removed
using various offset-cancellation and dynamic element match-
ing (DEM) methods [37]. In either case, the analog signals
can be represented either using voltages (known as voltage-
mode) or currents (known as current-mode). Current-mode

operation is attractive for wideband implementations because
it avoids the need for power-hungry closed-loop op-amps;
instead, one can use simple open-loop current mirrors (for
gain) and Kirchoff’s current law (KCL) (for additions) [34].
The necessary TTDs can be approximated using op-amp RC
filters (CT voltage-mode), op-amp switched-capacitor filters
(DT voltage-mode), translinear filters (CT current-mode), or
switched-current filters (DT current-mode). Here we consider
a CT current-mode implementation using passive delay lines
since it minimizes power consumption for a given bandwidth.

Fig. 6 shows a programmable current-mode gain-delay
block for implementing the proposed analog DVM multi-beam
beamformer. The circuit allows rational gain values of the form
N1 /(2N3) to be implemented, where Ny and N are integers
chosen to closely approximate a particular DVM beamformer
coefficient. First, the input current is attenuated by N» using a



Vpp

Vpp

g ey
ORI, L
SUNIEREE-Z,

Fig. 6. Schematic of a programmable current-mode gain-delay block using
an on-chip LC transmission line (characteristic impedance Z, time delay 7).
Here Vo p and Vo are DC bias voltages for the cascode transistors.

programmable current splitter. The latter is realized by using
CMOS switches that set the relative width of the shunt NMOS
transistor to a factor of No — 1. Next, the attenuated current
is amplified by N; using another set of switches that set
the relative width of the output NMOS transistor. Finally,
the amplified current is delayed by 7 using a passive LC
transmission line with characteristic impedance Zj. In practice
the line is implemented using M > 1 discrete LC' stages,
such that 7 ~ M+/LC for frequencies w < 1/(2vLC).
Device mismatch and PVT variations can be compensated
by programming the value of 7 (typically over a 1:2 range)
through the tuning voltage Viune, which in turn sets the
capacitance of the variable capacitors (varactors). Also, the
PMOS loads are sized to ensure impedance matching at either
end of the line, thus avoiding reflections. That is, we set the
PMOS transconductance g, such that Z, = Zp = 1/gy,p =
Zy = /L/C. While the input capacitance C;,, ~ (Cys+Cyaq)
of the loads degrades matching at high frequencies, its effects
can be removed by absorbing C},, into the terminal capacitors
of the LC line (which have a nominal value of C//2 each).
Finally, note that simplified fixed-gain versions of this circuit
(with the switches removed) can be used if the beamformer
coefficients remain fixed for a given chip.

Detailed simulations and test results of the analog DVM
beamformer will be presented in future papers. Here we
describe preliminary simulation results of the proposed design
using a 45 nm bulk CMOS process. Fig. 7 shows the simulated
frequency response and group delay of the circuit for various
values of 7 (i.e., line length). In this example, the desired
gain was set to 5/8 = 0.625, while 7 was set in 50 ps steps.
The results show that the simulated group delay is slightly
larger than the line delay 7 due to delay within the current
mirrors; line lengths can be reduced to compensate for this
error. Also, the realized gain is within 1.5% of its desired value
up to 1 GHz (assuming a maximum delay of 7,4, = 0.8 ns).
Larger bandwidths are available by reducing the value of
Tmaz generated by a single block and instead using multiple
cascaded blocks to realize long delays. For example, the useful
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£0.625 2 =
©
o 204
3 8
0.62 5
0.2
0.615
0
10* 105 10° 107 10®  10° 10 10° 10® 107  10®  10°
(a) Frequency (Hz) (b) Frequency (Hz)

Fig. 7. Simulated (a) frequency response, and (b) group delay of the gain-
delay block for a bias current of I = 500 pA, Vpp = 1.2V, Zg = 300 €2,
and line delay 7 varying from 50 ps to 800 ps in 50 ps steps.

bandwidth increases to 2 GHz when 7,,,, = 0.4 ns. However,
power consumption increases as My where M is the number
of cascaded stages. Additionally, the rms noise level increases
as \/M,, thus degrading the signal-to-noise ratio (SNR), i.e.,
output precision. Thus, there is a design trade-off between
bandwidth, precision, and power consumption [52].

The proposed analog gain-delay blocks were used to realize
a complete wideband DVM multi-beamformer with N = 16
beams. The value of f,,,, was set to 1 GHz, resulting in
7 = 62.5 ps. A fixed time-delay of 7 x (N?/4) = 4.0 ns
was added to all elements of the DVM matrix A to ensure
that the time-delays are causal (i.e., positive); the resulting
maximum time-delay is 7 x N(N — 1)/2 = 7.5 ns. Fig. 8(a)
and (c¢) compares the simulated beam shapes obtained at
input frequencies of 0.6 GHz and 1 GHz, respectively, with
ideal ones obtained from a MATLAB implementation of the
algorithm. Also, Fig. 8(b) and (d) show the magnitude of
the errors between simulated and ideal beam shapes at the
two frequencies. These errors increase with frequency due to
the limited frequency response of the gain-delay blocks (see
Fig. 7), but are acceptable up to 1.2 GHz.

Further design improvements (e.g., increasing the band-
width of the current mirrors by implementing them using high-
speed heterojunction bipolar transistors [HBTs]) should allow
fmaa to be increased to several GHz, thus enabling the pro-
posed hybrid array receiver architecture (see Fig. 3(b)) to be
implemented in various sub-6 GHz wireless bands. Extension
to mmW bands requires a different circuit architecture (e.g.,
based on active APFs) and will be explored in future work.

VII. CONCLUSION

We have proposed a sparse factorization for the DVM
followed by a fast, exact, radix-2, and recursive DVM algo-
rithms to realize microwave/millimeter wave N-beam wide-
band beamformers while reducing the complexity from O(N?)
to O(N log N). The proposed DVM algorithms are at least
90% faster than the brute-force DVM by a vector product
for the matrices of sizes N > 256. Since the proposed
algorithm is based on the pre-computation of anti-casual, we
have suggested a technique to realize anti-casual parts of the
signal flow graph using only delay elements which results
in the original filter bank with additional latency. The signal
flow graph shows the simplicity and beauty of the proposed
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Fig. 8. Left column: Simulated DVM beam shapes for a 16-element ULA
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simulated and ideal beam shapes at (b) 0.6 GHz and (d) 1 GHz, respectively.

sparse factorization which can be used in very large-scale
integrated circuit architecture while reducing the chip area,
cost, and power consumption significantly. Analog realizations
may use passive and active delay lines. Digital realizations
may use fractional delay FIR interpolation filters for achieving
the DVM array processor in future realizations.
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