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A Fast Algorithm to Solve Delay Vandermonde
Systems 1n Phased-Array Digital Receivers
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Abstract—Phased-array multi-beam RF beamformers require
calibration of receivers used in an array of elements before
the signals can be applied to an analog beamforming network.
This paper presents a fast O(n?) algorithm for solving linear
systems having a delay Vandermonde matrix (DVM) for the
analog beamforming matrix. The structure of the DVM enables
to obtain a fast algorithm to efficiently reverse multi-beams at
the DVM output such that calibration of the input low noise
amplifiers can be achieved.

The arithmetic complexity of the proposed DVM system
solving algorithm is preferable over the standard matrix inversion
consuming O(n®) operations. Numerical experiments are pre-
sented for forward accuracy of the proposed algorithm computed
at the calibration frequency. Moreover, numerical results are
shown to compare the order of the arithmetic complexity and
the execution time of the proposed algorithm. Signal flow graphs
are presented for 4- and 8-element multi-beam phased-arrays.

Index Terms—Matrix inversion, Sparse matrices, Complex-
ity of algorithms, Performance of algorithms, Discrete Fourier
transform, Fast algorithms, Antenna arrays, Phased-array radar,
Millimeter wave communication.

NOTATION AND TERMINOLOGY

We introduce the following notations and terminologies.
n number of elements in array
x(t) € R scalar time function
x(t) vector of time functions
T inter-sample period
x(k) vector at discrete time index k where t = kT
A linear transform matrix
Q(z(t)) quantization of x(t)
Q(x)(t) quantization of vector x(t)
Q(x)(k) sampled and quantized vector
Q(Ax)(t) quantized vector-matrix product
Q(Ax)(k) sampled and quantized vector-matrix product
V() Vandemonde matrix defined by nodes o*
f time frequency
w circular frequency
g; gain of receiver number ¢ = 1,2,...,n
9; ! calibration coefficients
#aC number of complex additions
#mC number of complex multiplications
#aR number of real additions
#mR number of real multiplications
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Fig. 1: Analog multi-beam DVM beamformer and digital
inverse-DVM computational architecture where an array of
antennas are amplified and beamformed using an analog DVM
circuit. The DVM system is solved using a fast algorithm
implemented in a systolic array processor.

I. INTRODUCTION

Emerging communication networks, such as 5G/6G wireless
systems depend on high signal-to-noise ratio (SNR) channels
for desired high data rates (10-100 Gbps, typically) [1]. A
key technology for improving the SNR of mm-wave wireless
channels is the use of analog-digital hybrid beamformers [1]-
[4]. The delay Vandemonde matrix is an n X n matrix V(«a)
describing a network of true-time-delay linear combinations
of the antenna outputs that are functions of @ € C,|a| = 1
that is suitable for analog realization of n simultaneous beams
at low complexity [1]-[5].

Fig. 1 shows the architecture of the proposed analog-
DVM n-beam beamformer followed by a digital inverse-
DVM algorithm realized within a software implementation that
allows calibration of the individual receiver gains after analog-
DVM beamforming has been realized. Calibration of the
array receiver gains is important due to component variations,
fabrication tolerances, and environmental factors that affect
the receiver gains causing them to deviate from their expected
values.

The use of analog realizations of the DVM via a suitable



fast algorithm implemented in analog radio-frequency inte-
grated circuits (RF-IC) potentially allows the improvement of
the channel SNR along n simultaneous directions of wave
propagation. Alternatively, a passive Rotman lens microwave
circuit can be applied to approximate the analog-DVM multi-
beam beamformer [9].

Unlike fully-digital multi-beam beamformers [10]-[19], the
analog-DVM based analog-digital hybrid multi-beam approach
achieves sub-array beamforming in analog/microwave domain
using active or passive realization of the DVM matrix, fol-
lowed by secondary digital beamforming when needed. In
fully-digital multi-beam beamforming systems, the number of
antennas is equal to the number of degrees of freedom; how-
ever, single-beam phased-array analog-digital hybrid systems
allow trading-off of degrees of freedom in return for power
efficient analog/microwave domain sub-array beamforming.
In analog DVM multi-beam systems, there is no loss of
degrees of freedom because N-elements can provide up to N-
orthogonal beams. However, only the required DVM beams
will be sampled by their corresponding ADCs thus enabling
receiving of particular beams as and when needed.

The analog/microwave DVM circuit (or alternatively, a
passive Rotman lens) realizes a matrix-vector multiplication
y = Ax where x = [71(t) 22(t) ... z,(t)]T is the vector
of antenna array outputs obtained from the receivers, A is
the n— beam beamformer matrix (e.g., DVM matrix) and
y = [y1(t) y2(t) ... yn(t)]T is the beam outputs that are to be
sampled by n— number of ADCs. An overview of an analog
DVM 4-beam multi-beam beamformer is shown in Fig. 2.
The transmission line segments are used to achieve n = 4
fixed beams. The increase of the SNR along the n directions.
The ADCs quantize (operation ((-)) the beamformed analog
signal to m—bits (in a uniformly quantized flash ADC) and
then sample to discrete time at sample rate F, = T~! for
sample period T, resulting in the vector of digitized beams
(denoted [Q(y1(KT)) Q(y2(kT)) ... Q(yn(kT))]" for time
index k € Z% that are used in the software defined radio
(SDR) for demodulation and error control, with unpacked raw
data being moved to the upper layers of the communications
protocol for subsequent processing.

Non-ideal gains in the receivers modify the model to vector
of analog time functions y(¢t) = AGx(t) where G is an
n X n diagonal matrix that contains the gains g1, gs, ..., gn
of the receivers. Ideally, G = I but in practice, the elemental
receiver gains may differ by several dB making G # I . These
deviations come from physical properties and fabrication non-
idealities of the antennas and receiver electronics that cannot
be avoided. Calibration is the operation that introduces a
set of n software programmable amplifiers that have gains
G ! such that the output vector of time functions applied to
ADCs becomes y(t = kT) = AG™1Gx(t = kT) for which
the inverse matrix is also a diagonal matrix having elements
91 1,92_ 1,...,gg L and the sampled beams become discrete
time sequences QQ(Ax)(k) for every k € Z. The beamformer
has to be calibrated periodically to ensure all of the RF
channels have the expected gain before reaching the inputs of
the analog DVM network. However, since digitization occurs
after analog beamforming modeled by y(t) = AGx(t), it is

not possible to isolate antenna channels Gx(t) at ADC inputs,
at times ¢t = kT, without inverting the analog-DVM matrix
in a digital signal processing (DSP) step that in turn gives
A71Q(AGx)(k). For high-precision ADCs (e.g., m >12 bits)
and the above non-linear matrix operation is reasonably close
to the desired linear matrix operation given in a time sequence
A~'AGx(k) that in turn furnishes the vector time sequence
~ Gx(k) needed for calibrating receivers.

The multi-beamformers resulting in an analog DVM are
wideband in nature [5]-[8]. However, the gain controls for
each antenna/receiver consists of software controlled ampli-
fiers resulting in the desired calibration G~! where each
elemental calibration gain is flat for the frequency band of
interest. Therefore, the calibration plane-wave signals are
assumed to be a tone centered the dominant frequency of
interest, such as the system carrier frequency in a wireless
communication system. For purposes of calibration, the input
signal are therefore narrowband, and consists of sinusoidal
tones being presented to the antenna array and analog DVM
beamformer [5]-[8].

In this paper, we solve the problem of recovering the
original analog input signals Q(AGx), albeit with some
inaccuracies A~'v due to the prevalence of ADC signal
quantization in the signal path, and where v is the quantization
noise time-function vector, in discrete-time domain given as
v = AGx — Q(AGx), where t = Tk. In general, the larger
the number of bits used in the ADC, the more reasonable
the results of the DVM inverse operation (i.e., effectively, the
multiplication of ADC output sampled-time function vector
is Q(AGx) by A~! (at time index k) to get us an approx-
imation of analog time function vector Gx ) as achieved in
the proposed fast algorithm. The paper covers the algorithm
for inverting the DVM from a mathematical standpoint. The
algorithm is implemented in software as the intended platform
is SDR.

In section II, we state background information on DVM-
based multibeam beamforming, and historical results in solv-
ing Vandermonde systems. In section III, we will present a
factorization of the inverse of the DVM. In section IV, we
will state the algorithm for solving the corresponding linear
system of equations. Next, in section V, numerical results
are presented for the forward error bound of the proposed
algorithm. Within the same section execution time of the
proposed algorithm is presented having nodes of the DVM
matrix on the unit circle. In section VI, we present signal flow
graphs of the proposed algorithms having 4-point and 8-point
inputs. Finally section VII concludes the paper.

II. DVM-BASED MULTI-BEAM ARRAYS

The DVM is the super class of the Discrete Fourier Trans-
form (DFT) matrix and can be used to realize wideband and
narrowband multi-beam systems [5]-[8]. Compared with the
DFT matrix, the DVM also has nodes on the unit circle. But
the nodes of the DVM are not the primitive roots of unity,
and so the DVM is lacking unitary and periodicity properties.
Therefore we won’t be able to compute the inverse of the
DVM in the way that we compute the inverse DFT (which is
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Fig. 2: Analog DVM circuit. Shown here is a typical 4-element 4-beam analog DVM multi-beam beamformer architecture.
The true-time delays - shown here as impedance matched transmission line segments - achieves wideband performance that
is optimal for wide sense stationary additive white Gaussian noise. For the narrowband case, true-time delays can be replaced
with analog phasing elements resulting in an analog phased-array architecture.

the conjugate transpose). On the other hand, DFT and DVM
are Vandermonde structured matrices. Thus, we will use the
Vandermonde structure of the DVM to derive a fast algorithm
to solve the DVM system, and then compare the numerical
results with the DFT systems. In the linear system y = AGx,
we define the DVM s.t. A = V(a) = [aik]:f;i’onfl where
a = e77¥7 are the functions of temporal freqﬁency variable
wy s.t. wy, = 2w f with frequency f, delay 7, and j2 = —1.

A. DVM Model for True-Time Delay Multi-Beam Beamformer

The DVM can process wideband signals via the use of true-
time-delays in the forward DVM. However, for narrowband
signals such as 5G wireless systems, true time delays can be
replaced with phase-shifters [20], [21]. The coefficients aF
take the form of a complex function of frequency e 7«7
where there are k delays, each of duration 7 in place of the
regular complex coefficients used in a matrix. The coefficients
are therefore functions of the temporal frequency w. The
forward DVM matrix is realized in analog domain using
microwave/mm-wave circuit components, such as networks
of transmission lines or all-pass filter networks. This paper
assumes the special case, which is common in practice,
where the modulated signals are bandpass and are centered
at a particular carrier frequency w.. When the input array
signal corresponds to a calibration tone, the DVM forward
coefficients can be approximated by constants o € C where
the temporal frequency is the constant w = 27 f.

When the forward DVM consists of such constants (de-
spite being implemented as true-time-delay circuits capable of
processing wideband signals) due to calibration tone having
frequency f Hz, the inverse-DVM operation can be realized
in the discrete domain using numerical techniques. The special
case where the forward DVM matrix is processing a calibration
tone can be handled using a linear system solver. In the paper,
we describe an efficient realization of DVM inverse using
numerical techniques.

B. Prior Mathematical Work in Solving Vandermonde Systems

It is well known that the Gaussian elimination can be used
to solve the system of linear equations, having a coefficient
matrix that is the classical Vandermonde matrix with nodes

{d1,da,--- ,d,}, of the form:
1 dy & e n
1 d2 d% d;il To Yo
1 d, di . dzfl T, Yn
V.x=y. (1)

If we didn’t consider the structure of the matrix V, then
the Gaussian elimination to solve the system (1) would cost
O(n?) arithmetic operations. On the other hand, the condition
number of the matrix V rapidly increases with size, leading
to instability of the system [22], [23]. Thus, it was shown
by Bjorck-Pereyra (see e.g. [24]-[26]) that one can explore
the structure of V' to speed-up the computation i.e. to solve
the system in O(n?) operations. Further, it was shown that
the Bjorck-Pereyra algorithm is not only faster, but it is often
more accurate than the standard methods [27] for the forward
stability and [28] for the backward stability analyses.

A more general class of the matrix V having the
Vandermonde structure is made by replacing the mono-
mials (note that, the matrix V can be generated by
the monomials {1,d,d?,---,d" !} evaluated at the roots
{dy,ds,- - ,d,} of p,(d)) with the set of polynomials P :=
{po(d),p1(d),p2(d), -+ ,pn—1(d),pn(d)}, and is called the
polynomial Vandermonde matrix, say Vp. This matrix has the
form:

po(di) pi(di) pa(dy) Pn—1(d1)
po(d2) pi(d2) pa(da) Pn—1(d2)

W = ) ) ) : , @
Do (dn) D1 (dn) D2 (dn) Pn—1 (dn)

where {dy,ds, - ,d,} are the roots of the polynomial p,,(d).
Thus, the Bjorck-Pereyra algorithm for solving a linear system
of equations corresponding to monomials can be extended



to a polynomial system of equations. Table I provides such
fast algorithms to solve systems of linear equations covering
special cases of the system P.

TABLE I: Fast O(n?) algorithms for solving linear systems

Coefficient Matrix Algorithms solving the system P

Classical Vandermonde matrix
Chebyshev Vandermonde matrix
Three-term Vandermonde matrix
Szeg6-Vandermonde matrix
Quasiseparable Vandermonde matrix

Bjorck-Pereyra algorithm [24]
Reichel-Opfer algorithm [29]
Higham algorithm [30]

Bella et al. algorithm [31]
Bella and et al. algorithm [32]

In this paper, we propose a fast algorithm to solve a system
linear of equations having coefficient matrix that is the DVM
when V() is generated by the set of distinct complex nodes
{1,a,a?,--- ;o™ 1}

The receiver outputs are approximately computed by
the proposed algorithm, which provides the outputs as
V() 'Q(V(a)Gx)+V (o) v, where V() 'v is the com-
putational error vector due to quantization at the ADCs. In our
analysis, we assume ideal time sampling with no quantization
non-linearity in the ADC in order to explore the numerical
properties of the proposed algorithm in its “best case” form;
that is we assume the ideal (linearized and quantization noise-
free) output vector V(a) 'V(a)Gx - to be computed re-
peatedly for every time sample k. The resulting inverse-DVM
serves as an upper bound on the eventual performance of the
total system when ADC quantization non-linearity is present.
In general, the number of bits in the ADCs are chosen to
support the SNR of the beams, and this is considered sufficient
for enabling calibration of the receiver gains.

III. FACTORIZATION FOR THE INVERSE OF THE DELAY
VANDERMONDE MATRIX

In this section, we present a sparse factorization for
the inverse delay Vandermonde matrix (based on a set
of complex nodes {1,a,a?, ---,a""'}) analogous to the
classical Bjorck-Pereyra algorithm (stated in Appendix A
and based on a set of real nodes {di,da, - ,d,}). It is
known that the inverse of the Vandermonde matrices can
be calculated efficiently by using the recurrence relations
of Horner polynomials (stated in Appendix B). Thus, we
use a similar approach to solve V(a) - x = y while
introducing a system of Horner polynomials. Let us say
W = {ip(w), 01 (w),..., 0p_1(w),w,(w)} (defined in
Appendix B), is the system of Horner polynomials as-
sociated with the given system of polynomials W =
{1,w,w?,...,w" 1 w,(w)}, where wy,(w) = (w—1)(w —
a)(w—a?)--(w—a"1). We use the Horner polynomials,
the recurrence relations among the polynomials in the set W
(proved in Appendix B, Proposition B.1), and an auxiliary
result (proved in Appendix C) to solve the linear system
Via) - x=y.

In the following, we state a decomposition of the inverse of
the delay Vandermode matrix. From now onwards, we consider
all missing elements in any matrix as zeros entries.

Theorem IIL1 Let W = {1,w,w?, -+ ,w" !} be the sys-
tem of complex-valued functions associated with the de-
lay Vandermode matrix V(o). Furthermore, let a%"~1 =

{La,a?--- ,a"" 1}, where a = e 7997, w, = 2rf, fre-
quency f, delay 7, and j2 = —1 be a set of n distinct points.
Then the inverse of the DVM admits a recursive decomposition
_ - 1 0 -
V(¥ H] T =0 - 4| -Di- Ly 3
[ (OL )] 1 0 [V(alznil)} 1 1 1 ( )
with
1 -1 i
1 -1
U, = , “)
1 -1
1 -
1 Z
1
a—1
- 1
Dy = a?—1 s
1
-1 1
and El = -1 1
-1 1

Proof. Multiplying V (a%"~1) by a sparse lower triangular
matrix, we get

1
-1 1
-1 1 V(aO:n—l)
-1 1
1
a—1 ®)
— a? -1
a1l -1
11 1
0 I

consists of divided

at—1
differences. By the Appendix B (Zi7.]Z:. 1the definition of the
complex-valued Horner polynomials of the given set of
complex-valued functions W (14) and the Proposition B.1),
the matrix W is associated with the system of complex-valued
Horner polynomials and can further be factored into:

where the matrix W = {"ik_l}

11 1 - 1

V_V — V(al:n—l) . (6)
1 1
1

Using Lemma C.1 (showed in Appendix C) and inverting (5),
we get the result. O



Corollary IIL.2 Inverse of the delay Vandermonde matrix
V(a)~! admits the factorization

V(a)' =0Uz--Uy—1-Dy1Ly1DyoLy o+ D11y
@)
where
_Im—l T
1 —aqm!
Um = 1 )
_a’m—l
. 1 -
o Z
1
~ amfamfl
D,, = ,
1
L an—1_qm-—1 |
Imfl
1
and I~/m = -1 1 ®)
-1 1

form=1,2,---n—1.

Proof. The recursive nature of the formula (3) allows the
decomposition (7). O

Remark IIL.3 In Corollary II1.2, (a). o* are complex numbers
as opposed to real nodes in Appendix A. (b). The matrices
L,,’s in (8) are different from the matrices L’s in (12).

IV. DVM SYSTEM SOLVING ALGORITHM AND
COMPLEXITY

This section introduces a fast algorithm based on the recur-
sive factorization formula stated in Theorem III.1. After the
algorithm is established we will derive the arithmetic com-
plexity on computing the system of linear equations associated
with the coefficient matrix V().

A. A Fast DVM System Solving Algorithm

In the following, we will state a fast algorithm to solve
the delay Vandermonde system V(«) - x = y by using the
factorization in (7).

Algorithm IV.1 DVMS(n, 7, f, y)
Input: n, 7, f, and y € R™ or C"
Steps:
1) Set o = e_Qﬂijs s = 2”, vV = [1 « M anil]Ts
and A= [y Opxs—1].

2) Fork=1,2,--- ,n—1,
Fort=1,2,--- ,n,
it (i > k)
. 2A (i, k) —2A(k,k
Ai, ke + 1) = G208,
else

A(i, k + 1) = A(i, k).

3) Fork=n,n+1,---,s—1,
Fori=1,2,--- n,
if (i<s—k)or (i=n)
A(i, k + 1) = A, k),
else
Wi, k+1) =A%, k) =A@ + 1,k) - v(s — k).
4) Take 2(:,s) = x.
Output: x =V ()™t -y

B. Arithmetic Complexity of the Algorithm

The arithmetic complexity, measured as the required num-
ber of additions and multiplications, needed to compute the
proposed DVM system solving algorithm, will be derived
in this section. Here counts are calculated based on the
multiplication of two « having two real additions and four
real multiplications, and subtraction of two complex numbers
having two real additions. We do not count multiplication by
+1.

Lemma IV.2 Let n(> 4) be an integer. The complex arith-
metic cost in computing the DVM system solving algorithm
DVMS(n, 7, f,y) having y € C" is given by

#aC(DVMS,n) = gn(n - 1),
#mC(DVMS,n) = (n —1)% 9)

Proof. To set up the vector v, through Step 1 of the algorithm,
requires no complex additions and @ complex multi-
plications. These counts are based on pre-computation and
correlated with the design-time computations. Also, the aim
of Step 1 is to compute the output of the algorithm effectively.
In Step 2 of the algorithm, we calculate the product of D,’s
and L,,’s by a vector for m = 1,2,...,.n — 1. If ¢« < k,
there is no cost involved as it is an assignment of entries in
2L from a column to the next column. When ¢ > k, Step
2 involves n(n — 1) complex additions and w complex
multiplications (this is calculated based on |«| = 1). In Step 3
of the algorithm, we calculate the product of Un's by a vector
form=1,2,...,n—1.If : <m — k or ¢ = n, there is no
cost involved as it is an assignment of entries in 2 from a
column to the next column. The else part of Step 3 involves
% complex additions and 2%=Y) complex multiplications
for k=n,n+1,...,s— 1. But when k = s — 1, this section
involves no complex multiplication (i.e. multiplication by 1)
fori=1,2,...,n—1. Thus, Step 3 involves nn-1) complex
additions and % complex multiplications. In Step 4 of
the algorithm, we extract the last column of 2/, hence no cost
is involved. Hence, the proposed algorithm requires Sn(n—1)

2
complex additions and (n — 1)? complex multiplications. []

Lemma IV.3 Let n(> 4) be an integer. The real arith-
metic cost in computing the DVM system solving algorithm
DVMS(n, 7, f,y) having y € C" is given by

#aR(DVMS,n) = (5bn —2)(n — 1),
2

#mR(DVMS,n) =4(n— 1)~ (10)



Proof. To set up the vector v, through Step 1 of the algorithm,
requires n? — 3n — 2 real additions and 2(n? — 3n — 2) real
multiplications. These counts are based on pre-computation
and correlated with the design-time computations. Also, the
aim of Step 1 is to calculate the algorithm effectively. Steps
2 and 3 follow the similar lines as in Lemma IV.2. Based on
the multiplication and subtraction of two complex numbers
and taking || = 1, the Steps 2 and 3 involve 3n(n — 1) real
additions and 2n(n — 1) real multiplications, and 2(n—1)? real
additions and 2(n—1)(n—2) real multiplications, respectively.
In Step 4 of the algorithm, we extract the last column
of 2, hence no cost is involved. Therefore, real addition
and multiplication complexity of the proposed algorithm are
(5n —2)(n — 1) and 4(n — 1)2, respectively. O

By following Lemma IV.2 and IV.3, the proposed DVM
system solving algorithm requires O(n?) complex and also real
arithmetic complexity as opposed to the brute-force calculation
of x =V (a)™! -y with O(n?) arithmetic complexity.

V. NUMERICAL RESULTS

In this section we present execution time and forward
error of the proposed DVM system solving algorithm. We
compare the execution time of the proposed algorithm with the
Gaussian elimination. Also, the forward error of the proposed
system solving algorithm will be compared with the MATLAB
built-in function ifft, for the primitive roots of unity.

A. Performance of the Algorithm

Algorithmic complexity gives us information on the per-
formance of algorithm in time and different platform. An
algorithm can show different execution time even with the
same inputs based on processor speed, instruction set, disk
speed, brand of compiler, etc. Thus, we compute the time com-
plexity of the algorithm using Python to observe its connection
to the arithmetic complexity. Also, we have compared the
time complexity of the proposed algorithm with the Gaussian
elimination method using Python. Figure 3 shows the exe-
cution time, in microseconds-us, of the DVM system solving
algorithm and the Gaussian elimination with the size of the
matrices varying from 4 x 4 to 128 x 128, with size increment
4 and nodes on the unit circle, not necessary the primitive
roots of unity. Execution time results were implemented using
Python with CPU running at 1.80 GHz and i17-8550U intel
COre processor.

When the size of matrices increased, it shows from Figure
3 that the proposed algorithm executes much faster than the
Gaussian elimination. Although the algorithmic complexity
depends on other mentioned factors, we have observed from
Lemma IV.3, Lemma IV.2, and Figure 3, that the order of
arithmetic complexity coincides with the order of the time
complexity.

B. Forward Error of the Algorithm

We show the numerical results for the forward error of the
proposed algorithm using MATLAB (R2014a version) with the
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Fig. 3: Execution time of the proposed DVM system solving
algorithm vs the Gaussian elimination to solve V(a) -x =y.

machine precision 2.23e — 16. The forward error is calculated
to address the accuracy of the proposed algorithm. We use the
relative forward error formula defined by:

_ Ix=xl,
1%l

where X is the computed solution and x is the exact solution.
Since the DFT matrix is a special case of the DVM, we
take the opportunity to compare the forward error of the
proposed algorithm with the MATLAB built-in function ifft
as the exact solution, when nodes of the DVM, i.e., {ak}kN:_Ol
are primitive roots of unity. The ifft(y) computes the product
of the inverse of the DFT matrix by the vector y, using the
fast Fourier transform algorithm. Also, the ifft takes the input
vector in the Galois field GF(2™) with the length 2™ — 1
st m € Zand 1 < m < 7. To show the accuracy of
the proposed algorithm beyond the length of the input vector
in the ifft, we execute the propose algorithm for the size
of matrices up to 128 x 128. The third column in Table II
shows the forward error in computing the proposed DVM
system solving algorithm IV.1 with variable precisions, i.e.,
with single precision X and double precision x. The fourth
column of the table denotes the comparison of the proposed
algorithm (taken as a computed solution) with the MATLAB
built-in function ifft (taken as a true solution). Figures in
this column are obtained with the double precision computed
solution, i.e. x = V(a)~! -y and solution obtained using the
function ifft, i.e. x = ifft(y). In these experiments, we have
used distinct nodes {1,c,---,a" 1} s.t. « € C and |a| = 1
with random input vector y to solve the system V(o) -x =y.

Table II shows that the proposed DVM system solving
algorithm yields a very high relative forward accuracy com-
pared with the built-in function ifff. Moreover, the proposed
algorithm yields constant error order 10~% with respect to
variable precisions. Furthermore, the proposed system solving
algorithm can be executed for any @ € C st. || = 1
as opposed to the ifft function (which can be executed for
the primitive roots of unity). From the last column, one can
observe the increment of the order of error with the increment



TABLE 1II: Forward error comparison of the DVM system
solving with variable precisions

[« [ n | Proposed DVMS | IFFT with Proposed DVMS |
e~ | 4 3.0188¢-08 2.3175¢-16
e~ | 4 2.111e-08 -

6 1.4368¢-08 -

8 1.4028¢-08 1.1723e-15
™% | 4 1.9051e-08 §

8 2.2695¢-08 -

12| 2.4446¢-08 -

16 | 1.2626e-08 3.6853¢-14
e~T6 | 8 1.5253¢-08 .

16 | 2.8177¢-08 -

24 | 2.9418¢-08 .

32 | 2.0378e-08 7.6324e-10
e~Ts | 8 2.2843e-08 y

16 | 1.5216e-08 -

32 | 2.3872¢-08 §

36 | 2.8917e-08 -
e~ | 8 2.9641e-08 -

16 | 1.8514e-08 -

32 | 2.2397e-08 -

64 | 3.4169¢-08 4.5080e-02
e~%5 | 16 | 2.3713e-08 -

32 | 1.8683e-08 -

64 | 2.7164e-08 y

128 | 1.9896¢-08 -

of the size of the matrices. Also, we recall that the ifft
works for the length of the input vectors up to n < 127.
In summary, the proposed algorithm shows favorable results
when compared to the ifft.

VI. SIGNAL FLOW GRAPHS

To illustrate the connection between the algebraic operations
used to execute the proposed algorithm IV.1 and to show the
simplicity of the algorithm, we provide signal flow graphs
(SFGs) having 4-point and 8-point inputs. As shown in the
flow graphs, in each graph the signal flows from the left to
the right with the dotted lines representing the multiplication
by -1. Figures 4 and 5 show the proposed 4-point and 8-point
DVM system solving algorithm IV.1, respectively. As shown
in the flow graphs, each block is drawn using a combination
of adders and multiplier. Thus, the visible counts are different
from the real addition and multiplication counts in (10). But
these visible counts are same as the complex addition and
multiplication counts (9). Note that for the visible addition
counts, we have to count the differences in each block.

The SFG is implemented in practice using a digital signal
processor based on a parallel systolic array architecture. The
design and implementation of the analog and digital hardware
and related electronic system will be described in a subsequent
contribution. Suffice it to say a Xilinx radio frequency system
on chip (RF SoC) platform (ZCU 1285) is the baseline for
digital realization. The design, simulation, implementation and
test of the electromagnetic interface, microwave front-ends,
and digital sub-systems including the hardware description
language realization of the proposed algorithm on the RF SoC
chip will be covered in a future submission to IEEE Aerospace
and Electronic Systems.

VII. CONCLUSION

In this paper, we have derived a fast algorithm to solve the
system of linear equations having the DVM as the coefficient
matrix. This algorithm was derived by using the recurrence
relations among the Horner polynomials and resulted in O(n?)
arithmetic complexity as opposed to O(n?) arithmetic com-
plexity. The arithmetic complexity and time complexity were
coincident with O(n?) order of complexity. Numerical results
for the forward error bounds indicated very good performance
even for large systems of equations with difference delays.
Finally, signal flow graphs were presented for the proposed
factorization to solve the system of equations associated with
the reduced complexity.

The inverse DVM operation is important for array calibra-
tion and when the raw antenna outputs are required in the SDR
for realization of non-DVM RF beams for various applications.
A typical example is the use of adaptive beamforming where
optimization algorithms are used for computing the array
weights other than DVM weights for cases where optimal sta-
tistical beamforming algorithms are necessary. The proposed
algorithms are well-suited for real-time implementation using
custom digital hardware processors based on systolic array
architectures. The current work is focused on the narrowband
case to reduce the complexity of the DVM system solver
while utilizing the structure of the DVM. The true wideband
DVM case requires the algorithm to be extended to frequency
dependent coefficients, which can be realized as finite impulse
response filters. This is reserved for future work.

APPENDIX A
THE CLASSICAL BJORCK-PERERYA FACTORIZATION
FORMULA

The authors in [24] have derived a representation for the

inverse of the classical Vandermonde matrix, i.e. V..., in (1),
as the product of bidiagonal matrices of the form
Vi=U,...U,_1Ly_1...L, (11)

and used the above result to solve the system of linear
equations V' - x =y such that

X = U1 ...Unfanfl ...Lly,

with O(n?) arithmetic operations. This is a significant im-
provement of magnitude compared to the well known Gaussian
elimination, which required O(n?) operations, in general. The
complexity advantage is due to sparse structures of Uy and Ly,
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Fig. 4: SFG for 4-point DVM system solving algorithm IV.1.

as shown below:
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APPENDIX B

HORNER POLYNOMIALS AND RECURRENCE RELATIONS
__ By following [33], the real-valued Horner polynomials
P = {po(d),p1(d), -+ ,pn(d)} for a given system of real-
valued polynomials P = {py(d), p1(d), - ,pn(d)} satisfying
deg pr = k can be defined via the relation

pn(d) — pnle)

T = (@) pi(d) pa(d) prs(d)] -
ﬁn—l(e)
ﬁn72(€)
pi(e)
150(6)
(13)
where p,,(d) = pn(d). It is well known that classical Horner
polynomials associated with monomials {1,d, a2, - ,d"}

(nodes of V is based on this set) exist. This shows us such
real-valued Horner polynomials exist for a given system of
polynomials.

In the following, we will use the system of real-valued
Horner polynomials introduced in [33], to define a complex-
valued Horner polynomials for a given system of complex-
valued functions.

If W is the system of m + 1 complex-valued func-
tions {1,w,w? ...,w" Y w,(w)}, where w,(w) = (w —

Dw — a)w — o)+ (w — a" "), and s are de-
lays, then the complex-valued Horner polynomials W =

{?ng), w1 (W), ..., Wyp—1(w), W, (w)} can be defined via the
relation
wn(wuz:z}n(z) _ [1 W w2 ... w”_l] . ,
w1 (2)
’lf}Q(Z i
(14)
where
Wy, (w) = wp(w)
=w-1)(w-a)(w—a?) - (w—a"t) (15)

=W +a,_ W+ ag.

In the following, we will obtain recurrence relations among
the complex-valued Horner polynomials in (14).

Proposition B.1 For a given complex-valued function w,, (w)
(15), the complex-valued Horner polynomials {0y (w)}}_,
exist and satisfy the recurrence relations

wo(w) = 1, (16)
(W) =w - -1 (W) + ap—p, k=1,2,--- ,n—1,
and
(W) = w - Wp—1(w), (17)

where a;,’s and o’s are related via (15).

Proof. Let’s consider the divided difference for the complex-
valued function w,, (w) such that

Wy (2) — Wy (w)

'u}n[Z,w]: W

et zwt T2 4 wifl) .
(18)
Now define complex-valued polynomials {wy(w)}}Z} by

Wy [2,w] = W (W) +Wp_1 (W) -2+ -+ +abp(w) - 2" "L (19)

Thus by following (14), polynomials {wy(w)}}Z] defined via
(19) exist and are called Horner polynomials for the basis
{wk}r_,. Furthermore, by equating the coefficients of z* in
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(18) and (19) for £ = 0,1,--- ,n, it is possible to state the
complex-valued Horner polynomials as

wk(w) =wh + an—lwkil +orFapk+1W Gk

for k=0,1,--- ,n. (20)

Additionally, by writing down each polynomial @y (w) in (20)
for k =0,1,--- ,n explicitly, it can be seen that the complex-
valued Horner polynomials {0y (w)}}_,, satisfy the recurrence
relations (16). O]

In Section III, we have used the Proposition B.1 to solve the
linear system V(o) -x =y.

APPENDIX C
AUXILIARY RESULT

The following auxiliary result will be used to obtain the
sparse factorization for V(a)~ L.

1 —«
1 -«
Lemma C.1 Let o € Cand B = ,
1 —«a
1
then
1 a o a”
1 « a2
Bl = ; 1)
1 a
1

Proof. The product of the i*" row in B, say B;, and k"
column in B!, say B,;l, is given by 0- a1 + 0. k"2 +
co 0ok 41 okt — o ok Thus, if i = K,
B;-B;' =1, else B;- B, = 0. Hence the result. O

REFERENCES

[1] Rappaport, T. S., Xing, Y., Kanhere, O., Ju, S., Madanayake, A., Mandal,
S., et al, Wireless Communications and Applications Above 100 GHz:
Opportunities and Challenges for 6G and Beyond, IEEE Access 7:
78729-78757, 2019.

[2] Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et.
al., Millimeter Wave Mobile Communications for 5G Cellular: It Will
Work!, IEEE Access 1: 335-349, 2013.

[3] Babur, G., Manokhin, G. O., Geltser, A. A., and Shibelgut, A. A., Low-
Cost Digital Beamforming on Receive in Phased Array Radar, IEEE
Transactions on Aerospace and Electronic Systems 53(3): 1355-1364,
2017.

[4] Morsali, A., Norouzi, S., and Champagne, B., Single RF Chain Hybrid
Analog/Digital Beamforming for Mmwave Massive-mimo, 2019 IEEE
Global Conference on Signal and Information Processing (GlobalSIP):1-
5, Ottawa, ON, Canada, 2019.

[5] Perera, S. M., Ariyarathna, V., Udayanga, N., Madanayake, A., Wu, G.,
Belostotski, L., et al, Wideband N-beam Arrays with Low-Complexity
Algorithms and Mixed-Signal Integrated Circuits, IEEE Journal of
Selected Topics in Signal Processing 12(2): 368-382, 2018.

[6] Perera, S. M., Madanayake, A., and Cintra, R., Efficient and Self-
Recursive Delay Vandermonde Algorithm for Multi-beam Antenna Ar-
rays, IEEE Open Journal of Signal Processing 1(1): 64-76, 2020.

[7] Perera, S. M., Madanayake, A., and Cintra, R., Radix-2 Self-recursive
Algorithms for Vandermonde-type Matrices and True-Time-Delay Multi-
Beam Antenna Arrays, IEEE Access 8: 25498-25508, 2020.

[8] Ariyarathna, V., Udayanga, N., Madanayake, A., Perera, S. M., Belostot-
ski, L. , and Cintra, R. J., Design methodology of an analog 9-beam
squint-free wideband IF multi-beamformer for mmW applications, In:
Proceedings of IEEE 2017 Moratuwa Engineering Research Conference
(MERCon): 236-241, IEEE, 2017.

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

Rotman, W., and Turner, R. F., Wide Angle Microwave Lens for Line
Source Applications, IEEE Transaction on Antennas and Propagation,
11(6) pp. 623-632, 1963.

Zheng, K., Dhananjay, A., Mezzavilla, M., Madanayake, A., Bharadwaj,
S., Ariyarathna, V., et al, Software-defined Radios to Accelerate mmWave
Wireless Innovation, 2019 IEEE International Symposium on Dynamic
Spectrum Access Networks (DySPAN): 1-4, Newark, NJ, USA, 2019.
Pulipati, S., Ariyarathna, V., Dhananjay, A., Eltayeb, M. E., Mezzavilla,
M., Jornet, J. M., et al, Xilinx RF-SoC-based Digital Multi-Beam
Array Processors for 28/60 GHz Wireless Testbeds, 2020 Moratuwa
Engineering Research Conference (MERCon): 254-259, Moratuwa, Sri
Lanka, 2020.

Zhao, R., Woodford, T., Wei, T., Qian, K., and Zhang, X., M-Cube:
A Millimeter-Wave Massive MIMO Software Radio, The 26th Annual
International Conference on Mobile Computing and Networking (Mo-
biCom ’20), September 21-25, 2020, London, United Kingdom. ACM,
New York, NY, USA.

Rajapaksha, N., Madanayake, A., and Bruton, L.T., Systolic array
architecture for steerable multibeam VHF wave-digital RF apertures,
IEEE Transactions on Aerospace and Electronic Systems 51 (1): 669-
687, January 2015.

Wijayaratna, S., Madanayake, A., Wijenayake, C., and Bruton, L. T.,
Digital VLSI architectures for beam-enhanced RF aperture arrays, IEEE
Transactions on Aerospace and Electronic Systems 51(3): 1996-2011,
July 2015.

Wijayaratna, S., Madanayake, A., Wijenayake, C., and Bruton, L. T.,
Digital VLSI architectures for beam-enhanced RF aperture arrays, IEEE
Transactions on Aerospace and Electronic Systems 51(3): 1996-2011,
July 2015.

Coutinho,V. A., Ariyarathna, V., Coelho, D. F. G., Pulipati, S. K., Cintra,
R. J., Madanayake, A., et al, A Low-SWaP 16-Beam 2.4 GHz Digital
Phased Array Receiver Using DFT Approximation, IEEE Transactions
on Aerospace and Electronic Systems 56(5): 3645-3654, Oct. 2020.
Madanayake, A., Ariyarathna, V., Madishetty, S., Pulipati, S., Cintra, R.
J., Coelho, D., et al, Towards a Low-SWaP 1024-Beam Digital Array:
A 32-Beam Subsystem at 5.8 GHz, IEEE Transactions on Antennas and
Propagation 68 (2): 900-912, Feb. 2020.

Madanayake, A., Cintra, R. J., Akram, N., Ariyarathna, V., Mandal, S.,
Coutinho, V. A, et al, Fast Radix-32 Approximate DFTs for 1024-Beam
Digital RF Beamforming, IEEE Access 8: 96613-96627, 2020.
Pulipati, S., Ariyarathna, V., Silva, U. D., Akram, N., Alwan, E. ,
Madanayake, A., et al, A Direct-Conversion Digital Beamforming Array
Receiver with 800 MHz Channel Bandwidth at 28 GHz using Xilinx RF
SoC, 2019 IEEE International Conference on Microwaves, Antennas,
Communications and Electronic Systems (COMCAS): 1-5, Tel-Aviv,
Israel, 2019.

Park, S., Alkhateeb, A., and Heath, R. W., Dynamic subarray architec-
ture for wideband hybrid precoding in millimeter wave massive MIMO
systems, 2016 IEEE Global Conference on Signal and Information
Processing (GlobalSIP):600-604, Washington, DC, 2016.

Gao, X., Dai, L., Han, S., Chih-Lin, I., and Heath, R. W., Energy-
Efficient Hybrid Analog and Digital Precoding for MmWave MIMO
Systems With Large Antenna Arrays, IEEE Journal on Selected Areas in
Communications 34 (4): 998-1009, 2016.

Walter, G., Norm Estimates for Inverses of Vandermonde Matrices,
Numerische Mathematik 23(4): 337-347, 1975.

Pan, V. Y., How Bad Are Vandermonde Matrices?, SIAM Journal of
Matrix Analysis 37(2):676-694, 2016.

Bjorck, A. and Pereyra, V., Solution of Vandermonde Systems of Equa-
tions, Mathematics of Computation (American Mathematical Society)
24 (112): 893-903, 1970.

Golub, G. and Van Loan, C., Matrix Computations third ed.. Johns
Hopkins University Press, Maryland, 1996.

Olshevsky, V., Pivoting for structured matrices and rational tangential
interpolation, Fast Algorithms for Structured Matrices: Theory and
Applications CONM/323:1-75, AMS Publications, 2003.

Higham, N. J., Error analysis of the Bjorck-Pereyra algorithms for
solving Vandermonde systems, Numer. Math. 50(5): 613-632, 1987.
Boros, T., Kailath, T., and Olshevsky, V., Fast Bjorck-Pereyra-type algo-
rithm for parallel solution of Cauchy linear equations Linear Algebra
Appl., 302-303:265-293, 1999.

Reichel, L. and Opfer, G. Chebyshev-Vandermonde systems, Math.
Comp. 57:703-721, 1991.

Higham, N. J., Stability analysis of algorithms for solving confluent
Vandermonde-like systems, SIAM J. Matrix Anal. Appl.11(1):23-41,
1990.



[31] Bella, T., Eidelman Y., Gohberg, I., Koltracht, I., and Olshevsky, V., A
Bjorck-Pereyra-type algorithm for Szego-Vandermonde matrices based
on properties of unitary Hessenberg matrices, Linear Algebra and
Applications 420(2-3): 634-647, 2007.

[32] Bella, T., Eidelman, Y., Gohberg, I., Koltracht, 1., and Olshevsky,
V., A fast Bjorck-Pereyra-type algorithm for solving Hessenberg-
quasiseparable-Vandermonde systems, SIAM. J. Matrix Anal. and Appl.
31(2): 790-815, 2009.

[33] Kailath, T. and Olshevsky, V., Displacement structure approach to
polynomial Vandermonde and related matrices, Linear Algebra Appl.
261:49-90, 1997.

Sirani Mututhanthrige Perera received the Ph.D.
in Mathematics from the University of Connecticut,
USA in 2012. She was the first Sri Lankan selected
by the Center for Mathematical Sciences at the Uni-
versity of Cambridge, UK with full Shell Centenary
Scholarship (under The Cambridge Commonwealth
Trust). She obtained the Part III Tripos in Mathe-
matics (Hons.) from the University of Cambridge,
UK in 2006. Perera received the B.Sc. in Mathe-
matics (First Class Hons.) from the University Sri
Jayewardenepura, Sri Lanka in 2004. Since 2015,
she has been working as an assistant professor in Mathematics at Embry-
Riddle Aeronautical University (ERAU), USA. She is working in the field
of Numerical Linear Algebra and Scientific Computing. Her research scope
includes structured matrices, matrices with displacement structure, FFT, fast
and stable algorithms, complexity and performance of algorithms, machine
learning algorithms, signal processing, and image processing. Perera is a
member of SIAM.

Arjuna Madanayake is an Associate Professor
of Electrical and Computer Engineering at Florida
International University (FIU) in Miami, Florida. He
completed his Ph.D. and M.Sc. both in Electrical
Engineering from the University of Calgary, Canada,
in 2008 and 2004, and a B.Sc in Engineering (First
Class Hons.) from the University of Moratuwa, Sri
Lanka, in 2001. His research interests are in one- and
multi-dimensional signal processing, antenna arrays,
mm-wave systems, microwave engineering, analog
circuits, integrated circuit design, FPGA architec-
tures and VLSI realizations of algorithms. His research is supported by the
Defense Advanced Research Projects Agency (DARPA), the Office of Naval
Research (ONR), and the US National Science Foundation (NSF).

Austin Ogle received his B.S in Engineering Physics
Magna Cum Laude in 2018 and an M.S. in En-
gineering Physics with Distinction in 2019, both
from Embry-Riddle Aeronautical University. While
attending Embry-Riddle, Austin was selected for the
Boren Scholarship to Kyrgyzstan and was recently
selected for a Fulbright Grant to Kazakhstan.

Daniel Silverio graduated Summa Cum Laude with
a Bachelor of Science in Electrical Engineering from
Embry-Riddle Aeronautical University in May 2019.
Daniel subsequently completed a Master of Science
in Electrical and Computer Engineering with Dis-
tinction from Embry-Riddle Aeronautical University
in December 2019.

Jacky Qi Huang received the Bachelor of Science
degree in Aerospace Engineering and Computational
Mathematics from the Embry-Riddle Aeronautical
University (Daytona Beach, FL) in 2016. He is cur-
rently pursuing Master’s degrees in Aerospace Engi-
neering and Systems Engineering at The University
of Texas at Arlington (Arlington, TX). He previously
worked at Northrop Grumman Corporation.



	Introduction
	DVM-Based Multi-Beam Arrays
	DVM Model for True-Time Delay Multi-Beam Beamformer
	Prior Mathematical Work in Solving Vandermonde Systems

	Factorization for the Inverse of the Delay Vandermonde Matrix
	DVM System Solving Algorithm and Complexity
	A Fast DVM System Solving Algorithm
	Arithmetic Complexity of the Algorithm

	Numerical Results
	Performance of the Algorithm
	Forward Error of the Algorithm

	Signal Flow Graphs
	Conclusion
	Appendix A: The classical Björck-Pererya factorization formula
	Appendix B: Horner polynomials and recurrence relations
	Appendix C: Auxiliary result
	References
	Biographies
	Sirani Mututhanthrige Perera
	Arjuna Madanayake
	Austin Ogle
	Daniel Silverio
	Jacky Qi Huang


