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Universal theory of strange metals from spatially
random interactions
Aavishkar A. Patel1,2, Haoyu Guo3,4,5, Ilya Esterlis4,6, Subir Sachdev4,7*

Strange metals—ubiquitous in correlated quantum materials—transport electrical charge at low
temperatures but not by the individual electronic quasiparticle excitations, which carry charge in
ordinary metals. In this work, we consider two-dimensional metals of fermions coupled to quantum
critical scalars, the latter representing order parameters or fractionalized particles. We show that
at low temperatures (T), such metals generically exhibit strange metal behavior with a T-linear resistivity
arising from spatially random fluctuations in the fermion-scalar Yukawa couplings about a nonzero
spatial average. We also find a T ln(1/T) specific heat and a rationale for the Planckian bound on
the transport scattering time. These results are in agreement with observations and are obtained in the
large N expansion of an ensemble of critical metals with N fermion flavors.

A
major theme in the study of correlated
metals has been their strange metal be-
havior at low temperatures—i.e., a linear-
in-temperature resistivity smaller than
the quantum unit of resistivity (h/e2 in

two dimensions), which appears to be con-
trolled by a dissipative Planckian relaxation
time of order ℏ= kBTð Þ (where h is Planck’s
constant, ℏ ¼ h= 2pð Þ, e is the electron charge,
kB is Boltzmann’s constant, and T is the ab-
solute temperature) (1–8). This behavior is in
sharp contrast to T 2 dependence of the resist-
ivity and the 1/T 2 relaxation time, invariably
observed in conventional metals described by
Fermi liquid theory. Moreover, the anomalous
resistivity of strange metals is accompan-
ied by a logarithmic enhancement of the
Sommerfeld metallic specific heat to T ln(1/T)
(1) from the ~T behavior of conventional
metals.
Starting with the seminal work by Hertz

(9), there has been extensive research on the
properties of electronic Fermi surfaces at quan-
tum phase transitions (10). The quantum crit-
ical fluctuations are represented by a scalar
field, which is usually a symmetry-breaking
order parameter but could also be a fraction-
alized particle at phase transitions without an
order parameter (11). This scalar field has a
Yukawa coupling to the electrons, by which
the electrons scatter by emitting or absorbing
a scalar field excitation (the Yukawa coupling
is similar to the electron-phonon coupling but

without a suppression by the gradient of the
scalar field). It is nowknown that such a Fermi
surface coupled to a quantum critical scalar
leads to a breakdown of the electronic quasi-
particle excitations in two spatial dimensions
(10, 12). But the Fermi surface survives as a
sharp boundary in momentum space, sepa-
rating particle- and hole-like excitations, which
are diffuse in energy space. In the presence of
random impurities that scatter the electrons
(13–17), there are cases where the quasi-
particles are at the boundary of stability,
which leads to marginal Fermi liquid be-
havior (18) in single-particle observables,
such as those observed in photoemission
experiments.
However, despite these advances, theory has

so far found limited success in explaining all of
the defining transport properties (such as the
linear-in-T resistivity) of strange metals. Con-
servation of momentum in the low-energy
theory of a clean metal implies that the dc
and optical conductivities are not affected by
the anomalous self-energy of the excitations
near the Fermi surface (15–17, 19–22). In other
words, the strong coupling between the Fermi
surface and the scalar field places the system
in the limit of strong scalar drag, and this clean
metal theory cannot describe strange metal
behavior. This is in contrast to the electron-
phonon system, where the weak electron-
phonon coupling makes phonon drag a factor
only in ultrapure samples (23). Umklapp scat-
tering can lead to nonzero resistance, and
its influence in quantum critical metals has
been investigated in other works (16, 24).
However, umklapp is suppressed at low T, its
predictions for transport are not universal
and depend upon specific Fermi surface de-
tails, and there is no corresponding T ln(1/T)
specific heat.
Given the ubiquity of strange metal trans-

port across numerous correlated electronmate-
rials (from the cuprates and the pnictides to
recently discovered twisted bilayer graphene),

a simple and universal mechanism may be at
play. We propose that spatial disorder in the
fermion-scalar Yukawa coupling, about a non-
zero spatial average, provides just such a uni-
versal mechanism. Such disorder is ubiquitous
in models of correlated electron materials; for
example, in a Hubbard model with on-site re-
pulsion U and an impurity-induced disorder
in the electron hopping tij, the Schrieffer-Wolff
transformation generates disorder in the ex-
change interaction Jij ¼ 4t2ij=U, and this disor-
der then feeds into the Yukawa coupling after a
standard decoupling procedure (9) that intro-
duces the scalar field.Moreover, ourmechanism
applies universally across different classes of
quantum critical metals, with scalars that are
either fractionalized particles or order param-
eters at zero or nonzero momentum, which
have distinct critical behaviors in the clean limit.
In the limit of a large number of fermion
flavors, N, we find a universal phenomenology
thatmatchesobservations, including theT-linear
resistivity, the Planckian relaxation time, and
the T ln(1/T) specific heat.
A key observation of our analysis is that al-

though the fermion inelastic self-energy correc-
tions can be dominated by the spatially uniform
coupling, the transport is nevertheless domi-
nated by the spatially random coupling, and
this leads to our main results. Our work follows
other recent works with random Yukawa inter-
actions (25–34) inspired by the Sachdev-Ye-
Kitaev (SYK) model (35, 36) along with studies
that found linear-in-T resistivity with random
interactions but with vanishing spatial aver-
age (32, 34, 37–39).

Spatially uniform quantum critical metal

We begin by recalling the SYK-inspired large
N theory of the two-dimensional quantum
critical metal (32, 34) for the case where the
order parameter has zero momentum. The
imaginary time (t) action for the fermion
field yi and scalar field ϕi (with i = 1…N a
flavor label carried by the fermions intro-
duced only to enable a controlled large N
limit) is (34)

Sg ¼ ∫dt
X
k

XN
i¼1

y†
ik tð Þ @t þ e kð Þ½ �yik tð Þ þ

1

2 ∫dt
X
q

XN
i¼1

fiq tð Þ �@2
t þ Kq2þm2

b

� �
fi;�q tð Þ þ

gijl
N ∫dtd2r

XN
i;j:l¼1

y†
i r; tð Þyj r; tð Þfl r; tð Þ

ð1Þ
where k and q are spatial momenta, the fer-
mion dispersion e(k) determines the Fermi
surface, the scalar massmb must be tuned to
criticality and is needed for infrared regula-
rization but does not appear in final results,
and the Yukawa fermion-scalar coupling gijl
is space independent but random in flavor
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space with

gijl ¼ 0;g∗ijlgabc ¼ g2diadjbdlc ð2Þ

where the overline represents average over
flavor space. The hypothesis is that a large
domain of flavor couplings all flow to the same
universal low-energy theory (as in the SYK
model), so we can safely examine the average
of an ensemble of theories. Momentum is con-
served in each member of the ensemble, and
the flavor-space randomness does not lead
to any essential difference from nonrandom
theories. This is in contrast to position-space
randomness, whichwe consider later andwhich
does relax momentum and modify physical
properties.
The disorder average of the partition func-

tion ofSg leads to a so-called G-S theory, whose
large N saddle point of Eq. 1 has singular
fermion (S) and boson (P) self-energies at T =
0 (where w is frequency) (34)

P iw;qð Þ ¼ �cb
wj j
qj j ;S iw;kð Þ ¼ �icf sgn wð Þ wj j2=3

cb ¼ g2

2pkvF
; cf ¼ g2

2pvF
ffiffiffi
3

p 2pvFk
K2g2

� �1=3

ð3Þ

These results are obtained on a circular Fermi
surface with curvature k = 1/m, where m is
the effective mass of the fermions. The result
is consistent with the theory of two anti-
podal patches around ±k0 on the Fermi sur-
face to which q is tangent, with axes chosen
so that q = (0, q) and fermionic dispersion
e Tk0 þ kð Þ ¼ TvFkx þ kk2y=2.
The large N computation of the conductiv-

ity (17, 22) yields only the clean Drude result
Re s wð Þ½ �=N ¼ pN v2Fd wð Þ=2, where N ¼ m=
2pð Þ is the fermion density of states at the
Fermi level. This is in contrast to the results
of previous studies (12, 40), in which it has
been found that dc resistivity is ~T4/3 and op-
tical conductivity is ∼ wj j�2=3.

Potential disorder

We now add to the model a spatially random
fermion potential

Sv ¼ 1ffiffiffiffi
N

p ∫d2rdtvij rð Þy†
i r; tð Þyj r; tð Þ

vij rð Þ ¼ 0;v∗ij rð Þvlm r′ð Þ ¼ v2d r� r′ð Þdildjm
ð4Þ

Here, the overline is an average over both
spatial coordinates and flavor space. The large
N limit of the G-S theory (17) yields a saddle
point that has statistical translational invariance
and is similar to that found in earlier studies
(13, 15, 16). The low-frequency boson propaga-
tor now has the diffusive form ∼ q2þð cd wj jÞ�1

with dynamic critical exponent z = 2, whereas
the fermion self-energy has an elastic scatter-

ing term along with a marginal Fermi liquid
(18) inelastic term at low frequencies

P iw;qð Þ ¼ �N g2 wj j
G

;G ¼ 2pv2N ;

S iw;k ¼ kF k̂
� �

¼ �i
G
2
sgn wð Þ

� ig2w
2p2G

ln
eG3

N g2v2F wj j
� �

ð5Þ

at T = 0. However, the marginal Fermi liquid
self-energy, although leading to a T ln(1/T) spe-
cific heat, does not (17) lead to the claimed (18)
linear-T term in the dc resistivity because it
arises from forward scattering of electrons
off the q ~ 0 bosons. These forward-scattering
processes are unable to relax either current or
momentum because of the small wavevector
of the bosons involved and the momentum
conservation of the g interactions. As a result,
even a perturbative computation of the con-
ductivity atO g2ð Þ (Fig. 1) shows a cancellation
between the interaction-induced self-energy
contributions and the interaction-induced ver-
tex correction, leading to a dc conductivity
that is just a constant set by the elastic po-
tential disorder scattering rate G. The leading
frequency dependence of the optical conduc-
tivity at frequencies w ≪ G is just a constant,
and there is no linear in-frequency correction
(17). Correspondingly, in the dc limit, there is
no linear in-T correction, and a conventional
T 2 correction is expected.

Interaction disorder

Our main results are obtained with additional
spatially random interactions. In principle,
such terms will be generated under a renor-
malization analysis fromSv. However, such a
renormalization is not part of our large N
limit, so we account for such interactions by
adding an explicit term

Sg′ ¼ 1

N ∫d2rdtg′ijl rð Þy†
i r; tð Þyj r; tð Þfl r; tð Þ

g′ijl rð Þ ¼ 0; g′∗ijl rð Þg′abc r′ð Þ

¼ g′2d r� r′ð Þdiadjbdlc ð6Þ
Note, v, g, and g′ are all independent flavor-

random variables. Earlier works have consi-
dered the limiting case of g = 0, v = 0, and g′ ≠
0 (32, 34). We will instead describe the more
physically relevant regime where spatial dis-
order is a weaker perturbation to a clean
quantum critical system, with g the largest
interaction coupling. We therefore now have
g, v, and g′ all nonzero. The theory of Sgþ
Sv þ Sg′ is described in the supplementary
materials (41).
As with Sg þ Sv above, we find a statistical

translational invariance at large N, with a
low-frequency boson propagator character-
ized by z = 2 and the low-frequency fermion

self-energy with an elastic scattering term
along with a marginal Fermi liquid inelastic
term (42)

P iw;qð Þ ¼ �N g2 wj j
G

� p
2
N 2g′2 wj j≡� cd wj j;

S iw;k ¼ kF k̂
� �

¼ �i
G
2
sgn wð Þ � ig2w

2p2G

ln
eG2

v2F cd wj j
� �

� iN g′2w
4p

ln
eL2

d

cd wj j
� �

T ¼ 0ð Þ
(7)

where Ld ∼ G=vF . This self-energy leads to a
T ln(1/T) specific heat, as for the large g′ case
(34). However, there is now an important dif-
ference with respect to the previous case
where g′ = 0, which leads to markedly differ-
ent charge transport properties: The marginal
Fermi liquid self-energy now contains a term
(last term in Eq. 7) that does not arise solely
from the forward scattering of electrons. This
term is produced by the disordered part of the
interactions in Eq. 6. Thus, this part of the self-
energy represents scattering that relaxes both
current and momentum carried by the elec-
tron fluid, and therefore its imaginary part on
the real frequency axis determines the inelas-
tic transport scattering rate.
We can show this as follows by computing

the conductivity using the Kubo formula. If
we work perturbatively in g and g′, then the
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A B C

D E

Fig. 1. Interaction corrections to the conductivity
in the large N limit. (A to E) The current operators
are denoted by solid circles, and the wavy lines
denote boson propagators. Dashed lines denote
random flavor averaging of the interaction cou-
plings. The fermion Green’s functions (solid lines)
include the effects of the disordered potential (v),
and the quantum critical boson propagators include
the effects of damping due to interactions. Vertex
corrections [(C) to (E)] contain only g interactions
because the contributions from g′ interactions
vanish as a result of the decoupling of the
momentum integrals in the loops containing the
external current operators. The sum of the two
Aslamazov-Larkin diagrams [(D) and (E)] vanishes
exactly in the limit of large Fermi energy, and the
perturbative result (Eq. 9) is therefore valid to all
orders in the interaction strength (41).
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conductivity atO g2ð Þ andO g′2ð Þ in the large
N limit is given by the sum of self-energy
contributions and vertex corrections (Fig. 1).
However, owing to the isotropy of the scat-
tering processes arising from the g′ interac-
tions, only the vertex correction caused by the
g interactions survives. The conductivity up
to the first subleading frequency-dependent
correction is then given by (41)

1

N
Re s w ≫ Tð Þ½ � ¼ sv þ sS;g þ sV ;g þ sS;g′;

sv wð Þ ¼ N v2F
2G

; sS;g wð Þ ¼ �N v2Fg
2 wj j

8pG3 ;

sV ;g wð Þ ¼ N v2Fg
2 wj j

8pG3 ;sS;g′ wð Þ ¼ �N 2v2Fg′
2 wj j

16G2

ð8Þ
Note that the g2 vertex and self-energy terms

cancel, and we have

NRe
1

s w ≫ Tð Þ
	 


¼ 1

N v2F
2G þN g′2 wj j

4

� �

ð9Þ
The g′2 term does not cancel and leads to a
linear in-frequency correction to the constant
transport scattering rate G. In the opposite
limit wj j ≪ T , this translates into a T-linear cor-
rection to the resistivity in the dc limit; com-
puting the coefficient of the linear-T resistivity
requires a self-consistent numerical analysis,
which has been carried out in the large g′ limit
(32, 34). Notably, the slope of this scattering
rate with respect to wj j (and therefore T) does
not depend on G and hence on the residual
(w = T = 0) resistivity. We show (41) that the
perturbative result described here continues
to be valid under a full resummation of all di-
agrams at large N in the Kubo formula be-
cause all surviving higher-order contributions
are merely repetitions of the interaction inser-
tions in Fig. 1, B and C.
We can also consider the case where v = 0

but g ≠ 0 and g′ ≠ 0. In this case, we have (at
T = 0) (41)

P iw;qð Þ ¼ �cb
wj j
qj j �

p
2
N 2g′2 wj j;

S iw;kð Þ ¼ �icf sgn wð Þ wj j2=3 � iN g′2w
6p

ln
e~L

3

cb wj j

 !
ð10Þ

where ~L∼g2= g′2vFNð Þ is an ultraviolet (UV)
momentum cutoff. Notably, the disordered in-
teractions induce amarginal Fermi liquid term
in S, which manifests as the first higher-order
correction to the translationally invariant result
in Eq. 3 (43)
It is sufficient in this v = 0 but g ≠ 0 and g′ ≠

0 case to compute the conductivity using the
theory of modes in the vicinity of antipodal

points on the Fermi surface (44) We then find,
as before, that sS;g and sV ;g cancel and (41)

1

N
s iw ≫ Tð Þ ¼ N v2F

2w
�N 2v2Fg′

2

24pw
ln

e3~L
6

c2bw
2

 !

≈
N v2F

2wþN g′2w
6p

ln
e3~L

6

c2bw
2

 ! ;

1

N

Re s w ≫ Tð Þ½ �
N 2v2Fg′

2
¼

6 wj j 2þN g′2

6p
ln

e3~L
6

c2bw
2

 !" #2
þN 2g′4

36

8<
:

9=
;

0
@

1
A
�1

ð11Þ
The transport scattering rate is therefore

still linear in wj j (and hence T) up to loga-
rithms, and there is no residual resistivity when
v = 0, despite the presence of disorder in g′.
This also turns out to be valid to all orders in
perturbation theory in the large N limit (41).

Crossovers

For energy (E) scales larger thanEc;1 ∼ G2= v2F cd
� �

but smaller than Ec;2 ∼ g4=
�
g′6v2FN 4� (Ec,1 <Ec,2

because N g′2 < g2=G as disorder is a correc-
tion to the clean system), the leading fre-
quency dependence of the inelastic part of the
fermion self-energy induced by g changes
from iwln 1= wj jð Þ to isgn wð Þ wj j2=3 , as in the
theory with v = 0 described above (41). How-
ever, then, as shown above for v = 0, the wj j or
T dependence of the transport scattering rate
continues to arise from g′ and remains linear
(up to logarithms) but with a slope that is ~⅔
of the slope in the E < Ec,1 theory. For energy
scales larger than Ec,2, there is an additional
crossover to the theory with g = 0 considered
in previous studies (32, 34), which also has a
linear wj j or T dependence (up to logarithms)
of the transport scattering rate, but now with
the same slope as in the E < Ec,1 theory (41).

Planckian behavior

Experimental analyses (6, 7) have compared
the slope of the linear-T resistivity to the re-
normalization of the effective mass in a prox-
imate Fermi liquid and have so deduced a
scattering timet∗tr appearing in aDrude formula
for the resistivity. In our theory, we obtain

1

t∗tr
¼ a

kBT

ℏ
ð12Þ

The dimensionless number a has been com-
puted previously (32, 34) in the limit g′ ≫ g to
be a ≈ (p/2) × (ratio of logarithms of T). For
smaller g′, we find (at v ≠ 0) (41)

a ≈
p
2

g′2

g′2L1 Tð Þ þ g2

GN L2 Tð Þ ; L1;2 Tð Þ ∼�lnT

ð13Þ

Therefore, Planckian behavior [a ∼O 1ð Þand
depending only slowly on T and nonuniversal
parameters] only occurs in the regime of large
g′ considered in previous studies (32, 34). Other-
wise, a ≪ 1 when g is the largest interaction
coupling. Our theory therefore provides a con-
crete realization of the often-conjecturedPlanck-
ian bound of a ≲ 1 on the transport scattering
times of quantum critical metals (1, 5, 8). It is
worth noting that quantum critical T-linear
resistivity with a ≪ 1 has been observed re-
cently in experiments on heavy fermion ma-
terials (7). Finally, for v = 0 but g ≠ 0, a ≪ 1
and has a power law dependence on T; there-
fore, there is manifestly no Planckian behav-
ior in this case.

Scalar mass disorder
Finally,we consider spatial disorder in the scalar
mass mb and argue that it does not modify our
results over substantial intermediate scales. Such
a term is not allowed for emergent gauge fields,
but it can appear as a fluctuation in the position
of the quantumcritical point for the caseswhere
f is a symmetry-breaking order parameter

Sw ¼ ∫dt 1

2
ffiffiffiffi
N

p ∫d2r
XN
ij¼1

wij rð Þfi r; tð Þfj r; tð Þ

ð14Þ
with

wij rð Þwlm r′ð Þ ¼ w2

2
d r� r′ð Þ dildjm þ dimdjlð Þ

ð15Þ

The largeN analysis shows thatSw is strong-
ly relevant, so w may well be a substantial
source of spatial disorder in experimental sys-
tems. Consequently, it is appropriate to ac-
count forSw first by transforming to the bases
of eigenmodes of f , which are eigenstates of
the harmonic terms for f in a given disorder
realization. On this basis, we obtain a theory
that has the same form asSg þ Sv þ Sg′ with
additional spatial disorder in the couplings,
including in K. However, it is not difficult to
show that spatial disorder in K is unimpor-
tant. So, Sw can be absorbed in a renormali-
zation of the values of v and g′, and we can
continue to use our results forSg þ Sv þ Sg′. A
more thorough analysis of disorder fluctua-
tion effects is required to determine whether
this transformation remains valid at the long-
est scales near the quantum critical point.

Discussion and outlook

Aphenomenologically attractive feature of our
theory is that the residual resistivity and the
slope of the linear-T resistivity are determined by
different types of disorder—the potential disor-
der v (which determines the elastic scattering
rate G) and the interaction disorder g′ (which
determines the inelastic self-energy in the last
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termofEq. 7), respectively.Weobtain amarginal
Fermi liquid electron self-energy (18) as is often
observed in quantum critical metals (45).
Because the coupling g′ is spatially random,

momentum is not conserved at its Yukawa in-
teraction vertex. The physical properties there-
fore remain unchanged for order parameters
at nonzero momentum and for theories with
multiple Fermi surfaces.
Our calculations were done in the large N

limit; we argue that computing all diagrams
directly at N = 1 would have led to the same
crucial cancellations. The largeNmainly serves
to systematically select a consistent set of di-
agrams to resum from the saddle point of an
effective action. Furthermore, the large N or
Eliashberg theory agrees well with quantum
Monte Carlo (QMC) studies in the clean limit
(carried out with the number of fermion or
boson flavors of order one) (46–49) and does
not have a potentially destabilizing Schwarzian
zero mode (34). A comparison with QMC for
the disordered case requires substantially more
advanced computational techniques and is the
subject of ongoing work (50). The mechanism
in the work of Shi et al. (22) for the noncom-
mutativity of the large N and small w limits
applies only for order parameters with the
same symmetry as the momentum in the spa-
tially uniform case and does not apply for the
spatially disordered case, which has no con-
served momentum and for which the patches
do not decouple.
Our theory of the influence of spatial disor-

der includes some disorder terms to all orders,
and this yields the z = 2 diffusive scalar prop-
agator. This is in contrast to the perturbative
disorder analysis of earlier memory function
treatments (16, 20).
Unlike earlier approaches (2) to construct-

ing controlled theories of strongly correlated
metals with low-temperature T-linear resistiv-
ity, there is no local criticality in our theory.
The quantum critical scalar fluctuations live in
two—and not zero—spatial dimensions.
When the values of the interaction couplings

and T are large enough to make the fermion
self-energy S comparable to the Fermi energy,

we expect the theories described in this work
to cross over into a so-called badmetal regime
(51). It would be interesting to examine the
transport properties of such a regime.
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Editor’s summary
Many correlated electron systems, such as cuprates and heavy fermion materials, host an unusual type of metallic
state called the strange metal. Strange metals have transport and thermodynamic properties with temperature
dependences that differ from those of ordinary metals. Devising a theory that describes all of these properties correctly
remains challenging. Patel et al. achieved this goal by introducing disorder in the coupling constants of a model of
strongly interacting systems. —Jelena Stajic
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