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Abstract—Natural disasters can have devastating consequences
for communities, causing loss of life and significant economic
damage. To mitigate these impacts, it is crucial to quickly
and accurately identify situational awareness and actionable
information useful for disaster relief and response organizations.
In this paper, we study the use of advanced transformer and
contrastive learning models for disaster image classification in a
humanitarian context, with focus on state-of-the-art pre-trained
vision transformers such as ViT, CSWin and a state-of-the-art
pre-trained contrastive learning model, CLIP. We evaluate the
performance of these models across various disaster scenarios,
including in-domain and cross-domain settings, as well as few-
shot learning and zero-shot learning settings. Our results show
that the CLIP model outperforms the two transformer models
(ViT and CSWin) and also ConvNeXts, a competitive CNN-based
model resembling transformers, in all the settings. By improving
the performance of disaster image classification, our work can
contribute to the goal of reducing the number of deaths and
economic losses caused by disasters, as well as helping to decrease
the number of people affected by these events.

Index Terms—disaster image classification, deep learning,
transformers, ViT, CSWin, contrastive learning, CLIP, Con-
vNeXts

I. INTRODUCTION

Nowadays, smartphones and the internet are accessible to
a majority of people and, as a result, social media platforms,
such as Twitter, have become a quick and popular way of
communicating and sharing information during various types
of crisis situations [1]. This is especially true during disaster
events, as 911 and other emergency lines rapidly become
overwhelmed by the large volume of calls from people in
need of help [21]. Thanks to the fast spread of news via
social media, relief and response during disasters can be
accelerated using this vital medium [1]. In fact, social media
can disseminate disaster-related news and updates much faster
and to a broader audience as compared to traditional media.
According to a report by Middle East Eye, several trapped
victims were rescued during the 2023 earthquake in Turkey
after posting “locations and images” on social media [17]. For
example, a man tweeted that he and his family were buried
under rubble in Hatay. Within an hour of the post, the tweet
was shared thousands of times and the family was rescued by
nearby residents. Similarly, another man posted his location
and a plea for help “Please help! We are under debris. There
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are many people here.” One hour later, the man reported that
“he and his mother had been rescued, but his father was not as
fortunate.” These examples demonstrate how social media can
be used to quickly and effectively communicate information
during a disaster, allowing people to share urgent needs with
a wide audience and receive help [17].

Information posted on social media, such as requests for
help and support, damage reports or updates on relief efforts,
can be utilised by humanitarian organizations to facilitate post-
disaster rescue and relief operations, guide the allocation of
resources, and improve the real-time response overall [4].
Although such information is valuable, being posted in real-
time by eyewitnesses of disasters, the amount of information
posted is extremely large, and can be noisy, repetitive or
even irrelevant. In fact, as soon as a disaster emerges, some
people start to sympathize with the victims, express thanks to
rescue organisations, repost the same content and so forth [37].
Therefore, it is of great importance to effectively filter and
prioritise relevant and informative content. However, manually
filtering relevant information is a hard task due to the large
volume and high velocity of data, and thus, automatic filtering
techniques are required [42].

While research on textual analysis of crisis-related tweets
has progressed significantly, research on image analysis of
such tweets has not received as much attention. However,
recent studies have explored the use of convolutional neural
networks (CNNs) [2], [6], [18] to classify disaster images into
multiple categories, such as disaster types, image informa-
tiveness, humanitarian categories, and damage severity. Nev-
ertheless, more recently, transformer models like the Vision
Transformer (ViT) [13] have demonstrated promising results,
surpassing CNNs in many computer vision scenarios. For
instance, a recent study [50] used a Tokens-to-Token ViT to
classify cervical cancer smear cell images. Another study [38]
employed a self-supervised pre-trained Swin Transformer for
classification and segmentation of land cover, and yet another
study [5] used a transformer-based model, LPViT, for defect
detection and classification of printed circuit boards (PCBs).

Despite the success of transformer and contrastive learning
models in various application domains, their potential for dis-
aster image classification, especially in the case of contrastive
learning, has not been much explored yet. Our study aims to



investigate the feasibility of utilizing such models for this task.
Given the scarcity of images in the early stages of a disaster,
we plan to leverage the strengths of transformer/contrastive
learning models in experimental settings such as zero-shot
[43] few-shot [45] and also cross-domain settings [47], which
have been already extensively studied in the literature for other
application domains [9], [16], [19], [22], [32], [35], [40], [41],
[44], [46], [49]. Specifically, we investigate the performance of
transformer variants, including ViT [13], CSWin Transformer
[12], and also a contrastive learning model, the image encoder
of CLIP (Contrastive Language-Image Pre-training) [36], by
comparison with ConvNetXt (a modern CNN architecture
designed to resemble transformers), in the context of disaster
image classification.
The main contributions of this study are as follows:

o We use pre-trained transformer models (ViT, CSWin),
CLIP (the image encoder based on ViT) and ConvNeXts
(a CNN-based model which resembles transformers) for
disaster image classification. To the best of our knowl-
edge, our study is the first one to use contrastive learning
for disaster image classification.

o We study the pre-trained CLIP model on disaster image
classification in a zero-shot transfer learning setting.

e We also study the models in a few-shot learning setting
(with 1/5/10/20 instances per class, respectively) and
compare the results of the few-shot models with those of
the CLIP model in zero-shot setting, which can be seen
as a lower-bound, as well as with the results obtained
through fine-tuning the pre-trained models using all the
data available, which can be seen as an upper-bound.

o We explored CLIP in several other experimental settings,
including in-domain transfer and cross-domain transfer,
which further involved two sub-settings of one-versus-one
and all-but-one.

e Our results show that CLIP exhibits strong generaliza-
tion capability across different disasters and consistently
achieves the best overall performance in various settings.
These findings suggest that CLIP is a strong candidate
for disaster image classification tasks.

Most importantly, the results of this study suggest that
our research can contribute to the development of effective
solutions for disaster management and response.

II. RELATED WORK

In this section, we review related work on CNN models
used for disaster image classification as well as work on recent
vision transformers and contrastive learning models.

A. Disaster Image Classification

While research on textual analysis of crisis-related tweets
has witnessed remarkable progress, research on image analysis
of such tweets has remained comparatively under-explored [2].
Inspired by successes of Deep Learning (DL) in the field of
image classification, some studies have been conducted on
social media disaster images [2], [4], [6], [11], [18], [25].

For instance, Alam et al. [2] fine-tuned convolutional neural
networks (CNNs), including ResNet18, ResNet50, ResNet101,
VGG16, DenseNet, SqueezeNet, MobileNet, and EfficientNet
models, using disaster images for multiple tasks (disaster
types, image informativeness, humanitarian categories and
damage severity), and showed promising results. In another
study, Banerjee et al. [6] used GAN models to generate disaster
images to augment existing datasets, and fine-tuned CNN mod-
els, such as VGG19, ResNet18, and DenseNet121, to classify
different types of real-world disaster images, with ResNet18
proving to be the most effective. Furthermore, Irwansyah et al.
[18] utilized models such as PSPNet and UNet with ResNet18
and ResNet50 backbones to classify satellite disaster images
into four damage classes. In [29], authors utilized average
pooling to compress initial feature maps (from the convolution
layer) into three distinct strips: 'row strip’, ’column strip’,
and ’channel strip’. Applying separate attention weighting to
each strip, they integrated them, resulting in the Triple-Strip
Attention Mechanism (TSAM), targeted at capturing often
overlooked global features by convolutions. The method was
employed for both disaster image classification, distinguishing
between landslide and non-landslide images, and segmentation
tasks, has been shown to effectively handle landslide and
flood disaster image segmentation. Collectively, these studies
demonstrate the effectiveness of CNN models in disaster im-
age classification, showcasing their wide applicability across
different image-based tasks and contexts.

However, most recently, transformer models, such as Vi-
sion Transformer (ViT) [13], have emerged as a powerful
tool for computer vision tasks, including classification and
segmentation, and have surpassed CNNs in performance [13],
[38]. These models have been applied to various application
domains with very promising results [15], [20], [23], [28],
as discussed in the next subsection. Another well-known
contemporary model, CLIP (Contrastive Language-Image Pre-
training) [36], is a contrastive learning multimodal model.
Trained on a large image-text collection, CLIP demonstrates
remarkable transferability, effectively accommodating diverse
tasks via fine-tuning. Its distinctive zero-shot and few-shot
capabilities position CLIP as a well-suited choice for disaster
response settings characterized by limited initial labeled data.
However, to date, CLIP has not been applied to disaster
image classification, and transformer-based models remain
unexplored in zero-shot, few-shot scenarios, and humanitarian
task.

B. Vision Transformers and Contrastive Learning

The introduction of vision transformers, such as ViT [13],
has brought about a paradigm shift in image analysis, partic-
ularly in the realm of image classification. Transformer-based
models have established a strong presence in various image
analysis domains, largely due to their superior performance
compared to state-of-the-art CNNs [13], making it increasingly
difficult for CNNs to remain competitive.

In an effort to keep up with the superior performance of
transformers, a “modernized” version of ResNet, known as



ConvNeXts, was developed in [27]. ConvNeXts was designed
to resemble transformers and produced very competitive re-
sults in terms of accuracy, scalability, and robustness. At
the same time, ViT models pre-trained on large datasets
have resulted in outstanding performance when transferred to
smaller downstream datasets [13], and few-shot results of ViT
pre-trained on ImageNet have also been promising. For our
application domain, transformer-based models pre-trained on
large datasets are ideal since obtaining reliable labels requires
significant time and effort, and the availability of labeled data
during a disaster is limited, especially at the beginning.

Given the initial success of the ViT model, other improved
versions of transformers have also emerged. For example,
Swin Transformer [26], a hierarchical transformer whose
representation is computed with shifted windows, was intro-
duced and was shown to surpass the counterpart ViT on the
ImageNet-1K dataset. A further developed version of Swin
Transformer was presented in [12], called CSWin Transformer,
in which self-attention was performed in horizontal and verti-
cal stripes, in parallel, forming a Cross-Shaped Window self-
attention. CLIP (Contrastive Language-Image Pre-training) is
a popular contrastive learning multimodal model [36], which
consists of an image encoder (e.g., ViT transformer architec-
ture) and a text encoder (e.g., BERT transformer [10]) pre-
trained together on image-caption pairs using a constrastive
loss that aims to produce similar representations for an image
and its corresponding caption. Since CLIP was pre-trained
on a large scale dataset consisting of 400 million image—text
pairs [36], it has outstanding transfer capabilities and has been
successfully fine-tuned to other tasks. Moreover, CLIP has also
shown good zero-shot and few-shot capabilities, which makes
it an ideal candidate for a disaster response setting, as labeled
data is generally not available in the beginning of a disaster.

Considering the superior performance of transformer-based
models in image classification tasks and their ability to transfer
well to downstream tasks with datasets of small or medium
size, they are a suitable option for disaster image classification
tasks with limited labeled data. To this end, we study the pre-
trained CLIP [36], specifically its image-encoder component,
by comparison with other well-known pre-trained transform-
ers, such as ViT [13] and CSWin [12], for disaster image
classification in a variety of settings. In addition, we use
ConvNeXt [27], a CNN model that resembles hierarchical
vision Transformers, as a baseline CNN.

III. APPROACHES

In this section, we briefly review the approaches used in
this study, including ViT, ConvNeXts, CSWin, and CLIP.

A. Vision Transformer (ViT)

ViT is a vision model based on the transformer architecture.
The transformer was originally designed for natural language
processing (NLP) and resulted in performance improvements
for many NLP tasks [13]. The transformer utilizes a self-
attention mechanism to capture long-range dependencies and
to produce a global feature representation of the input [13].

In ViT, the image is split into patches of fixed-size, which
are processed by a transformer encoder after being linearly
embedded [13]. ViT adds a unique CLS token to the input to
obtain a global representation for classification tasks [7], [13].

B. Cross-Shaped Window Transformer (CSWin)

CSWin is another vision model based on the transformer
architecture. As opposed to ViT, which was targeted at image
classification, CSWin was developed for general-purpose vi-
sion tasks [12]. CSWin’s main component is a Self-Attention
module, which executes self-attention calculations in parallel
by dividing multi-heads into parallel groups and processing the
horizontal and vertical stripes simultaneously. This technique
results in an efficient enlargement of the attention area for
each token in a transformer block. Furthermore, by adjusting
the stripe width according to the network depth, the atten-
tion area can be further increased with minimal additional
computational cost. To enhance its capabilities, CSWin Trans-
former incorporates the Locally-enhanced Positional Encoding
(LePE), which can handle different input resolutions [12].

C. ConvNeXts

ConvNeXt is a pure convolution-based model which was de-
signed by “modernizing” the ResNet architecture to resemble
a hierarchical vision transformer [27]. Its architecture features
depthwise convolutions and an inverted bottleneck design,
which reduces Floating Point Operations (FLOPs) and en-
hances performance. Additionally, the incorporation of larger
kernel sizes improves the network’s global receptive field and
accuracy. ConvNeXt has been shown to rival transformers
in terms of accuracy and scalability, while maintaining the
simplicity and efficiency of standard CNNs [27].

D. Contrastive Language-Image Pre-Training

CLIP is a multimodal architecture that enables joint training
of NLP and computer vision encoders, by utilizing a con-
trastive loss. The contrastive loss encourages the model to
produce similar representations for semantically related image-
text pairs, while dissimilar pairs are pushed further apart
in the joint image-text representation space [36]. CLIP has
been trained in a self-supervised manner on a dataset of 400
million image-caption pairs, with ResNet-50/ViT, respectively,
as image encoders and BERT [10] as a transformer-based text
encoder. We used ViT as the image encoder in this work.
Therefore, when referring to the use of the CLIP model in
this paper, we specifically mean CLIP with ViT as the image
encoder (and generally refer to this model simply as CLIP).
Unlike traditional approaches that rely on pre-defined object
categories, CLIP learns to identify objects based on textual
descriptions. This enables CLIP to excel in tasks such as
zero-shot and few-shot image classification. To perform zero-
shot image classification, the input image is paired one-by-
one with the textual names of the categories included in the
classification task (e.g., text such as “A photo of a CLASS-
NAME”), and the pair is embedded with the pre-trained model.
The encoded image is compared to all encoded categories to
determine the category with the highest similarity [20], [36].



TABLE I: Data distribution of the CrisisMMD dataset for the
Informativeness task

Dataset  Event Non-inf. Inf.  Total
DO California Fire 604 984 1588
D1 Hurricane Harvey 1982 2461 4443
D2 Hurricane Irma 2303 2222 4525
D3 Hurricane Maria 2330 2232 4562
D4 Iraq Iran Earthquake 200 400 600
D5 Mexico Earthquake 541 841 1382
D6 Sri Lanka Floods 773 252 1025

IV. EXPERIMENTAL SETUP

In this section, we provide an overview of the dataset used
in our experiments, the experimental setup, and the evaluation
metrics used to evaluate the models.

A. Dataset

We have utilized the CrisisMMD dataset [3] for our study.
This dataset consists of tweets containing images and texts
from seven natural disasters, namely Hurricane Irma, Hurri-
cane Harvey, Hurricane Maria, California Wildfires, Mexico
Earthquake, Iraq-Iran Earthquake, and Sri Lanka Floods. We
have focused on two different tasks available in the Crisis-
MMD dataset, namely Informativeness task (i.e., predicting if
an image is informative with respect to a particular disaster
or not informative) and Humanitarian task (i.e., predicting the
humanitarian category associated with an informative image).

The Informativeness task is a binary classification task,
specifically Informative (Inf.) and Non-informative (Non-inf.)
with respect to a disaster of interest. The original Human-
itarian task in CrisisMMD consists of eight categories, in-
cluding affected-individuals, injured-or-dead-people, missing-
or-found-people, infrastructure-and-utility-damage, vehicle-
damage, rescue-volunteering-or-donation-effort, not-relevant-
or-cant-judge, and other-relevant-information. We omitted the
missing-or-found-people category due to its relatively small
number of instances. We refer to the rescue-volunteering-
or-donation-effort as Effort. Moreover, we combined the
affected-individuals and injured-or-dead-people categories into
one category called affected-injured-or-dead-people or simply
Affected. Similarly, we combined infrastructure-and-utility-
damage and vehicle-damage categories into one category
called Damage. Finally, we merged the not-relevant-or-cant-
judge and other-relevant-information categories into a single
category called Other. Thus, the final dataset consists of
images in four categories: Affected, Damage, Effort and Other.
The distribution of datasets for the Informativeness and Hu-
manitarian tasks are presented in Table I and II, respectively.

Data Splits: We randomly split each dataset into three
subsets: training (70%), development (10%), and test (20%).
We used three different random seeds for splitting, resulting
in three different splits for the training, development, and test
subsets. Each experiment was run on the three splits, and the
results are reported in terms of averages over the three runs.

Note: In terms of utilizing the CrisisMMD dataset, there ex-
ist considerable variations in how researchers split the datasets,

TABLE II: Data distribution of the CrisisMMD dataset for the
modified Humanitarian task.

Dataset  Affected Damage Effort Other Total
DO 38 601 205 139 983
D1 192 1032 666 570 2460
D2 62 887 366 907 2222
D3 153 924 439 711 2227
D4 101 182 44 72 399
D5 75 210 446 104 835
D6 51 101 69 31 252

determine the number of classes for each task, and whether
they present results based on the entire merged dataset or
individual subsets. While Ofli et al. [34] established standard
benchmark splits for CrisisMMD tasks when utilizing the
dataset for multimodal approaches, there is an observed dis-
crepancy in the adoption of CrisisMMD dataset across studies,
particularly when focusing on a single modality (text or image)
for classification purposes. Notably, when only image modality
is used for classification, Alam et al. [4] provided benchmark
splits for the combined set of all seven datasets, as opposed to
individual subsets. Moreover, although humanitarian task has
8 categories, some investigations employ a modified 4-class
version of CrisisMMD for experimentation, as exemplified by
[4], while some others use a 5-class version, as evidenced
in works such as [24], [34], [39]. Also some works report
results for all the crisis events combined [4], [14], [30], while
some other studies report results for different crisis events
separately. In the latter case, specific studies use all seven
events [31], [48], while others narrow their focus to a selected
subset of these events [8], [33]. Thus, a comparison of prior
approaches that have used the CrisisMMD dataset is hardly
possible. Given this and our focus on the performance of
pretrained transformers and contrastive learning CLIP model
by comparison with CNNs for image classification in a variety
of low-data settings, we have chosen to use classes that
are well represented in the dataset (sometimes obtained by
merging two of the original classes as described above). As
we work with independent events, we also chose to split the
data per event according to standard practices to create three
random splits. This allows us to report average results over
three splits (and thus capture variation in the performance of
the models).

B. Evaluation Metrics

In all experiments, we chose weighted precision, weighted
recall, and weighted Fl-score as the evaluation metrics. We
present only the F1-score values in the main result tables due
to limited space.

C. Experimental Settings

We aim to study the effectiveness of the models consid-
ered in realistic scenarios, where little to no labeled data
is generally available for an emergent disaster. Specifically,
we focus on zero-shot, few-shot and in-domain/cross-domain
transfer learning settings. Our baseline setting corresponds
to the traditional supervised setting, where labeled data is



available to train a model for a specific disaster of interest.
Among the four models studied, ConvNetXt (a CNN model)
is used as a baseline for the transformer-based models (ViT
and CSWin) and the contrastive learning model, CLIP. Note
that we generally use the image encoder of CLIP, specifically
ViT, in our experiments, although we refer to the model as
CLIP. More details for the different settings included in our
experimental design are provided below.

Event-specific supervised (baseline): In this setting, we
train event-specific models (ConvNetXt, ViT, CSWin, and
CLIP) for each of the seven datasets (events) in CrisisMMD
separately. Given an event dataset D, we use the training sub-
set of the dataset D to train (fine-tune) the pre-trained models
for the Informativeness and Humanitarian tasks, respectively.
We use the validation subset of D to select hyper-parameters,
and the test subset of D to evaluate the performance of the
model. The term “event-specific” denotes the use of a single
dataset for both the training and test subsets.

Event-specific zero-shot: In the zero-shot setting, we eval-
uate the pre-trained CLIP model by pairing each input test
image with text representing category names, one at a time
(e.g., “A photo of affected, injured or dead people”). We
select the category corresponding to the text with the highest
similarity with the input image. The test subset of an event

dataset D is used to evaluate the performance for that event. RQD)

Note that we only use CLIP in the event-specific zero-shot
setting as the other models do not have the ability to assign

specific labels to instances without any additional ﬁne—tuning.(RQz)

Event-specific few-shot: In the few-shot setting, we use

1/5/10/20 instances per class to fine-tune models (ConvNetXt,(RQS)
(RQ4)

used are randomly selected from the training set of that event R

ViT, CSWin, and CLIP) for a particular event D. The instances

D in a cumulative fashion (by adding more instances to
the previous subset). The development and test subsets of
D are used to select hyper-parameters and to evaluate the
performance of the models, respectively.

Based on the results of the experiments in the event-specific
supervised and few-shot settings (which will be discussed in
Section V), we selected CLIP as a best performing model on
our disaster-related tweet classification tasks and used it for
additional experimentation with in-domain and cross-domain
transfer settings, as described below.

In-domain transfer: In this setting, we use CLIP models
trained on prior events of a specific disaster type (called
source events) to predict data from an emergent event of
the same type (called farget event). The fine-tuning of the
models is done on the training data from the source events. The
hyper-parameter selection and model evaluation are performed
on the development and test subsets of the target event,
respectively. There are two types of disasters with multiple
events in the CrisisMMD dataset, specifically, hurricanes and
earthquakes. Thus, we perform in-domain experiments using
these two types of disasters independently. In each in-domain
experiment, one event of a specific type is used as target, while
the other event(s) are used as source.

Cross-domain transfer: In the cross-domain setting, we

train models on source events of some type(s) and evaluate the
models on events of potentially different type. More specifi-
cally, we consider two sub-settings here. First, we consider
a one-versus-one setting in which the model is trained on a
source event of a particular disaster type (e.g., hurricane) and
evaluated on a target event of a different type (e.g., flood). This
setting may be useful in situations where the source and target
events happen around the same time or at the same location,
or if a prior event of the same type as the target event is not
available. Second, we consider the all-but-one setting (a.k.a.,
leave-one-out setting) where all available events (regardless
of their type) are used as source to train a model for a left-
out target event. This setting is helpful in understanding if
more training data from a variety of events is better than
a smaller amount of training data from more similar events
to a specific target event. The cross-domain models are fine-
tuned on the training data from the source events. The hyper-
parameter selection and model evaluation are performed on the
development and test subsets of the target event, respectively.

D. Research Questions

Our experiments aim to answer the following research
questions (RQ):

Among the four models considered, which model yields
the best results for disaster image classification in the
event-specific supervised and few-shot settings?

How do the models perform in the few-shot setting by
comparison with the supervised learning setting?

How does the CLIP model perform in-domain and cross-
domain by comparison with few-shot/supervised settings?
What setting leads to the best results for an emergent
disaster for which little or no labeled data is available?

E. Hyper-parameters

A simple data augmentation approach was applied to the
training set of each model. Images were resized to 225 x
225 and then randomly cropped to 224 x 224. Addition-
ally, images were randomly flipped in the horizontal di-
rection and normalized. For the test and development sets,
images were only resized to 224 x 224 and normalized.
The specific pre-trained models used in the experiments
are as follows: “facebook/convnext-tiny-224” for ConvNeXts,
“google/vit-base-patch16-224-in21k” for ViT, “CSWin-Tiny
(CSWin_64_12211_tiny_224)” for CSWin and “ViT-B/32” for
CLIP. The last layer in each pre-trained model was removed
and replaced with a linear classifier (along with dropout) that
had the output size equal to the number of categories in a
particular task (specifically, 2 for the Informativeness task
and 4 for the Humanitarian task). All layers were frozen
except for the last layer (corresponding to the linear classifier),
whose parameters were randomly initialized and trained from
scratch. We used the Adam optimizer, a batch size of 32 and a
maximum of 50 epochs for all experiments. The exact number
of epochs for each experiment was determined separately
based on the development set. The best model according to the



development set was used to estimate the final performance on
the corresponding test set.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we fist present the results of the experiments
that we performed, followed by a thorough discussion of the
results and error analysis.

A. Results

Table III shows the results of the comparison between the
ConvNeXts, ViT, CSWin and CLIP models in event-specific
supervised and few-shot settings for both Informativeness task
and Humanitarian task. This table also shows the zero-shot
results for the CLIP model. The table shows F1 scores for
each event and also averages over all events for the supervised
setting. In the few-shot setting, the F1 scores corresponding
to k instances (shots) per class ( £ = 0, 1, 5, 10 and 20,
respectively) are averaged over all events in the dataset due to
space limitations. The supervised setting is used as a baseline
for the few-shot setting, while the ConvNeXts is used as a
baseline for the transformer/CLIP models. The results of the
baseline ConvNeXts are shown in white, while the increment
and decrement in the Fl-score of other models included in
the comparison are indicated with shades of green and red,
respectively; the darker the shade, the higher the increment
/decrement. The best F1-score in each row is bold-faced.

Table IV presents additional results for CLIP, the best per-
forming model overall. Specifically, few shot results (with 20
instances per class), and in-domain and cross-domain transfer
results are shown for each event separately, for both Infor-
mativeness and Humanitarian tasks, by comparison with the
results of the supervised setting, which is the baseline setting.
In this table, the baseline results in the supervised setting are
shown in white, while the increment and decrement in the F1-
score of other settings compared to the baseline are indicated
with the shades of green and red, respectively. As for Table
III, the darker the shade, the higher the increment/decrement,
and the best Fl-score in a row is bold-faced.

B. Discussion

In what follows, we will use the results in Tables III and
IV to answer our research questions in Section IV-D.

(RQ1) Among the four models considered, which model
vields the best results for disaster image classification in the
event-specific supervised and few-shot settings? The results
in Table III indicate that for both tasks, CLIP generally
outperforms the other models in terms of Fl-score by a large
margin, in both supervised and few-shot settings. For example,
in the supervised setting, for the informativeness task, CLIP’s
average Fl-score over the seven events in the dataset is 86.571,
while the average Fl-score of the ConvNetXts baseline is
82.292. Similarly, for the humanitarian task, CLIP’s average
Fl-score is 81.805, while ConvNetXts’s average Fl-score is
78.198. Similar results can be observed in the few-shot setting,
where CLIP consistently and significantly outperforms Con-
vNetXts for both tasks. Notably, CLIP improves ConvNetXts’s

TABLE III: Fl-score of event-specific models in supervised,
zero-shot and few-shot settings for the Informativeness and
Humanitarian tasks, respectively. The F1-scores for the event-
specific supervised setting are reported per event, while the
F1-scores for the event-specific zero-shot and few-shot settings
are averaged over all events in the dataset. Models compared
include ConvNeXts (baseline CNN model) and ViT, CSWin
and CLIP (transformer-based models). The shades of green
and red indicate the increment and decrement in the F1-scores
of transformer models as compared to ConvNeXts. The darker
the shade, the higher the percentage of increment/decrement.
The F1-scores of the ConvNeXts model are shown in white,
while the best Fl-score in each row is bold-faced.

Event-specific supervised setting

Informativeness Task (F1-scores per event)

Dataset ConvNeXts CSWin  ViT CLIP

DO (Fire) 85.335 82.962 86.269  86.832
D1 (Hurricane) 82.741 81.062  85.105 87.431
D2 (Hurricane) 79.808 78.763  80.622  84.853
D3 (Hurricane) 79.606 79.824  81.216  84.745
D4 (Earthquake)  81.236 80.915  81.896  84.596
D5 (Earthquake)  81.500 81.949  80.051  86.495
D6 (Flood) 85.819 86.392  88.412 91.047
Average 82.292 81.695 83367 86.571

Humanitarian Task (F1-scores per event)

Dataset ConvNeXts CSWin  ViT CLIP

DO (Fire) 78.999 77.698 | 72.779  81.047
D1 (Hurricane) 80.915 79.583  80.371  82.772
D2 (Hurricane) 83.832 84960 84912 85.097
D3 (Hurricane) 84.214 84.027 84.219 86.072
D4 (Earthquake)  76.069 77278  77.786  80.531
D5 (Earthquake) 72.473 74924 74978  80.870
D6 (Flood) 70.887 64374  75.052 76.243
Average 78.198 77.549  78.585  81.805

Event-specific zero-shot and few-shot settings

Informativeness Task (F1-scores averaged over all events)

#Shots ConvNeXts CSWin ViT CLIP

0 - - - 50.816
1 55.791 50.111 61458 61.694
5 66.670 66.070  69.805 & 76.418
10 70.292 70.252 72.416 @ 78.972
20 73.077 73.772 76476 = 81.713
All (supervised)  82.292 81.695 83.367 86.571

Humanitarian Task (F1-scores averaged over all events)

#Shots ConvNeXts CSWin  ViT CLIP

0 - - - 49.688
1 47.508 58.285 49.262 47.855
5 63.792 66.746  61.694  67.044
10 70.208 69.205 70.179  74.594
20 73.958 72.241 73.951  76.805
All (supervised)  78.198 77.549  78.585  81.805

average Fl-score by almost 10% for the informativeness task,
when 5 shots are used. It is also remarkable to see that CLIP
has an average Fl-score of approximately 50% in the zero-
shot setting for both tasks, although as expected fine-tuning
the model using a small number of instances improves the
performance. We believe that the superior performance of
CLIP, followed by ViT as the second-best model, can be
attributed to several factors, including the use of the ViT



TABLE IV: CLIP Fl-scores for Informativeness and Human-
itarian tasks in supervised, few-shot, in-domain/cross-domain
transfer settings. The shades of green and red indicate the
increment and decrement in the Fl-scores of the few-shot,
in-domain, cross-domain transfer settings as compared to the
supervised setting (baseline, white). The darker the shade, the
higher the percentage of increment/decrement. The best overall
not-supervised F1-score for each event is bold-faced.

Event-specific supervised settings

Source Target Inf. Hum.
DO (Fire) DO (Fire) 86.832 81.047
D1 (Hurricane) D1 (Hurricane) 87.431 82.772
D2 (Hurricane) D2 (Hurricane) 84.853 85.097
D3 (Hurricane) D3 (Hurricane) 84.745 86.072
D4 (Earthquake) D4 (Earthquake)  84.596 80.531
D5 (Earthquake) D5 (Earthquake)  86.495 80.870
D6 (Flood) D6 (Flood) 91.047 76.243
Event-specific few-shot setting

#Shots/Source Target Inf. Hum.
20 of DO (Fire) DO (Fire) 82.811 78.724
20 of D1 (Hurricane) D1 (Hurricane) 81.854
20 of D2 (Hurricane) D2 (Hurricane) 79.650 80.737
20 of D3 (Hurricane) D3 (Hurricane) 78.782 83.598
20 of D4 (Earthquake) D4 (Earthquake) = 80.531 81.297
20 of D5 (Earthquake) D5 (Earthquake) = 81.609 73.097
20 of D6 (Flood) D6 (Flood) 86.751

In-domain transfer settings (cross-event)
Source Target Inf. Hum.
D2 + D3 (Hurricane) D1 (Hurricane) 85.922 80.980
D1 + D3 (Hurricane) D2 (Hurricane) 85.151 85.477
D1 + D2 (Hurricane) D3 (Hurricane) 84.540 84.576
D5 (Earthquake) D4 (Earthquake)  85.992 63182
D4 (Earthquake) D5 (Earthquake) | 82.039 |JSHIS6SNN

Cross-domain transfer settings (one-versus-one)

Source Target Inf. Hum.
D3 (Hurricane) DO (Fire) 84.423 74.287
D5 (Earthquake) DO (Fire) 83.430 76.283
D6 (Flood) DO (Fire)
DO (Fire) D3 (Hurricane) 78.626 78.804
D5 (Earthquake) D3 (Hurricane) 79.462 80.295
D6 (Flood) D3 (Hurricane)
DO (Fire) D5 (Earthquake) | 78.852
D3 (Hurricane) D5 (Earthquake)  83.734
D6 (Flood) D5 (Earthquake)
DO (Fire) D6 (Flood) 88.401
D3 (Hurricane) D6 (Flood) 90.696
D5 (Earthquake) D6 (Flood) 89.640

Cross-domain transfer settings (all-but-one)

Source Target Inf. Hum.
All but DO DO (Fire) 85.841 76.415
All but D1 DI (Hurricane) 86.822 81.524
All but D2 D2 (Hurricane) 85.000 86.294
All but D3 D3 (Hurricane) 84.138 83.765
All but D4 D4 (Earthquake)  83.366 82.810
All but D5 D5 (Earthquake)  86.936

All but D6 D6 (Flood) 90.264 79.034

model itself as the image encoder of CLIP, and also the fact
that CLIP was pre-trained on a large and diverse corpus of
multimodal image-caption pairs, thus enabling the model to
identify more subtle image concepts that the text describes
and also to generalize well to different domains and tasks.

When analyzing the results of the two transformer models
(CSWin and ViT), we can see that ViT is overall better
than ConvNetXts, but worse than CLIP. However, ViT’s
improvement over ConvNetXts is more significant for the
informativeness task, while the results of the two models
are somewhat comparable for the humanitarian task. Finally,
CSWin seems to have the worse overall performance on the
two disaster image classification tasks in our study.

(RQ2) How do the models perform in the few-shot setting
by comparison with the supervised learning setting? Average
F1 scores over the seven events in the dataset can be seen
in Table IIT (lower part) for all models considered, in the
supervised setting (All) and also in the few-shot setting (where
1, 5, 10, and 20 instances per class are used, respectively).
While the results obtained in the supervised setting are better
than those obtained in the few-shot setting, it is impressive to
see that the results of the CLIP model fine-tuned with only 20
instances per class are relatively close to the results obtained in
the supervised setting. Specifically, there is approximately 5%
difference between the supervised CLIP results and the 20-shot
results for both the informativeness and humanitarian tasks. It
is also interesting to see that there is a significant jump from
the results obtained with 1-shot versus 5-shot CLIP, especially
for the humanitarian task. The other models also improve
significantly as more instances are used and their results get
close to the results of their supervised counterparts that use all
the available data. Notably, CSWin has the best 1-shot result
for the humanitarian task, but not for the informativeness task.
These results together, and especially CLIP’s few-shot results,
show that a small number of instances from an emergent
disaster event may be enough to obtain models that can be used
to filter useful data in nearly real-time as a disaster emerges.

[RQ3] How does CLIP perform in in-domain/cross-domain
settings versus few-shot/supervised settings? The results of
the in-domain/cross-domain experiments by comparison with
the few-shot/supervised experiments are shown in Table IV.
As can be seen, the in-domain transfer and cross-domain
transfer (all-but-one) results are generally better than the event-
specific few-shot results but worse than the supervised results.
However, there are some cases where these models produce
better results than their supervised counterparts. Specifically,
the in-domain transfer setting has better results than the
baseline in 3 out of 14 cases, while the the cross-domain (all-
but-one) setting has better results in 5 out of 14 case.

When analyzing the results of the cross-domain transfer
(one-versus-one), we can see that they are sometimes better
and sometimes worse than the few-shot results, depending
on how similar the source and target events are in terms of
disaster scene (e.g., Hurricane Maria/Sri Lanka Floods) or
the time when they happened (e.g., Hurricane Maria/Mexico
Earthquake), among others.

[RQ4] What setting leads to the best results for an emergent
disaster for which little or no labeled data is available?
While models trained/fine-tuned in the supervised setting give
competitive results overall, supervised models fine-tuned with
a relatively large amount of labeled data are not practical to use



for an emergent disaster as labeled data is simply not available
in the early hours of the disaster. Considering the other more
practical settings, the best non-supervised results for the infor-
mativeness task are split between the in-domain transfer and
cross-domain transfer (all-but-one) settings, which assume no
labeled data from the target disaster. However, even when the
in-domain transfer results are better, the cross-domain transfer
(one-but-all) models follow closely behind, making this type
of model a strong candidate for filtering informative tweets in
the early hours of a disaster event. Similarly, the cross-domain
(all-but-one) models are also strong candidates for being used
to filter tweets according to various humanitarian categories
in the early hours of a disaster.

This suggests that in the early stages of a disaster, using
an off-the-shelf CLIP models previously fine-tuned using as
many images as available from diverse prior disasters may
help achieve high performance on the target disaster. In fact,
the performance may be similar to what one might obtain when
using an event-specific supervised setting. As the disaster
unfolds and some labeled instances from the target disaster
become available, one may also consider fine-tuning a pre-
trained CLIP model using directly instances from the target
disaster.

VI. ERROR ANALYSIS

We focus our error analysis on the humanitarian classi-
fication task. To understand what types of errors that dif-
ferent models make for different types of events, in Fig-
ure 1, we show confusion matrices for the best performing
models, specifically, event-specific supervised models (left),
event-specific 20-shot models (middle) and all-but-one models
(right). From top to bottom, results are shown for a fire (DO),
a hurricane (D3), an earthquake (D5) and a flood (D6). Based
on the analysis of these confusion matrices, combined with
analysis of correctly classified and misclassified images shown
in Figure 2, several trends can be observed:

o The models often confuse the categories of Affected
or Effort and Damage, especially when there are both
humans/cars and signs of destruction in the image (for
instance, images (d), (e), (m), (n), (q), (r), and (s) in Fig-
ure 2). This confusion arises because both categories can
be inferred from the image. Particularly, if the destruction
occupies a larger portion of the image, it is more likely to
be categorized as Damage even if the label for the image
is Affected or Effort. In some cases, multiple labels can be
considered valid, as the image is related to damage, and
there are people in the image affected by the disaster or
making efforts to help the victims. However, each image
in the dataset has only one label.

o Another issue identified, especially in the few-shot set-
ting, is that the models have difficulty recognizing Effort
images. These images are often categorized as Affected
since there are people present in the image (for instance,
image (I) in Figure 2). The models may need more
exposure to instances where specific items such as hats,
gloves, or uniforms are worn in Effort images to better

understand their distinctive characteristics. In contrast, it
is interesting to see that the few-shot models have best
performance on the Affected class for the fire, hurricane
and earthquake events.

o In Effort images, dogs are commonly present (for search
and rescue purposes). Consequently, models sometimes
misclassify images with dogs as Effort even if it is evident
that the dogs are in distress (for instance, image (j) in
Figure 2).

« Additionally, the model tends to incorrectly classify im-
ages with a significant amount of red or orange color as
Damage since it associates these colors with fire. This
association leads to misclassifications when the color is
present in contexts unrelated to fire.

o While the Damage category has overall the largest num-
ber of false positives, it also has the largest number of
true positives in all settings (according to the confusion
matrices in Figure 1).

o Based on the confusion matrices, it is also interesting
to see that in some cases (e.g., for the flood event), the
patterns observed for supervised and all-but-one models
are very similar , which shows that the diverse images
in the all-but-one training subsets are sufficient to train
effective models for a target event for which no labeled
data is yet available.

VII. CONCLUSION

We studied the use of advanced deep learning models,
specifically transformer models, ViT/CSWin, and contrastive
learning, CLIP, by comparison with a CNN-based model of
ConvNeXts, for disaster image classification. Experimental
results showed that CLIP outperformed the transformer models
and also ConvNeXts in all settings for binary-class Informa-
tiveness and multi-class Humanitarian tasks. This suggests that
transformer/contrastive learning models, pre-trained on large
amounts of data can capture diverse and complex patterns
and can be potentially effective in disaster response efforts.
Accurate and timely identification of disaster images provide
useful situational awareness information and can greatly assist
in response and recovery efforts. Overall, our study provides
valuable insights into the potential of vision transformers
and contrastive learning models for disaster response and
highlights the importance of their usage in this field, to
better support sustainable cities and communities and improve
resilience. Future work can explore the use of other types of
data, such as text, in conjunction with images to create multi-
modal models for disaster response efforts.
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