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TARF: Technology-Agnostic RF Sensing for
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Abstract—With the rapid development towards smart
Internet of Things (IoT), detection of human activity has
become essential in a variety of applications. Various radio-
frequency (RF) sensing technologies, such as WiFi, Radio-
Frequency Identification (RFID), and Frequency-Modulated
Continuous Wave (FMCW) radar, have been utilized for non-
invasive human activity recognition (HAR). It will be highly
desirable to develop a HAR solution that can work with
different types of RF technologies, such that the cost and
the barrier of wide deployment can both be greatly reduced,
and more robust performance can be achieved by utilizing
the complementary RF sensory data. In this paper, we pro-
pose a technology-agnostic approach for RF-based HAR,
termed TARF, which works with several different RF sens-
ing technologies. A novel data generalization technique is
proposed to mitigate the disparity in measured data from
different RF devices. A domain adversarial neural network
is proposed to combat the interference from various RF
sensing technologies. The performance of the proposed
system is evaluated with experiments using four different
RF sensing technologies. TARF is shown to outperform the
state-of-the-art Convolutional Neural Network (CNN)-based
solution with considerable gains.

Index Terms—Human activity recognition, technology-
agnostic RF sensing, internet of things (IoT), domain
adversarial learning.

I. INTRODUCTION

H
UMAN activity recognition (HAR) has been recognize as
one of the most important technology for many Internet-

of-Things (IoT) applications, such as smart homes, safety
surveillance, and health-care monitoring [1]. Video cameras
and wearable sensors, such as smart watches and gyroscopes
embedded in smartphones, are mostly used in traditional HAR
solutions [2]. However, vision based HAR is usually constrained
by the lighting condition and interference from the background,
and may raise privacy concerns, while wearable sensors are
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uncomfortable for prolonged usage. As a result, several RF-
based HAR solutions, such as WiFi [3], [4], Radio Frequency
Identification (RFID) [5], and various types of radars [6], have
been developed to overcome such constraints. By incorporating
deep learning algorithms, these RF-based HAR approaches were
shown effective to distinguish various types of human activities.

However, the existing solutions are each closely designed
and tailored for a specific RF technology or platform. In the
growing trend towards smart IoT systems, various RF sensing
technologies are emerging. The limitation of being tied up with
a specific technology or platform will hinder the development of
large-scale, and easy-to-deploy HAR systems. It will be highly
desirable to develop a HAR solution that can work with different
types of RF technologies. First, such a technology-agnostic
solution will greatly reduce the cost and overcome the barrier
of wide deployment of HAR systems. For example, an existing
RFID-based solution, e.g., [5], does not work with WiFi or radar.
However, a user that does not have access to RFID can still
make use of a technology-agnostic system with whatever RF
sensing platform that is available, e.g., WiFi, without needing
to acquire an RFID system. In addition, a technology-agnostic
system can be used both in the lab, where both radar and RFID
are available, and in the home, where there is only WiFi. Such
a technology-agnostic solution will be of great value to users
in such scenarios. Second, due to the different frequency band,
wireless communication protocols, and hardware design, vari-
ous RF platforms have their unique strengths and weaknesses
in specific deployment environments. WiFi-based techniques,
for example, can cover a large area, but are also susceptible to
interference from the surrounding environment. RFID, on the
other hand, is more resistant to interference from the environ-
ment, but is restricted by the shorter interrogation range, and the
collisions and the mutual coupling effect induced by crowded
tags. With a generalized signal processing module and a suit-
able movement feature extractor, the common activity-related
features could be effectively extracted from different types of
RF data, so that HAR could be performed using various RF
technologies.

Obviously, this is a highly challenging problem given the vari-
ety of frequency bands, protocols, and hardware used in different
RF sensing systems. The same propagation environment will
become very different wireless channels and the same human
activity will be transformed into very diverse RF representations.
Not only the metrics used to describe such measurements are
very different, but also the characteristics as indicated by the
measurements for the same human activity exhibit a high degree
of diversity. It is a great challenge and open problem to develop a
technology-agnostic system to detect the original human activity
from such diverse representations.
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In this paper, we propose a novel generalized, technology-
agnostic RF sensing system, termed TARF, for flexible and
accurate human activity recognition utilizing a wide range of
different RF sensing technologies. We first investigate the causes
of the barriers between various RF technologies and find that the
diversity is mostly caused by three factors: metric diversity, mea-
surement sensitivity, and distinct translation of human activity to
RF features. To address these problems, we first calibrate the RF
data from different RF sensing technologies to represent them in
a unified format. We then propose a signal preprocessing module
that uses the Short Time Fourier Transform (STFT) to generate a
generalized RF feature tensor, which can limit the interference of
metric diversity and sensitivity diversity of different RF sensing
technologies. In addition, we propose a Domain Adversarial
Neural Network (DANN) to compensate for the discrepancy in
RF signal translation. The domain discriminator of the DANN
is to optimize the training variables in the feature extractor, thus
allowing the network to concentrate on learning the generalized
motion features, and ignore the technology-specific features for
HAR.

The main contributions of this paper include the following.
� To the best of our knowledge, the TARF system is the first

technology-agnostic human activity identification system

capable of performing generalized and accurate HAR

using various RF sensing platforms.
� We investigate the challenges in technology-agnostic

HAR and show that they are caused by three main factors:

metric disparities, heterogeneous sensitivity distributions,

and diverse motion feature translations.
� A universal RF data preprocessing module is proposed

to reduce the disparity between different RF sensing tech-

nologies. The sensitivity diversity is addressed by mapping

the signal strength measurements, and generalized tensor

data is constructed using STFT. The DANN is utilized to

categorize different types of human activities, which fur-

ther mitigates the interference from diverse RF domains.
� We develop a prototype of TARF to demonstrate the

robustness of human activity recognition when data col-

lection and testing are conducted using four different RF

sensing technologies, including FMCW radar, WiFi in

2.4 GHz and 5 GHz bands, and RFID. The proposed

system is compared with the traditional Convolutional

Neural Network (CNN)-based technique, and the results

validate that the proposed TARF system is resilient to

technology-agnostic human activity recognition.
The remainder of this paper is organized as follows. We

first review the related work on RF-based HAR and adversarial
domain adaptation in Section II, We then introduce the prelim-
inaries and the problem statement in Section III. Section IV
provides an overview of the proposed TARF system, and Sec-
tion V presents the detailed design of the key TARF components.
Section VI presents the experimental evaluation of the TARF
system and Section VII concludes this paper.

II. RELATED WORK

The prior works on human activity recognition can be roughly
categorized as camera-based, sensor-based, and wireless-based
techniques [7]. In this paper, we mainly focus on RF-based

human activity recognition, including Radar-based, WiFi chan-
nel state information (CSI)-based, and RFID-based methods.
We will review such related work, as well as the recent works
on adversarial domain adaptation for wireless human activity
recognition in this section.

A. RF-Based Human Activity Recognition

Several radar systems have been utilized for human activ-
ity recognition, such as the Frequency-Modulated Continuous
Wave (FMCW) radar, Doppler radar, and Ultra Wide-band
(UWB) radar [8]. FMCW radar was first employed for human ac-
tivity monitoring, e.g., through-wall monitoring [9], 3D passive
human tracking [10], and vital sign monitoring [11], by mea-
suring the distance and velocity of body movement. However,
these works require special hardware (e.g., Universal Software
Radio Peripheral (USRP)) to implement the RF sensing system
(usually operating at 5.467.25 GHz), thus incurring a higher
cost. Commodity mmWave radars (e.g., IWR1443BOOST from
Texas Instruments) operating at 77 GHz have also been utilized
for various RF sensing tasks, such as human activity recogni-
tion [6], user authentication [12], and vital sign monitoring [13].
In [14], vision data captured by the Vicon motion capture
system was used for supervised training of the deep learning
model, which constructs 3D human meshes from sparse point
clouds. Doppler radar can detect the velocity and direction of
the subjects, and has also been utilized for human activity recog-
nition [8]. Low-cost UWB devices have been shown useful for
vital sign monitoring [15] and human activity recognition [16],
where meta-learning was used to adapt to different deployment
scenarios.

As a dominant wireless communications technology, there
has been great interest in utilizing WiFi for human activity
recognition. Several open-source tools have been developed to
extract channel state information (CSI) from the orthogonal
frequency division multiplexing (OFDM) channel, such as for
Intel 5300 cards [17], the ESP32 WiFi microcontroller [18],
the nexmon CSI Extractor for Broadcom and Cypress WiFi
chips [19], the Atheros CSI tool [20], and the openwifi tool [21].
CSI amplitude and phase difference data have been used in
applications for activity recognition, vital sign monitoring, and
gesture recognition [3], [4]. In addition, deep learning tech-
niques have great potential for achieving high recognition ac-
curacy [22]. For example, long short-term memory (LSTM), a
recurrent neural network (RNN) architecture, outperformed the
traditional model-based method on human activity recognition
using WiFi CSI amplitude data [23]. Generative adversarial
networks (GAN) have been utilized to augment training data
for human activity classification [24]. As in [14], high precision
3D skeletons captured by the Vicon motion capture system were
used to supervise the training of the deep learning model that
works with WiFi CSI data [25].

RFID is a near-field communication system originally de-
veloped for identifying tags attached to objects. Low-cost and
lightweight RFID tags can be attached to the human body as
wearable sensors for activity monitoring. Commodity RFID
readers (e.g., the Impinj R420 reader) can extract RF phase
angle, Doppler frequency, and Peak RSSI from received signals,
which can be used to estimate the range between the tag and the
reader antenna. RFID-based sensing is usually more resilient to
environmental interference than other RF sensing methods (e.g.,
radar and WiFi) due to the short range. RFID sensing techniques
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have been developed vital sign monitoring [26], driver fatigue
detection [27], activity recognition [5], and 3D human pose
estimation [28].

B. Adversarial Domain Adaptation for RF Sensing

Although deep learning has a great potential for RF sensing
applications, it still faces great challenges for real-world ap-
plications. This is because different deployment environments,
different users, or different wireless devices will lead to different
data distributions, i.e., domain (or distributional) shift will occur
between the source domain and target domain. A well trained
deep learning model may fail when applied to unseen data. To ad-
dress this challenge, generative adversarial network (GAN) [24],
meta-learning [16], [29], and adversarial domain adaptation [30]
have been proposed to adapt a trained deep learning model in
the source domain to the new RF data in the target domain. In
the following, we review several related works on adversarial
domain adaptation methods for human activity monitoring.

Adversarial domain adaptation comprises feature learning,
classifier learning, and domain adaptation, where adversarial
training is leveraged to address the domain adaptation prob-
lem. The goal is to obtain an effective feature representation,
which is discriminating for the learning tasks but invariant
for the domain classifier. For example, the conditional domain
adaptation architecture was used for radar-based sleep stage
classification in different indoor scenarios, which was focused
on supervised tasks [31]. In [30], unlabeled data was used
in adversarial training for human activity classification, where
four wireless devices were adopted to remove the environment
and subject specific information. Furthermore, multi-view deep
learning was introduced to improve the classification accuracy
in different environments by fusing different wireless data [32],
while multi-adversarial domain adaptation was proposed for
WiFi based in-Car activity recognition [33]. All the above related
works were focused on environment and user adaptation using
adversarial domain adaptation. Unlike the related works, in this
paper, we develop a novel technology-agnostic human activity
recognition framework utilizing different wireless techniques
such as radar, WiFi, and RFID.

III. TECHNOLOGY-AGNOSTIC GENERALIZATION

A. Preliminaries of the Wireless Technologies

To develop the generalized technology-agnostic approach for
RF-based human activity sensing, we first present the prelimi-
naries of RF sensing with different RF technologies.

1) FMCW Radar: Frequency-Modulated Continuous Wave
(FMCW) radar is a useful technology to provide both distance
and velocity measurements. With the FMCW radar, the trans-
mitted signal is modulated in the form of chirps [34], whose
frequency keeps on increasing periodically. In each period, the
signal frequency fM is modulated as fM (t) = f0 +

Bt
Tc

, 0 ≤
t ≤ Tc, where f0 is the starting frequency, B is the bandwidth of
the channel, and Tc is the duration of each period. The reflected
chirp signal is received by the radar and fused with the transmit-
ted signal. The fused signalSFMCW (t) at time t is given by [35]:

SFMCW (t) = A exp{−j2π(f0τ + Bτt
Tc

− Bτ2

2Tc
)}, where A is

the gain of the signal and τ represents the propagation delay

of the backscattered signal. The expression of SFMCW (t) indi-
cates that the frequency of the fused signal, Bτ/Tc, is deter-
mined by the propagation delay of the signal τ . By multiplying
the speed of light, τ will be translated to the distance between
the reflecting object and radar. Taking Fourier Transform on
the fused signal, the power spectrum can therefore reveal the
reflected signal strengths from various distances, which is re-
ferred to as the range profile [35]. When a person moves inside
the radar detecting range, the gathered range profile will change
with the body movements. Thus the received range profile
can be leveraged to distinguish between different movement
types.

2) Commodity 2.4 GHz and 5 GHz WiFi: The WiFi technol-
ogy has also been explored as a promising solution to non-
intrusive RF sensing of human activity. Compared to FMCW
radar, WiFi is quite accessible due to the wide deployment of
the infrastructure and the low-cost commodity devices. Recent
WiFi sensing techniques mostly utilize the Channel State Infor-
mation (CSI) extracted from the device driver, which provides a
fine-grained representation of the orthogonal frequency-division
multiplexing (OFDM) channel.

Considering the multipath effect of signal propagation, the
CSI of a channel c can be written as [20]: SWiFi(c) =
∑Nc(t)

n=1 An exp{−j2π(fcτn + φc)}, where Nc(t) is the total
number of propagation paths, fc is the central frequency of
channel c, φc is the phase offset of channel c, and An and τn are
the gain and the propagation delay of the nth path, respectively.
It can be seen that the channel offset largely determines the re-
ceived CSI for all propagation paths. Human activity is captured
in the CSI because, as a part of the propagation environment
(or, the WiFi channel), moving human body parts can create
considerable variations in most propagation paths, such as the
gain An, the propagation delay τn, and even the total number
of paths Nc(t). Both CSI amplitude and phase can be used for
learning human activity.

3) RFID: RFID devices have also been utilized in recent
years for human activity monitoring. As wearable sensors,
RFID tags are more resistant to environmental interference than
broadband systems such as WiFi. Furthermore, RFID systems’
low power consumption makes them a suitable RF sensing
technology for the Internet of Things (IoT). The line-of-sight
(LOS) path usually contributes to the dominant component in
the received signal, and hence the received signal on a channel
c can be written as: SRFID = Ac exp{−j2π(fcτ + φc)}, where
Ac, fc, and φc are the gain, frequency, and phase on channel c,
respectively, and τ is the propagation delay. With the Low Level
Reader Protocol (LLRP) [36] used in RFID systems, the phase
value of signal SRFID can be extracted for sensing of human
activities. By attaching tags to the human body, the propagation
delay τ of each tag changes along with the movements of body
parts. Thus, human activities can be captured by the variations
in phase values of the attached tags.

B. Problem Statement

Developing the technology-agnostic approach for human ac-
tivity recognition is highly challenging. So we need to formulate
the problem and figure out the mechanism to integrate the RF
based techniques. Following the Fourier expansion, we can write
the source signalS(t)of body movement as a combination of dif-

ferent periodical components, as S(t) =
∑M

n=1 Kn cos(Wnt+
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φn), where Wn is the frequency of the sinusoidal signal, Kn

denotes the coefficient, φn represents the initial phase of each
component, and M is the total number of periodic components.
The set of parameters, i.e., {Wn,Kn, φn,M}, represent the
unique features of the corresponding human activity. The re-
ceived signal reflected from the human body is dynamically
distorted by the moving human body, and the distortion is
mainly due to the prorogation path changed by the activity
S(t). Therefore, the reflected signal can be written as R(t) =

AT exp{−j(2πD+S(t)
λ

+ φT )}, where D is the average dis-
tance of the propagation path, λ denotes the wavelength of the
transmitted signal, and AT and φT represent the amplitude and
the initial phase of the signal, respectively. The expression of
R(t) indicates that the human activity introduces an offset on
the phase component ∠R(t). The relationship between ∠R(t)
and the source signal S(t) can be further investigated in the
frequency domain. Taking Fourier transform on ∠R(t), we have

Γ(ω) =

∫ ∞

−∞

{(

2π
D + S(t)

λ
+ φT

)}

e−jωt dt

= φcδ(0) +
π

λ

M
∑

n=1

Kn[e
jφnδ(ω −Wn) + e−jφnδ(ω +Wn)],

(1)

where δ(ω) is the Dirac function, and φc is a constant given
by φc = 2πD/λ + φT . The expression of Γ(ω) illustrates the
mapping from the source signalS(t) to the phase of the reflected
signal ∠R(t). The phase is determined by the unique features
of the human activity, i.e., {Wn,Kn, φn,M}.

The challenge in many RF sensing applications is, accurate
phase angle of the reflected signal is usually hard to obtain due
to the multipath effect. The mapping from the human activity
signal to the received phase sample becomes highly complex.
Traditional RF HAR based systems employ various signal pre-
processing techniques to combat the interference caused by
the complex mapping, to extract useful features for motion
classification. Unfortunately, a specific preprocessing method
developed for one RF technology is usually not applicable to
other RF technologies, due to their different frequency bands,
different communication protocols, and different types of hard-
ware. To address this challenge, the primary objective of our
technology-agnostic approach TARF is to learn the generalized
features of the human activity signal S(t) from various RF
technologies, which will facilitate the accurate classification of
different human activities.

IV. SYSTEM OVERVIEW

A. Main Challenges

Each existing RF sensing based activity recognition system
is closely tailored for the specific technology and has its unique
advantages and certain limitations. Such a system designed for
one RF technology usually does not work for a different tech-
nology (e.g., FMCW radar vs. RFID). Given the availability of
various RF technologies in our daily lives, a technology-agnostic
approach would be highly desirable to achieve better adaption to
different sensing scenarios, as well as greatly reduce the barrier
to deploying the system.

However, pursuing a generalized approach that works with
very different RF technologies is a great challenge due to two

Fig. 1. Architecture of the proposed technology-agnostic RF sensing
system TARF.

main reasons. First, different RF technologies are established
on different frequency bands. For example, the Ultra High
Frequency (UHF) RFID systems operate on the 900 MHz band,
WiFi works on the 2.4 GHz or 5 GHz bands, and the FMCW
radar used in our experiments is on the 76 ∼ 81 GHz millimeter
wave (mmWave) band. Even deployed in the same environment,
different RF technologies see different propagation channels
and different signal characteristics. Second, due to their differ-
ent physical layer and medium access control layer protocols,
as well as different device drivers that are available, the RF
data collected by different RF devices are highly diverse. It
is extremely challenging to develop a generalized approach to
accurately detect human activities from such diverse RF data.

B. System Architecture

To address the above challenges, we design a novel system
TARF that is generalizable to diverse RF data measured with dif-
ferent RF sensing technologies to perform technology-agnostic
human activity recognition. Fig. 1 provides an overview of the
system architecture of TARF, which is composed of three main
components, including (i) RF signal collection, (ii) generalized
RF signal preprocessing, and (iii) domain adversarial deep neu-
ral network based activity recognition. In the RF signal collec-
tion module, raw RF signals are sampled by several different
RF sensing platforms. According to (1), we are interested in
the phase angle ∠R(t) of the collected signals. We use the
phase signal from the RFID system and the phase difference
signal from 2.4 GHz and 5 GHz WiFi systems. For FMCW
radar, phase is not a good indicator of human activity because of
the modulated frequency. Instead, we leverage the range profile
from the FMCW radar as an input signal, which is indicative the
propagation distance of the signal and is readily available from
the device.
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Fig. 2. Raw data sampled by different RF technologies for the same human activity over a 4-second period.

In the proposed technology-agnostic TARF system, the signal
will be treated using the same generalized signal preprocessing
module, no matter which RF technology is used for sensing.
Generalization to multiple RF technologies should begin with a
standardized RF data format. We propose a generalized RF data
preprocessing module for different RF sensing systems, where
the input signal is treated as a group of different observations
of the same source signal S(t) and is converted to a generalized
input data matrix. Then the general background removal is im-
plemented with Hampel filters, where the interference from the
common static background is removed. Finally, the observations
are reordered according to their signal strengths to mitigate the
sensitivity diversity across different RF devices.

Then, generalized feature tensors will be constructed and
fed into a domain adversarial deep neural network for activ-
ity classification. In comparison to a traditional convolutional
neural network, the domain adversarial neural network is able
to acquire more generalized features of diverse human activities
by combating characteristics gained from other domains. The
details of the signal preprocessing and the domain adversarial
deep neural network structure will be elaborated in Section V.

V. DESIGN OF THE TECHNOLOGY-AGNOSTIC SYSTEM

In this section, we present the detailed design of the proposed
TARF system. We will examine the challenges in diverse RF
data, generalized feature mapping, and activity recognition with
domain adversarial neural networks, and then present our pro-
posed solutions to address these challenges.

A. Metric Generalization

1) Challenge: Diversity in Measured Data: The first chal-
lenge of generalization arises from the use of very different
types of channel data. Fig. 2 illustrates the raw data collected for
the same human activity sampled by three different RF sensing
platforms over a 4-second period. For convenience, we have
normalized the data from each platform. In these “temperature”
plots, a lighter color, e.g., yellow, indicates larger values or
higher strengths, while a darker color, e.g., dark blue, represents
smaller values. Each plot in Fig. 2 presents a different type of
sampled data. Specifically, Fig. 2(a) shows the raw range profile
sampled by an FMCW radar, where the 2-dimensional data (or,
matrix) consists of the signal strengths sampled over time for
different ranges from 1 m to 5 m. The RFID data, plotted in
Fig. 2(b), comprises the phase values sampled from 12 RFID
tags. The WiFi data in Fig. 2(c) consists of phase differences, i.e.,

the difference of phases from a pair of WiFi antennas, sampled
from 30 subcarriers.

It is obvious that such RF data are very different, each with
their unique features, making it extremely hard to handle with a
generalized model. In particular, for the three RF technologies,
the range profile of FMCW radar is measured in decibel (dB)
typically ranging from 20 dB to 120 dB. The phase values sam-
pled from the RFID tags, as well as the phase differences from
the 30 subcarriers of the WiFi channel, vary from 0 to 2π rad.
The different metrics incur considerable diversity in the scale
of data measurement. Moreover, such RF data with different
metrics cannot be directly generalized into a normalized format.

2) Proposed Solution: The first step in data preprocessing
is to remove the disparity in metrics of different RF hardware
platforms. We begin by defining the generalized data matrix in
order to gather raw data from different kinds of RF platforms.
The generalized data matrix has the following format:

SG =

⎡

⎢

⎢

⎢

⎣

F 1
1 F 1

2 . . . F 1
Nt

F 2
1 F 2

2 . . . F 2
Nt

...
...

. . .
...

FNF

1 FNF

2 . . . FNF

Nt

⎤

⎥

⎥

⎥

⎦

, (2)

whereF represents an RF data measurement for human activities
and NF denotes the total number of measurements. The integer
Nt denotes the number of time frames captured by the RF device.
The sampling frequency of all RF platforms is set to 10 Hz in (2),
therefore the length of the x-axis Nt is given by Nt = 10× t.
Meanwhile, the amount of measurements taken by different RF
platforms determines the size of the y-axis dimension. Each
measurement is regarded as an observation of the source signal
S(t), which is generated by the human activity.

With FMCW radar, the subject performs activities within its
range and the range profile in the form of power spectrum is
obtained by 256-point fast Fourier transform (FFT). Therefore
we haveNF = 256 for the FMCW platform. With WiFi, a trans-
mitter sends packets to a receiver, with the subject in the middle.
The receiver has three antennas and each can extract phase
data from 30 subcarriers, which results in 90 RF measurements
for each received packet. For RFID based sensing of human
activities, we attach 12 tags to the joints of the subject, including
neck, left shoulder, right shoulder, left elbow, right elbow, left
wrist, right wrist, pelvis, left hip, right hip, left knee, and right
knee. Three RFID readers are used to interrogate the tags, while
phase data is collected from received responses. Unfortunately,
because of the Slotted-Aloha-like collision avoidance protocol,
only one phase measurement can be collected by the reader at
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a time. We employ an effective tensor completion based data
interpolation method [28] to augment the sparse RFID phase
data. After tensor completion, each time frame has 36 phase
samples (i.e., from 3 antenna and 12 tags). With the generalized
data matrix employed in the system, we can remove the diversity
in metrics of the diverse RF platforms.

B. Generalized Feature Mapping

1) Challenge: Diversity in Sensitivity: No matter which RF
technique is employed, a number of measurements are gathered
at the same time. However, the sensitivity of these measurements
to human activity may be highly different. For example, in
Fig. 2(a), the signal strength around 2.5 m is more sensitive to the
human movements, because this is the average distance between
the subject and the FMCW radar. As a result, measurements
taken at a distance of 2.5 m should contribute more to the
correct extraction of motion features. When it comes to the RFID
technology, however, the situation is completely different. The
sensitivity, as shown in the measurements, is strongly dependent
on the limb where the RFID tags are attached, since the received
phase value is determined by the movements of the RFID tags.
The sensitive data should be more emphasized for accurate
activity detection. Such diverse sensitivity also poses a challenge
to developing the technology-agnostic approach.

2) Proposed Solution: To deal with the diverse sensitivity in
measured RF data, we map the RF measurements from different
wireless technologies into a generalized order, so that the same
human action introduces a comparable distribution of measure-
ments. Since the wireless propagation environment has a great
impact on the measured signal, the environmental influence
should be firstly removed before the mapping process. To do
this, we measure the component corresponding to the impact of
the static background and eliminate it from the sampled signal.
Such a background removal operation is performed on each row
of matrix SG using two separate Hampel filters. The first filter
uses a window size of 4 for thermal noise reduction, while the
second uses a window size of 15 for extracting the background
component. To extract the component corresponding to human
activity, we subtract the signal filtered by the Hampel filter
with the larger window size from the signal filtered by the
Hampel filter with the smaller window size. After removing the
background component, we reorder all the rows inSG according
to the signal strength.

The signal strength for row i, denoted by Pi, is computed

by the variance of the time sequence as Pi =
1
Nt

∑Nt

t=1(F
i
t −

µi)
2, where µi represents the mean value of each row. Since

the background component has been removed, the variance of
the signal indicates its strength. The new matrix is sorted in
descending order of signal strength. We always choose the first
NP rows of data for human activity recognition. The reordered
matrix SR is given by:

SR =

⎡

⎢

⎢

⎢

⎣

F 1
1 F 1

2 . . . F 1
Nt

F 2
1 F 2

2 . . . F 2
Nt

...
...

. . .
...

FNP

1 FNP

2 . . . FNP

Nt

⎤

⎥

⎥

⎥

⎦

, (3)

where NP is the number of the most powerful signals chosen
for activity recognition.

Fig. 3. Examples of the calibrated generalized feature matrix SR mea-
sured from the kicking activity. Left: sampled with FMCW radar; Right:
sampled with 5 GHz WiFi.

In Fig. 3, we present the examples of the reordered matrix
SR of the data collected by FMCW radar and 5 GHz WiFi
devices, where NP = 30 for a period of four seconds. It can
be seen from the figures that the dimensions of the two signals
are equivalent for the same sampling period. Furthermore, since
the background component has been eliminated and the samples
are reordered according to their strength, the overall sensitivity
distributions of the two different RF technologies are now similar
to each other. With the metric generalization and the generalized
feature mapping process, regardless of the physical meaning of
the raw sampled data, all RF data measurements are converted to
a generalized data tensor for human activity recognition. Thus,
the TARF system implements the same signal preprocessing
framework for different wireless technologies, which means the
system is also applicable to RF technologies other than the four
used in this paper.

C. Activity Recognition With DANN

1) Challenge: Diversity in Motion Feature Translation: Since
different RF technologies utilize different protocols and fre-
quency bands, the translation from received RF measurement
to the target activity is highly diverse. Although the same source
signal is generated by the same activity, it is transformed into
very different RF data by the different protocols, frequency
bands, and hardware. For example, with the RFID system, the
human activity directly changes the positions of the RFID tags
attached to the body. The change of tag position will introduce
significant variation in the propagation delay τ . However, with
the WiFi system, the human activity only affects part of the
propagation paths of the OFDM channel. Furthermore, the dif-
ferent channel frequencies used in RFID and WiFi also generate
large diversity in measured RF data. The considerable frequency
diversity (i.e., 900 MHz in RFID and 2.4 GHz and 5 GHz in
WiFi) causes large variation on the motion feature transforma-
tion in the raw sampled signals. Since such translation diversity
is complicated and nonlinear, we propose a two-step solution
to deal it i.e., (i) time-frequency (TF) domain transformation
and tensorization, and (ii) a domain adversarial neural network
model.

2) Proposed Solution Step 1: TF Domain Transformation

and Tensorization: Given that human activity can be seen as a
mixture of distinct periodic components [37], the characteristics
recorded in the frequency domain are more universal than that
in the time domain. To extract the generalized features from the
reordered matrixSR, we perform Short Time Fourier Transform
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Fig. 4. Examples of one slice of the generalized feature tensor for the
kicking activity. Left: sampled with FMCW radar; Right: sampled with
5 GHz WiFi.

(STFT) on the reordered matrix to convert each row to a Time-
Frequency (TF) domain matrix, and then construct a TF tensor
withNP slices. The TF domain data incorporates both frequency
domain properties and variations over time. Fig. 4 presents one
slice of the generalized TF tensor data, when the window size
used in STFT is set to 16. Although sampled by two different RF
technologies, i.e., FMCW radar and 5 GHz WiFi, the TF domain
data is well generalized with the proposed approach. Thus the
same human activity will produce similar features as shown in
the generalized feature tensor. Deep learning models can then
be applied to classify different activities using such generalized
TF tensor data.

3) Proposed Solution Step 2: Domain Adversarial Neural

Network: We propose to use a domain adversarial deep neural
network [38] to recognize human activities using the generalized
feature tensors. Compared with the traditional CNN models,
the domain adversarial neural network can further optimize the
feature extractor with the domain discriminator. The network
structure used in TARF is shown in Fig. 5, which is composed
of the CNN based feature extractor, the activity predictor, and
the domain discriminator.

a) Feature Extraction with CNN: The feature extractor used
in the deep neural network is based on CNN. As a classic neural
network structure, CNN can effectively extract features from all
the slices in the generalized tensor. As Fig. 5 shows, the CNN
feature extractor consists of two convolution layers, where all
the convolutional kernels used for feature extraction have a size
of 5× 5. Each convolution layer is connected to a 2× 2 max
pooling layer to downsample the extracted feature. The final
feature is formalized as a one-dimensional vector, which is used
for the following activity predictor and domain discriminator.
The generalized tensor used as the input is sampled every five
seconds and transformed by 64-dot STFT. We only use data in
the positive frequency domain, including 0 Hz, so the dimension
of each slice is 33× 50. The slice number is determined by Np,
which is equal to 30. We find the CNN-based feature extraction
for all data slices may generate too many training variables,
making the training time-consuming. Thus, we downsample the
data tensor from 30 slices to 5 slices to reduce the complexity
of network training. After the two feature extraction layers, the
final feature is reshaped into a vector of 5616 elements.

b) Motion Identifier with Domain Discriminator: After
extracting features using the CNN, the activity predictor
and domain discriminator are applied, which consist of two
fully connected layers. The final classification probability is
calculated by the Softmax function. The loss function of the

activity label predictor is calculated by the cross entropy be-
tween the Softmax output and the activity label as: Lα =
1
Nb

∑Nb

b=1

∑Na

k=1 ŷ
b
k log(y

b
k), where Nb is the number of training

data in a batch, Na is the number of classes of human activities,
ŷbk denotes the estimated probability for class k with data sample

b, and ybk is the class label which is either 0 or 1.Lα represents the
accuracy of prediction, and the deep neural network is trained
by minimizing Lα using the gradient descent algorithm.

In addition to the activity predictor, the domain adversar-
ial neural network also employs a domain discriminator to
combat the diversity between different domains, i.e., different
RF technologies. The loss function of the domain discrim-
inator, denoted by Lβ , is calculated similarly as Lα: Lβ =
1
Nb

∑Nb

b=1

∑Nd

q=1 ŷ
b
q log(y

b
q), where Nd indicates the number of

RF technologies for data sampling and ŷbq denotes the esti-
mation probability for the qth RF technology in the bth sam-
ple in the batch. Unlike the normal gradient descent learning
algorithm used for maximizing Lβ , the domain adversarial
neural network performs a reversal gradient update for minimiz-
ing Lβ , and the training variables of the network are updated

as [38]: X̂γ = Xγ − ξ( ∂Lα

∂Xγ
− Cr

∂Lβ

∂Xγ
), X̂α = Xα − ξ ∂Lα

∂Xα
,

X̂β = Xβ − ξCr
∂Lα

∂Xβ
, where Xγ denotes the training variables

in the feature extractor; Xα and Xβ represents the training
variables for the label predictor and the domain discriminator,
receptively; ξ denotes the learning rate; and Cr is the combating
rate. The training goal for the feature extractor is to maximize
Lβ and minimize Lα, hence the feature extractor will be trained
to ignore the domain-related features. Accordingly, the network
will learn the generalized human activity related features and
abandon the features associated with different RF technologies.

VI. IMPLEMENTATION AND EVALUATION

A. Experiments Setup

1) Hardware Platforms: To evaluate the proposed
technology-agnostic HAR system, we develop a prototype
using several RF technologies, including FMCW radar,
2.4 GHz WiFi, 5 GHz WiFi, and the UHF RFID system. The
FMCW radar employed in the system, as shown in the figure,
is an IWR1843 BOOST single-chip FMCW mmWave sensor
that operates at 76 ∼ 81 GHz. The WiFi devices are integrated
with a standard Intel 5300 network interface card (NIC), which
operates at either 2.4 GHz or 5 GHz. The RFID platform
consists of three S9028PCR polarized antennas, one Impinj
R420 reader, and ALN-9634 (HIGG-3) passive RFID tags. An
MSI laptop with an NVIDIA GTX 1080 GPU and an Intel Core
i7-6820HK CPU are used for signal processing, model training,
and inference.

2) Dataset Collection: RF data has been collected by sam-
pling activities performed by a subject in front of the RF sensing
platforms. The individual conducts seven types of different
activities, including standing still, walking, running, squatting,
body twisting, kicking, and hand waving. The data is sampled
when the subject continuously repeats the activities. During the
data acquisition using WiFi devices, the WiFi transmitter is set
to the injection mode while the receiver is set to the monitor
mode [20]. Two industrial, scientific and medical (ISM) bands,
2.472 GHz and 5.3 GHz, are used for the WiFi system, which
allows us to examine the impact of different bands with the
same WiFi protocol. RFID-based sampling is carried out with
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Fig. 5. Structure of the domain adversarial deep neural network used in the TARF system.

Fig. 6. The environment where human activity data is sampled.

12 passive RFID tags attached to the 12 joints on the subject’s
body, including neck, left shoulder, right shoulder, left elbow,
right elbow, left wrist, right wrist, pelvis, left hip, right hip,
left knee, and right knee. Three polarized antennae are used to
interrogate these tags to ensure that each RFID tag is covered
by at least one antenna. The FMCW radar employed in the
investigations is a well-developed commodity mmWave sensor
that produces range profiles for the scanned area. Each of these
four RF technologies can independently sample human activities
and the data is processed by the proposed TARF framework.

The detailed configuration of the experiment configuration
is illustrated in Fig. 6. As the figure shows, the experiments are
conducted in a lab. The subject performs different activities in the
2 m×4 m scanning area as shown in Fig. 6. In the experiments,
we emulate three different deploy scenarios, which includes an
LOS scenario, an NLOS scenario, and a dynamic environment.
The LOS scenario is to deploy the system in a clean scanning
area, while the NLOS scenario is to adding chairs between the
subject and the RF platforms. Although the LOS propagation is
not entirely eliminated in this case, the obstacle, i.e., the chairs,
effectively attenuates the strength of the LOS signal. Further,
the dynamic environment is introduced by having another sub-
ject moving around the tested subject when RF data is being
collected. We sample one-hour of data for each activity with
each RF technology. That is, with seven activities and four RF
technologies, we sampled 7 hours of data for each RF technology
and 28 hours of data in total. 90% of the sampled data is used
for model training, and the remaining 10% is used for testing.

B. Performance With Different RF Technologies

To analyze the experimental results, we define the number
of correctly classified data samples as the true positive number
(TP), and the number of mistakenly recognized results as the
false negative number (FN). The true positive rate (TPR) and

false negative rate (FNR) are calculated as: TPR = TP
TP+FN

and

FPR = FN
TP+FN

. The overall evaluation result is presented in the
confusion matrix format, which is composed of the TPRs and
FPRs for all the seven types of activities. The overall accuracy

η is calculated by: η =
∑

7

i=1
TPi∑

7

i=1
(TPi+FNi)

, where TPi and FNi

denotes the true positive number and false negative number
for target activity i, respectively. For convenience, we label
different activities with the following acronyms: standing still–
ST, walking–WA, running-RU, squatting–SQ, body twisting–BT,
kicking–KI, and hand waving–HW.

To demonstrate the performance of the TARF system, we
evaluated it using different combinations of the RF platforms,
ranging from using a single RF technology to using all four
RF technologies. The baseline for comparison is the traditional
CNN based classification network [39]. The CNN network is
composed of the same feature extractor and activity predictor
as in TARF, but without the domain discriminator or reversal
gradient update. Fig. 7 presents the confusion matrices obtained
with a single RF technology (i.e., the FMCW radar). The left
confusion matrix is the result obtained by the traditional CNN
based approach, and the right confusion matrix is generated by
the proposed technology-agnostic TARF system. The overall
accuracy is 90.86% for the baseline CNN method and 91.00%
for the proposed TARF approach. These results demonstrate
that both CNN and TARF can effectively distinguish the seven
types of human activity. This is because, when there is only one
data domain, the influence of the domain discriminator could
be ignored. Therefore, the performance of domain adversarial
deep neural network is equivalent to that of the traditional CNN
model.

We next examine the case when all the four RF sensing
technologies are used for data acquisition. Fig. 8 presents the
confusion matrices when all four technologies are utilized for
human activity recognition. The confusion matrix on the left
is obtained with the CNN baseline method, whose accuracy is
significantly reduced from 90.86% in Fig. 7 to 60.40% here. The
TPR of identifying body twisting and kicking is mostly affected,
which drop to 34.3% and 39.5%, respectively. The confusion
matrix shows that, with the data sampled with four different
RF technologies, the CNN method fails to effectively learn the
generalized features of different human activities.

The confusion matrix obtained with the proposed TARF ap-
proach is presented on the right side of Fig. 8. In contrast, TARF
still achieves an overall accuracy of identification of 81.11%,
although still affected by using the more diverse RF data col-
lected from four different platforms. Such robustness to diverse
RF data is achieved by the domain discriminator used in TARF.
The domain discriminator can prevent the network from learning
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Fig. 7. Confusion matrix of human activity recognition with a single RF technology (FMCW radar). Left: CNN baseline scheme; Right: TARF.

Fig. 8. Confusion matrix of human activity recognition obtained using TARF.

Fig. 9. T-NSE illustration of human activity recognition using four RF
technologies obtained with the CNN baseline scheme.

the domain-related features, and thus the technology-agnostic
learning approach is quite effective to adapt to different RF
technologies.

We also perform T-distributed Stochastic Neighbor Embed-
ding (T-SNE) on tested data for the CNN baseline scheme
and TARF. T-SNE is an effective approach for visualizing high
dimensional data introduced by the feature extractor. As shown
in Fig. 9 for the CNN baseline scheme, the data collected from
the same activity has not been classified effectively. Except for a

Fig. 10. T-NSE illustration of human activity recognition using four RF
technologies obtained with TARF.

few activities such as standing still and running, the features of
other human activities are not satisfactorily extracted due to the
interference from various RF technologies. As shown in Fig. 10
for TARF, the data from different human activities are better
grouped in the 2D map. Although there are still some overlap
between data groups of body-twisting, squatting, and kicking,
the RF data sampled from different activities are more effectively
grouped. The visualization results of T-SNE intuitively demon-
strate that the domain discriminator effectively optimizes the
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TABLE I
ACCURACY WITH DIFFERENT COMBINATION OF RF TECHNOLOGIES (1:
RFID ONLY; 2: RFID AND 2.4 GHZ WIFI; 3: RFID, 2.4 GHZ WIFI, AND

5 GHZ WIFI; 4: RFID, 2.4 GHZ AND 5 GHZ WIFI, AND FMCW RADAR)

TABLE II
ACCURACY IN THE LOS TESTING SCENARIO

TABLE III
ACCURACY IN THE NLOS TESTING SCENARIO

TABLE IV
ACCURACY IN THE DYNAMIC RF ENVIRONMENT TESTING SCENARIO

activity feature extractor by mitigating the interference from the
diverse RF technologies.

The superiority of the TARF system is further demonstrated in
Table I, which shows the variations in accuracy as the number of
RF technologies is increased from one to four. The figure shows
that both CNN based scheme have similar classification accuracy
when single RF technology is involved in the system, which are
90.86% and 91.00%, respectively. The figure also shows that
using more RF technologies introduces increased diversity in
the acquired data, which affects the classification performance.
However, compared with the CNN baseline, the proposed TARF
system is effective in combating such diversity and adapting to
different data domains.

C. Evaluation Under Different Scenarios

We also evaluate the proposed TARF system in different sce-
narios and compare it with the HAR system trained by RF data
from a single RF technology. In these experiments, we intend to
investigate system performance with three different deployment
scenarios, including an LOS testing scenario, an NLOS testing
scenario, and a dynamic RF environment testing scenario. The
NLOS environment is emulated by adding obstacles between the
subject and the RF platforms, and the dynamic RF environments
are emulated by introducing another subject moving around. We
trained the network with RF data from a single RF platform
to generate the corresponding technology-specific system base-
line, while the technology-agnostic schemes are trained with
data from all the four RF technologies. Table II illustrates the

activity recognition accuracy of different systems in the LOS
testing scenario. The figure shows that all technology-specific
schemes can achieve a satisfactory activity recognition accuracy
in the LOS testing scenario, which are all over 89.37%. The
performance of technology-generalized systems, such as the
CNN baseline and TARF, is worse than the technology-specific
system. However, as a generalized system, the accuracy of TARF
is still much higher than the CNN baseline. Although TARF
does not outperform the single RF technology scheme, it has
the unique advantage of being technology-agnostic. The lowest
recognition accuracy of TARF, i.e., 80.34%, is achieved when
tested with WiFi 5 G, and its highest accuracy of 82.73% is
achieved with RFID.

However, the LOS testing scenario may be too ideal for prac-
tical applications. So we also evaluate the system in the NLOS
scenario and the dynamic, noisy environment. Tables III and IV
present the accuracy results when the test data is sampled from
the NLOS and dynamic RF environments, respectively. From
the figures, we find that the impacts of the NLOS environment
on different RF technologies are different. Among the four RF
technologies, WiFi-based schemes, such as 2.4 GHz and 5 GHz,
can still achieve high accuracy, but the accuracy of FMCW and
RFID-based systems drops to 81.77% and 71.22%, respectively.
This is because the WiFi signal scatters better with a larger range,
so its NLOS component can still convey informative features of
human activities. In contrast, due to the limited range of FMCW
radar and RFID reader, the LOS component is dominant but
blocked. Especially for the RFID system, most tags cannot be
effectively interrogated as blocked by the obstacle.

When it comes to dynamic RF environments, the performance
of each single RF system becomes very different from before.
As Table IV shows, the accuracy of the two WiFi schemes is
significantly degraded by the interference caused by the moving
person. The accuracy of the WiFi-specific schemes decreases
to 75.05% and 71.44% for 2.4 GHz WiFi and 5 GHz WiFi,
respectively. However, the accuracy of the RFID system remains
relatively high at 89.38%. This is because the RFID tags attached
to the subject’s clothes can convey reliable human movement
features, which are more robust to the dynamic environment
than WiFi-based schemes.

The results in Tables III and IV verify that a single RF
technology does not adapt well to different kinds of testing envi-
ronments. In contrast, an effective technology-agnostic system
can leverage all the accessible RF technologies that are com-
plementary to each other. Table V presents the accuracy results
of the four single RF technology schemes, the CNN baseline,
and TARF. The table shows that, when all the accessible RF
technologies are used in the generalized system, TARF achieves
81.24% and 80.18% activity recognition accuracy for the NLOS
and the dynamic environments, which is comparable to that in
the ideal LOS testing scenario.

D. Impact of the Generalized Feature Tensor

We also conduct experiments to examine the benefit of uti-
lizing the extended STFT feature tensor, and to establish the
most appropriate tensor-related parameters. The accuracy per-
formance of human activity recognition is presented in Table VI,
where the blue bars are the results obtained by just utilizing
the generalized matrix SR as input to the deep neural network.
It can be seen that using the generalized matrix can achieve a
90.86% recognition accuracy in a single-technology situation,
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TABLE V
ACCURACY COMPARISON WITH DIFFERENT TESTING SCENARIOS

TABLE VI
PERFORMANCE COMPARISON OF THE GENERALIZED MATRIX-BASED APPROACH AND THE PROPOSED STFT TENSOR-BASED APPROACH

TABLE VII
ACTIVITY RECOGNITION ACCURACY WHEN DIFFERENT NUMBERS OF MEASUREMENTS ARE USED

TABLE VIII
ACTIVITY RECOGNITION ACCURACY WHEN DIFFERENT SLIDING WINDOW SIZES ARE USED

but the accuracy drops dramatically to 71.32% when all the
four technologies are used. The proposed STFT tensor-based
technique results are represented by the green bars, which de-
grades from 91.00% to 81.11% instead, and is more resilient
to the influence of various sensing technologies. The robustness
demonstrated by these results validates that the proposed STFT
feature tensor can successfully extract the general characteristics
of human behavior from diverse RF data collected by different
RF technologies.

We also conduct experiments to explore appropriate parame-
ter setting for the proposed TARF system. Tables VII and VIII
show the impacts of the measurement numberNP and size of the
sliding window, respectively. As Table VII shows, the accuracy
increases when more measurements are used for feature extrac-
tion. In the single-technology scenario, the accuracy is over 90%
when NP ≥ 25, and the highest accuracy 91.62% is achieved
when NP = 30. Similarly, In the four-technology scenario, the
highest accuracy is achieved when 30 measurements are used
for tensor generation. Table VIII shows the accuracy when
different sliding window sizes are employed for STFT. The
figure shows that in both scenarios, high accuracy is achieved
when the sliding windows is 6 seconds. However, we notice
that when the window size is 5 seconds, the accuracy in the
two scenarios are 91.00% and 81.11%, respectively, which is
sufficiently high for human activity recognition. To reduce the
training complexity, we choose the smallest sliding window size,
which still achieves an acceptable system accuracy for STFT.
As a result, we set NP to 30 and the window size to 5 seconds.
Although the STFT tensor requires 5 seconds of RF data, the
sliding window structure allows the system to perform activity
recognition for each newly sampled RF data. Furthermore, since

the classification of the trained DANN is executed very fast,
TARF is suitable for realtime tracking of human activities.

VII. CONCLUSION

In this paper, we proposed a generalized approach to human
activity recognition, termed TARF, to mitigate the impact of
technology-agnostic data acquisition. A novel signal prepro-
cessing solution was proposed to combat the diversity caused
by different RF sensing platforms. The generalized tensor con-
struction method was proposed to break the barriers of RF
data collected using different RF technologies and extract the
generalized features related to human activities. We then utilize
a domain adversarial neural network to address the diversity
issue of motion feature translation in different RF platforms. The
experiments results demonstrate that TARF can be effectively
implemented with various RF devices so that different RF tech-
nologies can complement each other. The technology-agnostic
scheme can achieve robust HAR performance in different sce-
narios by incorporating all accessible RF technologies.
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