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Abstract—With the growing demand for location-based
services, fingerprint has become a hot topic in the area of Internet
of Things (IoT). However, the performance of fingerprinting-
based indoor localization systems is usually affected by the
quality and granularity of fingerprints. In this article, we present
MapLoc, a long short-term memory (LSTM)-based indoor local-
ization system that takes advantage of the continuous indoor
uncertainty maps created using both earth magnetic field read-
ings and WiFi received signal strengths (RSSs). A deep Gaussian
process (DGP) model is trained to create indoor radio maps
with confidence intervals, which are referred as uncertainty
maps. Utilizing the uncertainty maps, an LSTM-based location
prediction model is pretrained with artificial trajectory data sam-
pled from the uncertainty maps, and then fine-tuned with the
signal measurements collected in the field. In the training pro-
cess, auxiliary outputs are implemented to overcome overfitting
and improve the robustness of the system. Our extensive experi-
ments demonstrate the outstanding performance of the proposed
MapLoc system.

Index Terms—Fingerprinting, deep Gaussian process (DGP),
indoor localization, long short-term memory (LSTM), radio map
construction.

I. INTRODUCTION

ITH the rapid development of the Internet of Things
W (IoT), location-based service (LBS) has drawn increas-
ing attention from various fields, such as robotics, retailing,
manufacturing, and smart buildings. Instead of using specifi-
cally designed sensors for location estimation, radio-frequency
(RF) signals, e.g., WiFi, have been a popular choice for indoor
localization systems due to its wide deployment in indoor
spaces. Fingerprinting is a popular indoor localization method,
which generally consists of two stages: 1) offline fingerprint
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collection and 2) online location estimation. In the offline
stage, fingerprints in the form of, e.g., WiFi received signal
strength (RSS), are collected in the service area and labeled
with the corresponding coordinates. Then, in the online stage,
the unknown location of a mobile device will be estimated
by matching the newly collected measurements with stored
fingerprints. The performance of fingerprinting is thus largely
affected by both the fingerprints and the matching method.
Many prior works adopted various techniques in wireless com-
munications, signal processing, and machine learning through
these two aspects.

Various observations of RF signals have been utilized as fin-
gerprints. For example, RSS was first used in [1]. This work
demonstrated that the signal strength information provides a
means of inferring user location. K-nearest neighbors (KNNs)
was leveraged in this article to assist location prediction.
Intuitively, RSS is negatively related to the distance between
the transmitter and receiver. By using an empirical signal
propagation model, the unknown location could be inferred
roughly by triangulation. Even though RSS is resilient to slight
environmental changes, it could not achieve fine-grained local-
ization, especially when the number of APs is limited. For
environments with rich AP resources, AP selection emerged to
filter out the less useful RSS readings for boosted localization
accuracy. Jia et al. [2] proposed a heuristic AP selection algo-
rithm based on Cramer—Rao lower bound (CRLB) to assist in
localization. MAPS [3] relied on K-means and decision trees
for selecting available APs. Shi et al. [4] leveraged statisti-
cal features from RSS measurements to filter out valid APs.
However, AP selection is still an open problem. In this article,
the proposed location prediction model is capable of selecting
appropriate APs intelligently with deep networks for improved
localization. In addition, channel state information (CSI), as a
fine-grained observation of the orthogonal frequency-division
multiplexing (OFDM) physical layer (PHY), has been adopted
as fingerprints in the past decade. It depicts how a signal
propagates from the transmitter to the receiver through each
subcarrier. Due to the nature of CSI, it is more sensitive
than RSS to distance variations, and is also susceptible to the
multipath effect and dynamic environments. Thus, various sig-
nal processing techniques have been proposed for eliminating
the offsets introduced by the environment and hardware to
enhance the quality of CSI fingerprints [5]. The extra cost of
signal processing may impede the prevalence of CSI-based
localization systems in mobile devices with limited hardware
resources. Meanwhile, with the popularity of smart devices,
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increasing types of signals, such as light and earth magnetic
field intensity, have been introduced as fingerprints [6]. It has
been shown that such multimodal fingerprints are complemen-
tary to each other and can help to make the system more
robust.

In addition to the quality, the density of fingerprints is
also a key factor that affects the accuracy of fingerprinting.
To achieve high location accuracy, a site survey is needed
to collection fingerprints at densely marked locations, which
is usually time-consuming and laborious. Furthermore, such
dense fingerprints are costly to update when the service envi-
ronment is changed (i.e., change of furniture placement). As
a result, there is a tradeoff between the location estimation
accuracy and system deployment cost, which needs to be care-
fully balanced when designing a fingerprinting system. In this
research, we use deep Gaussian process (DGP) to generate
a precise uncertainty map in order to improve localization
with a limited number of signal observations. The generated
data on the map indicates the dependability of signals from
distinct APs, which aids in training the location prediction
model. Another crucial factor to the success of fingerprinting
is an effective and efficient location estimation (i.e., matching)
method. In recent indoor localization systems, machine learn-
ing has been widely used as classifiers to estimate unknown
locations in the online stage, such as KNNs, support vector
machines (SVMs), and random forest [1], [7], [8]. Recently,
deep learning models, have been adopted for effective multi-
class classification. DeepFi [9] extracted features from CSI by
using deep auto-encoders. CiFi [10] and ConFi [11] generated
CSI images for image classification with the deep convolu-
tional neural network. ResLoc [12] advanced the localization
accuracy by modifying the architecture of the deep network.
However, such methods are still focused on solving the tra-
ditional fingerprint matching problem, which partitions the
continuous service area into a discrete grid and is treated as
a multiclass classification problem. This approach introduces
a built-in error, even though the error can be mitigated by
probabilistic methods [9], [13].

In this article, we propose MapLoc, an indoor fingerprint-
ing system that utilizes DGP to regress uncertainty maps and
incorporates a long short-term memory (LSTM)-based method
for location estimation. This work is focused on three aspects
of improving location estimation: fingerprint quality, finger-
print quantity, and the built-in error of existing fingerprinting
methods. From the perspective of fingerprint quality, both WiFi
RSS and earth magnetic field intensity are utilized as finger-
prints in MapLoc. Since the magnetic sensors are available
in many smart devices, the magnetic field intensity measure-
ments are readily available. Moreover, the uncertainty maps
are leveraged to generate synthesized data that are indicative
of the signal reliability. To enhance location estimation with
limited number of fingerprints, MapLoc utilizes the uncer-
tainty maps to synthesize sequences of trajectories and RSSI
samples, which are used in auxiliary learning to pretrain the
location prediction model.

In recent years, LSTM has been applied to a wide range
of tasks, such as natural language processing, speech recog-
nition, and time series forecasting, because it is able to
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effectively handle sequential data that has long-term depen-
dencies. Also, it achieves great performance in handling
variable-length sequences. Because of these features, LSTM
is well-suited for tasks such as location prediction. By imple-
menting a stacked LSTM network as a backend, we design
a location prediction model for regressing the signal maps.
And the estimated location will be inferred directly by leverag-
ing the historical signal and location information, which avoids
the built-in error when the localization problem is treated
as a multiclass classification problem in existing fingerprint
methods.

More specifically, a DGP is first implemented for uncer-
tainty estimation in the service area. Then, the artificial signal
measurements are generated by sampling the distribution
described with uncertainties. In addition, geometry constraints
and user movement patterns are considered in trajectory gener-
ation. The generated signal measurements are used to compose
signal sequences that supervise the pretraining of the location
prediction model. To better regress the signal strength, an aux-
iliary loss is adopted in the training. Both location prediction
and fingerprint estimation are used to calculate the loss for
weight updating. Finally, the pretrained model is fine-tuned
with real signal sequence collected in the field. Fine-tuning
forces the location prediction model to converge to the real
signal surface, thus eliminating the cumulative error of the
DGP model. In the online stage, the location of the target
mobile device is readily predicted by the location prediction
model using its newly measured signals and past trajectory in
a small sliding window.

The main contributions of this article are summarized as
follows.

1) An innovative localization framework is proposed by
leveraging the uncertainty estimation capability of DGP.
Continuous uncertainty maps are created by DGP using
fingerprints measured at gridpoint locations. The finger-
prints are then augmented by sampling the distribution
described by the uncertainty maps. The generated sig-
nal measurements reflect their own stability, allowing
deep learning models to learn the reliability of sig-
nals and select the effective measurements for location
estimation.

2) By introducing geometric constraints of the service area
and user movement trajectories, the continuous nature of
human mobility and the historical locations of the tar-
get device within a small window are taken into account.
Furthermore, fingerprinting is no longer treated as a clas-
sification problem here. Rather, the location prediction
model readily produces the estimated location in the
manner of regression, thus mitigating the built-in error
of the traditional approach.

3) We leverage auxiliary learning in training the location
prediction model. By introducing the signal measure-
ment loss as one of the components of the auxiliary
loss in supervise training, the LSTM-based location
prediction model will be forced to learn the inher-
ent relationship in the sequences of measurements.
Compared with the traditional training approach that
only uses isolated location as labels, signal sequences

Authorized licensed use limited to: Auburn University. Downloaded on November 05,2023 at 06:34:23 UTC from IEEE Xplore. Restrictions apply.



13476

include much more features to guide and accelerate the
training process.

4) Multimodal maps, created using WiFi RSS and earth
magnetic field strengths, are utilized in the MapLoc
system. Such measurements are widely available and
do not increase the cost and affect the compatibility of
the system. It is easy to extend the proposed framework
to include more types of measurements, such as light
intensity, for future improved performance.

5) We verified the performance of the proposed MapLoc
system with extensive experiments in two representa-
tive indoor environments. The results demonstrate that
MapLoc advances the accuracy of location estimation by
taking advantage of the uncertainty estimation provided
by DGP and the bimodal fingerprints.

In the remainder of this article, we present an overview of
related work in Section II. The preliminaries and motivations
are provided in Section III. Section IV presents the system
design. In Section V, we evaluate our prototype system, and
in Section VI, we wrap up this article.

II. RELATED WORK

With the rise of the IoT, indoor LBSs have drawn a lot
of attention from both academia and industry, due to their
high social and economic value. Unlike outdoor localization
systems, such as the global positioning system (GPS), which
rely on the line-of-sight (LOS) reception of satellite signals,
the performance of indoor localization is hampered by scat-
tered and reflected signals due to the clutter environment.
Indoor localization is still an open problem without a universal
solution, despite a variety of techniques have been proposed
in the literature.

A. Fingerprinting Approaches

Because of their adaptability and adequate accuracy, finger-
printing methods are commonly used in localization systems.
The features derived from the observations are adopted for
pattern matching in fingerprinting. RADAR [1] was one of
the first attempts to use RF signals, where RSS was used as
fingerprints. Aside from RSS, various types of observations
were leveraged in prior works as well. CSI is a fine-grained
observation from the PHY layer, which includes the amplitude
and phase of each subcarrier of the OFDM PHY. FILA [14]
demonstrated that CSI helps to improve localization accuracy
and reduce latency. The quality of fingerprints, which can be
viewed as a discrete radio map, plays a critical role in such
systems. A basic and effective way to improve the quality
of the radio map is to increase the number of fingerprints.
However, collecting fingerprints is usually time-consuming
and laborious, and in some cases, impossible. To minimize
such effort, prior works [15], [16], [17] utilized unmanned
aerial vehicles (UAVs) to replace manual labor. DeepMap [13]
constructed a radio map with DGP using only a limited num-
ber of fingerprints. WiGAN [18] generated fingerprints for an
unknown area with Gaussian process regression conditioned
least-squares generative adversarial networks (GPR-GANs).
Wu et al. [19] and Huang et al. [20] investigated the radio
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map adaptation and update problem to avoid the cumber-
some recollection of fingerprints in dynamic environments.
On the other hand, the quality of fingerprints keeps improv-
ing with the advance of technology, hence the evolution of
radio maps. Gu et al. [21] eliminated multipath interference
in WiFi signals with the sparsity rank singular value decompo-
sition (SRSVD) method. Luo and Fu [22] extracted nonlinear
features from RSS signals by implementing kernel principal
component analysis (KPCA). Furthermore, deep learning tech-
niques have achieved an exceptional performance in feature
extraction as well. To extract nonlinear features from obser-
vations, deep autoencoders were incorporated in [5], [9], [23],
and [24], while [6], [25], [26] leveraged LSTM and its vari-
ants to evaluate the correlation between received RF signals
for optimizing the fingerprints. In [10], [11], [12], and [27],
CNN was used to extract fingerprints from multidimensional
signal arrays for improved localization accuracy.

B. Geometry-Based Approaches

In addition to fingerprinting methods, geometric methods,
such as multilateration and triangulation, are widely used in
indoor localization systems by exploiting the measurements
for fine-grained information. Among various measurements,
Angle of Arrival (AoA) is commonly employed in radar and
acoustics systems. ArrayTrack [28] proposed a multipath sup-
pression algorithm for eliminating the reflection paths between
transmitter and receiver. SparseTag [29] proposed to use a spa-
tial smoothing-based method, which processed a sparse RFID
tag array and decreased the angle estimation error to 1.831°.
Time-of-Arrival (ToA)-based systems estimate the transmitter—
receiver distance by measuring the traveling time of the signal.
However, such systems require tightly synchronized clocks at
the transmitter and receiver. Kang et al. [30] mitigated the
time synchronization error and the NLOS error by introducing
an iterative ToA (iToA) algorithm incorporating a multivari-
ate linear model. Also, Yuan et al. [31] proposed a unified
factor graph-based framework for ToA-based localization in
wireless sensor networks. The framework provided a unified
treatment of the inaccurate positions of transmitters and the
asynchronous network. Even though the localization accuracy
keeps increasing with these approaches, their performance is
still insufficient for practical indoor services because of the
required LOS signals and multipath-free environments.

C. Other Approaches

In addition to RF signal-based techniques, vision-based
techniques are also popular with the emerging of robotics,
autonomous vehicles, and augmented reality (AR) [32]. The
localization algorithms rely on the inputs from sensors, such
as RGB-D cameras and infrared cameras, to extract location
information. The vision-based techniques usually achieve cen-
timeter level accuracy in real time, outperforming most of RF
signal-based techniques. For example, MonoSLAM [33] is the
first study to apply the simultaneous localization and map-
ping (SLAM) approach with a single uncontrolled camera,
with centimeter level accuracy at 30-Hz real-time performance.
AprilTag [34] created a visual fiducial system that enables

Authorized licensed use limited to: Auburn University. Downloaded on November 05,2023 at 06:34:23 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: MapLoc: LSTM-BASED LOCATION ESTIMATION USING UNCERTAINTY RADIO MAPS

full six degrees-of-freedom (6DOF) localization with a sin-
gle image by using a 2-D barcode tag as landmark. However,
the computational cost of vision-based approaches constraints
their deployment on IoT devices with limited computation
power and short battery life [35]. Moreover, the visibility,
occlusion, and privacy related issues further constrain the
usage of vision-based approaches.

Indoor localization also takes advantage of the develop-
ment of visible light communications (VLCs). By analyzing
the modulated light signal transmitted in the form of visible
LED lights, many VLC signal-based localization techniques
have been proposed. Because the diffused components emerg-
ing from multipath scattering are substantially weaker than
the LOS component, the VLC-based localization system has a
superior accuracy over RF signal-based system, which usually
suffer from strong multipath interference [36], [37], [38].

Acoustic signals have also been employed in localiza-
tion systems. It provides precise localization at a low cost
due to readily accessible equipment such as speakers and
microphones, as well as excellent time-domain resolutions.
For instance, EchoTrack [39] tracked hand trajectory with
a built-in speaker array and microphone on smart phones
by leveraging two-channel chirps to remove the multipath
noise. Location estimation is enhanced by using the Doppler
shift compensation and roughness penalty smoothing method.
Vernier [40] achieved accurate motion tracking accuracy of
less than 4 mm, by proposing a differentiated window-
based phase change calculation (DW-PC) to minimize the
computation overhead for real-time tracking.

III. PRELIMINARIES AND MOTIVATIONS

Gaussian process has been successfully applied for solv-
ing regression and probabilistic classification problems. A
Gaussian process is described with its covariance matrix and
mean function. Since the prediction is also Gaussian, confi-
dence intervals can be estimated to depict the uncertainty of
data distributed over a continuous space. Thus, a normalized
signal strength map for a service area can be conveniently
reconstructed with measured signal strengths and the corre-
sponding coordinates by a Gaussian process regression model,
which is given by

rc) =f(c) + € (D

where r(c) and f(c) represent the RSS and ideal signal strength
for location ¢, respectively, and € is the observation noise,
which follows an independent identically distributed (i.i.d.)
Gaussian distribution with zero mean and variance 6.

It is intuitive to assume that the RSSs 7; and 7; at coordinates
¢; and ¢j, respectively, also follow a joint Gaussian distribution
with covariance k(c;, ¢j), which is usually described using a
kernel function as

1
k(ei c)) = ¢° eXp(—z—lz|Ci - C./|2)

where ¢ and [/ are the hyperparameters for depicting the sig-
nal variance and the smoothness of the kernel function, both
of which can be estimated by using a maximum-likelihood

2
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Fig. 1. DGP model for signal map construction.

approximation method. Then, the joint distribution of the esti-
mated signal strength f; of location ¢, and the measured signal
strengths r can be depicted as follows:

()0 <)

The signal strength f; can be inferred from the measured signal
strength r by

3

Pr(filcs, ¢, 1) ZN(f*“L*v 2y) @
—1
we=KI[(K+621) r )
-1
2, =Ky, — KT (K + 931) K, ©6)

where ¢ € RV*2 ¢ e RN, K, = [k(cs, ¢x)], N is the number
of positions where the measurements were taken, K is the
covariance matrix of ¢ with dimension N x N, and K, is an
N x 1 matrix of covariances between ¢ and c,.

Inspired by the Gaussian process-based works, the DGP
is leveraged in this article to enhance the precision of the
constructed map by recovering the nonstationary components
of signal measurements. In our prior work [13], a two-layer
DGP model was leveraged to extract nonlinear characteristics
from RSS samples and construct radio maps. Compared with
Gaussian process, DGP is able to regress complex input data
by taking advantage of the fusion of kernels. Fig. 1 is a graph-
ical representation of a DGP, which consists of three layers of
nodes, i.e., the parent nodes C, the leaf nodes R, and the latent
nodes H, which include two sublayers H; and H; [41]. For a
2-D map generation problem, C is the set of training coordi-
nates with dimension N x 2, R denotes a signal measurement
matrix of N x S, and H € RV*Lsw_ Here, N, S and Ly, rep-
resent the number of measured coordinates, the number of
sensors, and the number of the intermediate latent dimensions
in the sublayers, respectively. Therefore, the generative process
is given by

By = + el 1=1,2,..., L1, ¢, € R? ©)
h =f *(h,ﬁl)+e,Z*, I=1,2,...,Ly, hl, e Rl (8)

e =fR(2) 4k s=1.2, 8 B eRE @)

where f# ~ GP(0, K (C, C)),f#" ~ GP(0, k" (H,, H})), and
fR ~ GP(0, kR(Hz, H»)) are Gaussian processes, which con-

nect the latent nodes Hy, H,, parent nodes C, and leaf nodes
R, respectively. The automatic relevance determination (ARD)
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Fig. 2. RSS uncertainty map constructed by DGP.

covariance functions for the Gaussian Processes is defined as

L
karp (ci, ¢j) = GXRD XD (—% Z wi(ci — Cj,l)2> (10)
=1
where w; is the weight for each latent dimension and ¢arp is
a hyperparameter. For different inputs, the Gaussian processes,
a1, fH* and fR, only depend on the covariance function
karp. To find the optimal hyperparameters, Bayesian train-
ing is leveraged to maximize the marginal distribution of the
observed signal measurement R, which is given by

max logp(R) = log/ p(RIH)p(H|C)p(C). (1)
The outstanding performance of DGP for generating a
detail-rich signal map has been demonstrated in [13]. With the
deep and heterogeneous nonlinear structure, the DGP handles
the nonstationary components in complex signal measurements
and extracts the detailed information about the distribution of
real WiFi RSS measurements in indoor environments.
Despite the fact that the detailed maps created by DGP
improves localization accuracy, the uncertainty information,
which could also be retrieved using DGP, was largely ignored
in our prior work [13]. Indeed, the uncertainty information
just happens to be a convenient tool for evaluating the relia-
bility of sampled signals. Fig. 2 illustrates a uncertainty radio
map constructed by DGP using the measured RSS data from
a specific AP in a public data set [42]. The map includes
three signal layers: 1) a green layer representing the upper
confidence bound of the map; 2) a blue layer of mean values;
and 3) a peach layer denoting the lower confidence bound of
the map. A translucent layer is overlaid in the map to illus-
trate the layout of the floorplan. The confidence bound layers
depict the 95% confidence interval of the signal distribution.
Although the AP location is unavailable and not needed in this
work, based on the signal-to-distance relationship [43], the AP
can be located near the top-left corner of Fig. 2 where the sig-
nals are the strongest and most stable. When the distance is
increased, the signal strength decreases and fluctuates more
considerably. For the locations that are beyond the coverage
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of the AP, the signal strength drops to —100 dBm and settles
there. The RSS data from this AP, obviously, would be more
constructive in locating target devices in the top-left region,
while this AP would have a negative impact on locating targets
in the map’s central area because the RSS samples in the area
would be highly random with large fluctuations. Such a pattern
of uncertainty indicates that the signal stability varies depend-
ing on the location. And different patterns of uncertainty map
would also be obtained for different APs. Thus, in MapLoc,
we can sample the Gaussian distribution that is defined by
the mean and confidence intervals in the uncertainty map to
generate artificial measurements that depict the stability of the
signal. The following LSTM-based location prediction model
will exploit such fluctuations to distinguish the optimal signal
measurements for location estimation. Moreover, Fig. 3 plots
the uncertainty map generated by DGP using earth magnetic
field observations. It follows a similar trend as in Fig. 2, in
which the signal stability changes at different locations, and
is complementary to the RSS uncertainty map. Both RSS and
magnetic field data will be used in this effort to improve the
accuracy of localization.

On the other hand, the proposed MapLoc system also takes
into account the trajectory of the target device in a sliding
time window. The trajectories can be reasonably synthesized
by leveraging the movement pattern of target devices and
geometry constraints (e.g., the shape of the room or corri-
dor). Using the uncertainty maps, artificial signal sequences
can be generated along such movement trajectories. The arti-
ficial signal sequences are used to pretrain the LSTM-based
location prediction model, which is then fine-tuned with real
collected signals in the field. The pretraining process guides
the location prediction model by learning the signal reliability,
while fine-tuning mitigates the cumulative error introduced by
imprecise uncertainty maps.

IV. SYSTEM OVERVIEW

Fig. 4 presents the system architecture of the MapLoc
system, where the green and blue blocks represent the com-
ponents in the offline stage. More specifically, the green
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Fig. 4. MapLoc system architecture.

blocks are related to collecting signal measurements and
their corresponding coordinates, whereas the blue blocks
are associated to the synthesized signal measurements and
their coordinates. The location prediction model is unique
in that it is pretrained with the synthesized RF data and
then fine-tuned with the collected RF data, which is why
it is colored in gradients (from blue to green). The yel-
low blocks in Fig. 4 represent the components in the online
stage.

Similar to traditional fingerprinting systems, MapLoc also
consists of two stages: an offline stage for data collection and
model training, and an online stage for location estimation.
In the offline stage, WiFi RSS measurements as well as mag-
netic field readings are collected with the built-in sensors in
the mobile device. The measurements comprising the collected
bimodal sequences, which are tagged with the corresponding
coordinates where the data was measured. For each location,
we collect RSS measurements from as many APs as possible.
Since the set of visible APs usually varies from location to
location, we force the RSS measurements from those inacces-
sible (i.e., out of coverage) APs to be —100 dBm to ensure
consistency in measured data.

Localization with MapLoc includes two parts as well. The
collected bimodal signal measurements are first leveraged for
training the DGP model to generate their uncertainty maps.
The uncertainty map includes the mean value and the upper
and lower bounds of the 95% confidence interval, as illus-
trated in Fig. 2. The uncertainty map will then be leveraged
to synthesize artificial bimodel signal sequences for enhancing
the training of the location prediction model, which is intro-
duced to consider the trajectory (or, historical) information
of the target device in location estimation. The model is
first pretrained with the artificial signal sequences synthe-
sized by sampling the uncertainty maps, and then fine-tuned
with the collected bimodal sequences to avoid the cumu-
lative errors introduced by the DGP model. In the online
stage, the DGP model will not participate in location esti-
mation. The estimated location will be obtained by combining
the previous trajectory information with a time window W
with the signal measurements from the current unknown
location.
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Algorithm 1 Pseudocode for Measuring the Quality of the
Uncertainty Map

Input: the measured verification sample r]]-‘ and the corre-
sponding coordinate cX, the mean layer of the uncertainty
map m; for the jth signal, the number of gridpoints G in
m;j, the number of available signals §, and the number of
verification samples K;

Output: the map quality Q;

: /i represents the index of gridpoints in map m;

: //j denotes the index of signals

: /lk denotes the index of verification samples

: /1l denotes the coordinate of the gridpoints in map m;

for k=1:K do

forj=1:Sdo
fori=1:Gdo
/lcompute the likelihood function p(rjl.‘ lci)
pirfle) = exp(= sz |k = ):

10: end for

11: /lcompute the posterior probability p(li|rj’.‘)

p(flei)

Y plea)’

S o e

0

12: plelr) =

13:  end for

14:  /luse MAP estimation to infer location for the verifica-
tion samples

15: ak = argmax{cl,cz,..A,cG}(Hlep(civj]'());

16: end for

17: //compute map quality Q

18: Q= !

exp(ok Sb_ (llck—2k1))°
19: return Q;

A. Offline Training

Offline training of the MapLoc system includes pretrain-
ing and fine-tuning. The DGP model is first trained using
the bimodal signals that have been collected. The location
prediction model will first be trained using the artificial
bimodal sequences generated by the DGP model, and then
fine-tuned using the signal sequences composed of collected
signal measurements from the field to ensure that it converges
to the real-world situation.

1) Pretraining: First, the collected signal measurements
are used to train the DGP model. Because the DGP model
focuses primarily on the signal distribution, the temporal
information in the signal sequence is neglected during the
training. To improve the structure of the DGP model and
optimize the related hyperparameters, a simple approach is
employed to assess the quality of the uncertainty map gen-
erated by the DGP model. As shown in Algorithm 1, the
constructed uncertainty map M is a G x S x 3 matrix, which
includes an upper confidence layer, a mean layer, and a lower
confidence layer. Here, G denotes the number of gridpoints in
the map. It has to be 100000 to reach a resolution of 0.01 m for
an area of 10 m”. S represents the number of available signals.
For example, we have S = 10 if the WiFi RSS measure-
ments are collected from seven APs, since each magnetic field
reading is a vector with three elements (mag,, mag,, mag,),
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Algorithm 2 Pseudocode for Artificial Trajectory Generation

Input: the length of the artificial trajectory N; the layout of
the indoor environment O; the stride length d;
Output: the artificial trajectory C;
1: //generate the coordinates ¢y randomly in the environment
O and initialize the trajectory C
2: C = {randomPosition(0)};
3: while C.length < N do
4: if C.length == 1 then

5 /ly is a random initial azimuth

6: //generate the coordinate c, with the distance d and
the azimuth y

7: /lco, and ¢, are the x-axis and y-axis coordinates of
co, respectively

8: ¢x = [co, + d * cos(y),co, + d *sin(y)],y ~
U(—180°, 180°); ’

9: else

10: /lupdate y based on the previous azimuth

11: Y=y + v v~ U(=40°,40°);

12: /lc_1 is the last coordinate in trajectory C

13: Cy = [co1, +d*cos(y), c_q, +d*sin(y)];

14:  end if A

15:  if ¢, in the environment O then

16: C.append(cy);

17:  end if

18: end while
19: return C;

describing the magnetic field intensity for the north, east, and
vertical directions, respectively. The mean layer m is con-
structed to evaluate the overall quality of the uncertainty map.
K verification samples are collected from each gridpoint in the
service area and labeled with the corresponding coordinates.
We calculate the likelihood function p(r]'-‘|ci) of the jth sig-
nal, which indicates the similarity between the kth verification
sample r]]-‘ and the signal measurement at ¢; in the uncertainty
map m’ with a Gaussian kernel, as presented in step 9. In
MapLoc, the o2 and A are set to 0.35 and 2, respectively. Thus,
the posterior probability p(ci|rj]?) is obtained conveniently by
assuming the distribution over the G gridpoints is uniform (see
step 12). The coordinate estimation of the kth sample is given
by choosing the gridpoint with the highest posterior proba-
bility. Eventually, the quality of the uncertainty map, Q, is
evaluated based on the errors of the coordinate estimation in
step 18.

Based on the well-trained DGP model, a movement model
is introduced to produce trajectories for generating artificial
signal sequences. As shown in Algorithm 2, the stride length
d is considered in the movement model and is restricted to
0.6 m. The azimuth y is determined by the previous azimuth
with a random offset between —40° and 40°. In step 13, the
coordinates in trajectory C are generated sequentially based
on the previous azimuth. And the layout of the indoor envi-
ronment is considered to eliminate the coordinates outside the
service area (see steps 15-17).
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Fig. 5. How to synthesize labeled signal sequences for pretraining the LSTM-
based location prediction model.

As shown in Fig. 5, the well-trained DGP model is uti-
lized to generate the artificial signal ry for coordinate cy in
trajectory C. According to trajectory C, the artificial signal
sequences are assembled using the signal measurements gener-
ated by sampling the distribution A (uy, 01\2,) that is described
by the mean wy and variance oy in the uncertainty map.
It is noteworthy that the distribution is sampled M times to
ensure that the generated signal measurements are able to
represent the stability of signals. Furthermore, we employ a
sliding window with a length of W for adjusting the size of
the artificial sequences for training the LSTM-based location
prediction model. An artificial trajectory of length N will pro-
duce N—W+1 training sequences. For each training sequence,
the last signal measurement 77y, and the corresponding
coordinate c;yw—_; will be extracted as label for supervise
training.

The forward propagation of the location prediction model
is depicted in Fig. 6. The backbone of the location prediction
model is a stacked LSTM model, which is followed by a DNN
for signal estimation (termed DNNS) and a DNN for location
estimation (termed DNNL). To push the model to learn the
signal map made by the DGP model and estimate location
using the map, auxiliary loss is used in training. The signal
values 77} ;,_, in the label data are processed and concatenate
with the output of the LSTM network in the DNNL model
for predicting the unknown coordinate ¢. Then, the MSE loss
is calculated by comparing the label coordinate c;+w—1 and
the location prediction ¢ by the DNNL. In parallel, a signal
estimation 7 is given by the DNNS using the output of the
previous LSTM model as well. As a result, the loss function
of the location prediction model is given by

L= (- BMSE(y_,.7) + BMSE(ciyw-1.0) (12)
where f is a hyper parameter to adjust the influence of the

two types of losses, while 7 and ¢ are the predicted signal by
DNNS and the predicted coordinate by DNNL, respectively.
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Fig. 6. LSTM-based location prediction model in MapLoc.

2) Fine-Tuning: After pretraining, the location prediction
model will be fine-tuned with collected bimodal sequences
from the service area. The collected bimodal sequences, like
the artificial sequences, are reorganized to form shorter train-
ing sequences using a sliding window of size W. The last
bimodal measurement of each training sequence is also used
as the sequence’s label to complete the supervised training of
the model.

B. Online Testing

In the online stage, only the stacked LSTM network and
DNNL will participate in location estimation. The location
prediction model operates in a similar manner to autoregres-
sion models. The historical trajectory, including the received
signal measurements and the corresponding coordinates, is
fed into the stacked LSTM network. By combining the out-
put of the LSTM network with the freshly collected signals
from the current unknown location, the estimated location is
deduced readily with the well-trained DNNL model. Because
the localization problem is addressed as a regression problem
in MapLoc, the built-in error associated with the discrete fin-
gerprints can be avoided. Furthermore, since the estimated
location is computed directly by the location prediction model,
the cumbersome localization strategies used in prior work [13]
are not needed anymore in MapLoc, which further reduces the
computational cost, especially for mobile devices with limited
computation resources and power supplies.

V. EXPERIMENTAL STUDY
A. Experiment Configuration

To demonstrate the performance of the MapLoc system,
we evaluate it in two typical environments. First, we conduct
experiments on the fourth floor of Broun Hall in the Auburn
University Campus. In this scenario, we implement a proto-
type system using a Samsung Galaxy S7 Edge smartphone,
which is equipped with a dedicated application for collecting
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Fig. 7. Floorplan for the Broun Hall data set.

magnetic field intensity data and WiFi RSS data simultane-
ously. As depicted in Fig. 7, the experiment covers an area of
approximately 270 m?. The black dots in Fig. 7 represent 255
sample locations (i.e., gridpoints) for training the DGP and the
location prediction model. Except for some corner gridpoints,
the distance between two adjacent training locations is 90 cm.
80 testing locations are randomly selected in the service area,
which are not shown in Fig. 7. None of the testing locations
overlap with a training location in this scenario. Moreover,
RSS readings are collected from 224 APs, including all the
available 2.4-GHz APs and 5-GHz APs from various manu-
facturers. To make the data size consistent, the RSS values of
out-of-range APs are set to —100 dBm. The magnetic field
strength is obtained from the on-device sensor directly, which
is a vector including the magnetic field intensity for the north,
east, and vertical directions.

The performance of the MapLoc system is also evaluated
using a public data set [42]. Fig. 8 plots the detailed floor
plan where the public data set was collected. The data set cov-
ers a floor of 185.12 m?2, which includes three corridors, two
offices and a hall. The fingerprints are captured from 325 grid-
point locations, shown as black dots in Fig. 8. The distance
between two adjacent gridpoints is 60 cm. The data acqui-
sition campaign was performed using a smartphone, SONY
Xperia X2, and a smartwatch, LG W110G Watch R. We only
utilize the data collected by the smartphone in this experimen-
tal study. The RSS data are captured from 132 unique APs,
and the readings from an out-of-range AP are all set to —100
dBm. We only leverage 75 APs in the following experiments
because some AP signals are very weak across the entire ser-
vice area. Similar to the magnetic field intensity in the Broun
Hall scenario, the magnetic field readings of this scenario are
also vectors with three elements. Since the data acquisition
campaign is conducted in this environment with the identical
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Fig. 8. Floorplan where the public data set was collected.

setting twice, we train and then test the MapLoc system using
the data sets from different campaigns for a fair and realistic
evaluation.

Identical settings of the location prediction model are
deployed in both environments. Nine LSTMs are stacked one
above another to form a stacked LSTM as backbone of the
location prediction model. The number of features in the hid-
den state of LSTM is set to about 1.5 times of that of the input
features, e.g., the number of features in the hidden state will
be 150 if the number of available AP is 95. Each magnetic
field reading is a vector of size 3 x 1 and the corresponding
coordinates are in a 2-D space. The hidden state of the last
layer of the stacked LSTM is passed into the two DNNs for
location estimation and signal estimation, respectively. DNNL
is composed of four linear layers. The size of the input data
riw_ is first adjusted to 16 by a layer in DNNL, while the
size of the hidden state from the LSTM is squeezed to 32 by
another DNNL layer. By concatenating the outputs from the
two layers, the estimated location is obtained by the remaining
two layers in DNNL, where the output feature numbers of the
layers are 16 and 2, respectively. The structure of DNNS is
relatively simple. The hidden state from the LSTM is com-
pressed by three linear layers in DNNS sequentially, where
the output feature numbers of the layers are 256, 128, and the
same as that of the input data r}, ;,_,, respectively.

In both scenarios, the magnetic field intensity and WiFi RSS
readings are min-max normalized. Considering that pedestri-
ans usually do not make abrupt changes in their movements
indoors, the stride length d is set to 0.6 m, and the azimuth
offset y; is limited in the range between —40° and 40°. To
accelerate the training process, a server with an Nvidia RTX
3090 GPU is leveraged for real-time trajectory generation and
model training.

The following baselines are used in our comparison study.

1) DeepMap: This is the scheme proposed in our prior

work [13]. To regress the indoor radio map, a DGP
model with the exact same configuration as in MapLoc
is used. A Bayesian method is utilized to compare the
newly collected signal measurement with the gener-
ated maps. The location is estimated without using the
uncertainty maps.

2) LSTM: The same stacked LSTM network as in MapLoc

is used in this scheme. After the LSTM backbone,
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Fig. 9. CDF of localization errors on the Broun Hall data set.

DNNL processes the extracted features and directly
predicts location. The LSTM backbone and DNNL
are configured similarly as in MapLoc. This model is
trained with trajectory/RSS sequences sampled from the
fingerprints collected in the field

3) LSTM+DeepMap: The design of this scheme is identical
to that of the proposed MapLoc. The only difference is
that the model is trained using sampled trajectory/RSS
from the map created as in DeepMap [13], i.e., the blue
layer in Fig. 2, rather than the uncertainty maps.

B. Experimental Results and Analysis

1) Accuracy of Location Estimation: First, we evaluate the
localization performance on the Broun Hall data set. Fig. 9
illustrates the cumulative distribution functions (CDFs) of
localization errors for the proposed MapLoc system and the
three baseline schemes. According to Fig. 9, it is obvious that
MapLoc outperforms the other methods on the Broun Hall data
set. Despite the fact that both MapLoc and LSTM+DeepMap
obtained a performance where 50% of the errors are less
than 1 m, MapLoc has a distinct advantage that approx-
imately 75% of location estimation have errors less than
1.35 m, whereas only 59% of location estimation obtained
by LSTM+DeepMap accomplish the similar accuracy. This
demonstrates the improvement brought about by the sam-
ples from uncertainty maps. In addition, Fig. 9 reveals the
obvious deficiencies of LSTM and DeepMap in localization
accuracy. The maximum localization error, 6.41 m, is from
LSTM. The comparison demonstrates that the combination of
LSTM and DeepMap contributes to higher precision localiza-
tion. In MapLoc, the augmented training data produced by the
DGP model benefits the location prediction model that uses
LSTM as its backbone. By incorporating historical information
into location estimation via the LSTM model, the localiza-
tion accuracy of the DeepMap model is improved significantly
as well. Based on the collaboration of DeepMap and LSTM,
our proposed MapLoc successfully improves the location esti-
mation accuracy by taking into account the uncertainties of
different signals as well as historical information.
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Fig. 10. CDF of localization errors on the public data set.

We also conduct an experiment using the public data set to
investigate the performance of the proposed MapLoc system.
The CDF of localization errors on the public data set is dis-
played in Fig. 10. The results on the public data set are
similar to those with the Broun Hall data set. MapLoc and
LSTM+DeepMap keep the leading position in the compar-
ison. Even though 50% of location estimation errors are
lower than 1.1 m with both MapLoc and LSTM+DeepMap,
the overall performance of MapLoc is superior to that of
LSTM+DeepMap slightly. Because the artificial signal mea-
surements are sampled from the uncertainty maps, the dis-
tribution of the generated measurements describes the mea-
surement’s quality. As a result, the location prediction model
can learn the reliability of different types of signal measure-
ment, the sets of measurements from different APs and, thus,
improve the accuracy of location estimation. Moreover, LSTM
outperforms DeepMap in the public data set scenario, although
the maximum localization error, 14.26 m, is obtained with the
LSTM method.

The main results in Figs. 9 and 10 are summarized in
Fig. 11. The height of the bars represents mean error, whereas
the black line in each bar represents median error. The location
prediction model of MapLoc, denoted as LSTM in Fig. 11,
and DeepMap, each only contribute to limited accuracy in
location estimation. By combining these methods, the localiza-
tion accuracy is increased significantly. The mean and median
error on the public data set reach 1.342 and 1.145 m, respec-
tively, while the mean and median error on the Broun Hall data
set are 1.374 and 0.94 m, respectively. In MapLoc, the mean
and median error are further reduced by augmenting the train-
ing data set with the artificial data generated by sampling the
uncertainty maps. In the public data set scenario, the mean
and median errors decrease to 1.234 and 1.031 m, respec-
tively. The mean error on the Broun Hall data set reduces
from 1.374 to 1.211 m, whereas the median error reaches
0.9722 m.

To better examine the performance of different localiza-
tion methods, the localization times in the two scenarios are
also presented in Table 1. Because LSTM, LSTM+DeepMap,
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Fig. 11. Mean and median localization errors on the Broun Hall data set
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bar indicates the corresponding median error.

TABLE I
LOCALIZATION TIME

DeepMap LSTM LSTM+DeepMap  MapLoc
Public Dataset ~ 6.901s 0.001s 0.00119s 0.00124s
Broun Hall
Dataset 19.953s 0.00135s  0.001695s 0.001690s

and MapLoc rely on the location predication model to esti-
mate the location of newly received signals, their location
estimation times are much smaller than that of DeepMap.
LSTM+DeepMap and Maploc share the same location
prediction model in terms of system architecture. As a result,
their location estimation times are quite close. The only
distinction between these two approaches is their data gen-
eration method. Uncertainty information is not considered in
LSTM-+DeepMap method, but used in MapLoc for training
the position prediction model. Considering that such data gen-
eration is only implemented in the offline training stage, the
location error decreases without the cost of increasing local-
ization delay in the online stage. This is a critical reason why
we introduce uncertainty information to the location prediction
model. Furthermore, because the LSTM location prediction
model excludes the DNNS component, the localization delay
is slightly less than that of MapLoc and LSTM+DeepMap.
DeepMap requires that the freshly received signal measure-
ment be compared to each signal in the generated radio map.
Thus, the size of the indoor environment and the resolution
of the radio map determine the location estimation time of
DeepMap. It takes the longest delay to localize the mobile
device in both cases.

2) Impact of Signal Selection: Previous results show that
the Maploc system outperforms the systems that use LSTM
and DGP separately. By leveraging the samples sampled from
the uncertainty maps to measure the reliability of different
signal sources (e.g., APs), the MapLoc system also beats
the combination of LSTM and DGP. To investigate how the
reliability of signal measurements affects MapLoc’s location
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prediction and how the location prediction model contributes
to higher accuracy, we conduct experiments with both the
Broun Hall data set and the public data set.

First, a random trajectory is selected for each test data set.
The corresponding signal distribution at the label coordinates
is obtained with the DGP model in the MapLoc system. The
mean and variance of signal measurements from all the avail-
able sources, including magnetic field readings and WiFi RSSI,
are represented by red circles and bars in Figs. 12 and 13.
It is intuitive to suppose that a lower variance represents a
more trustworthy signal measurement, and signal measure-
ments with higher mean values are more likely to influence
the location prediction. To endow the MapLoc system with the
ability to intelligently choose signals, we sample the uncer-
tainty maps to generate artificial signal measurements. We
hope our location prediction model is able to learn how to
recognize effective measurements from invalid and fluctuating
signals. In the experiments, each time we double the mea-
surement from one source in the testing data, to examine the
impact of each signal source (and quality).

As previously stated, the signal measurements in the Broun
Hall data set contain 3 magnetic field components as well as
RSSI readings from 224 WiFi APs. The experiment is repeated
227 times with the same selected trajectory. In each repetition,
we doubled a signal measurement while keeping all the other
measurements the same. The blue line in Fig. 12 depicts the
variations in location errors caused by the doubled signal mea-
surements. By comparing with the signal quality denoted by
the red circles and bars, it is clear that the location prediction
model selects the optimal signal measurements, and the loca-
tion estimation is resilient to most of the noisy signal sources.
As shown in Fig. 12, the first increment of error happens at
signal-2, which is the magnetic field reading’s y-component.
The magnetic measurement is much higher and more stable
than the nearby signals. The next large fluctuation of error
occurs between signal-13 and signal-18. Beyond this range,
the mean value of the signals becomes small, and the location

Explaining the importance of different signal measurements to the location prediction made by MapLoc system with the public data set.

estimation of the MapLoc system is not much influenced by
these weak signals. The fluctuation in distance errors increase
as the signals rise between signal-55 and signal-60, while the
increase in error disappears between signal-61 and signal-117.
Even though the mean values of the signals between index-
61 and index-117 are much higher than others, the location
prediction model detects the large variances of the signals, so
the location estimation is not significantly affected by these
signals. Another wild rise in location estimation is associated
with signals near index-125, where the signals remain high.
Furthermore, two more error fluctuations occur at signal-161
and signal-227. It is clear that these signals remain stable, and
they are stronger than the nearby signals.

Fig. 13 displays the results on the public data set, which
include 3 magnetic field components and RSSI readings from
75 WiFi APs. Because the number of signal sources in the
public data set is much smaller than that in the Broun Hall
data set, the location prediction model in the public data set
scenario is more sensitive to the introduced noise (i.e., the
doubled signal measurements). Fig. 13 shows the relation-
ship between the error increase and the signal quality. The
largest peak in Fig. 13 corresponds to the y-component of the
magnetic field reading as well, because the signal component
remains stable in a high level status. We also find error fluc-
tuations at signal-6, signal-17, and signal-62. Although these
strong signals cause the location error to increase abruptly,
comparable changes are also introduced by stable signals but
with lower strengths at index-10 and index-71. The loca-
tion prediction model ignores changes in signal measurements
between signal-20 and signal-60. Some signals in this range
are stable, but these weak strength would not cause the degra-
dation of location accuracy. Some signals are strong, but the
location prediction model discards them due to their poor
reliability.

Based on Figs. 12 and 13, we conclude that the proposed
location prediction model in the MapLoc system success-
fully extracts effective signal measurements from the weak
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Fig. 14. Mean localization errors for different values of 8.

and fluctuating signals by learning the artificial signal mea-
surements that describe their own reliability. The signals are
selected not only by the average signal strength but also by
the signal stability.

3) Impact of System Parameters: In MapLoc, the auxiliary
loss (12) is used to force the location prediction model to
acquire knowledge from the signal measurement generated by
the DGP model and estimate the unknown location with the
knowledge. A parameter f§ is introduced to balance the signal
loss from DNNS and the location loss from DNNL. We investi-
gate the effect of 8 on the MapLoc performance. Fig. 14 plots
the location errors related to different values of . In both sce-
narios, the accuracy of location estimation progresses when
is set as 0.8. Even though the mean error from the Broun Hall
data set is slightly decreased as $ increases to 1.0, the overall
performance does not enhance significantly with the increment
of B. Intuitively, B is affected by the indoor environment. The
RSSI is reasonable in an open and static environment and
closely follows the signal-to-distance relationship. As a result,
a lower B would be more beneficial to localization. In an
extremely cluttered and complex indoor environment, on the
other hand, a larger 8 could alleviate the localization problem
as a fingerprinting-like issue. Considering that signal estima-
tion in the location prediction model is a supportive method for
accurate location estimation, we adopted a dynamic approach
to adjust B based on the number of epochs. In the MapLoc
system, the initial value of § is set as 0.6. When more than
200 epochs are completed, B is updated every 100 epochs by
a 0.1 decrease. Eventually, the auxiliary loss would degenerate
into a loss function determined by the location estimation error
exclusively. Fig. 14 exhibits the performance gains contributed
by the dynamic 8 update approach.

Given that the location prediction model in the MapLoc
system relies on the stacked LSTM network as its backbone,
the window size W plays a crucial role in the accuracy of
location prediction. Intuitively, a longer data sequence would
contain more information for location estimation; nevertheless,
a longer sequence would incur additional system costs, such
as an extra time cost in data collection. To study the effect of
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the sequence length (i.e., window size W), we conduct exper-
iments with different window sizes on both the public and the
Broun Hall data set. Fig. 15 illustrates the errors resulted by
different window sizes. Even though the error in the Broun
Hall scenario is more sensitive to the change of the window
size, the location errors drop with incrased W in both envi-
ronments. When the window sizes are larger than 5, the errors
remain stable. The public data set has the lowest location error
of 1.233 m when the window size is W = 5, and the error
is 1.234 m when the window size is W = 6. Because the
Broun Hall Data set has the lowest distance error, 1.21 m,
when the window size is 6, we set the window size to 6
in the MapLoc system to ease system setup. According to
Fig. 15, the location error rises slightly when the window size
is 7 in both environments. Compared with traditional approach
of forecasting with time series that benefits from long-term
dependencies, location prediction is a special case, where the
prediction is highly related to the most recent historical loca-
tion, and obsolete location information may introduce more
noise. Thus, a suitable sequence length would contribute to an
improved location estimation.

The MapLoc system uses multimodal data as mentioned in
previous sections. With the least amount of data processing,
different types of signal measurements could be introduced
into the system. In this prototype, magnetic field readings are
used as a part of the MapLoc system’s input data. Magnetic
field components from different directions are treated as novel
features of input after the max—min normalization. Fig. 16
illustrates the advancement brought by the bimodal data, which
is composed of both magnetic field and WiFi RSSI mea-
surements. The localization errors of the public data set is
reduced notably. The mean error drops from 1.577 to 1.234 m,
when the magnetic filed data is taken into account, whereas
the decline of median error reaches 0.327 m. A similar phe-
nomenon happened to the Broun Hall data set as well; both
mean error and median error are reduced remarkably. A huge
reduction of the mean error appears when magnetic field read-
ings are used, where the mean distance error decreases from
1.719 to 1.211 m. According to Fig. 16, multisource data
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improves location accuracy by adding more features to rep-
resent the signal space [44]. In dealing with location-based
problems, different forms of signals would play complemen-
tary roles. Based on the enriched features, our proposed system
compiles and filters information from many sources to enhance
localization accuracy.

In MapLoc, the location prediction model is trained using
the data generated by the DGP model initially, and then fine-
tuned with field-collected data. The data collected from the
field is initially treated as discrete in order to train the DGP
model, and then it is recovered as sequences to fine-tune
the location prediction model. During the offline training, the
resulting DGP model may not be perfect and, thus, the data
sampled by the model is usually defective. To compensate this,
the location prediction model is then fine-tuned at the end of
the training process using field-collected data. The reduction in
localization error achieved by fine-tuning is shown in Fig. 17.
The location errors decrease dramatically in both cases. The
location error decreases from 1.843 to 1.211 m for the Broun
Hall data set and from 1.666 to 1.234 m for the Public data set.
Given that fine-tuning is only employed in the offline training,
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Fig. 18.  Map quality Q values versus the numbers of latent dimensions on
the public data set.

Fig. 19. Map quality Q values versus the numbers of latent dimensions on
the Broun Hall data set.

the gain in location accuracy brought by fine-tuning would not
cause any additional computational cost in the online location
prediction.

Because the location prediction model is pretrained with
artificial data sampled from the uncertainty maps, the DGP
model is a critical component. To assess the impact of the DGP
model parameters on the quality of the uncertainty map, Q, we
investigate various combinations of latent dimension and num-
ber of inducing points, aiming to find the best configuration
of DGP.

The latent nodes in MapLoc include two sublayers, H; and
H,. Figs. 18 and 19 show how the maps’ quality QO (defined
in Algorithm 1) is affected by the latent dimensions of the
two sublayers, denoted by L; and L, respectively. The latent
dimensions are tuned by gridpoint search in both scenarios.
We first examine the effect of latent dimensions using the pub-
lic data set. Even though the quality of the uncertainty map
increases with larger dimensions of the first layer when the
second layer has six or eight latent dimensions, the relationship
between the latent dimensions and map qualities is ambigu-
ous. As shown in Fig. 18, the uncertainty map reaches the
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TABLE II
MAP QUALITY Q AFFECTED BY THE NUMBER OF INDUCING POINTS

Public Dataset

‘ ‘ Broun Hall Dataset

Inducing Points | 11 | 10 | 9 | 8 | 7 | 6

5 || Inducing Points | 16 | 15 | 14 | 13 | 12

Q | 0.248 | 0.317 | 0.274 | 0275 | 0.267 | 0.266 | 0.240 || Q

| 0.318 | 0.424 | 0387 | 0360 | 0.321

highest value when L; = 7 and L, = 7. Also, two similar Qs
are achieved when the latent dimension of the first layer is
L1 = 8. Because all the three Qs are close, there is no clear
advantage to use different latent dimension settings. We try
all the three settings in training the location prediction model
of MapLoc. Since the lowest validation error is reached when
L1 = 8 and L, = 6, we choose this setting for the public data
set. The previous MapLoc results are all obtained under this
setting.

On the other hand, Fig. 19 reveals that the quality of uncer-
tainty maps, Q, improves with increased latent dimensions of
the second sublayer L, on the Broun Hall data set. However,
increasing the latent dimension of the first sublayer L; does
not necessarily improve map quality. We find that increasing
L, significantly improves the map quality Q when L; = 11;
whereas increasing L does not contribute to further improve-
ment of Q. According to Fig. 19, a gridpoint search yields the
best map quality, i.e., Q = 0.42, for the Broun Hall data set
when L; =11 and L, = 6.

Another key factor effecting the quality of the maps is the
number of inducing points. For the DGP model, we choose
identical numbers of inducing points for different layers to
simplify the setting. Similarly, we evaluate the effect of the
number of inducing points on the quality of the uncertainty
maps with both data sets. Table II presents the map quality Q
obtained by different numbers of inducing points with the pub-
lic data set. According to the table, the worst map quality is
acquired when each layer of the DGP model only includes five
inducing points. Along with the increasing number of induc-
ing points, the map quality keeps enhancing. Even though the
growth rate for the map quality is slow when the number of
inducing points is between 6 and 9, a notable gain is observed
when 10 inducing points of each layer are involved in the
training of the DGP model. Thus, the number of inducing
points is set to 10 for the public data set. The map quality
stops improving as the number of inducing number reaches
11, where the map quality is close to that of the model with
5 inducing points in each layer.

For the Broun Hall data set, Table II reveals a similar trend
regarding the number of inducing points. When the number of
inducing points is fewer than 16, the upward trend in the map
quality Q is conspicuous. The map quality progresses con-
sistently with the increasing number of inducing points. As
shown in Table II, the best map quality is achieved when the
number of inducing points rise to 15. However, if the number
of inducing points exceeds 16, the map quality drops consid-
erably. Therefore, the number of inducing points is set as 15
for the Broun Hall data set.

To evaluate the impact of the number of latent layers on map
quality Q, we used three distinct layer configurations with two

TABLE III
MAP QUALITY Q AND DGP TRAINING TIME VERSUS THE
NUMBER OF LAYERS ON THE PUBLIC DATA SET

| Structure | DGP Training Time | @

2-layer | 8-6 886.56s 0.317

3-layer | 8-8-6 1532.89s 0.258

4-layer | 8-8-6-6 | 1630.685s 0.200
TABLE IV

MAP QUALITY Q AND DGP TRAINING TIME VERSUS THE
NUMBER OF LAYERS ON THE BROUN HALL DATA SET

| Structure | DGP Training Time | @
2-layer | 11-6 2620.03s 0.424
3-layer | 11-11-6 2790.51s 0.311
4-layer | 11-11-6-6 | 5256.36s 0.105

data sets in this experiment. In Tables III and IV, the num-
ber of latent dimensions follows previous setup to simplify
the model structure. We first add a new layer with the same
latent dimension of H; and then appended a layer with the
same latent dimension of H,. The number of inducing points
is set to 10 for the public data set and 15 for the Broun Hall
data set, respectively. It is evident that increasing the number
of latent layers from 2 to 4 doubles the DGP training time.
However, the map quality Q does not benefit much from the
increased number of latent layers in both scenarios. Intuitively,
adding more layers will help the models extract more features
from training data, but increasing the training and inference
cost. Nevertheless, when dealing with a data set of a limited
size, adding more layers may not always result in enhanced
performance. DGP is used as a data creation tool in this work.
The exact precision is crucial, but it is not the only metric
that we care about. The model assists us in representing the
uncertainty information of APs at various locations for the fol-
lowing location prediction model. The effect of the imperfect
DGP model would be adjusted since the location prediction
model would be fine-tuned with field-collected data. Thus, we
chose a simplified two-layer model in this work to reduce the
cost of DGP training.

VI. CONCLUSION

In this article, we proposed MapLoc, a indoor localization
system using multimodal data. In MapLoc, DGP was used to
regress uncertainty maps describing the signal distribution in
the service area. The artificial signal measurements that rep-
resent their own reliability were generated by sampling the
signal distribution described by the uncertainty maps. In the
artificial data generation, geometry constraints and user motion
patterns were also taken into account. We then presented a
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location prediction model to distinguish the effective signal
measurements from the weak and fluctuating signals by learn-
ing the artificial signal measurements. The location prediction
model leveraged a stacked LSTM network as its backend. The
auxiliary output was utilized to push the model to learn the
signal map in supervised training. The experimental results
demonstrated that the location prediction model was able to
intelligently choose the optimal signals among WiFi RSSI
readings and geomagnetic measurements. Benefiting from the
novel data generation method and location prediction model,
the median error of location estimation in both the data sets
reached centimeter-level accuracy.
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