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Abstract—With the growing demand for location-based
services, fingerprint has become a hot topic in the area of Internet
of Things (IoT). However, the performance of fingerprinting-
based indoor localization systems is usually affected by the
quality and granularity of fingerprints. In this article, we present
MapLoc, a long short-term memory (LSTM)-based indoor local-
ization system that takes advantage of the continuous indoor
uncertainty maps created using both earth magnetic field read-
ings and WiFi received signal strengths (RSSs). A deep Gaussian
process (DGP) model is trained to create indoor radio maps
with confidence intervals, which are referred as uncertainty
maps. Utilizing the uncertainty maps, an LSTM-based location
prediction model is pretrained with artificial trajectory data sam-
pled from the uncertainty maps, and then fine-tuned with the
signal measurements collected in the field. In the training pro-
cess, auxiliary outputs are implemented to overcome overfitting
and improve the robustness of the system. Our extensive experi-
ments demonstrate the outstanding performance of the proposed
MapLoc system.

Index Terms—Fingerprinting, deep Gaussian process (DGP),
indoor localization, long short-term memory (LSTM), radio map
construction.

I. INTRODUCTION

W
ITH the rapid development of the Internet of Things

(IoT), location-based service (LBS) has drawn increas-

ing attention from various fields, such as robotics, retailing,

manufacturing, and smart buildings. Instead of using specifi-

cally designed sensors for location estimation, radio-frequency

(RF) signals, e.g., WiFi, have been a popular choice for indoor

localization systems due to its wide deployment in indoor

spaces. Fingerprinting is a popular indoor localization method,

which generally consists of two stages: 1) offline fingerprint
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collection and 2) online location estimation. In the offline

stage, fingerprints in the form of, e.g., WiFi received signal

strength (RSS), are collected in the service area and labeled

with the corresponding coordinates. Then, in the online stage,

the unknown location of a mobile device will be estimated

by matching the newly collected measurements with stored

fingerprints. The performance of fingerprinting is thus largely

affected by both the fingerprints and the matching method.

Many prior works adopted various techniques in wireless com-

munications, signal processing, and machine learning through

these two aspects.

Various observations of RF signals have been utilized as fin-

gerprints. For example, RSS was first used in [1]. This work

demonstrated that the signal strength information provides a

means of inferring user location. K-nearest neighbors (KNNs)

was leveraged in this article to assist location prediction.

Intuitively, RSS is negatively related to the distance between

the transmitter and receiver. By using an empirical signal

propagation model, the unknown location could be inferred

roughly by triangulation. Even though RSS is resilient to slight

environmental changes, it could not achieve fine-grained local-

ization, especially when the number of APs is limited. For

environments with rich AP resources, AP selection emerged to

filter out the less useful RSS readings for boosted localization

accuracy. Jia et al. [2] proposed a heuristic AP selection algo-

rithm based on Cramer–Rao lower bound (CRLB) to assist in

localization. MAPS [3] relied on K-means and decision trees

for selecting available APs. Shi et al. [4] leveraged statisti-

cal features from RSS measurements to filter out valid APs.

However, AP selection is still an open problem. In this article,

the proposed location prediction model is capable of selecting

appropriate APs intelligently with deep networks for improved

localization. In addition, channel state information (CSI), as a

fine-grained observation of the orthogonal frequency-division

multiplexing (OFDM) physical layer (PHY), has been adopted

as fingerprints in the past decade. It depicts how a signal

propagates from the transmitter to the receiver through each

subcarrier. Due to the nature of CSI, it is more sensitive

than RSS to distance variations, and is also susceptible to the

multipath effect and dynamic environments. Thus, various sig-

nal processing techniques have been proposed for eliminating

the offsets introduced by the environment and hardware to

enhance the quality of CSI fingerprints [5]. The extra cost of

signal processing may impede the prevalence of CSI-based

localization systems in mobile devices with limited hardware

resources. Meanwhile, with the popularity of smart devices,
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increasing types of signals, such as light and earth magnetic

field intensity, have been introduced as fingerprints [6]. It has

been shown that such multimodal fingerprints are complemen-

tary to each other and can help to make the system more

robust.

In addition to the quality, the density of fingerprints is

also a key factor that affects the accuracy of fingerprinting.

To achieve high location accuracy, a site survey is needed

to collection fingerprints at densely marked locations, which

is usually time-consuming and laborious. Furthermore, such

dense fingerprints are costly to update when the service envi-

ronment is changed (i.e., change of furniture placement). As

a result, there is a tradeoff between the location estimation

accuracy and system deployment cost, which needs to be care-

fully balanced when designing a fingerprinting system. In this

research, we use deep Gaussian process (DGP) to generate

a precise uncertainty map in order to improve localization

with a limited number of signal observations. The generated

data on the map indicates the dependability of signals from

distinct APs, which aids in training the location prediction

model. Another crucial factor to the success of fingerprinting

is an effective and efficient location estimation (i.e., matching)

method. In recent indoor localization systems, machine learn-

ing has been widely used as classifiers to estimate unknown

locations in the online stage, such as KNNs, support vector

machines (SVMs), and random forest [1], [7], [8]. Recently,

deep learning models, have been adopted for effective multi-

class classification. DeepFi [9] extracted features from CSI by

using deep auto-encoders. CiFi [10] and ConFi [11] generated

CSI images for image classification with the deep convolu-

tional neural network. ResLoc [12] advanced the localization

accuracy by modifying the architecture of the deep network.

However, such methods are still focused on solving the tra-

ditional fingerprint matching problem, which partitions the

continuous service area into a discrete grid and is treated as

a multiclass classification problem. This approach introduces

a built-in error, even though the error can be mitigated by

probabilistic methods [9], [13].

In this article, we propose MapLoc, an indoor fingerprint-

ing system that utilizes DGP to regress uncertainty maps and

incorporates a long short-term memory (LSTM)-based method

for location estimation. This work is focused on three aspects

of improving location estimation: fingerprint quality, finger-

print quantity, and the built-in error of existing fingerprinting

methods. From the perspective of fingerprint quality, both WiFi

RSS and earth magnetic field intensity are utilized as finger-

prints in MapLoc. Since the magnetic sensors are available

in many smart devices, the magnetic field intensity measure-

ments are readily available. Moreover, the uncertainty maps

are leveraged to generate synthesized data that are indicative

of the signal reliability. To enhance location estimation with

limited number of fingerprints, MapLoc utilizes the uncer-

tainty maps to synthesize sequences of trajectories and RSSI

samples, which are used in auxiliary learning to pretrain the

location prediction model.

In recent years, LSTM has been applied to a wide range

of tasks, such as natural language processing, speech recog-

nition, and time series forecasting, because it is able to

effectively handle sequential data that has long-term depen-

dencies. Also, it achieves great performance in handling

variable-length sequences. Because of these features, LSTM

is well-suited for tasks such as location prediction. By imple-

menting a stacked LSTM network as a backend, we design

a location prediction model for regressing the signal maps.

And the estimated location will be inferred directly by leverag-

ing the historical signal and location information, which avoids

the built-in error when the localization problem is treated

as a multiclass classification problem in existing fingerprint

methods.

More specifically, a DGP is first implemented for uncer-

tainty estimation in the service area. Then, the artificial signal

measurements are generated by sampling the distribution

described with uncertainties. In addition, geometry constraints

and user movement patterns are considered in trajectory gener-

ation. The generated signal measurements are used to compose

signal sequences that supervise the pretraining of the location

prediction model. To better regress the signal strength, an aux-

iliary loss is adopted in the training. Both location prediction

and fingerprint estimation are used to calculate the loss for

weight updating. Finally, the pretrained model is fine-tuned

with real signal sequence collected in the field. Fine-tuning

forces the location prediction model to converge to the real

signal surface, thus eliminating the cumulative error of the

DGP model. In the online stage, the location of the target

mobile device is readily predicted by the location prediction

model using its newly measured signals and past trajectory in

a small sliding window.

The main contributions of this article are summarized as

follows.

1) An innovative localization framework is proposed by

leveraging the uncertainty estimation capability of DGP.

Continuous uncertainty maps are created by DGP using

fingerprints measured at gridpoint locations. The finger-

prints are then augmented by sampling the distribution

described by the uncertainty maps. The generated sig-

nal measurements reflect their own stability, allowing

deep learning models to learn the reliability of sig-

nals and select the effective measurements for location

estimation.

2) By introducing geometric constraints of the service area

and user movement trajectories, the continuous nature of

human mobility and the historical locations of the tar-

get device within a small window are taken into account.

Furthermore, fingerprinting is no longer treated as a clas-

sification problem here. Rather, the location prediction

model readily produces the estimated location in the

manner of regression, thus mitigating the built-in error

of the traditional approach.

3) We leverage auxiliary learning in training the location

prediction model. By introducing the signal measure-

ment loss as one of the components of the auxiliary

loss in supervise training, the LSTM-based location

prediction model will be forced to learn the inher-

ent relationship in the sequences of measurements.

Compared with the traditional training approach that

only uses isolated location as labels, signal sequences
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include much more features to guide and accelerate the

training process.

4) Multimodal maps, created using WiFi RSS and earth

magnetic field strengths, are utilized in the MapLoc

system. Such measurements are widely available and

do not increase the cost and affect the compatibility of

the system. It is easy to extend the proposed framework

to include more types of measurements, such as light

intensity, for future improved performance.

5) We verified the performance of the proposed MapLoc

system with extensive experiments in two representa-

tive indoor environments. The results demonstrate that

MapLoc advances the accuracy of location estimation by

taking advantage of the uncertainty estimation provided

by DGP and the bimodal fingerprints.

In the remainder of this article, we present an overview of

related work in Section II. The preliminaries and motivations

are provided in Section III. Section IV presents the system

design. In Section V, we evaluate our prototype system, and

in Section VI, we wrap up this article.

II. RELATED WORK

With the rise of the IoT, indoor LBSs have drawn a lot

of attention from both academia and industry, due to their

high social and economic value. Unlike outdoor localization

systems, such as the global positioning system (GPS), which

rely on the line-of-sight (LOS) reception of satellite signals,

the performance of indoor localization is hampered by scat-

tered and reflected signals due to the clutter environment.

Indoor localization is still an open problem without a universal

solution, despite a variety of techniques have been proposed

in the literature.

A. Fingerprinting Approaches

Because of their adaptability and adequate accuracy, finger-

printing methods are commonly used in localization systems.

The features derived from the observations are adopted for

pattern matching in fingerprinting. RADAR [1] was one of

the first attempts to use RF signals, where RSS was used as

fingerprints. Aside from RSS, various types of observations

were leveraged in prior works as well. CSI is a fine-grained

observation from the PHY layer, which includes the amplitude

and phase of each subcarrier of the OFDM PHY. FILA [14]

demonstrated that CSI helps to improve localization accuracy

and reduce latency. The quality of fingerprints, which can be

viewed as a discrete radio map, plays a critical role in such

systems. A basic and effective way to improve the quality

of the radio map is to increase the number of fingerprints.

However, collecting fingerprints is usually time-consuming

and laborious, and in some cases, impossible. To minimize

such effort, prior works [15], [16], [17] utilized unmanned

aerial vehicles (UAVs) to replace manual labor. DeepMap [13]

constructed a radio map with DGP using only a limited num-

ber of fingerprints. WiGAN [18] generated fingerprints for an

unknown area with Gaussian process regression conditioned

least-squares generative adversarial networks (GPR-GANs).

Wu et al. [19] and Huang et al. [20] investigated the radio

map adaptation and update problem to avoid the cumber-

some recollection of fingerprints in dynamic environments.

On the other hand, the quality of fingerprints keeps improv-

ing with the advance of technology, hence the evolution of

radio maps. Gu et al. [21] eliminated multipath interference

in WiFi signals with the sparsity rank singular value decompo-

sition (SRSVD) method. Luo and Fu [22] extracted nonlinear

features from RSS signals by implementing kernel principal

component analysis (KPCA). Furthermore, deep learning tech-

niques have achieved an exceptional performance in feature

extraction as well. To extract nonlinear features from obser-

vations, deep autoencoders were incorporated in [5], [9], [23],

and [24], while [6], [25], [26] leveraged LSTM and its vari-

ants to evaluate the correlation between received RF signals

for optimizing the fingerprints. In [10], [11], [12], and [27],

CNN was used to extract fingerprints from multidimensional

signal arrays for improved localization accuracy.

B. Geometry-Based Approaches

In addition to fingerprinting methods, geometric methods,

such as multilateration and triangulation, are widely used in

indoor localization systems by exploiting the measurements

for fine-grained information. Among various measurements,

Angle of Arrival (AoA) is commonly employed in radar and

acoustics systems. ArrayTrack [28] proposed a multipath sup-

pression algorithm for eliminating the reflection paths between

transmitter and receiver. SparseTag [29] proposed to use a spa-

tial smoothing-based method, which processed a sparse RFID

tag array and decreased the angle estimation error to 1.831◦.

Time-of-Arrival (ToA)-based systems estimate the transmitter–

receiver distance by measuring the traveling time of the signal.

However, such systems require tightly synchronized clocks at

the transmitter and receiver. Kang et al. [30] mitigated the

time synchronization error and the NLOS error by introducing

an iterative ToA (iToA) algorithm incorporating a multivari-

ate linear model. Also, Yuan et al. [31] proposed a unified

factor graph-based framework for ToA-based localization in

wireless sensor networks. The framework provided a unified

treatment of the inaccurate positions of transmitters and the

asynchronous network. Even though the localization accuracy

keeps increasing with these approaches, their performance is

still insufficient for practical indoor services because of the

required LOS signals and multipath-free environments.

C. Other Approaches

In addition to RF signal-based techniques, vision-based

techniques are also popular with the emerging of robotics,

autonomous vehicles, and augmented reality (AR) [32]. The

localization algorithms rely on the inputs from sensors, such

as RGB-D cameras and infrared cameras, to extract location

information. The vision-based techniques usually achieve cen-

timeter level accuracy in real time, outperforming most of RF

signal-based techniques. For example, MonoSLAM [33] is the

first study to apply the simultaneous localization and map-

ping (SLAM) approach with a single uncontrolled camera,

with centimeter level accuracy at 30-Hz real-time performance.

AprilTag [34] created a visual fiducial system that enables
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full six degrees-of-freedom (6DOF) localization with a sin-

gle image by using a 2-D barcode tag as landmark. However,

the computational cost of vision-based approaches constraints

their deployment on IoT devices with limited computation

power and short battery life [35]. Moreover, the visibility,

occlusion, and privacy related issues further constrain the

usage of vision-based approaches.

Indoor localization also takes advantage of the develop-

ment of visible light communications (VLCs). By analyzing

the modulated light signal transmitted in the form of visible

LED lights, many VLC signal-based localization techniques

have been proposed. Because the diffused components emerg-

ing from multipath scattering are substantially weaker than

the LOS component, the VLC-based localization system has a

superior accuracy over RF signal-based system, which usually

suffer from strong multipath interference [36], [37], [38].

Acoustic signals have also been employed in localiza-

tion systems. It provides precise localization at a low cost

due to readily accessible equipment such as speakers and

microphones, as well as excellent time-domain resolutions.

For instance, EchoTrack [39] tracked hand trajectory with

a built-in speaker array and microphone on smart phones

by leveraging two-channel chirps to remove the multipath

noise. Location estimation is enhanced by using the Doppler

shift compensation and roughness penalty smoothing method.

Vernier [40] achieved accurate motion tracking accuracy of

less than 4 mm, by proposing a differentiated window-

based phase change calculation (DW-PC) to minimize the

computation overhead for real-time tracking.

III. PRELIMINARIES AND MOTIVATIONS

Gaussian process has been successfully applied for solv-

ing regression and probabilistic classification problems. A

Gaussian process is described with its covariance matrix and

mean function. Since the prediction is also Gaussian, confi-

dence intervals can be estimated to depict the uncertainty of

data distributed over a continuous space. Thus, a normalized

signal strength map for a service area can be conveniently

reconstructed with measured signal strengths and the corre-

sponding coordinates by a Gaussian process regression model,

which is given by

r(c) = f (c) + ε (1)

where r(c) and f (c) represent the RSS and ideal signal strength

for location c, respectively, and ε is the observation noise,

which follows an independent identically distributed (i.i.d.)

Gaussian distribution with zero mean and variance θ2
n .

It is intuitive to assume that the RSSs ri and rj at coordinates

ci and cj, respectively, also follow a joint Gaussian distribution

with covariance k(ci, cj), which is usually described using a

kernel function as

k
(
ci, cj

)
= φ2 exp

(
−

1

2l2

∣∣ci − cj

∣∣2
)

(2)

where φ and l are the hyperparameters for depicting the sig-

nal variance and the smoothness of the kernel function, both

of which can be estimated by using a maximum-likelihood

Fig. 1. DGP model for signal map construction.

approximation method. Then, the joint distribution of the esti-

mated signal strength f∗ of location c∗ and the measured signal

strengths r can be depicted as follows:

(
r

f∗

)
∼ N

(
0,

(
K K∗

KT
∗ K∗∗

))
. (3)

The signal strength f∗ can be inferred from the measured signal

strength r by

Pr(f∗|c∗, c, r) = N (f∗|µ∗, �∗) (4)

u∗ = KT
∗

(
K + θ2

n I
)−1

r (5)

�∗ = K∗∗ − KT
∗

(
K + θ2

n I
)−1

K∗ (6)

where c ∈ R
N×2, r ∈ R

N , K∗∗ = [k(c∗, c∗)], N is the number

of positions where the measurements were taken, K is the

covariance matrix of c with dimension N × N, and K∗ is an

N × 1 matrix of covariances between c and c∗.

Inspired by the Gaussian process-based works, the DGP

is leveraged in this article to enhance the precision of the

constructed map by recovering the nonstationary components

of signal measurements. In our prior work [13], a two-layer

DGP model was leveraged to extract nonlinear characteristics

from RSS samples and construct radio maps. Compared with

Gaussian process, DGP is able to regress complex input data

by taking advantage of the fusion of kernels. Fig. 1 is a graph-

ical representation of a DGP, which consists of three layers of

nodes, i.e., the parent nodes C, the leaf nodes R, and the latent

nodes H, which include two sublayers H1 and H2 [41]. For a

2-D map generation problem, C is the set of training coordi-

nates with dimension N × 2, R denotes a signal measurement

matrix of N × S, and H ∈ R
N×Lsub . Here, N, S and Lsub rep-

resent the number of measured coordinates, the number of

sensors, and the number of the intermediate latent dimensions

in the sublayers, respectively. Therefore, the generative process

is given by

h1
nl = f H

l (cn) + εH
nl, l = 1, 2, . . . , L1, cn ∈ R

2 (7)

h2
nl = f H∗

l

(
h1

nl

)
+ εH∗

nl , l = 1, 2, . . . , L2, h1
nl ∈ R

L1 (8)

rns = f R
s

(
h2

nl

)
+ εR

ns, s = 1, 2, . . . , S, h2
nl ∈ R

L2 (9)

where f H ∼ GP(0, kH(C, C)), f H∗
∼ GP(0, kH∗

(H1, H1)), and

f R ∼ GP(0, kR(H2, H2)) are Gaussian processes, which con-

nect the latent nodes H1, H2, parent nodes C, and leaf nodes

R, respectively. The automatic relevance determination (ARD)
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Fig. 2. RSS uncertainty map constructed by DGP.

covariance functions for the Gaussian Processes is defined as

kARD

(
ci, cj

)
= φ2

ARD exp

(
−

1

2

L∑

l=1

wl

(
ci,l − cj,l

)2

)
(10)

where wl is the weight for each latent dimension and φARD is

a hyperparameter. For different inputs, the Gaussian processes,

f H , f H∗
and f R, only depend on the covariance function

kARD. To find the optimal hyperparameters, Bayesian train-

ing is leveraged to maximize the marginal distribution of the

observed signal measurement R, which is given by

max log p(R) = log

∫

C,H

p(R|H)p(H|C)p(C). (11)

The outstanding performance of DGP for generating a

detail-rich signal map has been demonstrated in [13]. With the

deep and heterogeneous nonlinear structure, the DGP handles

the nonstationary components in complex signal measurements

and extracts the detailed information about the distribution of

real WiFi RSS measurements in indoor environments.

Despite the fact that the detailed maps created by DGP

improves localization accuracy, the uncertainty information,

which could also be retrieved using DGP, was largely ignored

in our prior work [13]. Indeed, the uncertainty information

just happens to be a convenient tool for evaluating the relia-

bility of sampled signals. Fig. 2 illustrates a uncertainty radio

map constructed by DGP using the measured RSS data from

a specific AP in a public data set [42]. The map includes

three signal layers: 1) a green layer representing the upper

confidence bound of the map; 2) a blue layer of mean values;

and 3) a peach layer denoting the lower confidence bound of

the map. A translucent layer is overlaid in the map to illus-

trate the layout of the floorplan. The confidence bound layers

depict the 95% confidence interval of the signal distribution.

Although the AP location is unavailable and not needed in this

work, based on the signal-to-distance relationship [43], the AP

can be located near the top-left corner of Fig. 2 where the sig-

nals are the strongest and most stable. When the distance is

increased, the signal strength decreases and fluctuates more

considerably. For the locations that are beyond the coverage

Fig. 3. Earth magnetic field intensity uncertainty map constructed by DGP.

of the AP, the signal strength drops to −100 dBm and settles

there. The RSS data from this AP, obviously, would be more

constructive in locating target devices in the top-left region,

while this AP would have a negative impact on locating targets

in the map’s central area because the RSS samples in the area

would be highly random with large fluctuations. Such a pattern

of uncertainty indicates that the signal stability varies depend-

ing on the location. And different patterns of uncertainty map

would also be obtained for different APs. Thus, in MapLoc,

we can sample the Gaussian distribution that is defined by

the mean and confidence intervals in the uncertainty map to

generate artificial measurements that depict the stability of the

signal. The following LSTM-based location prediction model

will exploit such fluctuations to distinguish the optimal signal

measurements for location estimation. Moreover, Fig. 3 plots

the uncertainty map generated by DGP using earth magnetic

field observations. It follows a similar trend as in Fig. 2, in

which the signal stability changes at different locations, and

is complementary to the RSS uncertainty map. Both RSS and

magnetic field data will be used in this effort to improve the

accuracy of localization.

On the other hand, the proposed MapLoc system also takes

into account the trajectory of the target device in a sliding

time window. The trajectories can be reasonably synthesized

by leveraging the movement pattern of target devices and

geometry constraints (e.g., the shape of the room or corri-

dor). Using the uncertainty maps, artificial signal sequences

can be generated along such movement trajectories. The arti-

ficial signal sequences are used to pretrain the LSTM-based

location prediction model, which is then fine-tuned with real

collected signals in the field. The pretraining process guides

the location prediction model by learning the signal reliability,

while fine-tuning mitigates the cumulative error introduced by

imprecise uncertainty maps.

IV. SYSTEM OVERVIEW

Fig. 4 presents the system architecture of the MapLoc

system, where the green and blue blocks represent the com-

ponents in the offline stage. More specifically, the green
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Fig. 4. MapLoc system architecture.

blocks are related to collecting signal measurements and

their corresponding coordinates, whereas the blue blocks

are associated to the synthesized signal measurements and

their coordinates. The location prediction model is unique

in that it is pretrained with the synthesized RF data and

then fine-tuned with the collected RF data, which is why

it is colored in gradients (from blue to green). The yel-

low blocks in Fig. 4 represent the components in the online

stage.

Similar to traditional fingerprinting systems, MapLoc also

consists of two stages: an offline stage for data collection and

model training, and an online stage for location estimation.

In the offline stage, WiFi RSS measurements as well as mag-

netic field readings are collected with the built-in sensors in

the mobile device. The measurements comprising the collected

bimodal sequences, which are tagged with the corresponding

coordinates where the data was measured. For each location,

we collect RSS measurements from as many APs as possible.

Since the set of visible APs usually varies from location to

location, we force the RSS measurements from those inacces-

sible (i.e., out of coverage) APs to be −100 dBm to ensure

consistency in measured data.

Localization with MapLoc includes two parts as well. The

collected bimodal signal measurements are first leveraged for

training the DGP model to generate their uncertainty maps.

The uncertainty map includes the mean value and the upper

and lower bounds of the 95% confidence interval, as illus-

trated in Fig. 2. The uncertainty map will then be leveraged

to synthesize artificial bimodel signal sequences for enhancing

the training of the location prediction model, which is intro-

duced to consider the trajectory (or, historical) information

of the target device in location estimation. The model is

first pretrained with the artificial signal sequences synthe-

sized by sampling the uncertainty maps, and then fine-tuned

with the collected bimodal sequences to avoid the cumu-

lative errors introduced by the DGP model. In the online

stage, the DGP model will not participate in location esti-

mation. The estimated location will be obtained by combining

the previous trajectory information with a time window W

with the signal measurements from the current unknown

location.

Algorithm 1 Pseudocode for Measuring the Quality of the

Uncertainty Map

Input: the measured verification sample rk
j and the corre-

sponding coordinate ck
∗, the mean layer of the uncertainty

map mj for the jth signal, the number of gridpoints G in

mj, the number of available signals S, and the number of

verification samples K;

Output: the map quality Q;

1: //i represents the index of gridpoints in map mj

2: //j denotes the index of signals

3: //k denotes the index of verification samples

4: //l denotes the coordinate of the gridpoints in map mj

5: for k = 1 : K do

6: for j = 1 : S do

7: for i = 1 : G do

8: //compute the likelihood function p(rk
j |ci)

9: p(rk
j |ci) = exp

(
− 1

λσ 2

∥∥∥rk
j − m

ci

j

∥∥∥
)

;

10: end for

11: //compute the posterior probability p(li|r
k
j )

12: p(ci|r
k
j ) =

p(rk
j |ci)∑G

d=1 p(rk
j |cd)

;

13: end for

14: //use MAP estimation to infer location for the verifica-

tion samples

15: ĉk = argmax{c1,c2,...,cG}

(∏S
j=1 p(ci|r

k
j )

)
;

16: end for

17: //compute map quality Q

18: Q = 1

exp( 1
2K

∑K
k=1(||c

k
∗−ĉk||))

;

19: return Q;

A. Offline Training

Offline training of the MapLoc system includes pretrain-

ing and fine-tuning. The DGP model is first trained using

the bimodal signals that have been collected. The location

prediction model will first be trained using the artificial

bimodal sequences generated by the DGP model, and then

fine-tuned using the signal sequences composed of collected

signal measurements from the field to ensure that it converges

to the real-world situation.

1) Pretraining: First, the collected signal measurements

are used to train the DGP model. Because the DGP model

focuses primarily on the signal distribution, the temporal

information in the signal sequence is neglected during the

training. To improve the structure of the DGP model and

optimize the related hyperparameters, a simple approach is

employed to assess the quality of the uncertainty map gen-

erated by the DGP model. As shown in Algorithm 1, the

constructed uncertainty map M is a G × S × 3 matrix, which

includes an upper confidence layer, a mean layer, and a lower

confidence layer. Here, G denotes the number of gridpoints in

the map. It has to be 100 000 to reach a resolution of 0.01 m for

an area of 10 m2. S represents the number of available signals.

For example, we have S = 10 if the WiFi RSS measure-

ments are collected from seven APs, since each magnetic field

reading is a vector with three elements (magx, magy, magz),
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Algorithm 2 Pseudocode for Artificial Trajectory Generation

Input: the length of the artificial trajectory N; the layout of

the indoor environment O; the stride length d;

Output: the artificial trajectory C;

1: //generate the coordinates c0 randomly in the environment

O and initialize the trajectory C

2: C = {randomPosition(O)};

3: while C.length < N do

4: if C.length == 1 then

5: //γ is a random initial azimuth

6: //generate the coordinate c∗ with the distance d and

the azimuth γ

7: //c0x and c0y are the x-axis and y-axis coordinates of

c0, respectively

8: c∗ = [c0x + d ∗ cos(γ ), c0y + d ∗ sin(γ )], γ ∼

U(−180◦, 180◦);

9: else

10: //update γ based on the previous azimuth

11: γ = γ + γt, γt ∼ U(−40◦, 40◦);

12: //c−1 is the last coordinate in trajectory C

13: c∗ = [c−1x + d ∗ cos(γ ), c−1y + d ∗ sin(γ )];

14: end if

15: if c∗ in the environment O then

16: C.append(c∗);

17: end if

18: end while

19: return C;

describing the magnetic field intensity for the north, east, and

vertical directions, respectively. The mean layer m is con-

structed to evaluate the overall quality of the uncertainty map.

K verification samples are collected from each gridpoint in the

service area and labeled with the corresponding coordinates.

We calculate the likelihood function p(rk
j |ci) of the jth sig-

nal, which indicates the similarity between the kth verification

sample rk
j and the signal measurement at ci in the uncertainty

map mj with a Gaussian kernel, as presented in step 9. In

MapLoc, the σ 2 and λ are set to 0.35 and 2, respectively. Thus,

the posterior probability p(ci|r
k
j ) is obtained conveniently by

assuming the distribution over the G gridpoints is uniform (see

step 12). The coordinate estimation of the kth sample is given

by choosing the gridpoint with the highest posterior proba-

bility. Eventually, the quality of the uncertainty map, Q, is

evaluated based on the errors of the coordinate estimation in

step 18.

Based on the well-trained DGP model, a movement model

is introduced to produce trajectories for generating artificial

signal sequences. As shown in Algorithm 2, the stride length

d is considered in the movement model and is restricted to

0.6 m. The azimuth γ is determined by the previous azimuth

with a random offset between −40◦ and 40◦. In step 13, the

coordinates in trajectory C are generated sequentially based

on the previous azimuth. And the layout of the indoor envi-

ronment is considered to eliminate the coordinates outside the

service area (see steps 15–17).

Fig. 5. How to synthesize labeled signal sequences for pretraining the LSTM-
based location prediction model.

As shown in Fig. 5, the well-trained DGP model is uti-

lized to generate the artificial signal rN for coordinate cN in

trajectory C. According to trajectory C, the artificial signal

sequences are assembled using the signal measurements gener-

ated by sampling the distribution N (µN, σ 2
N) that is described

by the mean µN and variance σN in the uncertainty map.

It is noteworthy that the distribution is sampled M times to

ensure that the generated signal measurements are able to

represent the stability of signals. Furthermore, we employ a

sliding window with a length of W for adjusting the size of

the artificial sequences for training the LSTM-based location

prediction model. An artificial trajectory of length N will pro-

duce N−W+1 training sequences. For each training sequence,

the last signal measurement rm
i+W−1 and the corresponding

coordinate ci+W−1 will be extracted as label for supervise

training.

The forward propagation of the location prediction model

is depicted in Fig. 6. The backbone of the location prediction

model is a stacked LSTM model, which is followed by a DNN

for signal estimation (termed DNNS) and a DNN for location

estimation (termed DNNL). To push the model to learn the

signal map made by the DGP model and estimate location

using the map, auxiliary loss is used in training. The signal

values rm
i+W−1 in the label data are processed and concatenate

with the output of the LSTM network in the DNNL model

for predicting the unknown coordinate ĉ. Then, the MSE loss

is calculated by comparing the label coordinate ci+W−1 and

the location prediction ĉ by the DNNL. In parallel, a signal

estimation r̂ is given by the DNNS using the output of the

previous LSTM model as well. As a result, the loss function

of the location prediction model is given by

L = (1 − β)MSE
(
rm

i+W−1, r̂
)
+ βMSE(ci+W−1, ĉ) (12)

where β is a hyper parameter to adjust the influence of the

two types of losses, while r̂ and ĉ are the predicted signal by

DNNS and the predicted coordinate by DNNL, respectively.
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Fig. 6. LSTM-based location prediction model in MapLoc.

2) Fine-Tuning: After pretraining, the location prediction

model will be fine-tuned with collected bimodal sequences

from the service area. The collected bimodal sequences, like

the artificial sequences, are reorganized to form shorter train-

ing sequences using a sliding window of size W. The last

bimodal measurement of each training sequence is also used

as the sequence’s label to complete the supervised training of

the model.

B. Online Testing

In the online stage, only the stacked LSTM network and

DNNL will participate in location estimation. The location

prediction model operates in a similar manner to autoregres-

sion models. The historical trajectory, including the received

signal measurements and the corresponding coordinates, is

fed into the stacked LSTM network. By combining the out-

put of the LSTM network with the freshly collected signals

from the current unknown location, the estimated location is

deduced readily with the well-trained DNNL model. Because

the localization problem is addressed as a regression problem

in MapLoc, the built-in error associated with the discrete fin-

gerprints can be avoided. Furthermore, since the estimated

location is computed directly by the location prediction model,

the cumbersome localization strategies used in prior work [13]

are not needed anymore in MapLoc, which further reduces the

computational cost, especially for mobile devices with limited

computation resources and power supplies.

V. EXPERIMENTAL STUDY

A. Experiment Configuration

To demonstrate the performance of the MapLoc system,

we evaluate it in two typical environments. First, we conduct

experiments on the fourth floor of Broun Hall in the Auburn

University Campus. In this scenario, we implement a proto-

type system using a Samsung Galaxy S7 Edge smartphone,

which is equipped with a dedicated application for collecting

Fig. 7. Floorplan for the Broun Hall data set.

magnetic field intensity data and WiFi RSS data simultane-

ously. As depicted in Fig. 7, the experiment covers an area of

approximately 270 m2. The black dots in Fig. 7 represent 255

sample locations (i.e., gridpoints) for training the DGP and the

location prediction model. Except for some corner gridpoints,

the distance between two adjacent training locations is 90 cm.

80 testing locations are randomly selected in the service area,

which are not shown in Fig. 7. None of the testing locations

overlap with a training location in this scenario. Moreover,

RSS readings are collected from 224 APs, including all the

available 2.4-GHz APs and 5-GHz APs from various manu-

facturers. To make the data size consistent, the RSS values of

out-of-range APs are set to −100 dBm. The magnetic field

strength is obtained from the on-device sensor directly, which

is a vector including the magnetic field intensity for the north,

east, and vertical directions.

The performance of the MapLoc system is also evaluated

using a public data set [42]. Fig. 8 plots the detailed floor

plan where the public data set was collected. The data set cov-

ers a floor of 185.12 m2, which includes three corridors, two

offices and a hall. The fingerprints are captured from 325 grid-

point locations, shown as black dots in Fig. 8. The distance

between two adjacent gridpoints is 60 cm. The data acqui-

sition campaign was performed using a smartphone, SONY

Xperia X2, and a smartwatch, LG W110G Watch R. We only

utilize the data collected by the smartphone in this experimen-

tal study. The RSS data are captured from 132 unique APs,

and the readings from an out-of-range AP are all set to −100

dBm. We only leverage 75 APs in the following experiments

because some AP signals are very weak across the entire ser-

vice area. Similar to the magnetic field intensity in the Broun

Hall scenario, the magnetic field readings of this scenario are

also vectors with three elements. Since the data acquisition

campaign is conducted in this environment with the identical
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Fig. 8. Floorplan where the public data set was collected.

setting twice, we train and then test the MapLoc system using

the data sets from different campaigns for a fair and realistic

evaluation.

Identical settings of the location prediction model are

deployed in both environments. Nine LSTMs are stacked one

above another to form a stacked LSTM as backbone of the

location prediction model. The number of features in the hid-

den state of LSTM is set to about 1.5 times of that of the input

features, e.g., the number of features in the hidden state will

be 150 if the number of available AP is 95. Each magnetic

field reading is a vector of size 3 × 1 and the corresponding

coordinates are in a 2-D space. The hidden state of the last

layer of the stacked LSTM is passed into the two DNNs for

location estimation and signal estimation, respectively. DNNL

is composed of four linear layers. The size of the input data

rm
i+W−1 is first adjusted to 16 by a layer in DNNL, while the

size of the hidden state from the LSTM is squeezed to 32 by

another DNNL layer. By concatenating the outputs from the

two layers, the estimated location is obtained by the remaining

two layers in DNNL, where the output feature numbers of the

layers are 16 and 2, respectively. The structure of DNNS is

relatively simple. The hidden state from the LSTM is com-

pressed by three linear layers in DNNS sequentially, where

the output feature numbers of the layers are 256, 128, and the

same as that of the input data rm
i+W−1, respectively.

In both scenarios, the magnetic field intensity and WiFi RSS

readings are min-max normalized. Considering that pedestri-

ans usually do not make abrupt changes in their movements

indoors, the stride length d is set to 0.6 m, and the azimuth

offset γt is limited in the range between −40◦ and 40◦. To

accelerate the training process, a server with an Nvidia RTX

3090 GPU is leveraged for real-time trajectory generation and

model training.

The following baselines are used in our comparison study.

1) DeepMap: This is the scheme proposed in our prior

work [13]. To regress the indoor radio map, a DGP

model with the exact same configuration as in MapLoc

is used. A Bayesian method is utilized to compare the

newly collected signal measurement with the gener-

ated maps. The location is estimated without using the

uncertainty maps.

2) LSTM: The same stacked LSTM network as in MapLoc

is used in this scheme. After the LSTM backbone,

Fig. 9. CDF of localization errors on the Broun Hall data set.

DNNL processes the extracted features and directly

predicts location. The LSTM backbone and DNNL

are configured similarly as in MapLoc. This model is

trained with trajectory/RSS sequences sampled from the

fingerprints collected in the field

3) LSTM+DeepMap: The design of this scheme is identical

to that of the proposed MapLoc. The only difference is

that the model is trained using sampled trajectory/RSS

from the map created as in DeepMap [13], i.e., the blue

layer in Fig. 2, rather than the uncertainty maps.

B. Experimental Results and Analysis

1) Accuracy of Location Estimation: First, we evaluate the

localization performance on the Broun Hall data set. Fig. 9

illustrates the cumulative distribution functions (CDFs) of

localization errors for the proposed MapLoc system and the

three baseline schemes. According to Fig. 9, it is obvious that

MapLoc outperforms the other methods on the Broun Hall data

set. Despite the fact that both MapLoc and LSTM+DeepMap

obtained a performance where 50% of the errors are less

than 1 m, MapLoc has a distinct advantage that approx-

imately 75% of location estimation have errors less than

1.35 m, whereas only 59% of location estimation obtained

by LSTM+DeepMap accomplish the similar accuracy. This

demonstrates the improvement brought about by the sam-

ples from uncertainty maps. In addition, Fig. 9 reveals the

obvious deficiencies of LSTM and DeepMap in localization

accuracy. The maximum localization error, 6.41 m, is from

LSTM. The comparison demonstrates that the combination of

LSTM and DeepMap contributes to higher precision localiza-

tion. In MapLoc, the augmented training data produced by the

DGP model benefits the location prediction model that uses

LSTM as its backbone. By incorporating historical information

into location estimation via the LSTM model, the localiza-

tion accuracy of the DeepMap model is improved significantly

as well. Based on the collaboration of DeepMap and LSTM,

our proposed MapLoc successfully improves the location esti-

mation accuracy by taking into account the uncertainties of

different signals as well as historical information.
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Fig. 10. CDF of localization errors on the public data set.

We also conduct an experiment using the public data set to

investigate the performance of the proposed MapLoc system.

The CDF of localization errors on the public data set is dis-

played in Fig. 10. The results on the public data set are

similar to those with the Broun Hall data set. MapLoc and

LSTM+DeepMap keep the leading position in the compar-

ison. Even though 50% of location estimation errors are

lower than 1.1 m with both MapLoc and LSTM+DeepMap,

the overall performance of MapLoc is superior to that of

LSTM+DeepMap slightly. Because the artificial signal mea-

surements are sampled from the uncertainty maps, the dis-

tribution of the generated measurements describes the mea-

surement’s quality. As a result, the location prediction model

can learn the reliability of different types of signal measure-

ment, the sets of measurements from different APs and, thus,

improve the accuracy of location estimation. Moreover, LSTM

outperforms DeepMap in the public data set scenario, although

the maximum localization error, 14.26 m, is obtained with the

LSTM method.

The main results in Figs. 9 and 10 are summarized in

Fig. 11. The height of the bars represents mean error, whereas

the black line in each bar represents median error. The location

prediction model of MapLoc, denoted as LSTM in Fig. 11,

and DeepMap, each only contribute to limited accuracy in

location estimation. By combining these methods, the localiza-

tion accuracy is increased significantly. The mean and median

error on the public data set reach 1.342 and 1.145 m, respec-

tively, while the mean and median error on the Broun Hall data

set are 1.374 and 0.94 m, respectively. In MapLoc, the mean

and median error are further reduced by augmenting the train-

ing data set with the artificial data generated by sampling the

uncertainty maps. In the public data set scenario, the mean

and median errors decrease to 1.234 and 1.031 m, respec-

tively. The mean error on the Broun Hall data set reduces

from 1.374 to 1.211 m, whereas the median error reaches

0.9722 m.

To better examine the performance of different localiza-

tion methods, the localization times in the two scenarios are

also presented in Table I. Because LSTM, LSTM+DeepMap,

Fig. 11. Mean and median localization errors on the Broun Hall data set
and the public data set. The bars indicate mean error and the line within each
bar indicates the corresponding median error.

TABLE I
LOCALIZATION TIME

and MapLoc rely on the location predication model to esti-

mate the location of newly received signals, their location

estimation times are much smaller than that of DeepMap.

LSTM+DeepMap and Maploc share the same location

prediction model in terms of system architecture. As a result,

their location estimation times are quite close. The only

distinction between these two approaches is their data gen-

eration method. Uncertainty information is not considered in

LSTM+DeepMap method, but used in MapLoc for training

the position prediction model. Considering that such data gen-

eration is only implemented in the offline training stage, the

location error decreases without the cost of increasing local-

ization delay in the online stage. This is a critical reason why

we introduce uncertainty information to the location prediction

model. Furthermore, because the LSTM location prediction

model excludes the DNNS component, the localization delay

is slightly less than that of MapLoc and LSTM+DeepMap.

DeepMap requires that the freshly received signal measure-

ment be compared to each signal in the generated radio map.

Thus, the size of the indoor environment and the resolution

of the radio map determine the location estimation time of

DeepMap. It takes the longest delay to localize the mobile

device in both cases.

2) Impact of Signal Selection: Previous results show that

the Maploc system outperforms the systems that use LSTM

and DGP separately. By leveraging the samples sampled from

the uncertainty maps to measure the reliability of different

signal sources (e.g., APs), the MapLoc system also beats

the combination of LSTM and DGP. To investigate how the

reliability of signal measurements affects MapLoc’s location
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Fig. 12. Explaining the importance of different signal measurements to the location prediction made by MapLoc system with the Broun hall data set.

Fig. 13. Explaining the importance of different signal measurements to the location prediction made by MapLoc system with the public data set.

prediction and how the location prediction model contributes

to higher accuracy, we conduct experiments with both the

Broun Hall data set and the public data set.

First, a random trajectory is selected for each test data set.

The corresponding signal distribution at the label coordinates

is obtained with the DGP model in the MapLoc system. The

mean and variance of signal measurements from all the avail-

able sources, including magnetic field readings and WiFi RSSI,

are represented by red circles and bars in Figs. 12 and 13.

It is intuitive to suppose that a lower variance represents a

more trustworthy signal measurement, and signal measure-

ments with higher mean values are more likely to influence

the location prediction. To endow the MapLoc system with the

ability to intelligently choose signals, we sample the uncer-

tainty maps to generate artificial signal measurements. We

hope our location prediction model is able to learn how to

recognize effective measurements from invalid and fluctuating

signals. In the experiments, each time we double the mea-

surement from one source in the testing data, to examine the

impact of each signal source (and quality).

As previously stated, the signal measurements in the Broun

Hall data set contain 3 magnetic field components as well as

RSSI readings from 224 WiFi APs. The experiment is repeated

227 times with the same selected trajectory. In each repetition,

we doubled a signal measurement while keeping all the other

measurements the same. The blue line in Fig. 12 depicts the

variations in location errors caused by the doubled signal mea-

surements. By comparing with the signal quality denoted by

the red circles and bars, it is clear that the location prediction

model selects the optimal signal measurements, and the loca-

tion estimation is resilient to most of the noisy signal sources.

As shown in Fig. 12, the first increment of error happens at

signal-2, which is the magnetic field reading’s y-component.

The magnetic measurement is much higher and more stable

than the nearby signals. The next large fluctuation of error

occurs between signal-13 and signal-18. Beyond this range,

the mean value of the signals becomes small, and the location

estimation of the MapLoc system is not much influenced by

these weak signals. The fluctuation in distance errors increase

as the signals rise between signal-55 and signal-60, while the

increase in error disappears between signal-61 and signal-117.

Even though the mean values of the signals between index-

61 and index-117 are much higher than others, the location

prediction model detects the large variances of the signals, so

the location estimation is not significantly affected by these

signals. Another wild rise in location estimation is associated

with signals near index-125, where the signals remain high.

Furthermore, two more error fluctuations occur at signal-161

and signal-227. It is clear that these signals remain stable, and

they are stronger than the nearby signals.

Fig. 13 displays the results on the public data set, which

include 3 magnetic field components and RSSI readings from

75 WiFi APs. Because the number of signal sources in the

public data set is much smaller than that in the Broun Hall

data set, the location prediction model in the public data set

scenario is more sensitive to the introduced noise (i.e., the

doubled signal measurements). Fig. 13 shows the relation-

ship between the error increase and the signal quality. The

largest peak in Fig. 13 corresponds to the y-component of the

magnetic field reading as well, because the signal component

remains stable in a high level status. We also find error fluc-

tuations at signal-6, signal-17, and signal-62. Although these

strong signals cause the location error to increase abruptly,

comparable changes are also introduced by stable signals but

with lower strengths at index-10 and index-71. The loca-

tion prediction model ignores changes in signal measurements

between signal-20 and signal-60. Some signals in this range

are stable, but these weak strength would not cause the degra-

dation of location accuracy. Some signals are strong, but the

location prediction model discards them due to their poor

reliability.

Based on Figs. 12 and 13, we conclude that the proposed

location prediction model in the MapLoc system success-

fully extracts effective signal measurements from the weak
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Fig. 14. Mean localization errors for different values of β.

and fluctuating signals by learning the artificial signal mea-

surements that describe their own reliability. The signals are

selected not only by the average signal strength but also by

the signal stability.

3) Impact of System Parameters: In MapLoc, the auxiliary

loss (12) is used to force the location prediction model to

acquire knowledge from the signal measurement generated by

the DGP model and estimate the unknown location with the

knowledge. A parameter β is introduced to balance the signal

loss from DNNS and the location loss from DNNL. We investi-

gate the effect of β on the MapLoc performance. Fig. 14 plots

the location errors related to different values of β. In both sce-

narios, the accuracy of location estimation progresses when β

is set as 0.8. Even though the mean error from the Broun Hall

data set is slightly decreased as β increases to 1.0, the overall

performance does not enhance significantly with the increment

of β. Intuitively, β is affected by the indoor environment. The

RSSI is reasonable in an open and static environment and

closely follows the signal-to-distance relationship. As a result,

a lower β would be more beneficial to localization. In an

extremely cluttered and complex indoor environment, on the

other hand, a larger β could alleviate the localization problem

as a fingerprinting-like issue. Considering that signal estima-

tion in the location prediction model is a supportive method for

accurate location estimation, we adopted a dynamic approach

to adjust β based on the number of epochs. In the MapLoc

system, the initial value of β is set as 0.6. When more than

200 epochs are completed, β is updated every 100 epochs by

a 0.1 decrease. Eventually, the auxiliary loss would degenerate

into a loss function determined by the location estimation error

exclusively. Fig. 14 exhibits the performance gains contributed

by the dynamic β update approach.

Given that the location prediction model in the MapLoc

system relies on the stacked LSTM network as its backbone,

the window size W plays a crucial role in the accuracy of

location prediction. Intuitively, a longer data sequence would

contain more information for location estimation; nevertheless,

a longer sequence would incur additional system costs, such

as an extra time cost in data collection. To study the effect of

Fig. 15. Localization errors effected by the size of the sliding window.

the sequence length (i.e., window size W), we conduct exper-

iments with different window sizes on both the public and the

Broun Hall data set. Fig. 15 illustrates the errors resulted by

different window sizes. Even though the error in the Broun

Hall scenario is more sensitive to the change of the window

size, the location errors drop with incrased W in both envi-

ronments. When the window sizes are larger than 5, the errors

remain stable. The public data set has the lowest location error

of 1.233 m when the window size is W = 5, and the error

is 1.234 m when the window size is W = 6. Because the

Broun Hall Data set has the lowest distance error, 1.21 m,

when the window size is 6, we set the window size to 6

in the MapLoc system to ease system setup. According to

Fig. 15, the location error rises slightly when the window size

is 7 in both environments. Compared with traditional approach

of forecasting with time series that benefits from long-term

dependencies, location prediction is a special case, where the

prediction is highly related to the most recent historical loca-

tion, and obsolete location information may introduce more

noise. Thus, a suitable sequence length would contribute to an

improved location estimation.

The MapLoc system uses multimodal data as mentioned in

previous sections. With the least amount of data processing,

different types of signal measurements could be introduced

into the system. In this prototype, magnetic field readings are

used as a part of the MapLoc system’s input data. Magnetic

field components from different directions are treated as novel

features of input after the max–min normalization. Fig. 16

illustrates the advancement brought by the bimodal data, which

is composed of both magnetic field and WiFi RSSI mea-

surements. The localization errors of the public data set is

reduced notably. The mean error drops from 1.577 to 1.234 m,

when the magnetic filed data is taken into account, whereas

the decline of median error reaches 0.327 m. A similar phe-

nomenon happened to the Broun Hall data set as well; both

mean error and median error are reduced remarkably. A huge

reduction of the mean error appears when magnetic field read-

ings are used, where the mean distance error decreases from

1.719 to 1.211 m. According to Fig. 16, multisource data
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Fig. 16. Reductions in localization error achieved by utilizing the earth
magnetic field strength map.

Fig. 17. Reductions in localization error achieved with fine-tuning.

improves location accuracy by adding more features to rep-

resent the signal space [44]. In dealing with location-based

problems, different forms of signals would play complemen-

tary roles. Based on the enriched features, our proposed system

compiles and filters information from many sources to enhance

localization accuracy.

In MapLoc, the location prediction model is trained using

the data generated by the DGP model initially, and then fine-

tuned with field-collected data. The data collected from the

field is initially treated as discrete in order to train the DGP

model, and then it is recovered as sequences to fine-tune

the location prediction model. During the offline training, the

resulting DGP model may not be perfect and, thus, the data

sampled by the model is usually defective. To compensate this,

the location prediction model is then fine-tuned at the end of

the training process using field-collected data. The reduction in

localization error achieved by fine-tuning is shown in Fig. 17.

The location errors decrease dramatically in both cases. The

location error decreases from 1.843 to 1.211 m for the Broun

Hall data set and from 1.666 to 1.234 m for the Public data set.

Given that fine-tuning is only employed in the offline training,

Fig. 18. Map quality Q values versus the numbers of latent dimensions on
the public data set.

Fig. 19. Map quality Q values versus the numbers of latent dimensions on
the Broun Hall data set.

the gain in location accuracy brought by fine-tuning would not

cause any additional computational cost in the online location

prediction.

Because the location prediction model is pretrained with

artificial data sampled from the uncertainty maps, the DGP

model is a critical component. To assess the impact of the DGP

model parameters on the quality of the uncertainty map, Q, we

investigate various combinations of latent dimension and num-

ber of inducing points, aiming to find the best configuration

of DGP.

The latent nodes in MapLoc include two sublayers, H1 and

H2. Figs. 18 and 19 show how the maps’ quality Q (defined

in Algorithm 1) is affected by the latent dimensions of the

two sublayers, denoted by L1 and L2, respectively. The latent

dimensions are tuned by gridpoint search in both scenarios.

We first examine the effect of latent dimensions using the pub-

lic data set. Even though the quality of the uncertainty map

increases with larger dimensions of the first layer when the

second layer has six or eight latent dimensions, the relationship

between the latent dimensions and map qualities is ambigu-

ous. As shown in Fig. 18, the uncertainty map reaches the
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TABLE II
MAP QUALITY Q AFFECTED BY THE NUMBER OF INDUCING POINTS

highest value when L1 = 7 and L2 = 7. Also, two similar Qs

are achieved when the latent dimension of the first layer is

L1 = 8. Because all the three Qs are close, there is no clear

advantage to use different latent dimension settings. We try

all the three settings in training the location prediction model

of MapLoc. Since the lowest validation error is reached when

L1 = 8 and L2 = 6, we choose this setting for the public data

set. The previous MapLoc results are all obtained under this

setting.

On the other hand, Fig. 19 reveals that the quality of uncer-

tainty maps, Q, improves with increased latent dimensions of

the second sublayer L2 on the Broun Hall data set. However,

increasing the latent dimension of the first sublayer L1 does

not necessarily improve map quality. We find that increasing

L2 significantly improves the map quality Q when L1 = 11;

whereas increasing L1 does not contribute to further improve-

ment of Q. According to Fig. 19, a gridpoint search yields the

best map quality, i.e., Q = 0.42, for the Broun Hall data set

when L1 = 11 and L2 = 6.

Another key factor effecting the quality of the maps is the

number of inducing points. For the DGP model, we choose

identical numbers of inducing points for different layers to

simplify the setting. Similarly, we evaluate the effect of the

number of inducing points on the quality of the uncertainty

maps with both data sets. Table II presents the map quality Q

obtained by different numbers of inducing points with the pub-

lic data set. According to the table, the worst map quality is

acquired when each layer of the DGP model only includes five

inducing points. Along with the increasing number of induc-

ing points, the map quality keeps enhancing. Even though the

growth rate for the map quality is slow when the number of

inducing points is between 6 and 9, a notable gain is observed

when 10 inducing points of each layer are involved in the

training of the DGP model. Thus, the number of inducing

points is set to 10 for the public data set. The map quality

stops improving as the number of inducing number reaches

11, where the map quality is close to that of the model with

5 inducing points in each layer.

For the Broun Hall data set, Table II reveals a similar trend

regarding the number of inducing points. When the number of

inducing points is fewer than 16, the upward trend in the map

quality Q is conspicuous. The map quality progresses con-

sistently with the increasing number of inducing points. As

shown in Table II, the best map quality is achieved when the

number of inducing points rise to 15. However, if the number

of inducing points exceeds 16, the map quality drops consid-

erably. Therefore, the number of inducing points is set as 15

for the Broun Hall data set.

To evaluate the impact of the number of latent layers on map

quality Q, we used three distinct layer configurations with two

TABLE III
MAP QUALITY Q AND DGP TRAINING TIME VERSUS THE

NUMBER OF LAYERS ON THE PUBLIC DATA SET

TABLE IV
MAP QUALITY Q AND DGP TRAINING TIME VERSUS THE

NUMBER OF LAYERS ON THE BROUN HALL DATA SET

data sets in this experiment. In Tables III and IV, the num-

ber of latent dimensions follows previous setup to simplify

the model structure. We first add a new layer with the same

latent dimension of H1 and then appended a layer with the

same latent dimension of H2. The number of inducing points

is set to 10 for the public data set and 15 for the Broun Hall

data set, respectively. It is evident that increasing the number

of latent layers from 2 to 4 doubles the DGP training time.

However, the map quality Q does not benefit much from the

increased number of latent layers in both scenarios. Intuitively,

adding more layers will help the models extract more features

from training data, but increasing the training and inference

cost. Nevertheless, when dealing with a data set of a limited

size, adding more layers may not always result in enhanced

performance. DGP is used as a data creation tool in this work.

The exact precision is crucial, but it is not the only metric

that we care about. The model assists us in representing the

uncertainty information of APs at various locations for the fol-

lowing location prediction model. The effect of the imperfect

DGP model would be adjusted since the location prediction

model would be fine-tuned with field-collected data. Thus, we

chose a simplified two-layer model in this work to reduce the

cost of DGP training.

VI. CONCLUSION

In this article, we proposed MapLoc, a indoor localization

system using multimodal data. In MapLoc, DGP was used to

regress uncertainty maps describing the signal distribution in

the service area. The artificial signal measurements that rep-

resent their own reliability were generated by sampling the

signal distribution described by the uncertainty maps. In the

artificial data generation, geometry constraints and user motion

patterns were also taken into account. We then presented a
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location prediction model to distinguish the effective signal

measurements from the weak and fluctuating signals by learn-

ing the artificial signal measurements. The location prediction

model leveraged a stacked LSTM network as its backend. The

auxiliary output was utilized to push the model to learn the

signal map in supervised training. The experimental results

demonstrated that the location prediction model was able to

intelligently choose the optimal signals among WiFi RSSI

readings and geomagnetic measurements. Benefiting from the

novel data generation method and location prediction model,

the median error of location estimation in both the data sets

reached centimeter-level accuracy.
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