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Abstract—Federated learning (FL) has recently emerged as a
promising paradigm that trains machine learning (ML) models
on clients’ devices in a distributed manner without the need of
transmitting clients’ data to the FL server. In many applications
of ML (e.g., image classification), the labels of training data need
to be generated manually by human agents (e.g., recognizing and
annotating objects in an image), which are usually costly and
error-prone. In this paper, we study FL with crowdsourced data
labeling where the local data of each participating client of FL
are labeled manually by the client. We consider the strategic
behavior of clients who may not make desired effort in their
local data labeling and local model computation (quantified by
the mini-batch size used in the stochastic gradient computation),
and may misreport their local models to the FL server. We
first characterize the performance bounds on the training loss
as a function of clients’ data labeling effort, local computation
effort, and reported local models, which reveal the impacts of
these factors on the training loss. With these insights, we devise
Labeling and Computation Effort and local Model Elicitation
(LCEME) mechanisms which incentivize strategic clients to make
truthful efforts as desired by the server in local data labeling
and local model computation, and also report true local models
to the server. The truthful design of the LCEME mechanism
exploits the non-trivial dependence of the training loss on clients’
hidden efforts and private local models, and overcomes the
intricate coupling in the joint elicitation of clients’ efforts and
local models. Under the LCEME mechanism, we characterize the
server’s optimal local computation effort assignments and analyze
their performance. We evaluate the proposed FL algorithms with
crowdsourced data labeling and the LCEME mechanism for the
MNIST-based hand-written digit classification. The results cor-
roborate the improved learning accuracy and cost-effectiveness
of the proposed approaches.

Index Terms—Federated Learning, Crowdsourcing, Incentive
Mechanism

I. INTRODUCTION

Federated learning (FL) [1] is an emerging and promising

ML paradigm, which performs the training of ML models

in a distributed manner. Instead of transmitting data from a

potentially large number of devices to a central server in the

edge or cloud for training, FL allows the data to remain at

devices (such as smartphone), and trains a global ML model

on the server by collecting and aggregating model updates

locally computed on each device based on her local data. One
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significant advantage of using FL is to preserve the privacy

of individual device’s data. Moreover, since only local ML

model updates, instead of local data, are sent to the server,

the communication costs can be greatly reduced. Furthermore,

FL can exploit the substantial computation capabilities of

ubiquitous smart devices, which are often under-utilized. As a

result, FL can achieve collaborative intelligence, which can

enable many AI applications based on networked systems,

such as connected and autonomous vehicles, collaborative

robots, multi-user virtual/mixed reality.

Recent studies on FL typically focus on supervised learning,

which requires a large amount of training data with data

labels in the learning process. In many applications of ML,

data labels have to be generated manually by human users.

For example, for image classification, the object in an image

should be recognized and annotated by a human user as the

label of the image data. Therefore, as FL does not allow a

client to share her local data with the server or other clients,

to participate in FL, a client needs to manually label her

local data (e.g., images), before she can compute local model

updates from her locally labeled data.

However, data labels generated by human clients of FL are

subject to errors. For example, a client may misclassify a dog

as a cat. As a result, this incorrect data label will lead to error

in the local model, and thus error in the global model obtained

by the FL server. Moreover, the labeling error rate of a client

generally varies for different clients, depending on the client’s

knowledge level of the labeling task. For example, a client

who is familiar with dogs will have a lower labeling error rate

than another client who is not. Furthermore, the accuracy of

data labels is also affected by a client’s effort made in the data

labeling task. The data label error rate will be low when the

client makes much effort in labeling the data, and otherwise is

high when the client makes little or no effort. For example, a

client may make no effort in image classification by randomly

guessing the object in an image without actually recognizing it.

While a client’s effort impacts the accuracy of her data

labels, the effort can be her hidden action that is only known

by the client herself and cannot be observed by the FL server.

Due to the inaccurate nature of data labels, a strategic client

may label her local data arbitrarily without making effort

in data labeling, while the server will not be able to verify

whether effort is actually made or not. Moreover, the effort
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made by a client in computing her local model update, which

can be quantified by the mini-batch size used by the client

in stochastic gradient descent, can also be the client’s hidden

action that cannot be verified by the server. As a result, a

client may have incentive to compute her local update with

a small mini-batch size so as to reduce her resources used in

local computation. Furthermore, the local model computed by

a client from her local data can also be her private information

that she can manipulate in favor of herself, e.g., a client may

increase or decrease her true local model and report it to the

server.

In the presence of such strategic clients with hidden data

labeling and local computation efforts and private local mod-

els, our goal is to incentivize the clients to make truthful

efforts as desired by the FL server and reveal their true local

models. Such a truthful incentive mechanism is desirable as

it eliminates the possibility of manipulation, which would

encourage clients to participate in FL. More importantly, the

truthful elicitation of clients’ efforts and local models ensures

that the FL server can obtain a global model with high and

guaranteed accuracy from the learning process, which is a key

performance metric of FL.

The joint elicitation of data labeling effort, local com-

putation effort, and local models for FL calls for a new

design that is very different from existing truthful mechanisms.

First, the training loss of the global model obtained from FL

has a non-trivial dependence on clients’ exerted efforts and

reported models. As a result, existing incentive mechanisms

for effort and data elicitation do not work for the problem here.

Second, due to the complex relationship between the impacts

of labeling effort, computation effort, and local models on the

training loss, the joint elicitation of effort and models needs

to overcome the coupling therein. Third, given the truthful

incentive mechanism for effort and model elicitation, the FL

server needs to determine how much effort should be made

by each client, in order to maximize the server’s payoff.

The main contributions of this paper are as follows.

• We propose an FL framework with crowdsourced data

labeling based on a truthful incentive mechanism, where the

labels of a client’s local training data for FL are manually

generated by the human client and are subject to errors.

We consider strategic clients whose actual efforts in data

labeling and local model computation as well as actual local

models cannot be verified by the FL server.

• We first characterize the performance bounds on the training

loss as a function of clients’ data labeling effort, local

computation effort (quantified by the mini-batch size), and

reported local models. It shows that the labeling and compu-

tation efforts as well as the reported models have non-trivial

impacts on the training loss. Based on the obtained insights,

we develop the Labeling and Computation Effort and Local

model Elicitation (LCEME) mechanism which incentivize

clients to truthfully make efforts in data labeling and local

computation, and report local models. The truthful design

of the LCEME mechanism overcomes the intricate coupling

in the joint elicitation of labeling effort, computation effort,

and local models. Based on the LCEME mechanism, we

then characterize the optimal computation effort assignment

for maximizing the FL server’s payoff.

• We evaluate the proposed FL with crowdsourced data label-

ing for the MNIST-based hand-written digit recognition. The

results demonstrate that the proposed algorithms outperform

the methods that do not consider data labeling errors or do

not use an incentive mechanism.

The remainder of this paper is organized as follows. Section

II reviews the related work. In Section III, we describe the sys-

tem model and formulate the problem of incentive mechanism

design. In Section IV, we study the performance bound on the

training loss. In Section V, we devise the LCEME mechanism

and the server’s optimal effort allocation. Simulation results

are presented in Section VI. Section VII concludes this paper.

II. RELATED WORK

Incentive Mechanism for Federated Learning. FL has

emerged as a disruptive computing paradigm for ML by

democratizing the learning process to potentially many in-

dividual devices. Most existing studies on FL have focused

on algorithm design for FL, such as for reducing the local

model drifts across non-IID clients and participating clients

selection. Meanwhile, there have been several recent works

on computation and communication resource allocation for

FL [2]–[9]. On the other hand, a few recent works studied

incentive mechanisms [10]–[20] for FL that take into account

participating clients’ strategic behavior. In particular, most of

these works considered compensating clients’ communication

and computation costs with an economic approach, such

as Stackelberg game [14], auction theory [15], cooperative

game [16], [17], and contract theory [18], [19]. However, all

these prior works have focused on either incentivizing clients’

participation via cost compensation, or truthfully eliciting

clients’ participation costs. [20] proposed VCG-based mech-

anisms that incentivize clients to truthfully report their local

models. In contrast, this paper studies incentive mechanisms

for truthful elicitation of clients’ local models as well as their

efforts in data labeling and local computation.

Truthful Incentive Mechanism for Effort and Data Elici-

tation. There have been lots of research on incentive mech-

anisms for various applications of data collection and pro-

cessing, particularly for data crowdsourcing [21]–[30]. Many

incentive mechanisms incentivize agents to truthfully reveal

their participating cost, where the cost is considered to be

private for an agent that may not be revealed truthfully

without appropriate incentive. There have been studies on

truthful mechanism design for hidden efforts in economics

literature [31], which is concerned with strategic agents that

can make hidden efforts not desired by a principal who recruits

the agents to work on a task. A few recent works have studied

this problem in the context of crowdsourcing [27], [32]–[35].

Mechanism design for truthful elicitation of strategic agents’

data (e.g., opinions) has been extensively studied in various

applications (e.g., [36]), more recently for crowdsourcing [27],

[32], [34], [35], [37]. The data of an agent can be private
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Fig. 1. Schedule of FL with crowdsourced data labeling based on a truthful incentive mechanism.

information that the agent can manipulate in favor of her

benefit. Different from existing works, in this paper, we focus

on FL and aim to design truthful mechanisms that jointly elicit

clients’ hidden efforts in data labeling and local computation

and private local models. The truthful mechanism design is

non-trivially different from existing works, due to 1) complex

dependence of the training loss on clients’ data labeling

and local computation efforts and local models; 2) intricate

coupling in joint elicitation of the clients’ efforts and models.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe a FL system with crowd-

sourced data labeling based on a truthful incentive mechanism

(as illustrated in Fig. 1), and then present the design objectives

for truthful incentive mechanisms.

A. FL with Crowdsourced Data Labeling

Consider the following FL problem:

min
w

F (w) �
N∑

i=1

piFi(w), (1)

where Fi(w) is defined by

Fi(w) �
1

D̃i

D̃i∑

m=1

f(w; ξim),

f(·) is the per-sample loss function of client i, N � |N | is the

number of clients, pi is the weight of client i,
∑

i∈N pi � 1,

Di = {ξi1, ξ
i
2, . . . , ξ

i
D̃i

} is client i’s local dataset for updating

the model parameter, and D �
∑N

i=1 D̃i. Without loss of

generality, for ease of exposition, we assume that all clients

have the same per-sample loss function f(·).
Data Labeling. To participate in FL, each client needs to

have a labeled local dataset Di. In this paper, we assume the

clients collaboratively train for classification tasks, where each

client needs to label her local dataset (i.e., classify the local

data samples based on the features of data). After finding the

classification labels, each client i ∈ N obtains the local dataset

Di.

For simplicity, we assume that each client has two strategies

for the labeling effort ei ∈ {0, 1}, where ei = 1 and ei = 0
indicate making and not making effort, respectively. If client

i makes effort, then the labels in her dataset are correct;

otherwise, the labels are randomly selected from all possible

classes without considering the corresponding features. We

know that an ML model trained on a correctly labeled dataset

is more likely to make useful predictions than a model trained

on incorrectly labeled data. Therefore, making effort ei = 1
means higher accuracy of the trained model than not making

effort (We prove this intuition in Section IV.). We assume that

every client can fully control the amount of effort they make,

and the server does not have such information.

Local Model Computation. In each round of FL, clients

communicate their local updates to the server and receive

the updated global model from the server. In round t,1 each

client i receives the global model wt−1 from the server, sets

w
i
t,0 = wt−1, and then performs H local iterations of SGD. In

the hth local iteration, client i computes the average gradient

git,h−1 of the loss function using a mini-batch of Di data

samples randomly drawn from her local dataset Di. Then client

i updates her local model as

w
i
t,h = w

i
t,h−1 − ηgit,h−1,

where

git,h−1 �
1

Di

Di∑

j=1

∇f(w, ξ
i,j
t,h),

η is the step size, and ξ
i,j
t,h is the jth data sample randomly

drawn from client i’s local dataset Di. After H local iterations,

client i sends her local update w
i
t,H for round t to the server.

The computation effort Di represents the mini-batch size

client i uses to update her local model in each round. Due to

the randomness of data sampling for computing the update in

SGD, the computed gradient of a client could deviate from

the expected gradient, and thus slow down the convergence of

the FL global model. It has been proved that the larger the

mini-batch size Di, the lower the variance of her local update

[38]. Thus, a local update computed with a larger mini-batch

size benefits the FL training.

At the end of round t, the server aggregates clients’ local

models and updates the global model as

wt =
N∑

i=1

piw
i
t,H .

Effort Assignment. Before data labeling and local computa-

tion, the server assigns the labeling effort e′i and computation

effort D′
i to each client i and notifies client i of e′i and D′

i. The

labeling effort e′i ∈ {0, 1} indicates whether the server desires

client i to make effort in labeling, and the computation effort

D′
i indicates the mini-batch size that the server desires client

i to use to update her local model in each round. Clients’

effort assignments generally vary for different clients due to

1We use t and h as the index of communication rounds and local iterations,
respectively. The subscript (t, h) denotes the hth local iteration in round t.
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their diverse characteristics (e.g., weight in model aggregation,

computation capability).

After being assigned effort e′i, each client i generates labels

for the local dataset by making actual effort ei. Since ei is a

hidden action of client i, it is possible that client i manipulates

ei against the assignment e′i to her own advantage such that

ei �= e′i.

Furthermore, a client incurs a computation cost (measured

by the computation time, energy consumption, etc.) for com-

puting a local model update, which depends on the compu-

tation capability of the client and the mini-batch size used to

compute the update. Thus, client i may also have incentive to

manipulate Di against the assignment D′
i to her own advantage

such that Di �= D′
i.

Local Model Reporting. When reporting the local model to

the server, a client i may have incentive to misreport her local

model to her own advantage, i.e.,

w
i
t = wt−1 − γiηg

i
t−1,

where γi ≥ 0, ∀i ∈ N is the model reporting coefficient,

which is the multiple of the gradient client i uses to update

her local model2. When γi = 1, client i reports the actual

local model to the server, which is desired by the FL server.

When γi �= 1, the gradient is reduced or increased. In this

case, the trained model of FL will be affected, and thus the

training loss F (w). It is possible that client i manipulates γi
to her own advantage such that γi �= 1.

B. Truthful Incentive Mechanism for FL

After the training process, the FL server tests the trained

global model of FL to a data sample ξ randomly drawn from

a testing dataset D0. It is commonly assumed in existing

studies that the FL server can test the trained FL model

(e.g., [18], [39]). Then the server can determine each client’s

reward based on the testing loss f(wT , ξ) observed for the

testing data sample ξ. Note that the server only needs to

test the trained model to a single random data sample from

D0. For example, the testing can be performed when the

server applies the trained model to an unseen data sample

for inference/prediction and observes its true label later.

Based on the testing loss f(wT , ξ), the server pays a reward

ri to each client i, according to a certain reward function:

ri(e
′
i, e

′
−i, D

′
i,D

′
−i, γ

′
i,γ

′
−i, f(wT , ξ)), (2)

where e′−i, D
′
−i, and γ′

−i are other clients’ assigned data la-

beling and computation effort, and model reporting coefficient,

respectively. The reward function is pre-defined by the server

and announced to all clients before they participate in FL.

We can see that the reward depends on not only the assigned

efforts and model reporting coefficient but also the testing loss

of the final global model.

Each client i’s payoff is the difference between the reward

paid by the server and her cost in data labeling and computing

her local model, given by

2In this paper, we assume that clients’ strategies do not change over time
in FL training.

ui(ei, e
′, Di,D

′, γi,γ
′) �

ri(e
′
i, e

′
−i, D

′
i,D

′
−i, γ

′
i,γ

′
−i, f(wT , ξ))− cilei −

T∑

t=1

cipDi,

where e′, D′, and γ′ are clients’ assigned data labeling

effort, computation effort, and model reporting coefficient,

respectively. The data labeling cost coefficient cil captures the

resources consumed by client i if she makes an effort, i.e.,

ei = 1, in data labeling, and the computation cost coefficient

cip is client i’s cost of computing her local update using one

data sample. If client i makes no effort in data labeling,

i.e., ei = 0, there incurs no data labeling cost. Here we

assume that clients have the same data labeling cost coefficient

(i.e., cl = cil , ∀i ∈ N ), and the labeling and computation

cost coefficients are known to the server. This assumption is

reasonable when the costs of labeling a client’s dataset and

computing using a data sample are determined by uniform

market prices (e.g., in Amazon Mechanical Turk, a usual

reward for labeling an image is $0.1). A client’s computation

cost is affected by her computation cost coefficient cip and

computation effort D′. We can also relax the restriction of

the uniform labeling cost coefficient. Since a client i can only

affect the training loss through her actual ei, Di, and γi, we

omit the loss function f(wT , ξ) in the expression of client i’s

utility ui. The detailed reward function design will be given

in Section V.

The server’s payoff u0 is the negative training loss minus

the total reward paid to the clients, i.e.,

u0(e
′,D′,γ′, f(wT , ξ)) � −f(wT , ξ)−

∑

i∈N

ri. (3)

Since clients may manipulate their actual efforts and report

untruthful local models, the global model may be different

from that when clients do not behave truthfully, i.e.,

wT |e′,D′,γ′ �= wT |e,D,γ .

This means that the final global model obtained with efforts

and reported local model manipulation cannot solve the FL

problem given in (1). Nevertheless, the training loss of FL is

also affected, i.e.,

F (wT )|e′,D′,γ′ �= F (wT )|e,D,γ .

Furthermore, some clients’ manipulation would discourage

other clients to participate in FL. For the reasons discussed

above, here we aim to design a mechanism that can incentivize

clients to make data labeling and computation efforts as the

server desired and upload their actual local models. This can

be achieved by properly defining the reward function ri. The

truthful mechanism should have the following features:

Definition 1: A mechanism achieves truthful strategies of

all clients as a Nash equilibrium (NE) if, given that all other

clients truthfully make data labeling and computation effort

as the server desired and upload their actual local models, the

best strategy for client i to maximize her payoff is to behave

truthfully, i.e.,

E[ui(e
′
i, e

′
−i,D

′
i,D

′
−i, γ

′
i,γ

′
−i)] ≥

E[ui(ei, e
′
−i, Di,D

′
−i, γi,γ

′
−i)], ∀ei, Di, γi. (4)

We should also notice that the payoff of each client i should
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be non-negative so that the client will have the incentive to

participate. This property is known as individual rationality.

Definition 2: A mechanism is individually rational (IR) if

for each client i, its expected payoff is non-negative if she

behaves truthfully, i.e.,

E[ui(e
′
i, e

′
−i, D

′
i,D

′
−i, γ

′
i,γ

′
−i)] ≥ 0, ∀ei, Di, γi. (5)

IV. TRAINING LOSS ANALYSIS

In this section, we characterize the performance bounds on

the training loss as a function of clients’ data labeling effort,

local computation effort, and reported local models, which

reveal the impacts of these factors on the training loss.

We first make the following general assumptions on the loss

functions F1, . . . , FN , ∀i ∈ N .

Assumption 1: F1, . . . , FN are L-smooth.

Assumption 2: F1, . . . , FN are μ-strongly convex.

Assumption 3: The variance of the stochastic

gradient of a data sample in a device is bounded:

E
∥
∥∇f

(
wt, ξ

i
m

)
−∇Fi (wt)

∥
∥
2
≤ σ2

i , ∀i ∈ N , ∀t.
Assumption 4: The variance of the stochastic gradient of a

data sample when the client makes no effort on labeling is

bounded: E
∥
∥
∥∇f

(
wt, ξ

i
m

)
−∇f

(

wt, ξ
i
m

′
)∥
∥
∥

2

≤β, ∀i∈N , ∀t.

Assumption 5: The expected squared norm of stochastic

gradients is bounded: E ‖∇Fi (wt)‖
2 ≤ G2, ∀i ∈ N , ∀t.

In Assumption 4, we assume that the variance of the

stochastic gradient of a data sample when the client makes no

labeling effort is upper bounded, and the bound β is known by

the server. The server can calculate the bound using the loss

function and the range of data’s value. Next, we use a simple

example to demonstrate how to obtain the bound β. We use

a simple linear regression model to illustrate the convergence

problem. Assume that the loss function is given by

f
(
w, ξim

)
=

1

2
‖xi

mw − yim‖2, ∀i ∈ N .

A data sample with correct and incorrect labels are denoted

as ξim = (xi
m, yim) and ξim

′
= (xi

m, yim
′
), respectively.

The variance of the stochastic gradient of a data sample is

E
∥
∥
∥∇f

(
w, ξim

)
−∇f

(

w, ξim
′
)∥
∥
∥

2

=‖(xi
mw − yim)xi

m − (xi
mw − yim

′
)xi

m‖2

=‖(yim
′
− yim)xi

m‖2 ≤ 2Y X,

where yim
2
≤ Y and ‖xi

m‖2 ≤ X . Then we have β = 2Y X .

Theorem 1: Suppose Assumptions 1 to 5 hold, and the step

size η ≤ 1
2L . Then the FL training loss is bounded above by:

E[F (wT )− F (w∗)] ≤ L(1− μη)THE ‖w0 −w
∗‖2

+ 2Lη2
T∑

t=1

H∑

h=1

(1− μη)TH−(t−1)H−h

∑

i∈N

(

pi
2 σ

2
i

Di

+ 6Lpidi + pi(1− ei)β

+2pi
(
(γi−1)2+(H−1)2

)
(

G2 +
σ2
i

Di

+ (1− ei)β

))

, (6)

where di � E[Fi(w
∗)]−E[Fi(w

∗
i )] quantifies the heterogene-

ity degree of the data held by client i [40].

The proof is given in Appendix A.

Remark 1: The first term of the training loss bound de-

creases geometrically with the total number of local iterations

TH , and is due to that SGD in expectation makes progress

towards the optimal solution. The bound is also affected by

other factors, i.e., the randomness of data sampling in SGD

for computing local updates p2i
σ2

i

Di
, the data heterogeneity of

clients’ data pidi, the data labeling effort level of each client

pi(1− ei)β, the local model misreporting γi, and the number

of local iterations per round H . We can see that any γi �= 1,

i.e., any client untruthfully reports her local model, increases

the training loss bound. Thus, it is desired that all clients report

their actual local model (i.e., γi = 1, ∀i ∈ N ) to minimize the

training loss. Moreover, as the coefficients in the training loss

bound depend on the aggregation weight pi, a client with a

higher weight pi has a larger impact on the training loss than

that with a lower weight pi.

Remark 2: The randomness of data sampling in SGD

for computing local updates affects the training loss, which

depends on each client’s mini-batch size Di in each iteration

(i.e., computation effort). We can observe that a larger mini-

batch size Di reduces the training loss. The terms involving

ei depend on the data labeling effort of each client. If client i

makes effort in data labeling, these terms equal 0; otherwise,

if client i makes no effort in data labeling, these terms equal

piβ. Thus, it is desirable that all clients make data labeling

effort (i.e., ei = 1, ∀i ∈ N ) to minimize the training loss.

V. TRUTHFUL INCENTIVE MECHANISMS FOR DATA

LABELING EFFORT, LOCAL COMPUTATION EFFORT, AND

LOCAL MODEL ELICITATION

In this section, we propose the LCEME mechanism that

satisfies the truthful and IR properties to incentivize clients to

make efforts as the server desired and report actual local mod-

els. Then, we find the optimal computation effort assignment

under the LCEME mechanism that maximizes the server’s

payoff.
A. LCEME Mechanism Design

We first present the design of the LCEME mechanism.

Definition 3: Given the data labeling effort assignment e′i =
1, the model reporting coefficient assignment γ′

i = 1, and any

computation effort assignment D′
i, the LCEME mechanism’s

reward function for client i, ∀i ∈ N , is given by

ri(e
′
i,e

′
−i, D

′
i,D

′
−i, γ

′
i,γ

′
−i, f(wT , ξ))

= Ω(D′)− Φ(D′
i)f(wT , ξ) + cl,

(7)

where
Ω(D′) = Φ(D′

i)
(

L(1− μη)THE ‖w0 −w
∗‖2 +

A
∑

i∈N

(6Lpidi + pi
2 σ

2
i

D′
i

+ 2pi(H − 1)2(G2 +
σ2
i

D′
i

))

)

+ TcipD
′
i,

e′ = 1
1×N , γ′ = 1

1×N , Φ(D′
i) =

D′

i
2
cipT

Aσ2

i
pi(pi+2(H−1)2)

,

A = 2Lη 1−(1−μη)TH

μ
, and the assigned computation effort

D′
i satisfies D′

i ≥ σi

√
clpi(pi+2(H−1)2)
βcipT (1+2(H−1)2) .
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Note that the reward function depends on the testing loss

which is observed by the server. In this paper, for ease of

exposition, we assume that the expected testing loss is equal

to the training loss. This assumption is reasonable: in practice,

the entire training dataset of FL (i.e., ∪N
i=1Di) is often a good

representation of the testing dataset D0, so that the expected

testing loss is well approximated by the training loss. Based

on this assumption, the expected payoff of client i is given

by:

Eξ[ui(ei, e
′
−i, Di,D

′
−i, γi,γ

′
−i)]

= Eξ[ri(e
′
i, e

′
−i, D

′
i,D

′
−i, γ

′
i,γ

′
−i, f(wT , ξ))]− clei − TcipDi

= Ω(D′)− Φ(D′
i)F (wT ) + cl − clei − TcipDi (8)

where ξ is a random data sample drawn from the testing

dataset D0.

Next, based on Theorem 1, we approximate the expected

training loss F (wT ) in terms of the optimal training loss

F (w∗) plus the upper bound on the training loss gap given

in the right-hand-side of (6). Then we assume that each client

uses ûi as her expected payoff function, where ûi is defined

as (8) with F (wT ) replaced by the right-hand-side of (6) (the

optimal training loss term F (w∗) is omitted as it does not

affect the truthful mechanism design). This is a reasonable

assumption since 1) a client cannot find the expected training

loss F (wT ), but can find the upper bound in (6); 2) using the

upper bound on the training loss gap can capture the worst

case of the client’s expected payoff. Therefore, in the rest of

this paper, each client determines her strategic behavior for

maximizing the payoff function ûi.

Next, we use two theorems to prove that the LCEME

mechanism satisfies the truthful and IR properties, with respect

to the clients’ payoff functions ûi.

Theorem 2: The LCEME mechanism is truthful.

We show how the LCEME mechanism achieves the truthful

property using three lemmas.

Lemma 1: Under the LCEME mechanism, given that client

i makes any data labeling effort ei and computation effort Di,

her optimal reported local model is her true local model, i.e.,

γi = 1.

It can be shown that the expected payoff of client i is a

convex function of γi. We can obtain the result of Lemma 1

by calculating the partial derivative of the expected payoff of

client i with respect to γi and letting the derivative equal 0.

Using Lemma 1, we can express client i’s approximated

expected payoff ûi as

ûi(ei, Di, D
′
i) = Φ(D′

i)A(pi
2 σ

2
i

D′
i

+ 2pi(H − 1)2
σ2
i

D′
i

) + TcipD
′
i

− Φ(D′
i)A

(

p2i
σ2
i

Di

+ pi(1− ei)β

+2pi(H − 1)2(
σ2
i

Di

+ (1− ei)β)

)

+ cl − clei − TcipDi.

Lemma 2: Under the LCEME mechanism, given that clients

report their optimal local models γi = 1, ∀i ∈ N , and client i

makes any computation effort, client i’s optimal actual effort

is the desired effort, i.e., ei = 1.

Then, we show that, when client i makes any labeling effort,

her expected payoff is always lower than that when she makes

effort:
ûi(1, Di, D

′
i)− ûi(ei, Di, D

′
i)

=
D′

i
2
cipT (1 + 2(H − 1)2)

σ2
i p

2
i (pi + 2(H − 1)2)

pi(1− ei)β − cl + clei

=(
D′

i
2
cipT (1 + 2(H − 1)2)β

σ2
i pi(pi + 2(H − 1)2)

− c)(1− ei)

≥(c− c)(1− ei) ≥ 0,
where the inequality follows from the constraint on D′

i.

Using Lemma 1 and Lemma 2, we can express client i’s

approximated expected payoff ûi as

ûi(Di, D
′
i) =− Φ(D′

i)A(p
2
i

σ2
i

Di

+ 2pi(H − 1)2
σ2
i

Di

)− TcipDi

+Φ(D′
i)A(pi

2 σ
2
i

D′
i

+ 2pi(H − 1)2
σ2
i

D′
i

) + TcipD
′
i.

Lemma 3: Given that clients report their optimal local

models γi = 1 and make effort in data labeling ei = 1,

∀i ∈ N , client i’s optimal actual computation effort is the

desired computation effort, i.e., Di = D′
i.

Now that the expected payoff is a convex function of client

i’s actual computation effort Di, we can obtain client i’s

optimal actual computation effort Di by calculating the partial

derivative of the expected payoff of client i with respect to

Di and letting the derivative equal to 0, which is the desired

computation effort D′
i.

Given the definition of truthful mechanisms (Definition 1),

the LCEME mechanism is truthful. �

Theorem 3: The LCEME mechanism is IR.

The proof is given in Appendix B.

Remark 3: Here we discuss the rationale of the LCEME

mechanism. The server’s goal is to incentivize clients to make

actual data labeling and computation effort as desired by the

server and report their true local models. Thus, client i’s

reward function ri should be a function of her actual efforts (ei
and Di) and model report coefficient (γi). Otherwise, clients

can deceive the server to gain more rewards. Thus, we design

the reward function as a function of the training loss, which

has been proved to be determined by clients’ actual efforts and

model reporting strategies in Theorem 1. In the refined reward

function, client i’s optimal strategy to maximize her expected

payoff is to make data labeling and computation efforts as

desired by the server and report her actual local model.

B. Optimal Computation Effort Assignment

A desirable objective for the server is to find the optimal

assignment that maximizes her expected payoff.

Definition 4: The server’s optimal assignment D∗ for

LCEME mechanism is the assignment function D′ that max-

imizes the server’s payoff, i.e.,

D∗ � argmax
D′

E[u0(D
′, f(wT , ξ))]

s.t. D∗
i ≥

√

clσ
2
i pi(pi + 2(H − 1)2)

βcipT (1 + 2(H − 1)2)
, ∀i ∈ N .

(9)
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The constraint in (9) is to make sure that the LCEME

mechanism is truthful.

The problem given in (9) is equivalent to the problem:

D∗ � argmin
D′

{

F (wT )− F (w∗) +
∑

i∈N

ri

}

,

s.t. D∗
i ≥

√

clσ
2
i pi(pi + 2(H − 1)2)

βcipT (1 + 2(H − 1)2)
, ∀i ∈ N ,

(10)

where F (w∗) can be seen as a constant.

From the above problem formulation, we observe that there

exists a tradeoff between the FL training loss and the server’s

payment to clients. We know that the training loss reduces

when clients use larger mini-batch sizes to compute their local

updates from Theorem 1. However, using larger mini-batch

sizes increases the server’s payment. Therefore, we aim to find

the optimal computation effort (in the form of mini-batch size)

assignment for each client to maximize the server’s payoff.

Theorem 4: The server’s optimal computation effort alloca-

tion is given by

D∗
i = max

{√

A(p2iσ
2
i + 2pi(H − 1)2)

cipT
,

√

clσ
2
i pi(pi + 2(H − 1)2)

βcipT (1 + 2(H − 1)2)

}

, ∀i ∈ N .

The proof is given in Appendix C.

Remark 4: From Theorem 4, we can see that the server’s

optimal computation effort for a client i increases with her

weight pi and gradient variance σ2
i . This is because when

client i has a larger pi and/or σ2
i , the effect of the randomness

of her SGD computation per data sample on the global model

will be larger. From Theorem 1, we know that a larger mini-

batch size Di reduces the randomness of data sampling in

SGD. Thus, assigning a larger computation effort for client i

can reduce the training loss. We also see that D∗
i decreases

as client i’s computation cost cip increases. This is because a

larger computation cost increases the reward paid by the server.

When a client’s computation cost is large, the server prefers

to allocate a smaller mini-batch size to the client to reduce the

payment. We can also show that a client’s optimal mini-batch

size increases as the number of local iterations H increases.

This is because a local update’s quality can be improved by

using a larger mini-batch size, and thus reduce the error caused

by performing multiple local iterations.

VI. SIMULATION RESULTS

In this section, we conduct real data based simulations

to validate the theoretical findings and evaluate the LCEME

mechanism. We first describe the simulation setups, and then

we present the evaluation results and analyses.

We implement a simulated system consisting of a server and

10 clients. We use the widely used MNIST dataset [41] for

simulations in Matlab. Each training element is a handwritten

digit picture that represents numbers from 0 to 9. Each client

conducts one layer of CNN for one local iteration in each

round (H = 1). We denote the heterogeneity degree of a

client’s dataset as the percentage of data with labels the same

as the last digit of the client’s index. For the remaining data

of the client, we uniformly draw the training data samples

from the entire training set. Unless otherwise specified, client

i’s heterogeneity degree is 0.4, and the mini-batch size is

Di = 50.

A. Impact of Clients’ Strategies on Training Loss

We first compare the training loss while clients’ data la-

beling and computation efforts changes. From Figs. 2 and 3,

we can see that the training loss decreases and the model

accuracy increases as Di increases. We also observe that when

there exist clients who make no effort in data labeling, the

training loss increases, and the model accuracy decreases.

The observations conform to our theoretical result in Theorem

1. We also compare the training loss while clients report

local models with different model reporting coefficients and

truthfully make efforts. We observe from Figs. 4 and 5 that

the training loss is minimized when all clients report their

actual local model. When there exist clients report local

model untruthfully, the training loss increases, and the model

accuracy decreases. This conforms to the result in Theorem

1 that the more clients truthfully report local models, the

lower the training loss. We also observe that, although the

training loss bounds are the same when γi = 0 and γi = 1,

the training loss is lower when γ = 0. Figs. 2, 3, 4, and

5 demonstrate that, when clients truthfully make efforts and

report local models, the training loss is minimized and the

model accuracy is maximized.

B. Impact of Truthfulness on Clients’ Payoff

We compare a client’s payoff while making the desired

data labeling effort e1 = 1 or not e1 = 0, and reporting the

actual local model γ1 = 1 or not γ1 �= 1, as the computation

effort D1 changes. The assigned computation effort D′
1 = 60.

We let other clients behave truthfully. We observe from Fig.

6 that a client’s payoff, when she makes data labeling and

computation effort as the server desired and reports actual

local model, is always higher than that when her behavior

is untruthful. Furthermore, we also observe that the client’s

payoff is positive when she behaves truthfully. The simulation

results demonstrate that the LCEME mechanism is truthful

and achieves the IR property.

C. Server’s Payoff

We compare the server’s payoff while clients make differ-

ent computation efforts. From Fig. 7, we can see that the

server’s payoff is maximized when clients make the server’s

optimal computation effort. When clients do not make the

optimal computation effort, the server’s payoff is lower even

if the total computation effort of clients is the same as the

optimal computation effort allocation. This is because, in the

former case, the computation effort allocation does not care

about clients’ heterogeneous computation cost and thus causes

higher computation costs. We also simulate the case where

clients’ computation effort Di = 100 is always higher than

the optimal computation effort. We observe that among three
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Fig. 2. Impact of effort level on the training loss.
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Fig. 3. Impact of effort level on the model accu-
racy.
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Fig. 4. Impact of model reporting coefficient on
the training loss.
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Fig. 5. Impact of model reporting coefficient on
the model accuracy.
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Fig. 7. Impact of computation effort allocation on
server’s payoff.

cases, this case results in the lowest server’s payoff. This is

because clients’ computation costs are ignored when assigning

Di, resulting in an increase in the server cost.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied FL with crowdsourced data labels,

where the local data of each participating client are labeled

manually by the client. We characterized the performance

bounds on the training loss as a function of clients’ data

labeling effort, local computation effort, and reported local

models. We then devised truthful incentive mechanisms which

motivate strategic clients to make truthful efforts as desired

by the server in data labeling and local model computation,

and also report true local models to the server based on the

derived performance bound. Simulations based on real data

demonstrated the efficacy of the proposed algorithms.

For future work, we will extend our study to more general

settings. In this paper, we studied truthful mechanism design

under the assumption that clients’ costs are known to the

server. The mechanism design problem where clients’ costs

are also private is more practical but challenging. Another

direction is to consider partial participation of clients. In this

case, the truthful mechanism design and the optimal labeling

effort assignment will be different.
APPENDIX

A. Proof of Theorem 1

We define a virtual sequence w̄t,h, given by w̄t,h =
∑

i∈N piw
i
t,h, ∀t, h. Note that w̄t,h is not accessible when

clients have not completed H local iterations (i.e., h < H),

and wt = w̄t,H .

‖w̄t,H −w
∗‖2 =

∥
∥
∥
∥
∥
w̄t,H−1 −w

∗ − η
∑

i∈N

γipig
i
t,H−1

′

∥
∥
∥
∥
∥

2

≤

2 ‖w̄t,H−1−ηḡt,H−1−w
∗‖2

︸ ︷︷ ︸

A1

+2

∥
∥
∥
∥
∥
ηḡt,H−1−η

∑

i∈N

γipig
i
t,H−1

′

∥
∥
∥
∥
∥

2

︸ ︷︷ ︸

A2

(11)
where git,h

′
is the gradient when client i makes any data

labeling effort, ḡt,h �
∑

i∈N piḡ
i
t,h �

∑

i∈N piE[git,h], and

git,h is the gradient when client i makes data labeling effort.

A1 =

‖w̄t,H−1 −w
∗‖2 + η2‖ḡt,H−1‖

2

︸ ︷︷ ︸

B1

− 2η 〈w̄t,H−1 −w
∗, ḡt,H−1〉

︸ ︷︷ ︸

B2

.

(12)
For B2, we have

B2 = −2η
∑

i∈N

pi〈w̄t,H−1 −w
i
t,H−1, ḡ

i
t,H−1〉

− 2η
∑

i∈N

pi〈w
i
t,H−1 −w

∗, ḡit,H−1〉.

We use the convexity of ‖·‖2 and the L-smoothness of Fi

to bound B1, the Cauchy-Schwarz inequality and AM-GM

inequality to bound the first term of B2, and the μ-strong

convexity of Fi to bound the second term of B2. We have

A1 ≤ ‖w̄t,H−1 −w
∗‖2 + 2Lη2

∑

i∈N

pi(Fi(w
i
t,H−1)− Fi(w

∗
i ))

+
∑

i∈N

pi

(∥
∥w̄t,H−1 −w

i
t,H−1

∥
∥
2
+ η2

∥
∥ḡit,H−1

∥
∥
2
)
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−2η
∑

i∈N

pi

(

Fi(w
i
t,H−1)− Fi(w

∗) +
μ

2

∥
∥w

i
t,H−1 −w

∗
∥
∥
2
)

≤ (1− μη) ‖wt,H−1 −w
∗‖2 +

∑

i∈N

pi
∥
∥w̄t,H−1 −w

i
t,H−1

∥
∥
2

+ 4Lη2
∑

i∈N

pi(Fi(w
i
t,H−1)− Fi(w

∗
i ))

−2η
∑

i∈N

pi
(
Fi(w

i
t,H−1)− Fi(w

∗)
)
,

in which we denote the last two lines as C1.

C1 = 4Lη2
∑

i∈N

pi(Fi(w
∗)− Fi(w

∗
i ))

− 2η(1− 2Lη)
∑

i∈N

pi(Fi(w
i
t,H−1)− Fi(w

∗))

≤4Lη2
∑

i∈N

pidi − 2η(1− 2Lη)

(

−
∑

i∈N

pi

(ηL (Fi(w̄t,H−1 − Fi(w
∗
i )) +

1

2η

∥
∥w

i
t,H−1 − w̄t,H−1

∥
∥
2

+Fi(w̄t,H−1)− Fi(w
∗))) .

≤2η(1− 2Lη)(ηL− 1)
∑

i∈N

pi (Fi(w̄t,H−1 − Fi(w
∗
i ))

+ (4Lη2 + 2Lη2(1− 2Lη))
∑

i∈N

pidi

+ (1− 2Lη)
∑

i∈N

pi
∥
∥w

i
t,H−1 − w̄t,H−1

∥
∥
2

≤6Lη2
∑

i∈N

pidi +
∑

i∈N

pi
∥
∥w

i
t,H−1 − w̄t,H−1

∥
∥
2
.

Thus we can further bound A1 as

E[A1] ≤ (1− μη) ‖w̄t,H−1 −w
∗‖2

+ 6Lη2
∑

i∈N

pidi + 2
∑

i∈N

pi
∥
∥w

i
t,H−1 − w̄t,H−1

∥
∥
2
. (13)

Next, we bound
∑

i∈N

piE
∥
∥w̄t,h −w

i
t,h

∥
∥
2
≤

∑

i∈N

piE
∥
∥w

i
t,h −wt,1

∥
∥
2

≤η2
∑

i∈N

piE‖
H−1∑

h=1

git,h
′
‖2 ≤ η2(H − 1)

∑

i∈N

pi

H−1∑

h=1

E‖git,h
′
‖2.

(14)
Using Assumption 4, we have

E‖git,h − git,h
′
‖2

= E‖
1

Di

∑

j

(∇fi(wt,h, ξ
i,j
t )−∇fi(wt,h, ξ

i,j
t

′
))‖2

≤
1

Di

∑

j

E
ξ
i,j
t

′

|ξi,jt

[

‖(∇fi(wt,h, ξ
i,j
t )−∇fi(wt,h, ξ

i,j
t

′
))‖2

]

≤ (1− ei)β. (15)

From [38], we have

E
∥
∥ḡit,h − git,h

∥
∥
2
≤

σ2
i

Di

. (16)

From (15), (16), and Assumption 5, we have

E
∥
∥
∥git,h

′
∥
∥
∥

2

= E
∥
∥
∥git,h

′
− git,h + git,h − ḡit,h + ḡit,h

∥
∥
∥

2

≤2E
∥
∥
∥git,h

′
− git,h

∥
∥
∥

2

+ 2E
∥
∥git,h − ḡit,h

∥
∥
2
+ 2E

∥
∥ḡit,h

∥
∥
2

≤2(1− ei)β +
2σ2

i

Di

+ 2G2. (17)

Thus we can bound (14) as
∑

i∈N

piE
∥
∥w̄t,h −w

i
t,h

∥
∥
2

≤2η2(H − 1)2
∑

i∈N

pi((1− ei)β +
σ2
i

Di

+G2).
(18)

Next, we bound A2. From (16) and (17), we have

E[A2] =

∥
∥
∥
∥
∥
ηḡt,H−1 − η

∑

i∈N

γipig
i
t,H−1

′

∥
∥
∥
∥
∥

2

=η2E

∥
∥
∥
∥
∥
ḡt,H−1 − gt,H−1 + gt,H−1 +

∑

i∈N

γipig
i
t,H−1

′

∥
∥
∥
∥
∥

2

≤2η2E ‖ḡt,H−1 − gt,H−1‖
2
+ 2η2E

∥
∥g′t,H−1 − gt,H−1

∥
∥
2

+ 2η2
∑

i∈N

pi(γi − 1)2E
∥
∥
∥git,H−1

′
∥
∥
∥

2

≤2η2
∑

i∈N

(pi
2 σ

2
i

Di

+ pi(1− ei)β

+ 2pi(γi − 1)2(G2 +
σ2
i

Di

+ (1− ei)β)). (19)

Combining (11), (13), (18), and (19), we have

E ‖wT,H −w
∗‖2

≤2(1− μη) ‖wT,H−1 −w
∗‖2 + 12Lη2

∑

i∈N

pidi

+ 4η2
∑

i∈N

(pi
2 σ

2
i

Di

+ pi(1− ei)β)

+ 4η2
∑

i∈N

pi((γi − 1)2 + 2(H − 1)2)(G2 +
σ2
i

Di

+ (1− ei)β).

Using induction and the smoothness of F , we have (6).

B. Proof of Theorem 3

Given that all users behave truthfully, the expected payoff

of user i, ∀i is given by

E[ui] = Ω(D′)− Φ(D′
i)F (wT ) + cl − cle

′
i − TcipD

′
i.

≥Φ(D′
i)(F (wT )− F (w∗)) + TcipD

′
i

− Φ(D′
i)(F (wT )− F (w∗)) + cl − cle

′
i − TcipD

′
i = 0.

C. Proof of Theorem 4

The total expected reward paid by the server is bounded by
∑

i∈N ri ≥
∑

i∈N (cl + TcipDi). Using (6), we have

F (wT )− F (w∗) +
∑

i∈N

ri ≤ L(1− μη)THE ‖w0 −w
∗‖2

+
∑

i∈N

(A(pi
2 σ

2
i

Di
t

+ 6Lpidi + 2pi(H − 1)2
σ2
i

Di
t

) + cl + TcipDi).

It can be shown that the above upper bound is a convex

function of Di. The optimal mini-batch size Di
∗ can be

obtained by calculating the partial derivative of the bound with

respect to Di and letting the derivative equals to 0.
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