

Characterization of dissipative regions of a N-doped superconducting radio-frequency cavity

Eric M. Lechner^{1,2}, Basu Dev Oli¹, Junki Makita³, Gianluigi Ciovati^{2,3}, Alex Gurevich³ and Maria Iavarone^{1,*}

¹*Department of Physics, Temple University, Philadelphia, Pennsylvania, USA*

²*Thomas Jefferson National Accelerator Facility, Newport News, Virginia, USA*

³*Center for Accelerator Science, Department of Physics, Old Dominion University, Norfolk, Virginia, USA*

Correspondence*:

Department of Physics, Temple University, 1925 N 12th St., Philadelphia, Pennsylvania 19122, USA

iavarone@temple.edu

2 ABSTRACT

3 We report radio-frequency measurements of quality factors and temperature mapping of a
4 nitrogen doped Nb superconducting RF cavity. Cavity cutouts of hot and cold spots were studied
5 with low temperature scanning tunneling microscopy and spectroscopy, X-ray photoelectron
6 spectroscopy and secondary electron microscopy. Temperature mapping revealed a substantial
7 reduction of the residual resistance upon cooling the cavity with a greater temperature gradient
8 and hysteretic losses at the quench location, pointing to trapped vortices as the dominant source
9 of residual surface resistance.

10 Analysis of the tunneling spectra in the framework of a proximity effect theory shows that hot
11 spots have a reduced pair potential and a wider distribution of the contact resistance between the
12 Nb and the top Nb oxide. Alone, these degraded superconducting properties account for a much
13 weaker excess dissipation as compared with the vortex contribution. Based on the correlation
14 between the quasiparticle density of states and temperature mapping, we suggest that degraded
15 superconducting properties may facilitate vortex nucleation or settling of trapped flux during
16 cooling the cavity through the critical temperature.

17 **Keywords:** superconductivity, Superconducting RF Cavities, tunneling, microscopy, resonator, niobium

1 INTRODUCTION

18 Advances in Nb superconducting radio-frequency (SRF) cavity technology have pushed the quality factors
19 Q_0 well above 10^{10} and the RF breakdown fields close to the dc superheating field H_s at GHz frequencies
20 and temperatures $T < 2$ K [1, 2, 3, 4, 5, 6, 7]. Various surface and material treatments have been developed
21 to improve the SRF performance of Nb cavities, including electropolishing, heat treatments, nanostructuring
22 and impurity doping [1, 2, 3, 4]. These advances have drawn much attention to the fundamental limits
23 of surface resistance R_s and maximum breakdown fields in a low-dissipative Meissner state. R_s in the
24 Meissner state depends crucially on the quasiparticle density of states $N(E)$ [8, 9, 10]. It has been

25 shown that R_s could be reduced significantly by tuning $N(E)$ by pair-breaking mechanisms like subgap
26 quasiparticle states in the bulk [9, 11, 12], Meissner screening currents [9, 13, 14], paramagnetic impurities
27 [15, 16, 12], surface nanostructuring [17], local reduction of the pairing constant or a proximity-coupled
28 normal suboxide layer at the surface [12].

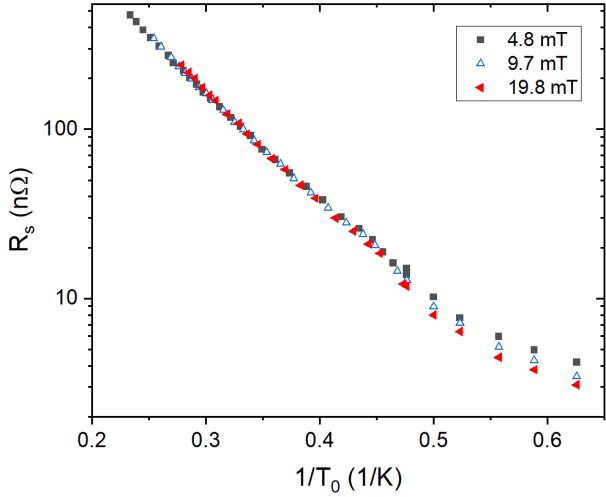
29 Doping SRF cavities with impurities has been a very efficient way of producing Nb resonators with very
30 high quality factors and RF breakdown fields [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. For instance, heating
31 Nb SRF cavities in a ~ 25 mTorr atmosphere of pure nitrogen at 800°C for a few minutes (referred to as
32 "nitrogen doping") resulted in a quality factor $Q_0 > 2.5 \times 10^{10}$ at 1.3 GHz and 2 K at moderate accelerating
33 gradients $E_{acc} \sim 16$ MV/m [20]. The N doping process has matured into a deployable process that has
34 been successfully implemented in the LCLS-II upgrade [28]. It has been found that N-doped Nb cavities
35 accumulate fewer hydrides since N occupies interstitial sites making hydride precipitation less favorable
36 [29, 30, 31]. Addressing complex mechanisms by which N doping can affect the superconducting properties
37 requires a surface scanning probe capable of tracking subtle changes in $N(E)$ caused by the materials
38 treatment. Recently, point contact spectroscopy and low temperature scanning tunneling microscopy and
39 spectroscopy (STM/STS) have been used to investigate Nb cavity cutouts [32, 33]. In the zero-temperature
40 limit the tunneling conductance probes directly the quasiparticle density of states of the material's surface
41 N_s , which determines the surface resistance. These studies have revealed changes in $N(E)$ in the first few
42 nm at the surface of Nb cavities after N-doping [32, 33]. It was shown that N doping shrinks the metallic
43 suboxide layer and reduces lateral inhomogeneities of the superconducting gap Δ and the contact resistance
44 R_B between the suboxide and the Nb matrix, making R_B closer to an optimum value which minimizes R_s
45 [12, 33]. At the same time, N doping slightly reduces Δ at the surface [32, 33].

46 Typically, the local R_s along the inner cavity surface is inhomogeneous, which manifests itself in hot-
47 spots observed via temperature mapping of the outer cavity surface [34]. Hotspots reduce the global quality
48 factor and may reduce the RF breakdown field by igniting lateral propagation of a hot normal zone along
49 the cavity surface. Revealing the mechanisms of RF losses in hot-spots experimentally is challenging since
50 the nature of RF losses is multifaceted. Hot-spots can result from lateral inhomogeneities of the complex
51 oxide layer, the distribution of impurities or normal-conducting precipitates, such as nano-hydrides in the
52 first few nm at the surface and pinned vortices. For instance, N-doping and materials heat treatments may
53 produce islands of thicker metallic suboxides sandwiched between the dielectric oxide and the bulk Nb,
54 causing an increased surface resistance [12, 17]. Trapped vortices threading the cavity wall during the
55 cavity cooldown through T_c have been well-documented as one of the major sources of the residual surface
56 resistance [1]. Long trapped vortices in hot-spots are pinned by materials defects in the bulk and the losses
57 can come from vibrating vortex segments extending deep inside the cavity wall beyond the layer of RF
58 field penetration $2\lambda \approx 100$ nm [35, 36]. In this case RF vortex losses are not localized in the first few nm at
59 the surface and pinning defects trapping such vortices would be invisible to the surface scanning tunneling
60 probes.

61 Addressing the mechanisms of RF losses in hot-spots thus requires a combination of experimental tools
62 probing separately the surface hot-spots and bulk vortex hot-spots. The surface hot-spots caused by a
63 nonuniform oxide layer and its effect on $N(E)$ after N doping can be directly probed by STM/STS. Vortex
64 hot-spots can be probed by temperature mapping because, unlike the fixed materials defects, trapped
65 vortices can be moved by temperature gradients [35, 37]. As a result, the strength of vortex hot-spots and
66 their spatial distribution can change after cool-down of the cavity with different rates [38]. We use the
67 combination of temperature mapping and scanning tunneling spectroscopy to address these questions.

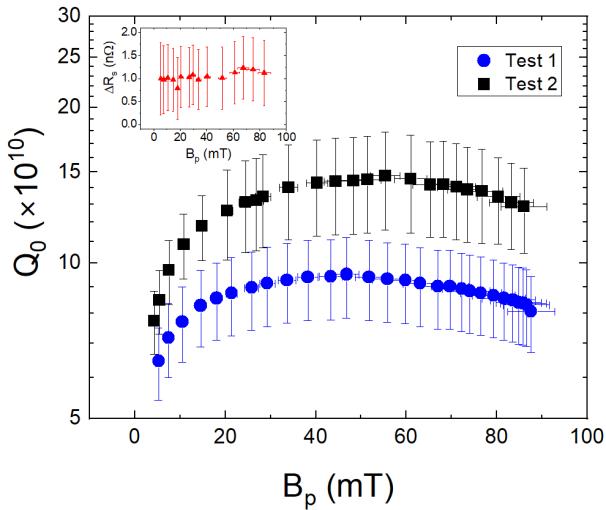
68 In this paper, in contrast to previous electron tunneling measurements on N-doped Nb [32, 33], we
 69 investigate hot-spots with enhanced R_s identified by the JLab thermometry system during SRF testing of a
 70 N-doped cavity. Temperature mapping was used to observe the effect of the cavity cool-down rate on the
 71 strength and spatial distribution of hotspots. After RF measurements, cold and hot-spot cutouts were studied
 72 with the surface sensitive techniques of X-ray photoelectron spectroscopy (XPS), angle-resolved XPS
 73 (ARXPS) and low temperature STM/STS. Here XPS provides information about the chemical composition
 74 of the surface oxide layer while STM/STS probes the quasiparticle density of states, the superconducting
 75 gap, subgap states, as well as their spatial inhomogeneity [33]. The samples' surface was characterized
 76 with a scanning electron microscope (SEM) for any evidence of defects such as etch pits [39] or scarring
 77 due to hydrides [40] or nitrides [41, 42, 43, 44, 45].

2 SRF CAVITY TEST RESULTS AND SAMPLES


78 The cavity measured in this work was fabricated from ingot Nb from Tokyo Denkai, Japan, with residual
 79 resistivity ratio (RRR) of ~ 300 and large grains with size of a few cm^2 . The cavity shape is that of the
 80 center cell of TESLA/EXFEL cavities [46]. Before N-doping, the cavity underwent standard buffered
 81 chemical polishing (BCP) and high pressure rinsing (HPR) with ultra-pure water. The cavity was N-doped
 82 by heating to 800°C and exposing the cavity to a 25 mTorr nitrogen atmosphere for 30 minutes. After, the
 83 nitrogen was pumped-out and the cavity remained at 800°C for 30 minutes, at which point the furnace
 84 heaters were turned off and the cavity was cooled naturally back to room temperature. Ultimately, $\sim 10\ \mu\text{m}$
 85 were removed from the cavity's inner surface by electropolishing, followed by HPR, assembly of the
 86 end-flanges with RF feedthroughs and antennas in an ISO 4 clean room and evacuation on a vertical test
 87 stand. A temperature mapping system was attached to the outer cavity surface prior to insertion into a
 88 vertical test cryostat at Jefferson Lab [47].

89 2.1 Low-field surface resistance

90 The cavity was cooled with liquid He (LHe) and the cool-down rate was $\sim 1.5\ \text{K}/\text{min}$ when the temperature
 91 at the bottom of the cavity crossed the critical temperature, $T_c \sim 9.25\ \text{K}$. This resulted in a temperature
 92 gradient across the cell of $\sim 0.25\ \text{K}/\text{cm}$. After the cavity was fully immersed in LHe, the cavity quality
 93 factor was measured as a function of the He bath temperature, T_0 , between $1.6 - 4.3\ \text{K}$, while pumping on
 94 the LHe bath, and as a function of the peak surface magnetic field, B_p , ($B_p/E_{\text{acc}} = 4.12\ \text{mT}\ \text{MV}^{-1}\ \text{m}$),
 95 between $5 - 20\ \text{mT}$, using a phase-locked loop rf system. The average surface resistance of the cavity, R_s ,
 96 was calculated from the measured Q_0 as $R_s = G/Q_0$, where $G = 270\ \Omega$ is the cavity geometry factor.
 97 Figure 1 shows a plot of $R_s(T_0)$ for some B_p -values. The $R_s(T_0, B_p)$ data were analyzed following the
 98 same methodology described in Ref. [21] which showed that the reduction of R_s with increasing RF field is
 99 primarily due to the reduction of the pre-exponential factor $A(B_p)$ in the generic form of thermally activated
 100 surface resistance at $T \ll T_c$, $R_s(T_s) = Ae^{-U/k_B T_s} + R_i$, where U is the quasi-particle activation energy,
 101 T_s is the temperature of the RF surface, k_B is Boltzmann's constant and R_i is the residual resistance.


102 2.2 High-power rf test results

103 Figure 2 shows a plot of $Q_0(B_p)$ measured at $1.6\ \text{K}$ in two consecutive cavity tests. The first test was
 104 performed after the first cool-down described in Sec. 2.1. The second test was performed after warming up
 105 the cavity to $80\ \text{K}$ followed by a cool-down at a faster rate of $\sim 5\ \text{K}/\text{min}$, resulting in a larger temperature
 106 gradient of $\sim 0.6\ \text{K}/\text{cm}$ at T_c , across the cell. $Q_0(T_0)$ was also measured between $1.6 - 2.1\ \text{K}$ and $1 - 15\ \text{mT}$
 107 after the second cool-down, prior to the rf test at higher power. The higher Q_0 in Test 2 compared to that

Figure 1. $R_s(T_0)$ measured for different B_p -values after the first cool-down.

108 of Test 1 is due to a lower residual resistance, decreasing from $3.4 \text{ n}\Omega$ to $2.4 \text{ n}\Omega$. This reduction of R_i
 109 resulting from a faster cooling rate is related to better expulsion of the residual ambient magnetic field
 110 inside the cryostat [48], B_a , which was $\sim 0.2 \mu\text{T}$ during the experiments. Taking the difference of $1/Q(B_a)$
 111 curves for these two tests we extract the additional surface resistance ΔR caused by the slower cooling
 112 rate. As shown in the inset in Figure 2, ΔR_s is practically independent of B_a , thus extra vortices trapped at
 113 a lower cooling rate do not produce additional nonlinearity in $R_s(B_a)$ in this field range.

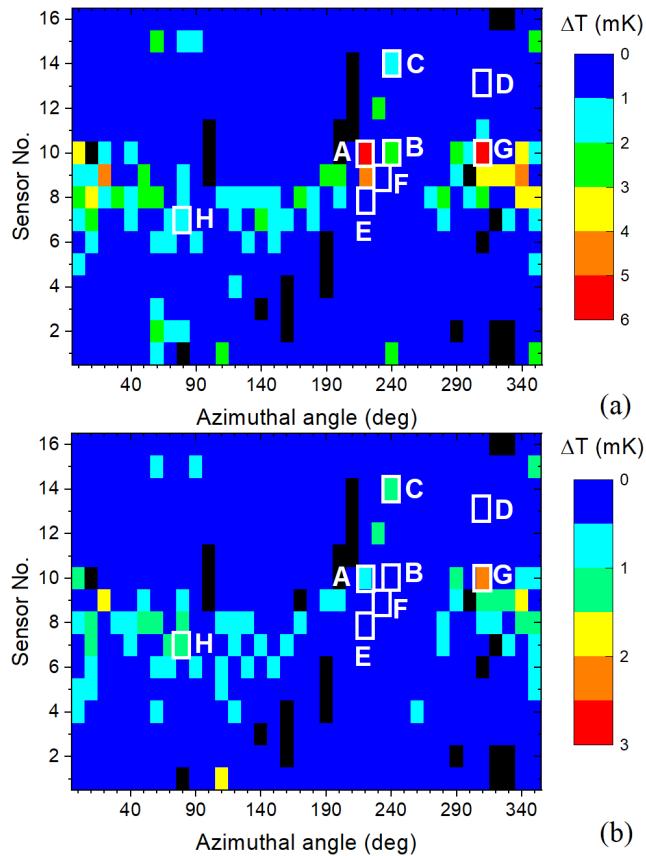


Figure 2. $Q_0(B_p)$ measured at 1.6 K after $\sim 1.5 \text{ K/min}$ (Test 1) and $\sim 5 \text{ K/min}$ (Test 2) cool-down rates
 across T_c . The inset shows the R_s -difference between Test 1 and Test 2 as a function of B_p .

114 The cavity performance was limited in both tests by a quench at $B_p \sim 86 \text{ mT}$, without any field emission.
 115 The temperature maps measured just below the quench field are shown in Figure 3. The Q_0 at 1.6 K
 116 degraded by $\sim 17\%$ after quenching multiple times in Test 2. Such degradation corresponds to an increase
 117 of the residual resistance, R_i , by about $0.4 \text{ n}\Omega$.

118 The quench location was the same in both tests, at temperature sensor No. 10 at the azimuthal angle
 119 of 220° . This location is $\sim 2 \text{ cm}$ away from the equatorial weld, in the high magnetic field region of the

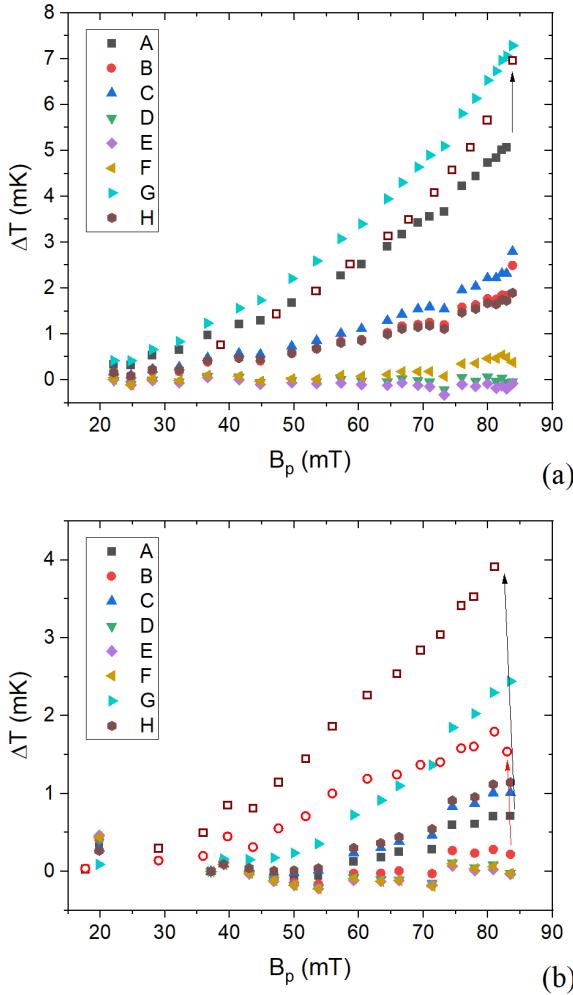

120 cavity. Cold and hot-spot samples examined in this work were cut out from the same N-doped 1.3 GHz Nb
 121 superconducting cavity. The eight samples that were cut for this study are highlighted in white and labeled
 122 A-H on the temperature maps shown in Figure 3. Sample A was at the quench location.

Figure 3. Unfolded temperature maps measured at 1.6 K and $B_p \sim 84$ mT during Test 1 (a) and Test 2 (b) before quench. Sensor No. 8 is at the equator, No. 1 is at the bottom iris and No. 16 at the top beam tube, close to the iris. The location of the cut-out samples, labelled A-H are highlighted in white. Faulty sensor locations are shown in black.

123 Figure 4 shows the local temperature difference $\Delta T(B_p)$ between the cavity outer surface and the He
 124 bath at the location of the samples A-H, measured after Tests 1 and 2. The estimated combined systematic
 125 and statistical uncertainty in the temperature measurement is ~ 1 mK. The magnitude of $\Delta T(B_p)$ at the
 126 hot-spot locations dropped significantly after Test 2. An increase in $\Delta T(B_p)$ was found at the location of
 127 sample A, for both tests, and of sample B for Test 2, after multiple quench events at the highest rf field.
 128 Hysteretic behavior of $\Delta T(B_p)$ at some locations of a different N-doped SRF cavity was also reported in
 129 Ref. [49]. The losses at the hot-spot locations can be characterized with a power law, $\Delta T \propto B_p^n$, where the
 130 exponent n obtained by the least square fit to the data was in the range of 2.1 – 2.4 for Test 1 and 2.5 – 3.7
 131 for Test 2. Values of $n = 2.5 – 3.5$ were reported at hot-spot locations known to have trapped flux in an
 132 earlier study [50].

133 The samples used for XPS, STM and SEM characterization were cut from the cavity using a computer
 134 numerical control milling machine with no lubricant. During the cutting process, the samples were cooled
 135 by using a steady flow of compressed helium gas at the milling location. During the milling process the
 136 samples temperature did not raise above 32 °C. To ensure that the cutting process did not change the sample,
 137 a time-of-flight secondary ion mass spectrometry analysis was performed on a 16×16 mm² sample, and

Figure 4. $\Delta T(B_p)$ measured at 1.6 K during Test 1 (a) and Test 2 (b) at the 8 locations chosen for cutouts. The empty symbols were measured at sample locations A and B while decreasing the rf field after quench, showing a hysteretic behavior. In the case of sample B, hysteretic behavior occurred only during Test 2.

Table 1. Surface characterization sequence for all of the samples cut from the N-doped Nb cavity, listed in the order in which they were performed.

Label	RF Dissipation	Analysis
A	Hot	XPS, SEM
B	Cold	XPS, SEM
C	Hot	STM
D	Cold	STM
E	Cold	STM, ARXPS
F	Cold	ARXPS
G	Hot	ARXPS, STM, SEM
H	Hot	ARXPS

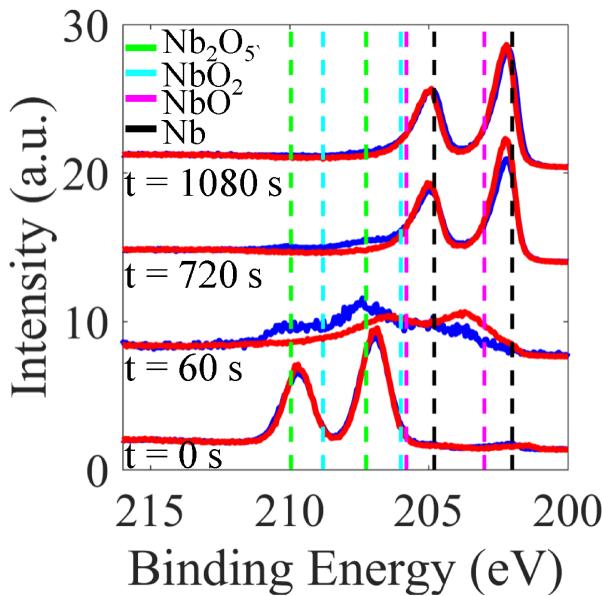
138 the measurements were repeated near the same location after cutting out an $8 \times 8 \text{ cm}^2$ sample. After the
 139 milling, an increase in carbon was found but new impurities were not. Table 1 shows the sequence of
 140 analysis done for each sample. The results from the XPS analysis of sample B and from the STM analysis
 141 of samples D and E have been previously reported in Ref. [33].

3 XPS AND SEM ANALYSIS

142 3.1 XPS analysis

143 A PHI Versaprobe 5000 XPS at the Drexel University Core Facilities was used for XPS measurements.
144 The X-ray source used was Al K α (1486.6 eV, 200 W). The binding energy was calibrated to the
145 adventitious carbon C 1s peak, corresponding to C-C bonds, at 284.6 eV. The depth profile was performed
146 using Ar ion sputtering at 1 keV, 2 μ A beam current and 2 mm \times 2 mm beam size. We estimated a sputtering
147 rate of 1.1 nm/min by atomic force microscopy (AFM).

148 The surface oxidation of Nb has been previously studied using XPS [51, 52, 53], ultraviolet photoemission
149 [54], Auger electron spectroscopy [55, 56] and high-resolution electron energy loss spectroscopy [56].
150 These investigations have shown that NbO and NbO₂ are initially formed on Nb, with Nb₂O₅ being
151 formed after further oxidation [51, 52, 53, 56, 57]. The oxidation state of Nb can be changed substantially
152 after annealing in ultra-high vacuum or sputtering where Nb₂O₅ is reduced to NbO₂ and NbO due to the
153 dissolution of O into the bulk [53, 26].


154 We studied the surface of hot-spot sample A and cold-spot sample B. A lower resolution survey was
155 used to get information about the elements present on the surface. High resolution scans around peaks
156 corresponding to the elements of interest were then performed with higher resolution to obtain the fine
157 structure of the peaks, which contain the information about the chemical environment. In the survey
158 spectrum of both samples there are visible peaks for O 1s, Nb 3d, Nb 3p, Nb 3s, Nb 4s and carbon C 1s.
159 The signal for the N 1s is not detectable in this low energy resolution spectrum.

160 High resolution XPS spectra for Nb 3d was carried out within 200–216 eV. The Nb 3d core level of the
161 native surface of sample A (hot) and B (cold) showed slightly higher peaks for Nb₂O₅ for sample A. The
162 Nb 3d peaks can be summarized as follows: Nb⁵⁺ (Nb₂O₅) peaks are located at 210.0 eV and 207.3 eV,
163 Nb⁴⁺ (NbO₂) peaks are located at 208.8 eV and 206.0 eV, Nb²⁺ (NbO) peaks are located at 206.8 eV
164 and 204.0 eV and Nb⁰ peaks are at 205.0 eV and 202.2 eV [53]. Numerous oxygen vacancies exist in
165 Nb₂O₅ [16, 51, 58]. Therefore, the Nb₂O₅ peaks are comprised of Nb₂O₅ and O-deficient Nb₂O₅ which
166 makes it difficult to distinguish between the two from XPS spectra [59].

167 Although the oxidation states of metals can be altered by Ar ion bombardment [60], qualitative comparison
168 between hot and cold spots subjected to the same procedure can provide useful insight into the material
169 science of the surface. It has been shown that Ar ion sputtering of oxidized Nb removes oxygen preferentially
170 from Nb₂O₅ and diffuses it into the bulk, which tends to thicken the lower oxidation state layers [61].
171 However, the ion current density used for the study in Ref. [61] is more than three orders of magnitude
172 greater than the one we used, therefore we may expect less of a change in the oxide composition during Ar
173 ion sputtering in our study.

174 Figure 5 shows the evolution of the Nb 3d spectral lines during Ar ion sputtering. The depth profile
175 shown in Figure 5 reveals that sample A does not retain the higher oxides and reverts to the Nb⁰ bulk
176 relatively quickly compared to sample B that instead retains the higher oxide states.

177 In order to investigate the thickness of the native oxide and suboxides, ARXPS measurements were
178 made with a PHI Quantera SXM-03 XPS at Virginia Tech's Nanoscale Characterization and Fabrication
179 Laboratory. Samples E-H were rinsed with reagent grade ethanol and mounted in the XPS chamber by
180 conductive carbon tape at the same time. Each was sputtered with 1 keV Ar for 30 s to remove surface
181 carbon contamination, improving the signal-to-noise ratio for measuring the Nb 3d lines. The x-ray beam
182 from the monochromator was focused to a 100 μ m spot. For the variable angle data, at each position

Figure 5. Evolution of the Nb 3d lines spectra acquired during depth profiling of hot-spot sample A (red) and cold-spot sample B (blue). From bottom to top, the XPS spectra were taken after sputtering times of 0 s, 60 s, 720 s and 1080 s, showing larger spectral weight for higher oxidation states in the cold spot while the hot-spot has a larger weight of low oxides, NbO_x around $\sim 203\text{-}204$ eV especially near the surface. The Nb 3d3/2 and Nb 3d5/2 peaks of various oxidation states are shown with vertical dashed lines.

183 full survey scans were collected as 15 sweeps with pass energy set to 280 eV and step size at 1 eV.
 184 Measurements were taken at 15-90° angles at 15° increments. No significant difference was found among
 185 the 4 samples from the angle-resolved XPS spectra.

186 High resolution Nb 3d scans consisting of 20 sweeps with 13 eV pass energy and 0.025 eV step size
 187 were collected at 45° a take-off angle for each sample. The XPS curve fitting was performed in CasaXPS
 188 using a Shirley background and Gaussian-Lorentzian, GL(30), line shapes to determine chemical state and
 189 their contribution to the measured signal. The spin orbit splitting was taken as 2.72 eV and the ratio of
 190 intensities for the split lines was 2/3 [62]. Nb 3d spectra could be fit satisfactorily using three oxidation
 191 states, Nb_2O_5 , NbO_2 , NbO_x where $x = 0.4 - 0.6$ [63], and Nb. Thicknesses of different oxide components
 192 were determined using the multilayer model [64]

$$d_i = \lambda_i \cos \theta \ln \left(1 + \frac{n_u \lambda_u}{n_i \lambda_i} \frac{F_i}{F_u} \right) T_2 T_3 \dots T_{i-1}, \quad (1)$$

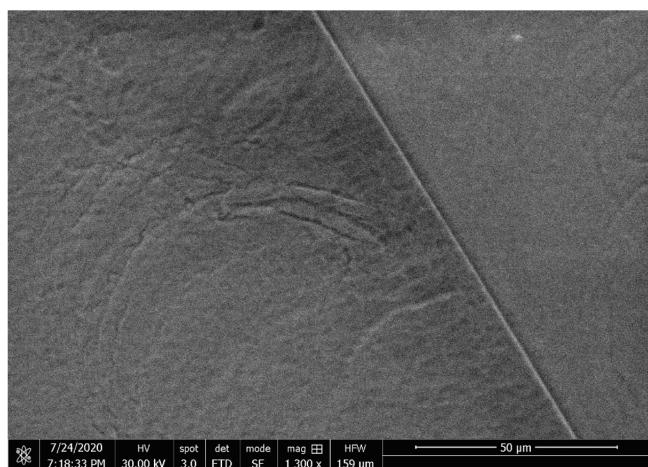

193 where subscript u represents the substrate, λ_i is the inelastic mean free path of layer i , θ is the electron
 194 take-off angle, n_i is the atomic density of the detected species and F_i is the spectral area of the signal
 195 related to layer i . T_i is the transmission coefficient which accounts for the attenuation through the preceding
 196 overlayer by $T_i = \exp(-d_i/\lambda_i \cos \theta)$. Values of the inelastic mean free path were estimated using the
 197 TPP-2M formula [65] and atomic densities were taken from [58]. The estimated thickness of the oxide
 198 components are listed in Table 2. More in-depth analysis have been performed in the NbO_x system [66, 67]
 199 which show that the Shirley background and Gaussian-Lorentzian line shapes have a thickness uncertainty
 200 of $\sim 10\%$ for the thickness of each layer. Given this, no significant difference was found among the 4
 201 samples.

Table 2. Thickness of the Nb oxides for samples E-H, determined from the deconvolution of the Nb 3d spectral lines measured by XPS at a 45° take-off angle.

Thickness [nm]	Sample E (Cold)	Sample F (Cold)	Sample G (Hot)	Sample H (Hot)
$d_{NbO_{0.4-0.6}}$	1.3	1.3	1.3	1.4
d_{NbO_2}	2.8	2.7	2.7	2.9
$d_{Nb_2O_5}$	1.7	1.5	1.5	1.4

202 3.2 SEM analysis

203 A FEI Quanta 450 FEG SEM was used for microscopy study of the rf surface of the cutout samples. The
 204 SEM images did not show any evidence for either niobium nitride or hydride features left on the surface.
 205 This is somewhat expected since it has been shown that nitrides are removed from the surface by 5 – 10 μm
 206 EP and that most of the hydrogen is degassed from the Nb by the 800 °C vacuum annealing. Any residual
 207 hydrides have the size of a few nanometers, requiring high-resolution transmission electron microscopy to
 208 reveal them. The presence of a grain boundary was a distinctive feature observed on both samples A and G.
 209 The grain boundary found in sample A is shown in Figure 6.

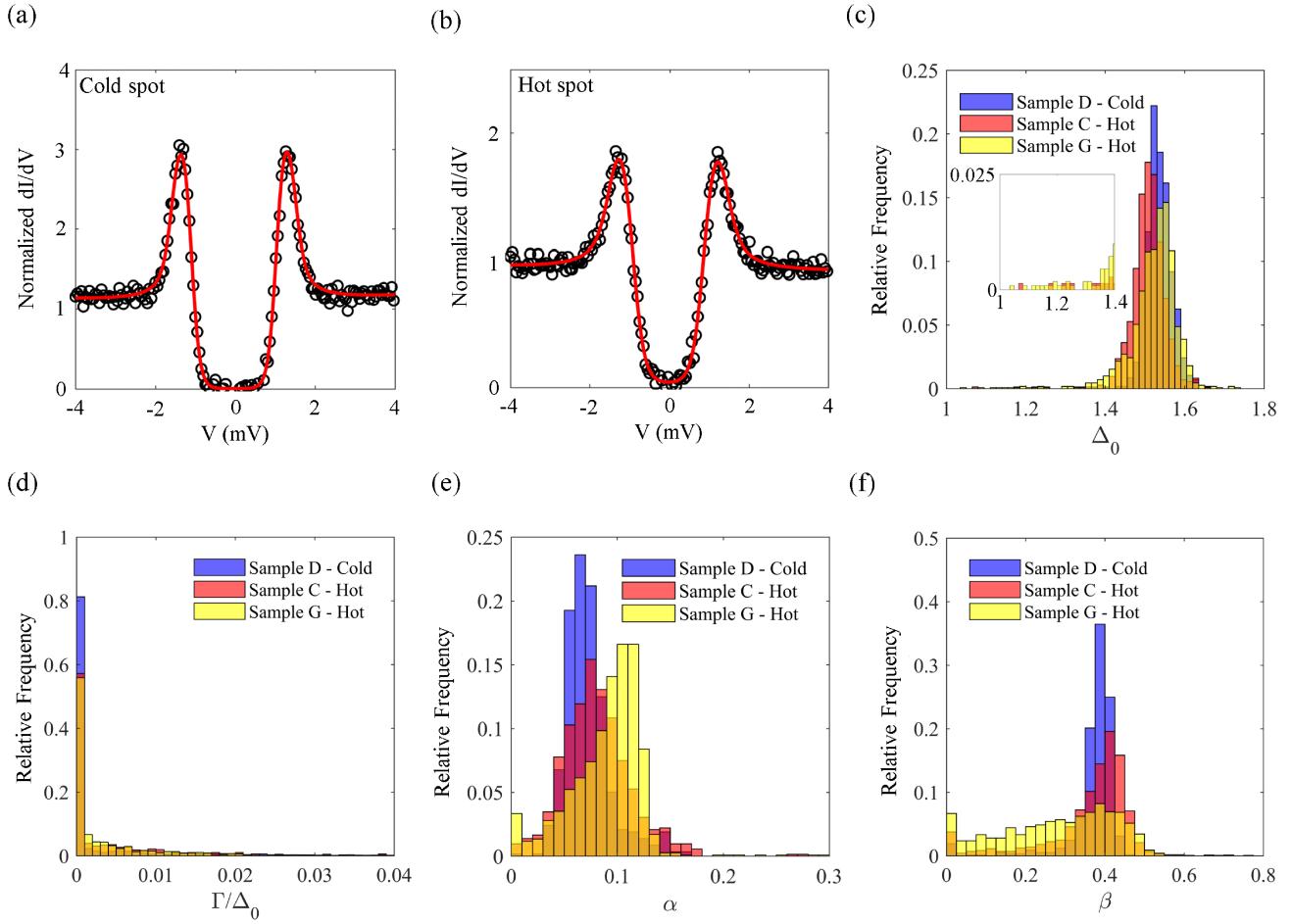
Figure 6. SEM image of sample A at 1300x magnification.

4 SCANNING TUNNELING SPECTROSCOPY

210 A Unisoku ultra-high vacuum STM system equipped with a 9 T superconducting magnet and with
 211 a base pressure of 4×10^{-11} Torr was used to perform low temperature scanning tunneling mi-
 212 croscopy/spectroscopy (STM/STS) measurements between 1.0 K to 1.5 K. Pt-Ir tips prepared on Au
 213 were used in all measurements. The samples used for STM measurements are cold (Sample D) and hot
 214 (Sample C and G) spot cutouts from the same N-doped Nb cavity. Since the surface of Nb is dominated
 215 by a layer of a dielectric oxide Nb_2O_5 , which is too thick to tunnel through, it is necessary to remove the
 216 dielectric layer by Ar ion sputtering. These samples were sputter-cleaned in a UHV sample preparation
 217 chamber attached to the STM chamber with a base pressure of low 10^{-11} Torr. Ar ion sputtering was
 218 performed using 99.999% pure Ar at a pressure of 10^{-5} Torr and accelerating voltage of 1 kV for 1 hour
 219 with a 4.75 μA beam current and 10 mm \times 10 mm beam size. The removal rate was 0.27 nm/min as
 220 estimated by atomic force microscopy on a calibration sample. The Ar sputtering process removes the
 221 surface pentoxide and yields a metallic oxide surface NbO_x a few nm thick. This surface can be studied by

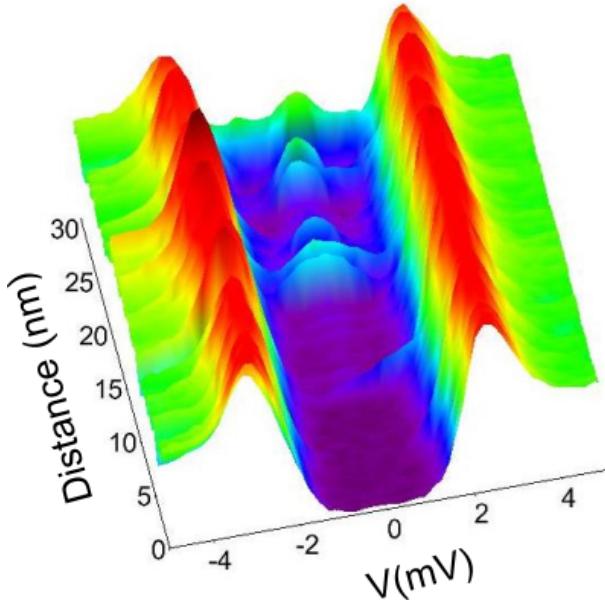
222 STM that allows to study the local superconducting properties of the material. Clean and metallic surfaces
 223 are suitable for STM studies of local tunneling spectra as well as imaging of vortices, which leads to an
 224 estimate of the coherence length and mean free path. All differential conductance (dI/dV) measurements
 225 were made with the same tunneling parameters. The junction was stabilized at $V = 10$ mV, $I = 60$ pA and
 226 a standard lock-in technique was used with $V_{mod} = 200$ μ V at 373.1 Hz.

227 Tunneling spectra were acquired on cold and hot spots N-doped Nb cutouts and analyzed in the framework
 228 of a proximity-coupled model which describes a thin metallic suboxide layer on the surface of a bulk
 229 superconductor [12]. We used the fitting procedure described in detail in [12, 33] to extract the density
 230 of states at the surface $N(E)$ from the tunneling spectra. The so-obtained $N(E)$ depends on the Dynes
 231 broadening parameter Γ [11] and two dimensionless parameters α and β , proportional to the thickness of
 232 the normal layer d and the contact resistance R_B between the normal layer and the superconductor:


$$\alpha = \frac{d}{\xi_s} \frac{N_n}{N_s}, \quad \beta = \frac{4e^2}{\hbar} R_B N_n \Delta d \quad (2)$$

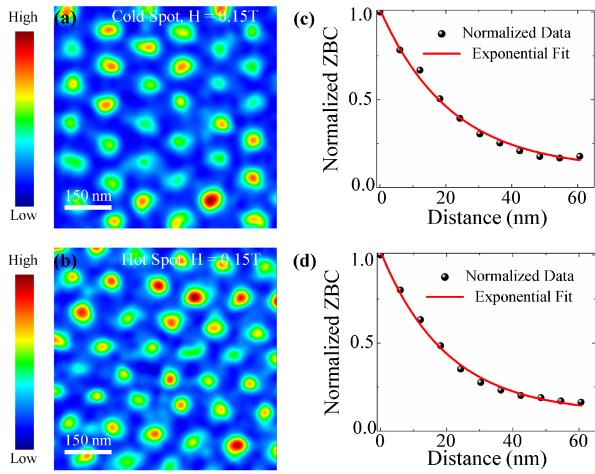
233 Here, $\xi_s = \sqrt{D_s/2\Delta}$ is the bulk coherence length, D_s is the electron diffusivity, N_s and N_n are the
 234 density of states at the Fermi surface in the normal state of the superconductor and normal layer respectively,
 235 $\Delta = \Delta_0 - \Gamma$ is the bulk pair potential and Δ_0 is the BCS gap at $T = 0$ K and $\Gamma = 0$.

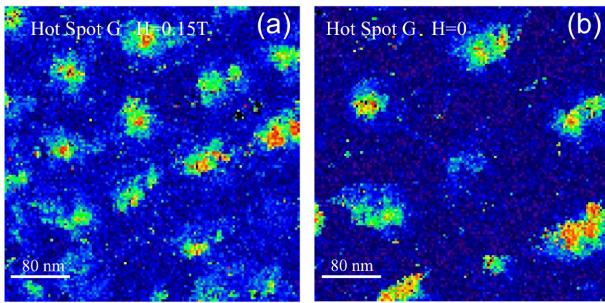
236 Typical tunneling conductance spectra are shown in Figure 7(a) and (b) for sample C and D, respectively.
 237 The overall shape of these spectra, for cold and hot spots, differs significantly in the subgap region and
 238 in the shape and height of the coherence peak. Tunneling spectra were acquired on grids with a spacing
 239 of 32.6 nm over areas of 391 nm \times 391 nm and 781 nm \times 781 nm. Analysis of these spectra shows that
 240 the average Δ_0 is lower by 1% – 2% in the hot spot samples compared to the cold spot one. Furthermore,
 241 histograms of the extracted fit parameters clearly show that hot spots have wider distributions of α , β , Γ ,
 242 Δ_0 than the cold spot. For instance, there is a low Δ_0 tail in the gap distribution in sample G, as shown in
 243 Figure 7(c), where the low Δ_0 values have been magnified to show the difference between cold and hot
 244 spots. The number of tunneling spectra acquired for sample D was 576, that for sample C was 720 and that
 245 of sample G was 1108. The Dynes broadening parameter Γ is found to be higher, on average, in the hot
 246 spot samples as supported by the wider distribution for samples C and G, presented in Figure 7(d). The
 247 α -distribution, shown in Figure 7(e) reveals that hot spots are more likely to have larger normal layers
 248 which tend to be detrimental and enhance the surface resistance [12, 18]. The parameter β (Figure 7(f)) in
 249 sample G exhibits a significant spread away from an optimum value of 0.3-0.4 at which a minimum in the
 250 surface resistance is predicted to occur [12].


251 STM grids on all samples investigated, also reveal the presence of near-surface defects that induce in-gap
 252 states in the quasiparticle density of states. Measurements of hot spot samples C and G reveal a significantly
 253 higher density of such defects. Example of these spectra are shown in Figure 8 where a line of spectra has
 254 been acquired along one of these extended defects on sample G. Zero-bias peaks and in-gap states in the
 255 quasiparticle density of states could indicate the presence of magnetic impurities [16] possibly associated
 256 with Nb suboxides [68].

257 To estimate the coherence length ξ_s and the mean free path l , a perpendicular magnetic field was applied
 258 to the sample's surface to generate Abrikosov vortices that modify the local density of states in the vortex
 259 core of $\simeq 2\xi_s$ in diameter. Vortices were imaged using STM by mapping the conductance at an energy
 260 where a vortex alters the density of states. Figure 9 (a) and (b) show the vortex lattice, imaged by acquiring
 261 the density of states at the Fermi energy, on cold spot sample D and hot spot sample C. Both samples

Figure 7. (a)-(b) Representative spectra for cold-spot sample D and hot-spot sample C from a N-doped Nb cavity. The red curves are the fit obtained using the proximity effect theory [12] and described in the text. The fitting parameters in (a) are: $\Delta_0 = 1.56$ meV, $\Gamma = 0$ meV, $\alpha = 0.08$, $\beta = 0.39$, $T = 1.17$ K. The fitting parameters in (b) are: $\Delta_0 = 1.51$ meV, $\Gamma = 0.03$ meV, $\alpha = 0.14$, $\beta = 0.04$, $T = 1.45$ K. The results of the fitting procedure for all tunneling spectra acquired on cold and hot spot samples between 1.0 K and 1.5 K are summarized in the histogram comparison for the fit parameters Δ_0 , Γ/Δ_0 , α , and β reported in (c)-(f). In panel (c) the low Δ_0 values are shown magnified by a factor 10 to better visualize the difference between cold and hot spot results.


262 show a triangular vortex lattice consistent with theoretical predictions [69, 70]. Superconductors in the
 263 superclean limit, $l \gg \xi_0$, exhibit the Caroli-de Gennes-Matricon bound states localized in the vortex
 264 core [71, 72, 73], but those are not found here, indicating that the samples are in the dirty limit, $l < \xi_0$,
 265 where ξ_0 is the coherence length in the absence of impurities. Spatial analysis of the conductance around
 266 vortices $g(r)$ provides an estimate of ξ_s . The radial profiles shown in Figures 9(c) and (d) were obtained by
 267 averaging the azimuthally-averaged zero-bias conductance values around each vortex neglecting those on
 268 the borders. The value of ξ_s was obtained by fitting the averaged profile to $g = g_0 + F e^{-r/\xi_s}$. Here, g_0 is
 269 the conductance far from the vortex core, F is a scaling factor, and r is the distance from the vortex core.
 270 This method provides a good measure of the bulk coherence length since the thin normal layer, $d \ll \xi_s$
 271 does not significantly affect the vortex core diameter in the bulk [74, 75]. Using this procedure we obtain
 272 $\xi_s \approx (22 \pm 2)$ nm and (20 ± 2) nm for the N-doped Nb cold and hot spot, respectively, at $H = 0.15$ T.
 273 This estimate is not far from others reported in literature [76, 77]. The slightly lower value of ξ_s that we
 274 obtained is consistent with a weak N-overdoping of our samples. The obtained values of the coherence


Figure 8. A line of 100 tunneling spectra acquired across an extended defect on hot-spot sample G. In all spectra the tip is stabilized at $V_{set} = 10$ mV, $I_{set} = 60$ pA, and the lock-in bias modulation $V_{mod} = 0.20$ mV is used.

275 length indicate nearly the same mean free path in both samples. Using the relation $l < \xi_0^2/\xi_s$ and $\xi_0 =$
 276 39 nm for clean Nb [78], we obtain $l \approx 11$ nm. We emphasize that the STM imaging of vortices probes
 277 l in the first few nm at the surface. By contrast, the BCS fits of the measured surface resistance give an
 278 averaged l in a much thicker layer $2\lambda \sim 100$ nm. Magneto-transport measurements of the upper critical
 279 field $H_{c2}(T)$ on Nb cutouts mostly probe the bulk l because a few μm thick N-doped Nb layer gives a
 280 negligible contribution to the global resistance of the 2-3 mm thick cavity wall. Generally, the vortex core
 281 radius is of the order of ξ_s but it is not exactly equal to the bulk coherence length [79], particularly at low
 282 temperatures $T \ll T_c$ and moderate disorder with only few impurities per Cooper pair $l \sim \xi_0$. In this
 283 case significant mesoscopic fluctuations of the vortex core shape can occur, consistent with the observed
 284 distribution of the vortex core shapes shown in Figures 9 and 10. Such mesoscopic fluctuations of the
 285 vortex core shape have been obtained in calculations of the DOS around vortex cores in the presence of
 286 randomly-distributed impurities with $l \sim \xi_0$ [80]. In this case extracting l from the averaged core size may
 287 give the mean free path different from that obtained from the BCS fit of $Rs(T)$, although both estimates do
 288 indicate that the N-doped cavities are in the dirty limit with $l \simeq (0.2 - 0.4)\xi_0$.

289 STM vortex images of Sample G show strong pinning and a distorted vortex lattice. Figure 10(a) shows
 290 a field-cooled vortex image taken at $H = 0.15$ T. Figure 10(b) shows instead an image of the same area
 291 after removal of the field without increasing the temperature. The image shows that vortices are trapped.
 292 Zero-field cooled images show absence of vortices in this area located approximately at the center of
 293 the sample. High resolution single vortex images have been used to determine the coherence length on
 294 sample G and yield a value of $\xi_s \approx (20 \pm 2)$ nm. The strong pinning found in this sample could explain the
 295 persistent excess RF dissipation found by T-mapping after both slow and fast cooldown.

Figure 9. Normalized zero-bias conductance image showing vortices at $T = 1.5$ K and $H = 0.15$ T in N-doped Nb cold spot (a) and in the N-doped Nb hot spot (b). The scan area for both images is $697\text{ nm} \times 697\text{ nm}$ and the magnetic field was applied normal to the surface. (c)-(d) Normalized zero bias conductance plotted as a function of distance from the vortex center for the cold and hot spot respectively. The solid lines are exponential fits to extract the coherence length. In all vortex images the tip is stabilized at $V_{set} = 10$ mV, $I_{set} = 60$ pA, and the lock-in bias modulation $V_{mod} = 0.20$ mV is used.

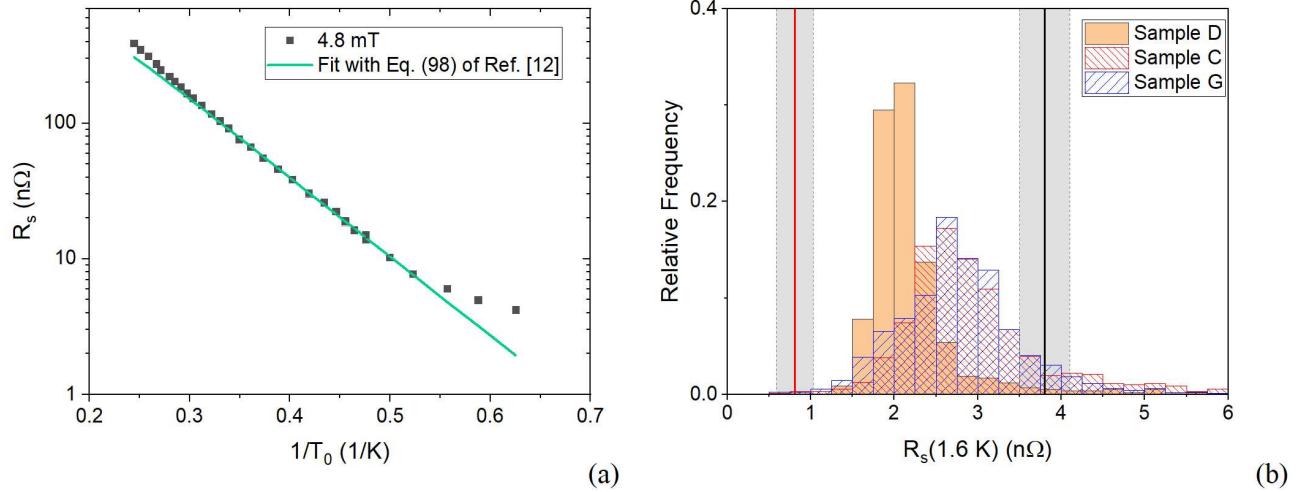
Figure 10. Normalized zero-bias conductance image showing vortices at $T = 1.5$ K and $H = 0.15$ T in N-doped Nb hot spot Sample G. (a) Field-cooled image at $H = 0.15$ T. (b) Conductance image of the same area after removal of the field without increasing the temperature ($H = 0$). The scan area for both images is $391\text{ nm} \times 391\text{ nm}$ and the magnetic field was applied normal to the surface. The tip is stabilized at $V_{set} = 10$ mV, $I_{set} = 60$ pA, and the lock-in bias modulation $V_{mod} = 0.20$ mV is used.

5 ANALYSIS AND DISCUSSION

296 Our combined temperature mapping and scanning tunneling experiments have shown a complex interplay
 297 of both surface and bulk sources of RF losses in hot spots. The temperature mapping has shown that both
 298 the intensity of hot spots and their spatial distribution depends strongly on the cooldown rate of the cavity.
 299 This observation clearly demonstrates a significant contribution of trapped vortices to RF losses in hot
 300 spots. At the same time, our analysis of STM/STS and XPS experimental data has shown that hot spots
 301 regions exhibit weakly degraded superconducting properties at the surface with a wider distribution of
 302 superconducting gaps and a noticeable fraction of low- Δ regions.

303 A challenge common to all of the experimental studies found in the literature in which cavity cutout
 304 samples, identified by temperature mapping, have been analyzed by surface analytical methods is the
 305 difference between the spatial resolution of the thermometer and the size of area probed by surface analysis
 306 tools. The size of the thermometer used for temperature mapping is $\sim 8 \times 6\text{ mm}^2$, with the sensing portion

307 being a $\sim 4 \times 2 \text{ mm}^2$ central area. This should be compared with the sub- μm^2 region probed by STM and
 308 the sub- mm^2 region probed by XPS. In this study, a statistically significant representation of the samples
 309 was achieved by performing STM measurements over nearly one thousand different spots near the center
 310 of each sample.


311 XPS measurements have revealed that the N-doped hot spot exhibits lower oxidation states of Nb deeper
 312 into the surface which may be the cause of a degraded interface resistance. The analysis of the STM spectra
 313 have shown that hot-spots may have a thicker normal suboxide and a non-optimum contact resistance
 314 between the suboxide and the bulk Nb. The hot-spot also suffers from a degraded Δ_0 with a fraction
 315 of particularly low Δ_0 regions which can significantly increase local RF losses. Moreover, the Dynes
 316 parameter Γ/Δ_0 turns out to be larger in the hot-spot, indicating stronger Cooper pairbreaking and larger
 317 surface resistance [12]. Yet our STM imaging of vortex cores shows that the electron mean free path is
 318 nearly the same in hot and cold-spots.

319 We used the model of a proximity-coupled normal layer on the surface of a bulk superconductor,
 320 which describes well the tunneling spectra, to calculate $R_s(T)$ with the parameters α , β , Γ and Δ_0
 321 obtained from fitting the STM data [12]. Additional parameters in the model are the electrons' mean
 322 free path, the resistivity of the normal layer, ρ_n , and the Debye energy, $\Lambda = 23.6 \text{ meV}$, the latter taken
 323 as a material constant. $l = 6.2 \text{ nm}$ was obtained from a least-squares fit of $R_s(T_0)$ at 4.8 mT with
 324 $R_s(T) = R_{BCS}(T) + R_i$, where $R_{BCS}(T)$ is the low-field Mattis-Bardeen surface resistance calculated
 325 numerically with Halbritter's code [81]. $\lambda_0 = 32 \text{ nm}$, $\xi_0 = 39 \text{ nm}$ and $T_c = 9.25 \text{ K}$ were considered
 326 material constants for clean Nb and the mean value $\overline{\Delta_0} = 1.536 \text{ meV}$ from cold-spot sample D was used in
 327 the numerical calculation. The overheating of the RF surface at 4.8 mT is very weak, such that $T_s \approx T_0$.

328 The RF penetration depth and bulk coherence length used in the calculation of $R_s(T)$ with the
 329 proximity-coupled normal layer model were $\lambda = \lambda_0 (1 + 0.88\xi_0/l)^{1/2} = 81.8 \text{ nm}$ and $\xi_s =$
 330 $0.74\xi_0 (1 + 0.88\xi_0/l)^{-1/2} = 11.3 \text{ nm}$, respectively. ρ_n was used as a single fit parameter in the least-
 331 squares fit of the average cavity $R_s(T_0)$ measured at 4.8 mT with $R_s(T)$ from the model. The average
 332 values $\overline{\alpha} = 0.0723$, $\overline{\beta} = 0.37$, $\overline{\Gamma} = 0.0051 \text{ meV}$ and $\overline{\Delta_0} = 1.536 \text{ meV}$ obtained from STM data on
 333 cold-spot sample D were used in the numerical calculation of $R_s(T)$. The value of ρ_n from the fit was
 334 $0.5 \mu\Omega \text{ cm}$ and the calculated $R_s(T)$ is plotted in Figure 11(a), showing a good agreement with the
 335 experimental data down to $\sim 1.8 \text{ K}$. The deviation at lower temperature is indicative of an additional
 336 contribution to the residual resistance, other than that from the normal layer, such as that due to trapped
 337 vortices. The thickness of the normal layer from Eq. (2), assuming $N_n \approx N_s$, is $d = \overline{\alpha}\xi_s = 0.8 \text{ nm}$.

338 Following the same approach described above, we calculated R_s at 1.6 K for each set of parameters α ,
 339 β , Γ and Δ_0 obtained from the STM data for cold-sample D and hot-spot samples C and G, resulting in
 340 the histograms shown in Figure 11(b). The median, mean and standard deviation from each sample are
 341 listed in Table 3. The median value of $R_s(1.6 \text{ K})$ is $\sim 2.8 \text{ n}\Omega$ for both hot-spot samples and $\sim 2.1 \text{ n}\Omega$
 342 for the cold-spot sample, compared to the global cavity $R_s = (3.8 \pm 0.3) \text{ n}\Omega$ measured in Test 2. The
 343 mean and standard deviation values are the highest for sample G, reflecting the wider spread in contact
 344 resistance values, the larger thickness of the normal layer and the higher tail towards lower values in the
 345 Δ_0 -distribution from the STM data shown in Figure 7. There were a few parameter sets for sample G that
 346 resulted in R_s -values as high as $(0.1 - 2.9) \mu\Omega$.

347 The contribution to the surface resistance at 1.6 K from the ideal BCS theory is $(0.8 \pm 0.2) \text{ n}\Omega$, therefore
 348 the proximity-coupled normal layer contributes $\sim 1.3 \text{ n}\Omega$, corresponding to $\sim 43\%$ of the global, average
 349 residual resistance, based on the statistics from the cold spot sample. However, the local R_s -values obtained

Figure 11. (a) Average cavity surface resistance as a function of LHe bath temperature, measured at 4.8 mT during Test 1 and $R_s(T)$ calculated with the model of Ref. [12] with the average parameters from cold spot D, $\bar{l} = 6.2 \text{ nm}$ and $\rho_n = 0.5 \mu\Omega \text{ cm}$. The size of the error bars are about the same size of the symbols. (b) Histograms of $R_s(1.6 \text{ K})$ calculated with the model of Ref. [12] for each set of parameters α , β , Γ , Δ_0 from the STM data for samples C, D and G. The solid black line is $R_s(1.6 \text{ K})$ measured during Test 2, the solid red line is $R_{BCS}(1.6 \text{ K})$ and the gray shaded areas represent $\pm 1\sigma$.

Table 3. Statistics on the surface resistance at 1.6 K calculated from the model of Ref. [12] for a proximity-coupled normal layer, using the model parameters obtained from STM data for samples C (hot-spot), D (cold-spot) and G (hot-spot).

Sample	Mean	Standard deviation	Median
D	2.6 nΩ	4.9 nΩ	2.1 nΩ
C	5.0 nΩ	15.9 nΩ	2.8 nΩ
G	12.7 nΩ	121 nΩ	2.8 nΩ

350 from the ΔT measured by temperature mapping can be significantly higher than the R_s -value averaged
 351 over the whole surface of the cavity, obtained from Q_0 . The local R_s at the samples location can be obtained
 352 from the measured local ΔT from [82]:

$$R_{s,local} = \frac{2\Delta T_{local}}{H_0^2 \eta} \quad (3)$$

353 where H_0 is the local surface RF magnetic field and η is the thermometers' efficiency. $\eta = 0.53 \text{ K cm}^2/\text{W}$
 354 was obtained by a linear least-squares fit of ΔT , averaged over the outer surface, versus the RF power
 355 density. The local R_s at 80 mT at the locations of samples C and G was $(8.8 \pm 0.3) \text{ nΩ}$ and $(20.4 \pm 0.6) \text{ nΩ}$
 356 for Test 2, respectively. Even higher local R_s -values were obtained at those locations during Test 1. These
 357 results clearly show that the additional RF dissipation in those hot spot locations is due to trapped vortices.
 358 This conclusion is consistent with the Arrhenius plot in Figure 11(a) which shows that the observed global
 359 residual resistance is higher than the prediction of the proximity model with the Dynes pairbreaking. This
 360 extra residual resistance is naturally produced by trapped vortices.

361 To evaluate the bulk and surface contributions to RF losses we use the following relation between the
 362 excess power P_0 in a hot-spot at the inner cavity surface and the resulting maximum value of ΔT observed
 363 by the temperature mapping on the outer cavity surface [35]:

$$\Delta T \approx \frac{P_0}{4\pi\kappa w} \ln \frac{4\kappa}{wh_K} \quad (4)$$

364 Here a hot-spot has a lateral size $L < L_h = \sqrt{w\kappa/h_K}$ and a thickness much smaller than the thickness
 365 w of the cavity wall, κ is the thermal conductivity, and h_K is the Kapitza thermal conductance between the
 366 cavity surface and the liquid coolant.

367 Using Eq. (4) we evaluate the number of vortices N which can produce the observed values of ΔT shown
 368 in Figure 3. Here the power P_0 generated by N sparse vortices under RF field at GHz frequencies f is
 369 given by [35]:

$$P_0 = \frac{N\pi B_p^2 \xi_s \lambda \sqrt{2\pi f \rho_s}}{\mu_0^{3/2} \left[\ln \frac{\lambda}{\xi_s} + \frac{1}{2} \right]^{1/2}} \quad (5)$$

370 where ρ_s is the normal state resistivity of Nb. Taking $w = 2.8$ mm, $\kappa \approx 7$ W/mK, $h_K \approx 2.5$ kW/m²K
 371 at T = 1.6 K, we obtain the thermal length $L_h \simeq 2.8$ mm which defines the spatial scale of temperature
 372 spreading along the cavity surface from a local heat source. For $f = 1.3$ GHz, $B_p = 83$ mT, $\rho_s \simeq 7 \times$
 373 10^{-8} Ω m, and $\lambda/\xi_s \sim \lambda_0/l \simeq 4$ given by STM of vortices shown in Figure 9, we obtain from Eqs. (4)
 374 and (5) that $N \sim 8 \times 10^2 - 2 \times 10^3$ for $\Delta T \simeq 2 - 5$ mK in Test 1 and $N \sim 400$ for $\Delta T \simeq 1$ mK in Test
 375 2. Assuming that trapped vortices are spaced by $\sim \lambda \simeq 80$ nm, we estimate sizes of vortex bundles as
 376 $L \sim \lambda\sqrt{N} \sim 1 - 10$ μm. The data shown in Figure 3 thus indicate that cooling the cavity at a higher rate in
 377 Test 2 may reduce the numbers of trapped vortices in hot-spots by $\sim 2 - 5$ times. Notice that Eq. (5) does
 378 not take into account pinning of vortices [83] which can increase the above estimate of N .

379 Another contribution to RF losses could come from the weakly deteriorated superconducting properties
 380 at the surface revealed by our STM measurements. Here the extra power $P_0 \simeq \pi L^2 \delta R H_p^2 / 2$ results from
 381 the change in the BCS surface resistance δR in the area of radius $\sim L$ due to the local reduction Δ and
 382 increase of the thickness of the normal suboxide layer illustrated by Figure 7. Here:

$$\delta R = \sum_i P_i R_i e^{-\Delta_i/k_B T} - R_0 e^{-\Delta_0/k_B T} \quad (6)$$

383 where P_i is a fraction of the hot spot area where α, β, Δ take particular values according to the histograms
 384 shown in Figure 7, and the last term in Eq. (6) describes the BCS surface resistance R_{BCS} for an ideal
 385 surface in the cold-spot areas. The pre-factor $R_i(\alpha_i, \beta_i, \Delta_i)$ in Eq. 6 is a rather complicated function of the
 386 parameters [12, 17], so we only make here a rough estimate of the size L of a surface hot-spot which could
 387 provide the observed ΔT values shown in Figure 3.

388 The reduction of the mean gap value from $\Delta_0 \approx 1.55$ meV in cold spots to $\langle \Delta \rangle \approx 1.5$ meV in hot-
 389 spots shown in Figure 7 increases R_s by the factor $e^{(\Delta_0 - \langle \Delta \rangle)/k_B T} \simeq 2.1$ at 1.6 K. In the model of [12]
 390 distributions of the metallic suboxide thickness and the contact resistance in the range of the parameters
 391 α and β shown in Figures 7(e) and (f) increases the mean prefactor $\langle R_i \rangle \approx$ by yet another factor $\sim 2-3$,
 392 giving $\delta R \sim 5R_{BCS} \sim 20$ nΩ at 1.6 K. From Eq. (4), it follows that

$$L \simeq \left[\frac{8\kappa w \mu_0^2 \Delta T}{\delta R B_p^2 \ln \frac{4\kappa}{wh_K}} \right]^{1/2} \quad (7)$$

393 For $\Delta T = 1$ mK, $B_p = 83$ mT and the above values of other parameters, Eq. 7 yields $L \simeq 1$ mm, more
 394 than 2 orders of magnitude larger than the size of the vortex hot-spots causing $\Delta T = 1$ mK. Thus, the
 395 changes in the surface superconducting properties revealed by STM give much weaker contributions to
 396 the observed temperature maps than trapped vortices. Yet our STM/STS measurements revealed a clear
 397 correlation between the weakly deteriorated superconducting properties at the surface and the positions of
 398 the hot-spots identified by temperature mapping. Moreover, the severity of the deterioration correlates with
 399 the inability to expel flux from that region during cooldown, as shown by the results from STM and T-maps
 400 on sample G. We suggest that, although the observed changes in the properties of the oxide layer and
 401 superconducting gap are not the prime sources of the RF power in the hot-spot sample, these parts of the
 402 cavity may be the regions where vortices first nucleate and then get trapped by bulk pinning centers upon
 403 cooling of the cavity through T_c . Another mechanism by which a reduced gap in hot-spots can be linked
 404 with trapped vortices may result from subsurface metallic nanohydrides [31, 77]. Due to the proximity
 405 effect [78], such metallic nanoparticles locally reduce $\Delta(T)$ over distances $\sim \xi_s$ around them. As a result,
 406 the nanoparticles that are closer than a few ξ_s to the surface not only can pin vortices but also cause a
 407 shadow effect of reduced Δ at the surface observed by STM.

408 The exponent $n > 2$ in the overheating $\Delta T \propto H^n$ can result from a temperature dependence of the
 409 surface resistance $R_s(T)$, even if R_s containing both the BCS and vortex contributions is independent
 410 of H . This follows from the uniform thermal balance equation $Y\Delta T = R_s(T)H^2/2$ which shows that
 411 $\Delta T(H)$ increases faster than H^2 if $R_s(T)$ increases with T . Here Y is the thermal conductance of the
 412 cavity wall [3].

413 The local overheating at the quench spot measured after the two cool-downs is fairly weak. Weak
 414 overheating in a small flux hot-spot is proportional to the power in the hot-spot but the thermal breakdown
 415 field remains close to the uniform breakdown field without the hot-spot [3, 35]. The origin of the reduced
 416 quench field in N-doped cavities is not entirely clear and changes with the duration of N-exposure and of
 417 the post-annealing, impact the quench field [28, 84]. In addition to geometric magnetic field enhancement
 418 at grain boundaries and topographic defects, the reduction of the breakdown field of N-doped cavities
 419 can result from a dirtier surface, which reduces both H_{c1} and the superheating field H_s because the
 420 Ginzburg-Landau (GL) parameter $\kappa = \lambda/\xi$ increases as the mean free path decreases. For instance,
 421 $H_{c1} = [\ln(\kappa + C(\kappa)) H_c/\kappa\sqrt{2}]$ decreases nearly inversely with κ , where the thermodynamic critical field
 422 H_c is independent of l and C decreases from 1.35 at $\kappa = 1/\sqrt{2}$ to 0.5 at $\kappa \gg 1$ [85]. In turn, the GL
 423 superheating field decreases from $H_s = 1.2H_c$ at $\kappa = 1$ in a clean Nb to $H_s = 0.745H_c$ at $\kappa \gg 1$ [86].
 424 The reduction of H_s can locally reduce the surface barrier in a dirty island with higher concentration of
 425 impurities. Evidence for a reduced surface barrier in N-doped Nb samples was reported in Ref. [87].

6 CONCLUSIONS

426 Regions with different RF loss characteristics were located with thermometry mapping during the RF test
 427 of a N-doped Nb cavity. The cavity performance was limited by a quench at 86 mT and the quench location
 428 was the same after both slow and fast cooldown. A grain boundary was found at the quench location.

429 Cutouts from hot-spot regions were characterized by XPS and STM/STS measurements. The STM
 430 results can be described by a model which includes a thin proximity-coupled normal layer on top of the
 431 superconductor, resulting in a small degradation of both superconducting gap and degraded interface
 432 resistance in hot-spot regions, compared to cold-spot ones. The model parameters obtained from the STM
 433 measurements were used to calculate a distribution of R_s -values at 1.6 K. The thickness of the normal

434 layer was estimated to be of the order of 1 nm, contributing by $\sim 1.3 \text{ n}\Omega$ to the average residual resistance
435 extracted from RF measurements.

436 Our analysis of the experimental data suggests that weakly degraded superconducting properties at the
437 surface of hot-spot regions are not the main source of RF losses, rather they are regions where vortices
438 settle during cooldown. Vortex nucleation may also be preferential in these locations but nucleation
439 could also be facilitated by grain boundaries [88], such as found on samples A and G. While stronger
440 thermal gradients will enhance flux expulsion as shown in Figure 3, poorly superconducting regions remain
441 vulnerable to preferentially trapping vortices.

CONFLICT OF INTEREST STATEMENT

442 The authors declare that the research was conducted in the absence of any commercial or financial
443 relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

444 MI, GC, and AG contributed to conception and design of the study. MI, EL and BO did the STM, XPS and
445 SEM measurements and data analysis. JM did the RF and thermometry measurements and data analysis.
446 GC and AG contributed to the data analysis. MI and EL wrote the first draft of the manuscript. GC and AG
447 wrote sections of the manuscript. All authors contributed to the final version of the manuscript.

FUNDING

448 This work was supported by the National Science Foundation, under award PHY-1734075. Some of the
449 calculations were carried out on Temple University's HPC resources supported in part by the National
450 Science Foundation through major research instrumentation grant N. 1625061 and by the US Army
451 Research Laboratory under contract number W911NF-16-2-0189. G.C. is supported by Jefferson Science
452 Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The work of JM and AG at Old
453 Dominion University was supported by DOE under grant DE-SC 100387-020.

ACKNOWLEDGEMENTS

454 The authors would like to acknowledge the use of the Core Facility at Drexel University for the XPS
455 measurements, the Nano Instrumentation Center and Dmitriy A. Dikin at Temple University for the SEM
456 measurements. The authors would also like to acknowledge M. Kelley and W. Leng for the ARXPS
457 measurements at Virginia Tech.

DATA AVAILABILITY STATEMENT

458 The data that support the findings of this study are available from the corresponding author upon reasonable
459 request.

REFERENCES

460 [1] Padamsee H, Knobloch J, Hays T. *RF Superconductivity for Accelerators* (VCH Verlag GmbH Co.
461 KGaA, Weinheim) (2008).

462 [2] Antoine C. Materials and surface aspects in the development of SRF niobium cavities. *Tech. Rep.*
463 EuCARD-BOO-2012-001, CEA Saclay (2012).

464 [3] Gurevich A. Superconducting radio-frequency fundamentals for particle accelerators. *Reviews of*
465 *Accelerator Science and Technology* **05** (2012) 119–146. doi:10.1142/S1793626812300058.

466 [4] Padamsee HS. Superconducting radio-frequency cavities. *Annual review of nuclear and particle*
467 *science* **64** (2014) 175–196.

468 [5] Singer W, Aderhold S, Ermakov A, Iversen J, Kostin D, Kreps G, et al. Development of large grain
469 cavities. *Physical Review Special Topics-Accelerators and Beams* **16** (2013) 012003.

470 [6] Reschke D, Gubarev V, Schaffran J, Steder L, Walker N, Wenskat M, et al. Performance in the vertical
471 test of the 832 nine-cell 1.3 GHz cavities for the european X-ray Free Electron Laser. *Phys. Rev. Accel.*
472 *Beams* **20** (2017) 042004. doi:10.1103/PhysRevAccelBeams.20.042004.

473 [7] Dhakal P, Chetri S, Balachandran S, Lee PJ, Ciovati G. Effect of low temperature baking in nitrogen
474 on the performance of a niobium superconducting radio frequency cavity. *Phys. Rev. Accel. Beams* **21**
475 (2018) 032001. doi:10.1103/PhysRevAccelBeams.21.032001.

476 [8] Zmuidzinas J. Superconducting microresonators: Physics and applications. *Annu. Rev. Condens.*
477 *Matter Phys.* **3** (2012) 169–214.

478 [9] Gurevich A. Tuning microwave losses in superconducting resonators. *Superconductor Science and*
479 *Technology* **36** (2023) 063002. doi:10.1088/1361-6668/acc214.

480 [10] Mattis DC, Bardeen J. Theory of the anomalous skin effect in normal and superconducting metals.
481 *Phys. Rev.* **111** (1958) 412–417. doi:10.1103/PhysRev.111.412.

482 [11] Dynes RC, Narayanamurti V, Garno JP. Direct measurement of quasiparticle-lifetime broadening in a
483 strong-coupled superconductor. *Phys. Rev. Lett.* **41** (1978) 1509–1512. doi:10.1103/PhysRevLett.41.
484 1509.

485 [12] Gurevich A, Kubo T. Surface impedance and optimum surface resistance of a superconductor with an
486 imperfect surface. *Phys. Rev. B* **96** (2017) 184515. doi:10.1103/PhysRevB.96.184515.

487 [13] Gurevich A. Reduction of dissipative nonlinear conductivity of superconductors by static and
488 microwave magnetic fields. *Phys. Rev. Lett.* **113** (2014) 087001. doi:10.1103/PhysRevLett.113.
489 087001.

490 [14] Garfunkel MP. Surface impedance of Type-I superconductors: Calculation of the effect of a static
491 magnetic field. *Phys. Rev.* **173** (1968) 516–525. doi:10.1103/PhysRev.173.516.

492 [15] Casalbuoni S, Knabbe E, Kötzler J, Lilje L, von Sawilski L, Schmüser P, et al. Surface supercon-
493 ductivity in niobium for superconducting rf cavities. *Nuclear Instruments and Methods in Physics*
494 *Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* **538** (2005)
495 45–64. doi:<https://doi.org/10.1016/j.nima.2004.09.003>.

496 [16] Proslier T, Kharitonov M, Pellin M, Zasadzinski J, Ciovati. Evidence of surface paramagnetism in
497 niobium and consequences for the superconducting cavity surface impedance. *IEEE Transactions on*
498 *Applied Superconductivity* **21** (2011) 2619–2622. doi:10.1109/TASC.2011.2107491.

499 [17] Kubo T, Gurevich A. Field-dependent nonlinear surface resistance and its optimization by surface
500 nanostructuring in superconductors. *Phys. Rev. B* **100** (2019) 064522. doi:10.1103/PhysRevB.100.
501 064522.

502 [18] Grassellino A, Romanenko A, Sergatskov D, Melnychuk O, Trenikhina Y, Crawford A, et al. Nitrogen
503 and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly
504 efficient accelerating structures. *Superconductor Science and Technology* **26** (2013) 102001. doi:10.
505 1088/0953-2048/26/10/102001.

506 [19] Romanenko A, Grassellino A, Crawford AC, Sergatskov DA, Melnychuk O. Ultra-high quality factors
507 in superconducting niobium cavities in ambient magnetic fields up to 190 mG. *Applied Physics Letters*
508 **105** (2014) 234103. doi:10.1063/1.4903808.

509 [20] Gonnella D, Eichhorn R, Furuta F, Ge M, Hall D, Ho V, et al. Nitrogen-doped 9-cell cavity performance
510 in a test cryomodule for LCLS-II. *Journal of Applied Physics* **117** (2015) 023908. doi:10.1063/1.
511 4905681.

512 [21] Ciovati G, Dhakal P, Gurevich A. Decrease of the surface resistance in superconducting niobium
513 resonator cavities by the microwave field. *Applied Physics Letters* **104** (2014) 092601. doi:10.1063/1.
514 4867339.

515 [22] Dhakal P, Ciovati G, Myneni GR, Gray KE, Groll N, Maheshwari P, et al. Effect of high temperature
516 heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity.
517 *Phys. Rev. ST Accel. Beams* **16** (2013) 042001. doi:10.1103/PhysRevSTAB.16.042001.

518 [23] Ciovati G, Dhakal P, Myneni GR. Superconducting radio-frequency cavities made from medium and
519 low-purity niobium ingots. *Superconductor Science and Technology* **29** (2016) 064002. doi:10.1088/
520 0953-2048/29/6/064002.

521 [24] Maniscalco JT, Gonnella D, Liepe M. The importance of the electron mean free path for supercon-
522 ducting radio-frequency cavities. *Journal of Applied Physics* **121** (2017) 043910. doi:10.1063/1.
523 4974909.

524 [25] Posen S, Romanenko A, Grassellino A, Melnychuk O, Sergatskov D. Ultralow surface resistance
525 via vacuum heat treatment of superconducting radio-frequency cavities. *Phys. Rev. Appl.* **13** (2020)
526 014024. doi:10.1103/PhysRevApplied.13.014024.

527 [26] Lechner EM, Angle JW, Stevie FA, Kelley MJ, Reece CE, Palczewski AD. Rf surface resistance
528 tuning of superconducting niobium via thermal diffusion of native oxide. *Applied Physics Letters* **119**
529 (2021) 082601. doi:10.1063/5.0059464.

530 [27] Dhakal P. Nitrogen doping and infusion in SRF cavities: A review. *Physics Open* **5** (2020) 100034.
531 doi:<https://doi.org/10.1016/j.physo.2020.100034>.

532 [28] Gonnella D, Aderhold S, Burrill A, Daly E, Davis K, Grassellino A, et al. Industrialization of the
533 nitrogen-doping preparation for SRF cavities for LCLS-II. *Nuclear Instruments and Methods in
534 Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* **883**
535 (2018) 143–150. doi:<https://doi.org/10.1016/j.nima.2017.11.047>.

536 [29] Garg P, Balachandran S, Adlakha I, Lee PJ, Bieler TR, Solanki KN. Revealing the role of nitrogen on
537 hydride nucleation and stability in pure niobium using first-principles calculations. *Superconductor
538 Science and Technology* **31** (2018) 115007. doi:10.1088/1361-6668/aae147.

539 [30] Pfeiffer G, Wipf H. The trapping of hydrogen in niobium by nitrogen interstitials. *Journal of Physics
540 F: Metal Physics* **6** (1976) 167. doi:10.1088/0305-4608/6/2/013.

541 [31] Veit RD, Farber RG, Sitaraman NS, Arias TA, Sibener SJ. Suppression of nano-hydride growth on
542 Nb(100) due to nitrogen doping. *The Journal of Chemical Physics* **152** (2020) 214703. doi:10.1063/5.
543 0007042.

544 [32] Groll N, Ciovati G, Grassellino A, Romanenko A, Zasadzinski J, Proslier T. Insight into bulk niobium
545 superconducting rf cavities performances by tunneling spectroscopy. *arXiv preprint arXiv:1805.06359*
546 (2018).

547 [33] Lechner EM, Oli BD, Makita J, Ciovati G, Gurevich A, Iavarone M. Electron tunneling and x-ray
548 photoelectron spectroscopy studies of the superconducting properties of nitrogen-doped niobium
549 resonator cavities. *Phys. Rev. Appl.* **13** (2020) 044044. doi:10.1103/PhysRevApplied.13.044044.

550 [34] Knobloch J, Muller H, Padamsee H. Design of a high speed, high resolution thermometry system
551 for 1.5 GHz superconducting radio frequency cavities. *Review of Scientific Instruments* **65** (1994)
552 3521–3527. doi:10.1063/1.1144532.

553 [35] Gurevich A, Ciovati G. Effect of vortex hotspots on the radio-frequency surface resistance of
554 superconductors. *Phys. Rev. B* **87** (2013) 054502. doi:10.1103/PhysRevB.87.054502.

555 [36] Dhakal P, Ciovati G, Gurevich A. Flux expulsion in niobium superconducting radio-frequency cavities
556 of different purity and essential contributions to the flux sensitivity. *Phys. Rev. Accel. Beams* **23** (2020)
557 023102. doi:10.1103/PhysRevAccelBeams.23.023102.

558 [37] Ciovati G, Gurevich A. Evidence of high-field radio-frequency hot spots due to trapped vortices in
559 niobium cavities. *Phys. Rev. ST Accel. Beams* **11** (2008) 122001. doi:10.1103/PhysRevSTAB.11.
560 122001.

561 [38] Martinello M, Romanenko A, Checchin M, Grassellino A, Crawford A, Melnychuk A, et al. Cooling
562 dynamics through transition temperature of niobium SRF cavities captured by temperature mapping.
563 *arXiv preprint arXiv:1504.04441* (2015).

564 [39] Zhao X, Ciovati G, Bieler TR. Characterization of etch pits found on a large-grain bulk niobium
565 superconducting radio-frequency resonant cavity. *Phys. Rev. ST Accel. Beams* **13** (2010) 124701.
566 doi:10.1103/PhysRevSTAB.13.124701.

567 [40] Barkov F, Romanenko A, Trenikhina Y, Grassellino A. Precipitation of hydrides in high purity niobium
568 after different treatments. *Journal of Applied Physics* **114** (2013) 164904. doi:10.1063/1.4826901.

569 [41] Spradlin J, Palczewski A, Reece C, Tian H. Analysis of Surface Nitrides Created During Doping Heat
570 Treatments of Niobium. *Proc. SRF'19* (JACoW Publishing, Geneva, Switzerland) (2019), no. 19 in Interna-
571 tional Conference on RF Superconductivity, 106–111. doi:10.18429/JACoW-SRF2019-MOP030.
572 [Https://doi.org/10.18429/JACoW-SRF2019-MOP030](https://doi.org/10.18429/JACoW-SRF2019-MOP030).

573 [42] Dhakal P, Ciovati G, Pudasaini U, Chetri S, Balachandran S, Lee PJ. Surface characterization of
574 nitrogen-doped high purity niobium coupons compared with superconducting rf cavity performance.
575 *Phys. Rev. Accel. Beams* **22** (2019) 122002. doi:10.1103/PhysRevAccelBeams.22.122002.

576 [43] Dangwal Pandey A, Dalla Lana Semione G, Prudnikava A, Keller TF, Noei H, Vonk V, et al. Surface
577 characterization of nitrogen-doped Nb (100) large-grain superconducting RF cavity material. *Journal
578 of Materials Science* **53** (2018) 10411. doi:10.1007/s10853-018-2310-8.

579 [44] Trenikhina Y, Grassellino A, Melnychuk O, Romanenko A. Characterization of Nitrogen Doping
580 Recipes for the Nb SRF Cavities. *Proc. SRF'15*. JACoW (Geneva, Switzerland: JACoW)
581 (2015), no. 17 in International Conference on RF Superconductivity, 223–227. doi:10.18429/
582 JACoW-SRF2015-MOPB055.

583 [45] Yang L, Liu B, Ye Z, Yang C, Wang Z, Chen B, et al. Investigation into surface composition
584 of nitrogen-doped niobium for superconducting rf cavities. *Nanotechnology* **32** (2021) 245701.
585 doi:10.1088/1361-6528/abeb99.

586 [46] Aune B, Bandermann R, Bloess D, Bonin B, Bosotti A, Champion M, et al. Superconducting TESLA
587 cavities. *Phys. Rev. ST Accel. Beams* **3** (2000) 092001. doi:10.1103/PhysRevSTAB.3.092001.

588 [47] Ciovati G. *Investigation of the superconducting properties of niobium radio-frequency cavities* (Old
589 Dominion University) (2005).

590 [48] Romanenko A, Grassellino A, Melnychuk O, Sergatskov DA. Dependence of the residual surface
591 resistance of superconducting radio frequency cavities on the cooling dynamics around T_c . *Journal of
592 Applied Physics* **115** (2014) 184903. doi:10.1063/1.4875655.

593 [49] Makita J, Ciovati G, Dhakal P. Temperature Mapping of Nitrogen-doped Niobium Superconducting
594 Radiofrequency Cavities. *Proc. 6th International Particle Accelerator Conference (IPAC'15), Rich-
595 mond, VA, USA, May 3-8, 2015* (Geneva, Switzerland: JACoW) (2015), no. 6 in International Particle
596 Accelerator Conference, 3575–3577. doi:<https://doi.org/10.18429/JACoW-IPAC2015-WEPWI038>.
597 [Https://doi.org/10.18429/JACoW-IPAC2015-WEPWI038](https://doi.org/10.18429/JACoW-IPAC2015-WEPWI038).

598 [50] Ciovati G, Gurevich A. Measurement of RF Losses Due to Trapped Flux in a Large-Grain Niobium
599 Cavity. *Proc. SRF'07* (JACoW Publishing, Geneva, Switzerland) (????).

600 [51] Grundner M, Halbritter J. On the natural Nb₂O₅ growth on Nb at room temperature. *Surface Science*
601 **136** (1984) 144–154. doi:[https://doi.org/10.1016/0039-6028\(84\)90661-7](https://doi.org/10.1016/0039-6028(84)90661-7).

602 [52] Hu Z, Li Y, Ji M, Wu J. The interaction of oxygen with niobium studied by XPS and UPS. *Solid State*
603 *Communications* **71** (1989) 849–852. doi:[https://doi.org/10.1016/0038-1098\(89\)90210-X](https://doi.org/10.1016/0038-1098(89)90210-X).

604 [53] King B, Patel H, Gulino D, Tatarchuk B. Kinetic measurements of oxygen dissolution into niobium
605 substrates: In situ x-ray photoelectron spectroscopy studies. *Thin Solid Films* **192** (1990) 351–369.
606 doi:[https://doi.org/10.1016/0040-6090\(90\)90079-S](https://doi.org/10.1016/0040-6090(90)90079-S).

607 [54] Ciovati G. Effect of low-temperature baking on the radio-frequency properties of niobium super-
608 conducting cavities for particle accelerators. *Journal of Applied Physics* **96** (2004) 1591–1600.
609 doi:10.1063/1.1767295.

610 [55] Farrell H, Isaacs H, Strongin M. The interaction of oxygen and nitrogen with the niobium (100) surface:
611 Ii. reaction kinetics. *Surface Science* **38** (1973) 31–52. doi:[https://doi.org/10.1016/0039-6028\(73\)90272-0](https://doi.org/10.1016/0039-6028(73)90272-0).

613 [56] Franchy R, Bartke T, Gassmann P. The interaction of oxygen with Nb(110) at 300, 80 and 20 K. *Surface Science* **366** (1996) 60–70. doi:[https://doi.org/10.1016/0039-6028\(96\)00781-9](https://doi.org/10.1016/0039-6028(96)00781-9).

615 [57] Lindau I, Spicer WE. Oxidation of Nb as studied by the uv-photoemission technique. *Journal of*
616 *Applied Physics* **45** (1974) 3720–3725. doi:10.1063/1.1663849.

617 [58] Halbritter J. On the oxidation and on the superconductivity of niobium. *Applied Physics A* **43** (1987)
618 1–28.

619 [59] Ohsawa T, Okubo J, Suzuki T, Kumigashira H, Oshima M, Hitosugi T. An n-type transparent
620 conducting oxide: Nb₁₂O₂₉. *The Journal of Physical Chemistry C* **115** (2011) 16625–16629. doi:10.
621 1021/jp203021u.

622 [60] Hashimoto S, Tanaka A. Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion
623 bombardment. *Surface and Interface Analysis* **34** (2002) 262–265. doi:<https://doi.org/10.1002/sia.1296>.

625 [61] Karulkar PC. Effects of sputtering on the surface composition of niobium oxides. *Journal of Vacuum*
626 *Science and Technology* **18** (1981) 169–174. doi:10.1116/1.570717.

627 [62] Chastain J, King Jr RC. Handbook of x-ray photoelectron spectroscopy. *Perkin-Elmer Corporation*
628 **40** (1992) 221.

629 [63] Prudnikava A, Tamashovich Y, Babenkov S, Makarova A, Smirnov D, Aristov V, et al. Systematic
630 study of niobium thermal treatments for superconducting radio frequency cavities employing x-ray
631 photoelectron spectroscopy. *Superconductor Science and Technology* **35** (2022) 065019.

632 [64] Darlinski A, Halbritter J. Angle-resolved XPS studies of oxides at NbN, NbC, and Nb surfaces.
633 *Surface and Interface Analysis* **10** (1987) 223–237. doi:<https://doi.org/10.1002/sia.740100502>.

634 [65] Tanuma S, Powell CJ, Penn DR. Calculations of electron inelastic mean free paths. V. Data for 14
635 organic compounds over the 50–2000 eV range. *Surface and Interface Analysis* **21** (1994) 165–176.
636 doi:<https://doi.org/10.1002/sia.740210302>.

637 [66] Lubchenko A, Batrakov A, Shurkaeva I, Pavolotsky A, Krause S, Ivanov D, et al. XPS study of
638 niobium and niobium-nitride nanofilms. *Journal of Surface Investigation: X-ray, Synchrotron and*
639 *Neutron Techniques* **12** (2018) 692–700.

640 [67] Lubchenko AV, Batrakov AA, Pavolotsky AB, Lubchenko OI, Ivanov DA. XPS study of multilayer
641 multicomponent films. *Applied Surface Science* **427** (2018) 711–721.

642 [68] Cava RJ, Batlogg B, Krajewski JJ, Poulsen HF, Gammel P, Peck WF, et al. Electrical and magnetic
643 properties of $\text{Nb}_2\text{O}_{5-\delta}$ crystallographic shear structures. *Phys. Rev. B* **44** (1991) 6973–6981. doi:10.
644 1103/PhysRevB.44.6973.

645 [69] Blatter G, Feigel'man MV, Geshkenbein VB, Larkin AI, Vinokur VM. Vortices in high-temperature
646 superconductors. *Rev. Mod. Phys.* **66** (1994) 1125–1388. doi:10.1103/RevModPhys.66.1125.

647 [70] Brandt EH. The flux-line lattice in superconductors. *Reports on Progress in Physics* **58** (1995) 1465.
648 doi:10.1088/0034-4885/58/11/003.

649 [71] Caroli C, De Gennes P, Matricon J. Bound Fermion states on a vortex line in a type II superconductor.
650 *Physics Letters* **9** (1964) 307–309. doi:[https://doi.org/10.1016/0031-9163\(64\)90375-0](https://doi.org/10.1016/0031-9163(64)90375-0).

651 [72] Hess HF, Robinson RB, Dynes RC, Valles JM, Waszczak JV. Scanning-Tunneling-Microscope
652 Observation of the Abrikosov Flux Lattice and the Density of States near and inside a Fluxoid. *Phys.*
653 *Rev. Lett.* **62** (1989) 214–216. doi:10.1103/PhysRevLett.62.214.

654 [73] Renner C, Kent AD, Niedermann P, Fischer O, Lévy F. Scanning tunneling spectroscopy of a vortex
655 core from the clean to the dirty limit. *Phys. Rev. Lett.* **67** (1991) 1650–1652. doi:10.1103/PhysRevLett.
656 67.1650.

657 [74] Stolyarov VS, Cren T, Brun C, Golovchanskiy IA, Skryabina OV, Kasatonov DI, et al. Expansion of a
658 superconducting vortex core into a diffusive metal. *Nature communications* **9** (2018) 1–8.

659 [75] Gurevich A. Tuning vortex fluctuations and the resistive transition in superconducting films with a
660 thin overlayer. *Phys. Rev. B* **98** (2018) 024506. doi:10.1103/PhysRevB.98.024506.

661 [76] Maniscalco J, Gonnella D, Hall D, Liepe M, Posen S. Measurements of Nb_3Sn and nitrogen-doped
662 niobium using physical property measurement system (2015).

663 [77] Yang Z, Lu X, He Y, Tan W, Huang S, Guo H. Magnetic properties and hydrides precipitation
664 observation of nitrogen doping niobium used for accelerator applications. *Results in Physics* **12** (2019)
665 2155–2163. doi:<https://doi.org/10.1016/j.rinp.2019.02.073>.

666 [78] Tinkham M. *Introduction to superconductivity* (Courier Corporation) (2004).

667 [79] Sonier J. Muon spin rotation studies of electronic excitations and magnetism in the vortex cores of
668 superconductors. *Rep. Prog. Phys.* **70** (2007) 1717. doi:10.1088/0034-4885/70/11/R01.

669 [80] Tamai T, Kato M. Local density of states of quasi-particles around a vortex core in a square su-
670 perconducting plate with a random impurity potential. *J. Phys. Conf. Series* **1590** (2020) 012001.
671 doi:10.1088/1742-6596/1590/1/012001.

672 [81] Halbritter J. FORTRAN-Program for the computation of the surface impedance of superconductors.
673 Tech. Rep. FZK 3/70-6, Forschungszentrum Karlsruhe (1970).

674 [82] Knobloch J. *Advanced Thermometry Studies of Superconducting Radio-Frequency Cavities*. Ph.D.
675 thesis, Cornell University (1997).

676 [83] Pathirana W, Gurevich A. Effect of random pinning on nonlinear dynamics and dissipation of a vortex
677 driven by a strong microwave current. *Phys. Rev. B* **103** (2021) 184518. doi:10.1103/PhysRevB.87.
678 054502.

679 [84] Maniscalco J, Aderhold S, Arkan T, Checchin M, Fuerst J, Gonnella D, et al. Statistical Modeling of
680 Peak Accelerating Gradients in LCLS-II and LCLS-II-HE. *Proc. 20th International Conference on RF*

681 *Superconductivity (SRF'21)* (JACoW Publishing, Geneva, Switzerland) (2022), no. 20 in International
682 Conference on RF Superconductivity, 804–808. doi:10.18429/JACoW-SRF2021-THPCAV009.

683 [85] Brandt EH. Properties of the ideal ginzburg-landau vortex lattice. *Phys. Rev. B* **68** (2003) 054506.
684 doi:10.1103/PhysRevB.68.054506.

685 [86] Lin FPJ, Gurevich A. Effect of impurities on the superheating field of type-ii superconductors. *Phys.*
686 *Rev. B* **85** (2012) 054513. doi:10.1103/PhysRevB.85.054513.

687 [87] Vostrikov A, Checchin M, Grassellino A, Kim Y, Romanenko A. Modifications of Superconducting
688 Properties of Niobium Caused by Nitrogen Doping Recipes for High Q Cavities. *Proc. 6th Interna-*
689 *tional Particle Accelerator Conference (IPAC'15), Richmond, VA, USA, May 3-8, 2015* (Geneva,
690 Switzerland: JACoW) (2015), no. 6 in International Particle Accelerator Conference, 3312–3314.
691 doi:<https://doi.org/10.18429/JACoW-IPAC2015-WEPTY022>.

692 [88] Balachandran S, Polyanskii A, Chetri S, Dhakal P, Su YF, Sung ZH, et al. Direct evidence of
693 microstructure dependence of magnetic flux trapping in niobium. *Scientific reports* **11** (2021) 1–12.