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ABSTRACT 27 

In this paper, we present a design methodology for resonant structures exhibiting particular dynamic 28 

responses by combining an eigenfrequency matching approach and a harmonic analysis-informed 29 

eigenmode identification strategy. This systematic design methodology, based on topology optimization, 30 

introduces a novel computationally efficient approach for 3D dynamic problems requiring antiresonances at 31 

specific target frequencies subject to specific harmonic loads. The optimization’s objective function 32 

minimizes the error between target antiresonance frequencies and the actual structure’s antiresonance 33 

eigenfrequencies, while the harmonic analysis-informed identification strategy compares harmonic 34 

displacement responses against eigenvectors using a modal assurance criterion, therefore ensuring an 35 

accurate recognition and selection of appropriate antiresonance eigenmodes used during the optimization 36 

process. At the same time, this method effectively prevents well-known problems in topology optimization 37 

of eigenfrequencies such as localized eigenmodes in low-density regions, eigenmodes switching order, and 38 

repeated eigenfrequencies. Additionally, our proposed localized eigenmode identification approach 39 

completely removes the spurious eigenmodes from the optimization problem by analyzing the eigenvectors’ 40 

response in low-density regions compared to high-density regions. The topology optimization problem is 41 

formulated with a density-based parametrization and solved with a gradient-based sequential linear 42 

programming method, including material interpolation models and topological filters. Two case studies 43 

demonstrate that the proposed design methodology successfully generates antiresonances at the desired 44 

target frequency subject to different harmonic loads, design domain dimensions, mesh discretization, or 45 

material properties. 46 

 47 

Keywords: Topology optimization, Eigenfrequency matching, Frequency response analysis, Antiresonances  48 
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1. INTRODUCTION 49 

Devising effective means to control wave propagation is of paramount importance across 50 

length scales, from designing electronic devices to vibration isolation of critical structures. 51 

In search of effective means, an approach inspired by the concept of locally resonant 52 

metamaterials uses sub-wavelength resonators to create frequency bandgaps [1], i.e., a 53 

frequency range where waves do not propagate. A sub-class of these metamaterials 54 

composed of surface-mounted or surface-embedded resonators are called Locally 55 

Resonant Metasurfaces (LRM). These LRM are fundamentally different from phononic 56 

crystals whose working mechanisms, explained by Bragg scattering [2], depend upon the 57 

periodicity of their unit cells. Instead, LRM rely on interactions between the propagating 58 

wave and the local resonator’s response, exhibiting scattering and non-conventional 59 

dispersion properties that lead to frequency bandgaps [3]. When these LRM are used to 60 

control elastic guided wave propagation, e.g. Lamb or Rayleigh waves, they are called 61 

Elastodynamic LRM (ELRM).  62 

 63 

Since the introduction of ELRM, their local resonator designs have been based on simple 64 

geometries, i.e., rods, holes, spheres, beams, or simply mass-spring systems. These 65 

designs often rely on the parametric tuning of geometrical features empirically [4]–[9], or 66 

experimentally [10]–[14] until the desired bandgap is achieved.  Optimization and 67 

machine learning methods have been used to tailor dispersion curves [15]–[21] or 68 

effective material properties [22]–[25] mainly for 2D phononic crystals assuming 69 

periodicity of unit cells, however, a rational design methodology to tailor the local 70 
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resonator’s response to particular wave excitations is missing. Our investigation [26]–[28] 71 

demonstrates that the local resonator’s antiresonances are the key factor in generating 72 

frequency bandgaps for ELRM. Thus, the motivation of our work is how to design resonant 73 

structures by tailoring their antiresonances. This paper establishes a generalized 74 

systematic design methodology to conceive resonant structures based on antiresonance 75 

matching. One of the methodology’s applications is the design of local resonators for 76 

ELRM, however, it is applicable to any design problem requiring antiresonance 77 

manipulation. 78 

 79 

The Topology Optimization (TO) method [29], which is of particular interest to this study, 80 

is a computational tool to design complex layouts in numerous applications [30]–[32] and 81 

it has been proven to be a robust design tool for dynamic problems [33], [34]. Previous 82 

works on TO have attempted to manipulate antiresonances with harmonic-based 83 

formulations such as the minimum dynamic compliance [35]–[37], solving mostly 2D 84 

problems with only a few design variables and surrogate formulations to reduce 85 

computational load. 3D problems have significantly more design variables, resulting in 86 

complex and expensive computational tasks [38]. Moreover, the dynamic compliance 87 

could be undefined around an antiresonance frequency [36], [39], making the minimum 88 

dynamic compliance problem not suitable for antiresonance manipulation. Thus, a 89 

harmonic-based TO is not feasible. Instead, we propose an approach that relies on 90 

manipulating eigenfrequencies which are significantly less expensive to compute, in 91 
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conjunction with a harmonic-informed selection of antiresonance eigenmodes to be used 92 

within the optimization process. 93 

 94 

The eigenfrequency problem is well-known in TO. It has been commonly used from three 95 

different approaches [38]: maximize the structure’s eigenfrequencies [40], generate a gap 96 

in-between eigenfrequencies [41], and match the structure’s eigenfrequencies with 97 

target frequencies [42]. The last approach, which is most relevant to this paper, has been 98 

mostly used to match resonance eigenfrequencies without considering how dynamic 99 

forces interact with the structure, an important consideration for the antiresonance 100 

matching problem. This is because matching eigenfrequencies for resonances or 101 

antiresonances are fundamentally different problems. Resonances occur when a dynamic 102 

force excites the structure’s natural frequencies of resonance, namely, resonance 103 

eigenfrequencies. On the other hand, antiresonances occur when the dynamic force is out 104 

of phase with respect to the structure’s response, resulting in zero or near-to-zero 105 

displacement(s) at a particular location(s); the dynamic load cancels out with an equal but 106 

opposite reaction force, equivalent to constraining the displacement(s) at that point(s) 107 

[43]. The antiresonance frequencies of the dynamically-loaded structure correlate with 108 

specific eigenfrequencies of the displacement-constrained structure [44]. Here, we refer 109 

to those displacement-constrained eigenfrequencies as the antiresonance 110 

eigenfrequencies. Contrary to resonance eigenmodes, several antiresonance eigenmodes 111 

are not excited by particular dynamic loads, making the selection of these eigenmodes a 112 

critical component of the antiresonance eigenfrequency matching approach. Thus, the 113 
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commonly used eigenfrequency matching approaches do not work for the antiresonance 114 

matching problem as it needs additional information to appropriately select 115 

antiresonance eigenmodes considering specific dynamic loads. This paper presents a new 116 

harmonic-informed eigenfrequency matching approach that properly identifies the 117 

particular antiresonance eigenmodes to be optimized. 118 

 119 

This paper presents a twofold contribution: (i) a computationally feasible design 120 

methodology for 3D structures exhibiting antiresonances at desired target frequencies 121 

using a density-based TO combining eigenfrequency matching and harmonic analyses, 122 

and (ii) a new analysis procedure to identify specific antiresonance eigenmodes using a 123 

harmonic-informed identification scheme, effectively preventing several problems 124 

reported in the literature for the eigenfrequency optimization problem. The remainder of 125 

this paper is organized into three sections: Section 2 introduces the design methodology, 126 

Section 3 presents two case studies and their corresponding analysis, and Section 4 127 

summarizes our findings and discusses future work.  128 
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2. DESIGN METHODOLOGY 129 

This section presents a design methodology seeking to generalize a topology optimization 130 

problem in which a structure’s dynamic response is tailored by manipulating 131 

antiresonance eigenfrequencies with a harmonic-informed selection of eigenmodes. 132 

 133 

2.1. Optimization problem 134 

The optimization problem seeks to match a structure’s antiresonance eigenfrequency 135 

with a predefined target frequency. The structure is systematically modified until the 136 

desired antiresonance eigenfrequency is achieved as closely as possible. The objective 137 

function minimizes the error between a target frequency 𝑓𝑇  and the structure’s 138 

antiresonance eigenfrequency 𝑓𝐴 selected by a harmonic-informed analysis routine. Thus, 139 

the optimization problem formulation is: 140 

  min
𝝆
(
𝑓𝐴 − 𝑓𝑇
𝑓𝑇

)
2

 (1) 

subject to:  141 

 

0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1 

𝑉𝑚𝑖𝑛 ≤∑𝜌𝑒𝑉𝑒 ≤ 𝑉𝑚𝑎𝑥 

𝑁𝑒

𝑒=1

 

([𝐾] − 𝜆𝐴[𝑀]){ΦA} = 0 

(2) 

where 𝝆 are the pseudo-densities, namely design variables. Equation (2) presents the 142 

optimization constraints, where 𝜌𝑒 is the pseudo-density of element 𝑒, with 𝑁𝑒 the total 143 

number of finite elements. The minimum pseudo-density, set to 𝜌𝑚𝑖𝑛 = 1 × 10
−6, 144 
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prevents numerical problems. 𝜌𝑒𝑉𝑒 is the effective volume of element 𝑒, and the 145 

maximum and minimum volume constraints are, respectively, 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛. [𝐾] and 146 

[𝑀] are, respectively, the global stiffness and mass matrices, and ΦA  is the eigenvector 147 

corresponding to the eigenvalue 𝜆𝐴 = (2𝜋𝑓𝐴)
2. 148 

 149 

2.2. Optimization solver 150 

Different optimization methods can be used to solve a TO design problem, e.g., optimality 151 

criteria, moving asymptotes, sequential programming, evolutionary algorithms, or level-152 

set methods [20, 21]. Among these methods, sequential programming uses efficient 153 

algorithms for nonlinear problems [46]. Specifically, Sequential Linear Programming (SLP) 154 

is a popular method in structural optimization to deal with the nonlinear nature of complex 155 

problems because of its simplicity and the possibility to use efficient linear solvers, e.g., 156 

Simplex [47]. The SLP method requires a first-order linearization of the optimization 157 

problem, which is then sequentially solved by setting move limits on the design variables, 158 

converging to a local minimum of the nonlinear problem. Specifically, for this design 159 

methodology, the move limits’ lower and upper bounds have been set to 𝐿𝐵𝑗 = 𝜌𝑗 − 0.01 160 

and 𝑈𝐵𝑗 = 𝜌𝑗 + 0.01. The objective function in Equation (1) is linearized using first-order 161 

Taylor series as: 162 

 
min
𝝆

𝜕

𝜕𝜌𝑘
[(
𝑓𝐴 − 𝑓𝑇
𝑓𝑇

)
2

] 𝜌𝑘 
(3) 

The linearized objective function simplifies to: 163 
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 min
𝝆
[
(𝑓𝐴 − 𝑓𝑇)

4𝜋2𝑓𝐴𝑓𝑇
2

𝜕𝜆𝐴
𝜕𝜌𝑘

] 𝜌𝑘 (4) 

where: 164 

 
𝜕𝜆𝐴
𝜕𝜌𝑘

=
Φ𝐴
𝑇 (
𝜕[𝐾]
𝜕𝜌𝑘

− 𝜆𝐴
𝜕[𝑀]
𝜕𝜌𝑘

)Φ𝐴

Φ𝐴
𝑇[𝑀]Φ𝐴

 (5) 

 165 

2.3. Harmonic-informed selection of eigenmodes 166 

Identifying appropriate antiresonance eigenfrequencies to be matched with the target 167 

frequency is critical to ensure feasible solutions. By analyzing the structure’s Frequency 168 

Response Function (FRF) at each iteration, suitable antiresonances are identified. The 169 

eigenmodes corresponding to these antiresonances are selected as appropriate modes to 170 

use during the optimization process. The harmonic analysis-informed identification 171 

approach consists of the following steps: 172 

• Compute antiresonance eigenvalues {𝜆} and eigenvectors [Φ]: 173 

[𝐾][Φ] = {𝜆}[𝑀][Φ]  174 

• Delete rigid body eigenmodes below a threshold of 1Hz 175 

• Remove localized eigenmodes using the routine detailed in APPENDIX A. 176 

• Compute the structure’s harmonic response to the harmonic force 𝐹Harmonic 177 

[𝑀]{𝑥̈} + [𝐶]{𝑥̇} + [𝐾]{𝑥} = {𝐹Harmonic}  178 

• Extract the averaged FRF at the points of interest: 179 

averaged_FRF = mean(FRF) 180 

• Find local antiresonance peaks using the MATLAB function findpeaks: 181 
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[Amplitude,idx,Width,Prominence] = findpeaks(1/averaged_FRF) 182 

• Evaluate local peak frequency distance to target frequency 𝑔𝑞: 183 

Proximity = abs(Target – Peak_Frequency) 184 

• Evaluate metrics for each local antiresonance peak identified, i.e., antiresonance 185 

bandwidth, amplitude, prominence, and proximity to the target frequency 𝑔𝑞. 186 

Define a combined antiresonance evaluation factor as: 187 

factor = Amplitude + Prominence + Width - Proximity 188 

• Select the local antiresonance peak with the highest evaluation factor as the 189 

identified antiresonance frequency 𝐴𝑓. 190 

• Extract the harmonic displacement response 𝒙𝐻 at the identified frequency 𝐴𝑓. 191 

• Evaluate the Modal Assurance Criterion (MAC) [48] between the harmonic 192 

displacement response 𝒙𝐻 and all the antiresonance eigenvectors 𝚽𝐴: 193 

MAC =
|𝝓𝐴

𝑇  𝒙𝐻|
2

(𝝓𝐴
𝑇  𝝓𝐴)(𝝓𝐴

𝑇  𝒙𝐻)
 194 

• Select the eigenmode with the highest MAC coefficient as the identified 195 

antiresonance eigenmode; its corresponding eigenvalue 𝜆𝐴 = (2𝜋𝑓𝐴)
2 is used 196 

during the optimization in Equation (1). 197 

The reader is referred to APPENDIX A. for a step-by-step explanation. 198 

 199 

2.4. Topology optimization parametrization 200 

A density-based TO problem is ideally a binary problem, having the design variables either 201 

0 or 1 representing void or solid material, however, this is an ill-posed optimization 202 

problem. Relaxing the solution space is necessary to allow for intermediate values in-203 
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between 0 and 1, mathematically introducing artificial material properties; this is done by 204 

introducing material interpolation models [49]. Two models widely used in TO are the Solid 205 

Isotropic Material with Penalization (SIMP) model [50]: 206 

 
𝐸𝑒 = 𝜌𝑒

𝑝𝐸0 (6) 

and the Rational Approximation of Material Properties (RAMP) model [51]: 207 

 
𝐸𝑒 =

𝜌𝑒
1 + 𝑝(1 − 𝜌𝑒)

𝐸0 (7) 

where 𝐸𝑒 is the interpolated material property for element 𝑒, 𝐸0 is the original material 208 

property, and 𝑝 is the penalization factor. Note that 𝐸 may represent stiffness, mass, or 209 

damping. Typical penalization factors for stiffness (𝑝𝐾) and mass (𝑝𝑀) are, respectively, 210 

𝑝𝐾 = 3 and 𝑝𝑀 = 1 [40], [52]–[55]. However, this combination of penalization factors 211 

promotes the generation of spurious localized eigenmodes in low-pseudo-density regions 212 

as it is shown in APPENDIX B. Thus, this design methodology uses the same penalization 213 

factors, i.e. 𝑝𝐾 = 𝑝𝑀, regardless of the interpolation model. 214 

  215 

2.5. Topology optimization problems in eigenfrequency approaches 216 

In density-based TO, it is necessary to address problems such as checkerboard solutions, 217 

mesh dependency, or non-feasible solutions [31]. Moreover, the eigenfrequency matching 218 

approach presents other problems such as eigenmodes switching order or repeated 219 

eigenfrequencies [42], localized eigenmodes in low-density regions [40], and disconnected 220 

members [56]. The following solutions are proposed in this design methodology. 221 

 222 
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Eigenmode switching order or repeated eigenfrequencies. Ma et al [42] introduced the 223 

mean-eigenvalue formulation to overcome these problems, although it only works for 224 

multiple eigenfrequencies. Kim [57] introduced a tracking mode scheme that allows the 225 

tracking of single eigenmodes, although the tracked eigenmodes must be prescribed in 226 

advance. In this design methodology, these problems are overcome by matching 227 

eigenvectors with a harmonic response at an antiresonance frequency, as it is explained 228 

in Section 2.3 and detailed in APPENDIX A. 229 

 230 

Localized eigenmodes. This problem was originally addressed by Neves et al. [58] by 231 

removing the low-density elements from the stiffness matrix; this approach modifies the 232 

design domain at each iteration, which is not feasible in density-based TO. Several 233 

approaches appear in the literature. Pedersen [40] modified the penalization stiffness-to-234 

mass ratio (𝑝𝐾/𝑝𝑀) in low-density regions. Tcherniak [53], and Du and Olhoff [52] set the 235 

mass matrix penalization to zero or near-to-zero in low-density regions, therefore 236 

modifying the stiffness-to-mass ratio. Similarly, Zhang et al. [55], Rong [59], and Zhang [60] 237 

used different penalization schemes for the stiffness and mass matrices combining SIMP 238 

and RAMP interpolation models. All these papers have reported improvements in the 239 

localized eigenmodes problem by modifying the stiffness-to-mass ratio, mostly for the 240 

maximizing eigenfrequencies problem [40], however, for the antiresonance matching 241 

problem we have not seen the same results, as explained in APPENDIX B.  This design 242 

methodology considers a constant ratio 𝑝𝐾/𝑝𝑀 = 1, i.e., all interpolation models and 243 

penalization factors are applied equally for stiffness, mass, and damping. On another note, 244 
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Li et al. [56] pointed out another kind of localized eigenmodes, not for low-density 245 

elements but for disconnected floating members. Li et al. proposed a recognition 246 

technique to remove these localized eigenmodes for a level-set TO. Here we propose a 247 

new localized eigenmode recognition and elimination routine for density-based TO that 248 

removes both the low-density and the disconnected members localized eigenmodes, as 249 

mentioned in Section 2.3 and detailed in APPENDIX A. 250 

 251 

Disconnected members. Detached or isolated structural members are usually considered 252 

a problem in TO, especially for static problems such as the minimum compliance 253 

optimization. This problem is commonly solved by making these members inefficient by 254 

using volume constraints, interpolations models, and topological filters. However, in 255 

dynamic problems such as the antiresonance matching optimization, disconnected 256 

members do not help nor restrain the optimization from achieving the design objective, 257 

provided they are fully disconnected from the main body, i.e., without soft connections. 258 

APPENDIX C. shows that volume constraints failed to prevent disconnected members and 259 

demonstrates that disconnected members do not influence the dynamic response either. 260 

Nonetheless, this design methodology uses a filtering scheme to reduce softly-connected 261 

members proposed by Xu et al. [61] known as the “Projection filter”, combining a density 262 

filter, Equation (8), and a Heaviside filter, Equation (9). 263 

 𝜌̅𝑒 =
∑ 𝑤𝑖𝑣𝑖𝜌𝑖𝑖∈𝑁𝑠

∑ 𝑤𝑖𝑣𝑖𝑖∈𝑁𝑠

 (8) 
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where 𝑁𝑠 is the set of elements within a filter radius 𝑅𝑓, such that 𝑁𝑠 = {𝑖 | 𝑅𝑖𝑒 ≤ 𝑅𝑓} with 264 

𝑅𝑖𝑒 = ‖𝑐𝑖 − 𝑐𝑒‖ being the distance between the element centers 𝑒 and 𝑖. The weights are 265 

𝑤𝑖 = 𝑅𝑓 − 𝑅𝑖𝑒. 𝑣𝑖  and 𝜌𝑖  are the volume and pseudo-density of element 𝑖, respectively. 266 

 
𝜌̃𝑒 =

{
 
 

 
 𝜂 [𝑒

−𝛽(1−
𝜌̅𝑒
𝜂
)
− (1 −

𝜌̅𝑒
𝜂
) 𝑒−𝛽] 0 ≤ 𝜌̅𝑒 ≤ 𝜂

(1 − 𝜂) [1 − 𝑒
−𝛽

(𝜌̅𝑒−𝜂)
(1−𝜂) +

(𝜌̅𝑒 − 𝜂)𝑒
−𝛽

(1 − 𝜂)
] + 𝜂 𝜂 < 𝜌̅𝑒 ≤ 1

 (9) 

where 𝜌̅𝑒 is the pseudo-density after density filtering and 𝛽 controls the strength of the 267 

filter. In this design methodology, a continuation scheme is used, progressively increasing 268 

𝛽 to remove intermediate-density material, therefore promoting structural definition. The 269 

𝜂 parameter controls the volume during filtering. We preserve the volume after filtering 270 

by optimizing the 𝜂 value with a bisection method at each iteration. 271 

 272 

2.6.  Optimization program 273 

An optimization program to design resonating structures based on the proposed design 274 

methodology is implemented. This program, composed of multiple modules, integrates 275 

the software MATLAB and ABAQUS through PYTHON communication scripts [62], as 276 

shown in the flowchart of Figure 1. The optimization program starts with a finite element 277 

model data generation, including stiffness, mass, and damping matrices, mesh data with 278 

its nodal coordinates, element connectivity, loads, and boundary conditions. After this 279 

initialization, the optimization loop starts from the filters, followed by the Finite Element 280 

Analysis (FEA) considering matrices modified by filters and material interpolation models. 281 

The harmonic-informed routine from Section 2.3 analyses the topology’s frequency 282 
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response at each iteration to select the most suitable eigenmode for computing the 283 

objective function (Equation (1)) and sensitivities (Equation (4)). 284 

 285 

The proposed optimization workflow has been generalized to design any kind of structure 286 

by matching resonance or antiresonance eigenfrequencies. It can accommodate different 287 

material interpolation models, maximum and minimum volume constraints, solid or void 288 

non-design domains, numerical or analytical sensitivities, and multiple filtering schemes 289 

such as density, Heaviside, sensitivity, or move limits filters. Moreover, the integration 290 

with a commercial FEA software allows analysis of structures with complex geometries, 291 

multi-physics problems, and a variety of boundary conditions. 292 

  293 

Figure 1 - Optimization algorithm flowchart.  294 
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3. CASE STUDIES 295 

This section illustrates the design of resonant structures using the methodology proposed 296 

in Section 2. Two case studies present resonator designs for different harmonic loads, 297 

frequency ranges, design domain dimensions, mesh discretization, and material 298 

properties. Figure 2 shows design domains with their mesh discretization for both case 299 

studies. Note that a symmetry condition on the 𝑥𝑧-plane is used to reduce computation 300 

time. Table 1 lists the initial parameters for both case studies. 301 

   302 

(a)     (b) 303 

Figure 2 - Design domains with symmetry conditions on the xz-plane. Blue arrows show the direction of 304 
harmonic loads for each case study. Each voxel is a 20-node hexahedral finite element. (a) Case study #1: 305 

design domain of size 14x7x14 mm discretized with 1372 finite elements. (b) Case study #2: design domain 306 
of size 24x12x24 mm discretized with 6912 finite elements. 307 

 308 
 309 

Table 1 - Initial parameters 310 

Material properties, case study #1 𝐸 = 3.2516 GPa  

𝜌 = 1222.2 kg/m3  

𝑣 = 0.33  

Material properties, case study #2 𝐸 = 69 [GPa]  



Journal of Mechanical Design 
 

17 
 

 311 

The starting point considers all design variables to have the same pseudo-density, except 312 

for the bottom layer of elements, which considers a fully solid non-design bottom base at 313 

which the harmonic load must be applied, surrounded by void non-design elements. This 314 

is done to prevent numerical errors in the frequency response when harmonic loads are 315 

applied to void or near-to-void elements. The volume constraints are in place solely to 316 

prevent numerical instabilities in extreme cases, i.e., uncontrolled allocation of solid 317 

material or uncontrolled removal of material. However, the volume constraints do not 318 

play a major role in the proposed design methodology, as is usually done in topology 319 

optimization for lightweight structures. For a comparative study on how different volume 320 

constraints influence the solution, refer to APPENDIX C.  321 

𝜌 = 2730 [kg/m3]  

𝑣 = 0.33  

Target antiresonance frequency 𝑓𝑇  30 kHz (case study #1) 

50 kHz (case study #2) 

Starting point 𝝆 Homogenous pseudo-density at 𝜌𝑒 = 0.5 

Solid non-design 4 × 2 [mm] bottom base 

Void non-design all other first-layer elements 

Maximum allowed volume  𝑉𝑚𝑎𝑥 = 90%  

Minimum allowed volume  𝑉𝑚𝑖𝑛 = 10%  

Interpolation model SIMP model 

Penalization factors 𝑝𝐾 = 𝑝𝑀 = 1  

Density filter radius 𝑅𝑓 3 [mm]  

Heaviside filter 𝛽 starting value 𝛽 = 20  

𝛽 continuation scheme  𝛽 = 𝛽 + 1; at every iteration 
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3.1. Case Study #1. 322 

This case seeks to design a resonator that exhibits an antiresonance at 30 kHz subject to 323 

normal (out-of-plane) harmonic loads, as shown in Figure 2(a). Figure 3 shows the 324 

convergence history, Figure 4 shows the resultant optimized topology, and Figure 5 shows 325 

the topology’s frequency response. 326 

 327 
Figure 3 – Convergence history for 100 iterations (solid blue line), and antiresonance function (dashed red 328 

line) using 𝐴𝑓 from the harmonic-informed routine of Section 2.3. 329 

Figure 3 shows the objective function converging after iteration 52 with a value of 0.63. 330 

Several spikes are seen in the objective function before convergence. This phenomenon 331 

occurs when the harmonic-informed routine identifies an antiresonance with a high 332 

evaluation factor but low proximity to the target frequency, as described in Section 2.3; 333 

therefore, the objective function increases rapidly. The selection of an antiresonance 334 

closer to the target frequency is quickly recovered in the following iteration. This behavior 335 

is considered normal because the optimization explores the solution space for optimal 336 

solutions, especially during the first iterations, jumping to other potential solutions and 337 
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returning to the lowest value.  Once the objective function has converged, the recognition 338 

of antiresonances is stable around the target frequency. 339 

 340 

 An antiresonance function has been computed by replacing the eigenfrequency 𝑓𝑔 in 341 

Equation (1) with the antiresonance 𝐴𝑓 identified by the harmonic-informed routine of 342 

Section 2.3. The correlation between the objective function and the antiresonance 343 

function in Figure 3 reveals whether the selected eigenfrequency accurately represents 344 

an antiresonance when the topology is subject to a specific harmonic loading condition. 345 

Figure 3 shows good agreement between the objective function and the antiresonance 346 

function, therefore validating our design methodology to tailor antiresonances using 347 

eigenfrequency matching with a harmonic-informed selection of eigenmodes. 348 

  349 

(a)     (b) 350 

Figure 4 – Resultant optimized topologies for case study #1. (a) Raw topology at iteration 100, and (b) 351 
post-processed topology with symmetry conditions recovered. 352 

 353 
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Figure 4 presents both the optimized and post-processed topologies, and Figure 5 354 

presents their corresponding frequency responses. The volume decreased from 50%, the 355 

starting point, to 15.27% at the final iteration, as shown in Figure 4(a), where most of the 356 

solid material has been removed from the surroundings of a central solid body. After post-357 

processing, the resultant topology resembles a rounded Balloon-like shape. The FRFs 358 

presented in Figure 5 evidence good agreement between the raw and post-processed 359 

dynamic responses to harmonic loads, and most importantly, both FRFs evidence an 360 

antiresonance at 30 kHz; the design objective has been achieved successfully, therefore 361 

demonstrating our design methodology works for the case study. 362 

 363 

Figure 5 – Frequency response functions for topologies of Figure 4. (a) FRF for the raw optimized topology, 364 
and (b) FRF for the post-processed topology. 365 

  366 
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3.2. Case Study #2. 367 

This case seeks to design a resonator that exhibits an antiresonance at 50 kHz subject to 368 

shear (in-plane) harmonic loads, as shown in Figure 2(b). Figure 6 shows the convergence 369 

history, Figure 7 shows the optimized topology, and Figure 8 shows the topology’s 370 

frequency response. 371 

 372 

Figure 6 – Convergence history for 100 iterations (solid blue line), and antiresonance function (dashed red 373 
line) using 𝐴𝑓 from the harmonic-informed routine of Section 2.3. 374 

Figure 6 shows the objective function converging after iteration 50 with a value of 0.01. 375 

The antiresonance function, as explained in Section 3.1, was computed to evaluate the 376 

correlation between eigenfrequencies and antiresonances. Similar to case study #1, 377 

Figure 6 reveals that the eigenfrequencies used to compute the objective function and 378 

the identified antiresonances from the FRFs have similar values, validating the harmonic-379 

informed routine effectiveness to select eigenfrequencies by analyzing frequency 380 

responses, regardless of different harmonic loads, material properties, dimensions, mesh 381 

discretization or target frequency. For this case study, the sudden peaks in the objective 382 

function of Figure 3 were not seen. This objective function behavior shows a stable 383 
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optimization process where the harmonic-informed selection of eigenmodes routine did 384 

not find any other antiresonances in higher frequency ranges during the optimization. 385 

 386 

(a)     (b) 387 

Figure 7 - Resultant optimized topologies for case study #2. (a) Raw topology at iteration 100, and (b) 388 
post-processed topology with symmetry conditions recovered. 389 

Figure 7 presents both the optimized and post-processed topologies, and Figure 8 390 

presents their corresponding frequency responses. The volume decreased from 50%, the 391 

starting point, to 19.21% at the final iteration, as shown in Figure 7(a), where most of the 392 

solid material has been removed from the surroundings of a central solid body. After post-393 

processing, the resultant topology resembles an Asteroid-like shape. Figure 8 presents 394 

the FRFs for both topologies, note that the raw topology’s FRF was computed from 10 to 395 

150 kHz, while the post-processed topology’s FRF was obtained up to 200 kHz to observe 396 

the closest resonance peak. In this case study, there are some differences between the 397 

raw and post-processed topologies’ FRFs. Both topologies have antiresonances around 398 

the target frequency, but they do not align as perfectly as in Figure 5. Those differences 399 

could be a consequence of using different types of finite elements in a structure subject 400 
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mostly to shear stress; the raw topology uses hexahedral elements while the post-401 

processed topology uses tetrahedral elements. Nonetheless, Figure 8 evidence 402 

acceptable agreement between the FRFs, both exhibiting an antiresonance around 50 403 

kHz, achieving the design objective and validating our design methodology. 404 

 405 

 406 

Figure 8 - Frequency response functions for topologies of Figure 7. (a) FRF for the raw optimized topology, 407 
and (b) FRF for the post-processed topology. 408 

 409 
3.3. Locally Resonant Metasurfaces. 410 

The design methodology proposed in Section 2 can be used to design a structure requiring 411 

specific antiresonances; one application is the design of topology-optimized resonators 412 

as demonstrated in sections 3.1 and 3.2. These resonators can be arranged to compose 413 

ELRM, as it was introduced in Section 1. Figure 9 shows a conceptual design of an ELRM 414 

composed of 56 topology-optimized resonators from Section 3.1 exemplifying a 415 

metasurface that reduce the propagation of surface waves at the resonator’s frequency 416 

of antiresonance when mounted on top of a surface. 417 
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  418 

Figure 9 - Total harmonic displacement field of surface waves impinging upon a locally resonant 419 
metasurface composed of topology-optimized resonators from Figure 4. 420 

  421 
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4. CONCLUSIONS 422 

A systematic design methodology to realize resonant structures exhibiting antiresonances 423 

at desired frequencies subject to specific harmonic loads was proposed as a structural 424 

optimization problem using density-based topology optimization. The key advancement 425 

to the well-known eigenfrequency matching approach [42] is the new harmonic-informed 426 

identification routine that ensures recognition of antiresonance eigenmodes while 427 

preventing common problems for this kind of eigenfrequency topology optimization. In 428 

other words, the topology optimization problem presented in this paper is fundamentally 429 

different from other eigenfrequency matching approaches because it not only matches 430 

eigenfrequencies but also analyses frequency responses to select potential eigenmodes 431 

to become antiresonances using the identification routine presented in Section 2.3. Even 432 

though this approach is computationally more expensive than a simple eigenfrequency 433 

matching optimization, it is still faster to compute than a harmonic-based or full dynamic 434 

approach, making the design methodology feasible for solving large 3D dynamic 435 

problems. Moreover, well-known problems reported in the literature such as localized 436 

eigenmodes, repeated eigenfrequencies, or eigenmodes order switching [42], [56], [63] 437 

are simple to overcome using the harmonic-informed routine because appropriate 438 

eigenmodes are selected for use during the optimization. Additionally, the combination 439 

of a density filter with a Heaviside filter contributes to realizing well-defined structures 440 

whose dynamic response after post-processing remains coherent to the original 441 

optimized topologies. To illustrate these contributions, we have demonstrated how the 442 

proposed design methodology provides a robust tool to realize resonant structures for 443 
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different initial conditions, frequency ranges, material properties, or design domain 444 

definitions. 445 

 446 

Interesting applications can be developed with the proposed design methodology, for 447 

example, an antiresonance at a given frequency is known to generate frequency 448 

bandgaps for locally resonant metasurfaces [26]; however, assessing a metasurface 449 

performance composed of topology-optimized resonators, such as the ones presented in 450 

this paper, is yet to be studied. Beyond the design of acoustic or elastodynamic 451 

metasurfaces for wave propagation control at different length scales, the proposed 452 

design methodology has broader potential applications, including designing vibration 453 

control devices, sensors and actuators, energy harvesting devices, seismic shields, musical 454 

instruments, or any other application where the structure’s frequency response plays an 455 

important role. Moreover, the design methodology has been generalized to 456 

accommodate different design objectives, such as matching resonances and 457 

antiresonances simultaneously or introducing eigenfrequency gaps for broadband 458 

frequency applications.  459 
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APPENDIX A. 467 

Harmonic-informed selection of antiresonance eigenmodes 468 

One of the most important components of the design methodology presented in this 469 

paper is to appropriately identify and select antiresonance eigenmodes to compute the 470 

objective function and sensitivities. Section 2.3 introduced the harmonic-informed 471 

selection routine step by step; here, we present a detailed explanation of each step.  472 

 473 

Step 1. Compute antiresonance eigenvalues {𝜆} and eigenvectors [Φ]. 474 

Eigenvalues are required to compute the objective function, eigenvectors are required to 475 

identify which eigenmode corresponds to an antiresonance and to compute sensitivities. 476 

Note that these eigenmodes must be computed with displacement constraints over the 477 

degrees of freedom at which the harmonic load will be applied later to obtain the dynamic 478 

response; these are called antiresonance eigenmodes. A generalized eigenproblem 479 

provides eigenvalues {𝜆} and eigenvectors [Φ]: 480 

[𝐾][Φ] = {𝜆}[𝑀][Φ] 481 

 482 

Step 2. Delete rigid body eigenmodes below a threshold of 1Hz. 483 

Once the eigenproblem has been solved, some rigid body modes might appear because 484 

the structure is not fully constrained. The simplest way to remove these rigid body modes 485 

is thresholding eigenmodes whose eigenfrequency is below 1Hz. 486 

Delete eigenmode if → 𝑓𝐴 < 1Hz 487 

 488 
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Step 3. Remove localized eigenmodes. 489 

An analysis routine that identifies and removes localized eigenmodes has been 490 

developed. Since the identified localized eigenmodes are fully removed from the 491 

optimization, the problem is effectively prevented. This routine removes localized 492 

eigenmodes following these steps: 493 

• Apply material interpolation models (SIMP or RAMP) and filters to the pseudo-494 

density variable 𝝆 from Equations (6) to (9). 495 

• Find solid or near-to-solid elements such that the pseudo-density is higher than 496 

70%, i.e., 𝜌hard = 𝜌𝑒 > 0.7. Similarly, find void or near-to-void elements such that 497 

the pseudo-density is lower than 10%, i.e., 𝜌soft = 𝜌𝑒 > 0.1. 498 

• For each eigenvector, extract the displacement at every node for all 𝜌hard 499 

elements; 𝑢hard, and at every node for all 𝜌soft elements; 𝑢soft. Do not consider 500 

nodes with boundary conditions applied whose displacement is already zero. 501 

• Compute 𝑢soft/𝑢hard displacement ratios using the following metrics: 502 

o Percentile 90 ratio: PC90( 𝑢soft/𝑢hard ) 503 

o Maximum value ratio: max(𝑢soft)/max(𝑢hard) 504 

o Average value ratio: mean(𝑢soft)/mean(𝑢hard) 505 

• Compute a compound ratio: 506 

o Ratiosoft/hard  = ( Percentile 90 + Maximum value + Average value) 507 

• Identified localized modes whose compound ratio overpasses a threshold 508 

criterion establish as Threshold = 1 × 103, such that: 509 

o Localized mode identified if →  Ratiosoft/solid > Threshold 510 
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 511 

Step 4. Compute the topology’s frequency response subject to harmonic loads. 512 

The displacement constraints used to compute the antiresonance eigenmodes must be 513 

replaced by the harmonic loads to evaluate how antiresonances happen in the frequency 514 

domain. The frequency responses at the nodes of interest are obtained by solving the 515 

generalized dynamic problem subject to harmonic loads: 516 

[𝑀]{𝑥̈} + [𝐶]{𝑥̇} + [𝐾]{𝑥} = {𝐹Harmonic} 517 

 518 

Step 5. Analyze harmonic responses and identify an antiresonance frequency. 519 

To properly identify antiresonances, the FRFs must be analyzed using the following steps: 520 

• Extract the FRFs on each of the nodes where the harmonic load has been applied. 521 

• Compute the average FRF over all the aforementioned nodes:  522 

o averaged_FRF = mean(FRF) 523 

• Find local antiresonance peaks using the MATLAB function findpeaks: 524 

[Amplitude,idx,Width,Prominence] = findpeaks(1/averaged_FRF) 525 

• Evaluate local peak frequency absolute distance to target frequency 𝑔𝑞: 526 

Proximity = abs(Target_frequency – Peak_Frequency) 527 

• Evaluate metrics for each local antiresonance peak identified, i.e., antiresonance 528 

bandwidth, amplitude, prominence, and proximity to the target frequency 𝑔𝑞. Use 529 

the combined antiresonance evaluation factor: 530 

o factor = Amplitude + Prominence + Width - Proximity 531 
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• Select the local antiresonance peak with the highest evaluation factor as the 532 

identified antiresonance frequency 𝐴𝑓. 533 

Note the following metric definitions [64]: 534 

• Amplitude: signal value of a data sample that is either larger than its two 535 

neighboring samples or is equal to infinite. 536 

• Prominence: measures how much the peak stands out due to its intrinsic height 537 

and its location relative to other peaks. 538 

• Width: distance between the points where the signal intercepts a horizontal 539 

reference line positioned beneath the peak at a vertical distance equal to half the 540 

peak prominence. 541 

• Proximity: measures the distance in Hertz (Hz) from the target frequency to the 542 

identified antiresonance frequency peak. 543 

 544 

Step 5. Select an antiresonance eigenfrequency mode. 545 

Once an antiresonance frequency 𝐴𝑓 is identified, the corresponding topology’s harmonic 546 

displacement response is matched with an antiresonance mode shape (eigenvector) using 547 

the Modal Assurance Criterion (MAC) [48]. The following steps are used to identify an 548 

appropriate eigenmode: 549 

• Extract the harmonic displacement response 𝒙𝐻 at the identified frequency 𝐴𝑓. 550 

• Compute the MAC between the harmonic displacement response 𝒙𝐻 and every 551 

antiresonance eigenvector 𝚽𝐴: 552 
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MAC =
|𝝓𝐴

𝑇  𝒙𝐻|
2

(𝝓𝐴
𝑇  𝝓𝐴)(𝝓𝐴

𝑇  𝒙𝐻)
 553 

• Select the eigenmode with the highest MAC coefficient as the identified 554 

antiresonance eigenmode; its corresponding eigenvalue 𝜆𝐴 = (2𝜋𝑓𝑞)
2

 is to be 555 

used during the optimization in Equation (1). 556 

  557 
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APPENDIX B. 558 

Impact of penalization factors on localized eigenmodes 559 

Non-zero finite frequencies localized in the void or near-to-void regions are not 560 

preventable just by setting the stiffness and mass penalization factors to different values, 561 

e.g. 𝑝𝐾 = 3, 𝑝𝑀 = 1, or by modifying the stiffness-to-mass penalization ratio 𝑝𝐾/𝑝𝑀 in 562 

low-density regions. This problem is neither fully preventable by setting both penalization 563 

factors to the same value as we did in the case studies in Section 3, i.e. 𝑝𝐾 = 𝑝𝑀 = 1, 564 

however, the number of localized modes is greatly reduced while the computation time 565 

is improved using equal penalization factors. To illustrate this statement, consider a 566 

simple demonstration. Figure Appendix B.1 shows a design domain manually created, 567 

containing a solid non-design stem surrounded by low-density elements. The stem 568 

comprises 2% of the available solid space; the remaining 98% of space has near-to-void 569 

density elements, a perfect scenario to observe localized modes in low-density regions. 570 

 571 
Figure Appendix B.1. Design domain with homogeneous low-density material surrounding a solid stem. 572 
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The eigenproblem is solved using both the SIMP and the RAMP models, Equations (6) and 573 

(7), with both the same and different penalization factors for the stiffness (𝑝𝐾) and mass 574 

(𝑝𝑀) matrices. In the frequency range between 10kHz and 50kHz, the stem has three 575 

eigenmodes: two flexural modes and one extensional mode. Table Appendix B.1 shows 576 

all the eigenfrequencies obtained with the SIMP model. Table Appendix B.2 shows all the 577 

eigenfrequencies obtained with the RAMP model. We have used the localized eigenmode 578 

recognition routine from APPENDIX A. to differentiate localized modes from real modes. 579 

Note that in the following tables, the localized eigenmodes are in red while the real modes 580 

are in black boldface. Finally, Table Appendix B.3 shows the computation time required 581 

to solve each eigenproblem. 582 

 583 

Table Appendix B.1. Eigenfrequencies obtained using SIMP model (Hz). 584 

 585 

𝑝𝐾 = 1 
𝑝𝑀 = 1 

𝑝𝐾 = 3 
𝑝𝑀 = 3 

𝑝𝐾 = 3 
𝑝𝑀 = 1 

18511 17876 12511 15524 17787 18983 19947 

19099 19153 12537 15629 17963 19000 19988 

23272 21770 12710 15650 17984 19018 20055 

24233 22670 12756 15709 18093 19035 20061 

26876 25644 13070 15902 18123 19069 20155 

35773 35104 13154 15942 18130 19231 20454 

36377 35369 13488 16525 18240 19295 20488 

37952 37443 14004 16633 18254 19301 20578 

40050 38567 14418 16731 18293 19354 20587 

40636 39061 14588 16847 18429 19364 20608 

43469 42500 14595 16896 18551 19368 20670 

44489 43492 14611 17087 18569 19502 20816 

45850 45199 14620 17308 18609 19529 20925 

46572 46117 15128 17567 18635 19547 21056 

48305 47864 15188 17613 18685 19662 21059 

  49712 15469 17631 18885 19663 21145 
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 586 

Table Appendix B.2. Eigenfrequencies obtained using RAMP model (Hz). 587 

𝑝𝐾 = 1 
𝑝𝑀 = 1 

𝑝𝐾 = 3 
𝑝𝑀 = 3 

𝑝𝐾 = 3 
𝑝𝑀 = 1 

18679 18203 16455 36994 
18791 19048 17131 37906 
23271 23271 17159 38805 
24232 24232 18100 39216 
26875 26875 19004 40077 
35774 35774 25296 42393 

36377 36377 25722 42557 
37952 37952 26836 43743 
39967 39156 28320 44560 
40050 40050 30738 44836 
43469 43469 31459 45650 
44489 44489 32421 46911 
45850 45850 32932 47159 
46572 46572 34157 47828 
48305 48305 35985 49636 

    36755   

 588 

Table Appendix B.3. SIMP vs RAMP model computation time in seconds (s). 589 

SIMP model  RAMP model 

𝑝𝐾 = 1 
𝑝𝑀 = 1 

𝑝𝐾 = 3 
𝑝𝑀 = 3 

𝑝𝐾 = 3 
𝑝𝑀 = 1 

 𝑝𝐾 = 1 
𝑝𝑀 = 1 

𝑝𝐾 = 3 
𝑝𝑀 = 3 

𝑝𝐾 = 3 
𝑝𝑀 = 1 

             
68 (s) 71 (s) 523 (s)  70 (s) 69 (s) 90 (s) 

             

 590 

These results demonstrate that using different penalization factors not only leads to 591 

significantly more localized modes but also to higher computation time, especially when 592 

the SIMP model is used. It also shows that when using the same penalization factors, 593 

fewer localized modes are obtained while improving computation time. 594 

  595 
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APPENDIX C. 596 

Volume constraints study 597 

Section 3 presented topologies where volume constraints are not active during the 598 

optimization process as they are not needed to converge to optimized solutions; the 599 

design objective is achieved regardless of volume constraints. Here, we present a 600 

comparative study on how different volume constraints influence the solution.  601 

 602 

Consider the following demonstration to illustrate the volume constraint effect. For the 603 

same design problem of Section 3.1 a set of optimized topologies are obtained by varying 604 

the maximum volume constraint while keeping all the optimization parameters from 605 

Table 1 the same. The selected maximum volume constraints are 100%, 90%, 80%, 70%, 606 

60%, 50%, 40%, 30%, and 20%. Figure Appendix C.1. presents the volume evolution as a 607 

function of the iteration number for each of the maximum volume constraints considered. 608 

The starting point is always the maximum volume fraction for all design variables, except 609 

for the bottom layer of elements, as explained in Section 3. Please note that the 10% 610 

volume constraint case was also considered, but this low percentage results in an over-611 

constrained problem for which no feasible solution is found. 612 

 613 

Note that in all the cases presented in Figure Appendix C.1., the imposed volume 614 

constraint is never active, i.e., the optimization never attempts to push the volume to the 615 

constraint. Instead, the volume fraction is freely reduced by the optimization, converging 616 

to a certain volume fraction after 100 iterations. For the cases with the maximum volume 617 
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constraint of 40%, 30%, and 20%, the convergence occurs around 17%. When the 618 

constraint is set to 50%, the convergence value is around a volume fraction of 27%. The 619 

convergence points for the other cases are not shown as they are not reached after 100 620 

iterations. The convergence point is different because of disconnected members adding 621 

to the volume without decreasing the design objective; if the disconnected members are 622 

excluded, the converge point would be similar irrespective of the initially set volume 623 

constraint. This analysis indicates that the volume constraints are never active during the 624 

optimization process as they neither improve nor deteriorate the optimization results. 625 

 626 

Figure Appendix C.1. Volume evolution using different maximum volume constraints. 627 

 628 

Figure Appendix C.2 shows the topologies obtained at iteration 100 for each maximum 629 

volume constraint considered. Each subfigure shows the raw topology on the left-hand 630 

side and the binarized topology on the right-hand side. Note that the raw topologies show 631 

half of the structure as it includes a symmetry condition, while the binarized topologies 632 

present a post-processed topology with its symmetry recovered. 633 
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 634 

  635 
(a) Maximum volume constraint: 100% 636 

 637 
 638 

  639 
(b) Maximum volume constraint: 90% 640 

 641 
 642 

  643 
(c) Maximum volume constraint: 80% 644 

 645 
 646 



Journal of Mechanical Design 
 

39 
 

  647 
(d) Maximum volume constraint: 70% 648 

 649 
 650 

  651 
(e) Maximum volume constraint: 60% 652 

 653 
 654 

  655 
(f) Maximum volume constraint: 50% 656 

 657 
 658 



Journal of Mechanical Design 
 

40 
 

  659 
(g) Maximum volume constraint: 40% 660 

 661 
 662 

  663 
(h) Maximum volume constraint: 30% 664 

 665 
 666 

  667 
(i) Maximum volume constraint: 20% 668 

 669 
Figure Appendix C.2. Resultant optimized topologies for different maximum volume constraints. 670 

 671 

The resultant topologies in Figure Appendix C.2 show that a volume constraint does not 672 

prevent disconnected members and that well-defined topologies are achieved regardless 673 
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of the constraint value. Interestingly, when using the volume constraint of 90% the 674 

resultant topology does not exhibit disconnected members. When the volume constraint 675 

is set to a lower value, the amount of available material is reduced, therefore the 676 

optimization removes unnecessary material as seen for the cases of 40% and 30%; 677 

however, when the volume constraint is further reduced, the optimization finds solutions 678 

in a more constrained solution space, leading to different topologies and disconnected 679 

members, as shown in the case of volume constraint 20%. If the volume constraint is set 680 

to even lower values, i.e., 10% or 15%, the optimization becomes over-constrained and 681 

does not find feasible solutions. This observation suggests that disconnected members 682 

can be obtained with both high and low volume constraint values. Therefore, finding an 683 

appropriate constraint value requires a search that must be attempted heuristically for 684 

every design problem. 685 

 686 

Disconnected members do not influence the solution as they do not contribute to the 687 

design objective. Consider the optimized topology shown in Figure Appendix C.3. The 688 

disconnected elements have been manually removed from the raw topology and both 689 

frequency responses, with and without disconnected elements, have been computed. 690 

Please note that the typical post-processing does not remove these disconnected 691 

elements directly from the raw topology. Instead, the raw topology is binarized to obtain 692 

fully solid members with properly defined boundaries, then, disconnected parts can be 693 

discarded before meshing and simulating the final post-processed topology. 694 

 695 
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   696 

(a)        (b) 697 

Figure Appendix C.3. Optimized topology with disconnected members. (a) original raw topology, and (b) 698 
raw topology with disconnected elements manually removed. 699 

 700 

Figure Appendix C.4 compares the frequency responses for the original topology and the 701 

manually-removed elements topology, demonstrating that both frequency responses are 702 

the same. Any differences come from post-processing steps because small deviations from 703 

the raw topology might result in frequency response changes. This is especially critical for 704 

very small structural features that after post-processing could change significantly. Despite 705 

some differences, the original and the post-processed topologies achieved the design 706 

objective while maintaining high-quality metrics in their dynamic responses, as shown and 707 

discussed throughout the results section. 708 

 709 
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 710 

Figure Appendix C.4. Frequency response functions for topologies presented in Figure Appendix C.3. 711 

 712 

Differences between the raw and post-processed frequency response can be minimized 713 

by adjusting the threshold value used during the binarization process. This threshold 714 

controls how the boundaries are defined; a higher threshold reduces the amount of solid 715 

material; a lower threshold increases solid material. In the proposed design methodology, 716 

the threshold value is always set to 50% because this value does not promote solid 717 

material over void space, and vice versa. All the presented results were post-processed 718 

using the same threshold value to maintain consistency; therefore, frequency response 719 

differences are expected.  720 
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