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ABSTRACT

In this paper, we present a design methodology for resonant structures exhibiting particular dynamic
responses by combining an eigenfrequency matching approach and a harmonic analysis-informed
eigenmode identification strategy. This systematic design methodology, based on topology optimization,
introduces a novel computationally efficient approach for 3D dynamic problems requiring antiresonances at
specific target frequencies subject to specific harmonic loads. The optimization’s objective function
minimizes the error between target antiresonance frequencies and the actual structure’s antiresonance
eigenfrequencies, while the harmonic analysis-informed identification strategy compares harmonic
displacement responses against eigenvectors using a modal assurance criterion, therefore ensuring an
accurate recognition and selection of appropriate antiresonance eigenmodes used during the optimization
process. At the same time, this method effectively prevents well-known problems in topology optimization
of eigenfrequencies such as localized eigenmodes in low-density regions, eigenmodes switching order, and
repeated eigenfrequencies. Additionally, our proposed localized eigenmode identification approach
completely removes the spurious eigenmodes from the optimization problem by analyzing the eigenvectors’
response in low-density regions compared to high-density regions. The topology optimization problem is
formulated with a density-based parametrization and solved with a gradient-based sequential linear
programming method, including material interpolation models and topological filters. Two case studies
demonstrate that the proposed design methodology successfully generates antiresonances at the desired
target frequency subject to different harmonic loads, design domain dimensions, mesh discretization, or

material properties.

Keywords: Topology optimization, Eigenfrequency matching, Frequency response analysis, Antiresonances
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1. INTRODUCTION

Devising effective means to control wave propagation is of paramount importance across
length scales, from designing electronic devices to vibration isolation of critical structures.
In search of effective means, an approach inspired by the concept of locally resonant
metamaterials uses sub-wavelength resonators to create frequency bandgaps [1], i.e., a
frequency range where waves do not propagate. A sub-class of these metamaterials
composed of surface-mounted or surface-embedded resonators are called Locally
Resonant Metasurfaces (LRM). These LRM are fundamentally different from phononic
crystals whose working mechanisms, explained by Bragg scattering [2], depend upon the
periodicity of their unit cells. Instead, LRM rely on interactions between the propagating
wave and the local resonator’s response, exhibiting scattering and non-conventional
dispersion properties that lead to frequency bandgaps [3]. When these LRM are used to
control elastic guided wave propagation, e.g. Lamb or Rayleigh waves, they are called

Elastodynamic LRM (ELRM).

Since the introduction of ELRM, their local resonator designs have been based on simple
geometries, i.e., rods, holes, spheres, beams, or simply mass-spring systems. These
designs often rely on the parametric tuning of geometrical features empirically [4]—[9], or
experimentally [10]-[14] until the desired bandgap is achieved. Optimization and
machine learning methods have been used to tailor dispersion curves [15]-[21] or
effective material properties [22]-[25] mainly for 2D phononic crystals assuming

periodicity of unit cells, however, a rational design methodology to tailor the local
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resonator’s response to particular wave excitations is missing. Our investigation [26]-[28]
demonstrates that the local resonator’s antiresonances are the key factor in generating
frequency bandgaps for ELRM. Thus, the motivation of our work is how to design resonant
structures by tailoring their antiresonances. This paper establishes a generalized
systematic design methodology to conceive resonant structures based on antiresonance
matching. One of the methodology’s applications is the design of local resonators for
ELRM, however, it is applicable to any design problem requiring antiresonance

manipulation.

The Topology Optimization (TO) method [29], which is of particular interest to this study,
is a computational tool to design complex layouts in numerous applications [30]—[32] and
it has been proven to be a robust design tool for dynamic problems [33], [34]. Previous
works on TO have attempted to manipulate antiresonances with harmonic-based
formulations such as the minimum dynamic compliance [35]-[37], solving mostly 2D
problems with only a few design variables and surrogate formulations to reduce
computational load. 3D problems have significantly more design variables, resulting in
complex and expensive computational tasks [38]. Moreover, the dynamic compliance
could be undefined around an antiresonance frequency [36], [39], making the minimum
dynamic compliance problem not suitable for antiresonance manipulation. Thus, a
harmonic-based TO is not feasible. Instead, we propose an approach that relies on

manipulating eigenfrequencies which are significantly less expensive to compute, in
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conjunction with a harmonic-informed selection of antiresonance eigenmodes to be used

within the optimization process.

The eigenfrequency problem is well-known in TO. It has been commonly used from three
different approaches [38]: maximize the structure’s eigenfrequencies [40], generate a gap
in-between eigenfrequencies [41], and match the structure’s eigenfrequencies with
target frequencies [42]. The last approach, which is most relevant to this paper, has been
mostly used to match resonance eigenfrequencies without considering how dynamic
forces interact with the structure, an important consideration for the antiresonance
matching problem. This is because matching eigenfrequencies for resonances or
antiresonances are fundamentally different problems. Resonances occur when a dynamic
force excites the structure’s natural frequencies of resonance, namely, resonance
eigenfrequencies. On the other hand, antiresonances occur when the dynamic force is out
of phase with respect to the structure’s response, resulting in zero or near-to-zero
displacement(s) at a particular location(s); the dynamic load cancels out with an equal but
opposite reaction force, equivalent to constraining the displacement(s) at that point(s)
[43]. The antiresonance frequencies of the dynamically-loaded structure correlate with
specific eigenfrequencies of the displacement-constrained structure [44]. Here, we refer
to those displacement-constrained eigenfrequencies as the antiresonance
eigenfrequencies. Contrary to resonance eigenmodes, several antiresonance eigenmodes
are not excited by particular dynamic loads, making the selection of these eigenmodes a

critical component of the antiresonance eigenfrequency matching approach. Thus, the
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commonly used eigenfrequency matching approaches do not work for the antiresonance
matching problem as it needs additional information to appropriately select
antiresonance eigenmodes considering specific dynamic loads. This paper presents a new
harmonic-informed eigenfrequency matching approach that properly identifies the

particular antiresonance eigenmodes to be optimized.

This paper presents a twofold contribution: (i) a computationally feasible design
methodology for 3D structures exhibiting antiresonances at desired target frequencies
using a density-based TO combining eigenfrequency matching and harmonic analyses,
and (ii) a new analysis procedure to identify specific antiresonance eigenmodes using a
harmonic-informed identification scheme, effectively preventing several problems
reported in the literature for the eigenfrequency optimization problem. The remainder of
this paper is organized into three sections: Section 2 introduces the design methodology,
Section 3 presents two case studies and their corresponding analysis, and Section 4

summarizes our findings and discusses future work.
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2. DESIGN METHODOLOGY
This section presents a design methodology seeking to generalize a topology optimization
problem in which a structure’s dynamic response is tailored by manipulating

antiresonance eigenfrequencies with a harmonic-informed selection of eigenmodes.

2.1. Optimization problem

The optimization problem seeks to match a structure’s antiresonance eigenfrequency
with a predefined target frequency. The structure is systematically modified until the
desired antiresonance eigenfrequency is achieved as closely as possible. The objective
function minimizes the error between a target frequency f; and the structure’s
antiresonance eigenfrequency f, selected by a harmonic-informed analysis routine. Thus,

the optimization problem formulation is:

mpin (fA;TfT)Z (1)

subject to:

O<pminSpesl

Ne
Vmin < eleeVe < Vmax (2)
([K] = 24 [MD{Pp} =0

where p are the pseudo-densities, namely design variables. Equation (2) presents the
optimization constraints, where p, is the pseudo-density of element e, with N, the total

number of finite elements. The minimum pseudo-density, set to pym = 1 X 1076,
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prevents numerical problems. p,V, is the effective volume of element e, and the
maximum and minimum volume constraints are, respectively, V,q, and V. [K] and
[M] are, respectively, the global stiffness and mass matrices, and ®, is the eigenvector

corresponding to the eigenvalue 1, = (2mf,)2.

2.2. Optimization solver

Different optimization methods can be used to solve a TO design problem, e.g., optimality
criteria, moving asymptotes, sequential programming, evolutionary algorithms, or level-
set methods [20, 21]. Among these methods, sequential programming uses efficient
algorithms for nonlinear problems [46]. Specifically, Sequential Linear Programming (SLP)
is a popular method in structural optimization to deal with the nonlinear nature of complex
problems because of its simplicity and the possibility to use efficient linear solvers, e.g.,
Simplex [47]. The SLP method requires a first-order linearization of the optimization
problem, which is then sequentially solved by setting move limits on the design variables,
converging to a local minimum of the nonlinear problem. Specifically, for this design
methodology, the move limits’ lower and upper bounds have been set to LB; = p; — 0.01
and UB; = p; + 0.01. The objective function in Equation (1) is linearized using first-order

Taylor series as:

(3)

The linearized objective function simplifies to:
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min (fa—fr) %l ) .
o (4o 0pic| “
164 where:
r(O[K] O[M])
024 _ P4 (apk & dpx a 5
3P o7 [M]®, (5]
165

166 2.3. Harmonic-informed selection of eigenmodes

167 Identifying appropriate antiresonance eigenfrequencies to be matched with the target
168  frequency is critical to ensure feasible solutions. By analyzing the structure’s Frequency
169  Response Function (FRF) at each iteration, suitable antiresonances are identified. The
170  eigenmodes corresponding to these antiresonances are selected as appropriate modes to
171  use during the optimization process. The harmonic analysis-informed identification

172  approach consists of the following steps:

173 e Compute antiresonance eigenvalues {1} and eigenvectors [®]:

174 [K][®] = {1}[M][®]

175 e Delete rigid body eigenmodes below a threshold of 1Hz

176 e Remove localized eigenmodes using the routine detailed in APPENDIX A.

177 e Compute the structure’s harmonic response to the harmonic force Fyarmonic
178 [M1{5} + [C1{x} + [K]{x} = {FHarmonic}

179 e Extract the averaged FRF at the points of interest:

180 averaged_FRF = mean(FRF)

181 e Find local antiresonance peaks using the MATLAB function findpeaks:
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[Amplitude,idx,Width,Prominence] = findpeaks(1/averaged_FRF)

e Evaluate local peak frequency distance to target frequency g,:

Proximity = abs(Target - Peak_Frequency)

e Evaluate metrics for each local antiresonance peak identified, i.e., antiresonance
bandwidth, amplitude, prominence, and proximity to the target frequency g,.
Define a combined antiresonance evaluation factor as:

factor = Amplitude + Prominence + Width - Proximity

e Select the local antiresonance peak with the highest evaluation factor as the

identified antiresonance frequency Ay.

e Extract the harmonic displacement response xy at the identified frequency Ay.

e Evaluate the Modal Assurance Criterion (MAC) [48] between the harmonic

displacement response xy and all the antiresonance eigenvectors ®,:

% xul?

MAC = T o0 (@ x)

e Select the eigenmode with the highest MAC coefficient as the identified
antiresonance eigenmode; its corresponding eigenvalue 1, = (21f,)? is used
during the optimization in Equation (1).

The reader is referred to APPENDIX A. for a step-by-step explanation.

2.4. Topology optimization parametrization
A density-based TO problem is ideally a binary problem, having the design variables either
0 or 1 representing void or solid material, however, this is an ill-posed optimization

problem. Relaxing the solution space is necessary to allow for intermediate values in-
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between 0 and 1, mathematically introducing artificial material properties; this is done by
introducing material interpolation models [49]. Two models widely used in TO are the Solid

Isotropic Material with Penalization (SIMP) model [50]:
E, = p{Eq (6)

and the Rational Approximation of Material Properties (RAMP) model [51]:

Pe
E,=—————E
¢ 1+ p(l - pe) ° (7)

where E, is the interpolated material property for element e, Ej is the original material
property, and p is the penalization factor. Note that E may represent stiffness, mass, or
damping. Typical penalization factors for stiffness (px) and mass (py,) are, respectively,
px = 3 and py, = 1 [40], [52]-[55]. However, this combination of penalization factors
promotes the generation of spurious localized eigenmodes in low-pseudo-density regions
as it is shown in APPENDIX B. Thus, this design methodology uses the same penalization

factors, i.e. px = py, regardless of the interpolation model.

2.5. Topology optimization problems in eigenfrequency approaches

In density-based TO, it is necessary to address problems such as checkerboard solutions,
mesh dependency, or non-feasible solutions [31]. Moreover, the eigenfrequency matching
approach presents other problems such as eigenmodes switching order or repeated
eigenfrequencies [42], localized eigenmodes in low-density regions [40], and disconnected

members [56]. The following solutions are proposed in this design methodology.

11



223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

Journal of Mechanical Design

Eigenmode switching order or repeated eigenfrequencies. Ma et al [42] introduced the
mean-eigenvalue formulation to overcome these problems, although it only works for
multiple eigenfrequencies. Kim [57] introduced a tracking mode scheme that allows the
tracking of single eigenmodes, although the tracked eigenmodes must be prescribed in
advance. In this design methodology, these problems are overcome by matching
eigenvectors with a harmonic response at an antiresonance frequency, as it is explained

in Section 2.3 and detailed in APPENDIX A.

Localized eigenmodes. This problem was originally addressed by Neves et al. [58] by
removing the low-density elements from the stiffness matrix; this approach modifies the
design domain at each iteration, which is not feasible in density-based TO. Several
approaches appear in the literature. Pedersen [40] modified the penalization stiffness-to-
mass ratio (pg/py) in low-density regions. Tcherniak [53], and Du and Olhoff [52] set the
mass matrix penalization to zero or near-to-zero in low-density regions, therefore
modifying the stiffness-to-mass ratio. Similarly, Zhang et al. [55], Rong [59], and Zhang [60]
used different penalization schemes for the stiffness and mass matrices combining SIMP
and RAMP interpolation models. All these papers have reported improvements in the
localized eigenmodes problem by modifying the stiffness-to-mass ratio, mostly for the
maximizing eigenfrequencies problem [40], however, for the antiresonance matching
problem we have not seen the same results, as explained in APPENDIX B. This design
methodology considers a constant ratio px/py = 1, i.e., all interpolation models and

penalization factors are applied equally for stiffness, mass, and damping. On another note,

12
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Li et al. [56] pointed out another kind of localized eigenmodes, not for low-density
elements but for disconnected floating members. Li et al. proposed a recognition
technique to remove these localized eigenmodes for a level-set TO. Here we propose a
new localized eigenmode recognition and elimination routine for density-based TO that
removes both the low-density and the disconnected members localized eigenmodes, as

mentioned in Section 2.3 and detailed in APPENDIX A.

Disconnected members. Detached or isolated structural members are usually considered
a problem in TO, especially for static problems such as the minimum compliance
optimization. This problem is commonly solved by making these members inefficient by
using volume constraints, interpolations models, and topological filters. However, in
dynamic problems such as the antiresonance matching optimization, disconnected
members do not help nor restrain the optimization from achieving the design objective,
provided they are fully disconnected from the main body, i.e., without soft connections.
APPENDIX C. shows that volume constraints failed to prevent disconnected members and
demonstrates that disconnected members do not influence the dynamic response either.
Nonetheless, this design methodology uses a filtering scheme to reduce softly-connected
members proposed by Xu et al. [61] known as the “Projection filter”, combining a density
filter, Equation (8), and a Heaviside filter, Equation (9).

_ 2ieN WiVip;

L =
YieNn, Wil

(8)

13
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where Nj is the set of elements within a filter radius Ry, such that Ny = {i | R, < R;} with
R;. = llc; — c.|| being the distance between the element centers e and i. The weights are

w; = Ry — Rje. v; and p; are the volume and pseudo-density of element i, respectively.

_pBem) (5, — e P (9)

— — (1-n)
L(l n)[l R ¢

l+n N<pesl

where p, is the pseudo-density after density filtering and 8 controls the strength of the
filter. In this design methodology, a continuation scheme is used, progressively increasing
P to remove intermediate-density material, therefore promoting structural definition. The
1 parameter controls the volume during filtering. We preserve the volume after filtering

by optimizing the 1 value with a bisection method at each iteration.

2.6. Optimization program

An optimization program to design resonating structures based on the proposed design
methodology is implemented. This program, composed of multiple modules, integrates
the software MATLAB and ABAQUS through PYTHON communication scripts [62], as
shown in the flowchart of Figure 1. The optimization program starts with a finite element
model data generation, including stiffness, mass, and damping matrices, mesh data with
its nodal coordinates, element connectivity, loads, and boundary conditions. After this
initialization, the optimization loop starts from the filters, followed by the Finite Element
Analysis (FEA) considering matrices modified by filters and material interpolation models.

The harmonic-informed routine from Section 2.3 analyses the topology’s frequency

14
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response at each iteration to select the most suitable eigenmode for computing the

objective function (Equation (1)) and sensitivities (Equation (4)).

The proposed optimization workflow has been generalized to design any kind of structure
by matching resonance or antiresonance eigenfrequencies. It can accommodate different
material interpolation models, maximum and minimum volume constraints, solid or void
non-design domains, numerical or analytical sensitivities, and multiple filtering schemes
such as density, Heaviside, sensitivity, or move limits filters. Moreover, the integration
with a commercial FEA software allows analysis of structures with complex geometries,

multi-physics problems, and a variety of boundary conditions.

C Optimization start )

f Mesh data /L-) Create FEA model
/ Initialization /L) Initialize optimization
parameters J'

Run FEA model with Filter pseudo-densities
updated matrices (Projection filter)

l A

Run Harmonic-
informed selection of

Solve the optimization

. . problem with SLP
eigenmodes routine -
Compute Objective Run sensitivity

function with Eq. (1) analysis from Eq. (4)

"~

Optimization
converged

Figure 1 - Optimization algorithm flowchart.

15
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295 3. CASE STUDIES

296  This section illustrates the design of resonant structures using the methodology proposed
297  in Section 2. Two case studies present resonator designs for different harmonic loads,
298  frequency ranges, design domain dimensions, mesh discretization, and material
299  properties. Figure 2 shows design domains with their mesh discretization for both case
300 studies. Note that a symmetry condition on the xz-plane is used to reduce computation

301 time. Table 1 lists the initial parameters for both case studies.

302
303 (a) (b)
304 Figure 2 - Design domains with symmetry conditions on the xz-plane. Blue arrows show the direction of
305 harmonic loads for each case study. Each voxel is a 20-node hexahedral finite element. (a) Case study #1:
306 design domain of size 14x7x14 mm discretized with 1372 finite elements. (b) Case study #2: design domain
307 of size 24x12x24 mm discretized with 6912 finite elements.
308
309
310 Table 1 - Initial parameters
Material properties, case study #1 E = 3.2516 GPa
p =1222.2kg/m3
v =0.33
Material properties, case study #2 E = 69 [GPa]

16
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p = 2730 [kg/m3]
v =10.33
Target antiresonance frequency fr 30 kHz (case study #1)
50 kHz (case study #2)
Starting point p Homogenous pseudo-density at p, = 0.5
Solid non-design 4 X 2 [mm] bottom base

Void non-design all other first-layer elements

Maximum allowed volume Vinax = 90%

Minimum allowed volume Vinin = 10%

Interpolation model SIMP model

Penalization factors Pk =Py =1

Density filter radius Ry 3 [mm]

Heaviside filter S starting value B =20

P continuation scheme B = p + 1; at every iteration

The starting point considers all design variables to have the same pseudo-density, except
for the bottom layer of elements, which considers a fully solid non-design bottom base at
which the harmonic load must be applied, surrounded by void non-design elements. This
is done to prevent numerical errors in the frequency response when harmonic loads are
applied to void or near-to-void elements. The volume constraints are in place solely to
prevent numerical instabilities in extreme cases, i.e., uncontrolled allocation of solid
material or uncontrolled removal of material. However, the volume constraints do not
play a major role in the proposed design methodology, as is usually done in topology
optimization for lightweight structures. For a comparative study on how different volume

constraints influence the solution, refer to APPENDIX C.

17
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3.1. Case Study #1.

This case seeks to design a resonator that exhibits an antiresonance at 30 kHz subject to
normal (out-of-plane) harmonic loads, as shown in Figure 2(a). Figure 3 shows the
convergence history, Figure 4 shows the resultant optimized topology, and Figure 5 shows

the topology’s frequency response.

400 . . \ \ \
—— Objective function
350 - - -~ Ay Antiresonance function |

300 + 8

250 - ]

200 - 1

Objective Function Value

- \&h . . . |
40 50 60 70 80 90 100
Iteration

Figure 3 — Convergence history for 100 iterations (solid blue line), and antiresonance function (dashed red
line) using A¢ from the harmonic-informed routine of Section 2.3.

Figure 3 shows the objective function converging after iteration 52 with a value of 0.63.
Several spikes are seen in the objective function before convergence. This phenomenon
occurs when the harmonic-informed routine identifies an antiresonance with a high
evaluation factor but low proximity to the target frequency, as described in Section 2.3;
therefore, the objective function increases rapidly. The selection of an antiresonance
closer to the target frequency is quickly recovered in the following iteration. This behavior
is considered normal because the optimization explores the solution space for optimal

solutions, especially during the first iterations, jumping to other potential solutions and

18
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returning to the lowest value. Once the objective function has converged, the recognition

of antiresonances is stable around the target frequency.

An antiresonance function has been computed by replacing the eigenfrequency f; in
Equation (1) with the antiresonance Ay identified by the harmonic-informed routine of
Section 2.3. The correlation between the objective function and the antiresonance
function in Figure 3 reveals whether the selected eigenfrequency accurately represents
an antiresonance when the topology is subject to a specific harmonic loading condition.
Figure 3 shows good agreement between the objective function and the antiresonance
function, therefore validating our design methodology to tailor antiresonances using

eigenfrequency matching with a harmonic-informed selection of eigenmodes.

(a) (b)

Figure 4 — Resultant optimized topologies for case study #1. (a) Raw topology at iteration 100, and (b)
post-processed topology with symmetry conditions recovered.

19
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Figure 4 presents both the optimized and post-processed topologies, and Figure 5
presents their corresponding frequency responses. The volume decreased from 50%, the
starting point, to 15.27% at the final iteration, as shown in Figure 4(a), where most of the
solid material has been removed from the surroundings of a central solid body. After post-
processing, the resultant topology resembles a rounded Balloon-like shape. The FRFs
presented in Figure 5 evidence good agreement between the raw and post-processed
dynamic responses to harmonic loads, and most importantly, both FRFs evidence an
antiresonance at 30 kHz; the design objective has been achieved successfully, therefore

demonstrating our design methodology works for the case study.

T T T T T

I
Raw optimized topology

— — -Post-processed topology L
———-Target frequency g,
]
1
1
!

Amplitude a.u.

'
]
'
1
1
'
]
1
'
1
1
I
1
'
'
1
'
'
1
1
1
1
'
¥
1
1
'

|
10 20 30 40 50 60 70 80 90 100 110 120
Frequency (kHz)

Figure 5 — Frequency response functions for topologies of Figure 4. (a) FRF for the raw optimized topology,
and (b) FRF for the post-processed topology.

20
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367  3.2. Case Study #2.

368  This case seeks to design a resonator that exhibits an antiresonance at 50 kHz subject to
369  shear (in-plane) harmonic loads, as shown in Figure 2(b). Figure 6 shows the convergence
370  history, Figure 7 shows the optimized topology, and Figure 8 shows the topology’s

371  frequency response.

\ \
—— Objective function
- -~ Ay antiresonance function|

[N}
ot

10

Objective Function Value
b
(=]

O - L
60 80 100
372 Tteration
373 Figure 6 — Convergence history for 100 iterations (solid blue line), and antiresonance function (dashed red
374 line) using A¢ from the harmonic-informed routine of Section 2.3.

375 Figure 6 shows the objective function converging after iteration 50 with a value of 0.01.
376  The antiresonance function, as explained in Section 3.1, was computed to evaluate the
377  correlation between eigenfrequencies and antiresonances. Similar to case study #1,
378  Figure 6 reveals that the eigenfrequencies used to compute the objective function and
379  theidentified antiresonances from the FRFs have similar values, validating the harmonic-
380 informed routine effectiveness to select eigenfrequencies by analyzing frequency
381 responses, regardless of different harmonic loads, material properties, dimensions, mesh
382  discretization or target frequency. For this case study, the sudden peaks in the objective

383  function of Figure 3 were not seen. This objective function behavior shows a stable
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optimization process where the harmonic-informed selection of eigenmodes routine did

not find any other antiresonances in higher frequency ranges during the optimization.

(a) (b)

Figure 7 - Resultant optimized topologies for case study #2. (a) Raw topology at iteration 100, and (b)
post-processed topology with symmetry conditions recovered.

Figure 7 presents both the optimized and post-processed topologies, and Figure 8
presents their corresponding frequency responses. The volume decreased from 50%, the
starting point, to 19.21% at the final iteration, as shown in Figure 7(a), where most of the
solid material has been removed from the surroundings of a central solid body. After post-
processing, the resultant topology resembles an Asteroid-like shape. Figure 8 presents
the FRFs for both topologies, note that the raw topology’s FRF was computed from 10 to
150 kHz, while the post-processed topology’s FRF was obtained up to 200 kHz to observe
the closest resonance peak. In this case study, there are some differences between the
raw and post-processed topologies’ FRFs. Both topologies have antiresonances around
the target frequency, but they do not align as perfectly as in Figure 5. Those differences

could be a consequence of using different types of finite elements in a structure subject
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mostly to shear stress; the raw topology uses hexahedral elements while the post-
processed topology uses tetrahedral elements. Nonetheless, Figure 8 evidence
acceptable agreement between the FRFs, both exhibiting an antiresonance around 50

kHz, achieving the design objective and validating our design methodology.

Raw optimized topology 1
— — .Post-processed topology 7
- - - Target frequency g, K

Amplitude a.u.

20 40 60 80 100 120 140 160 180 200
Frequency (kHz)

Figure 8 - Frequency response functions for topologies of Figure 7. (a) FRF for the raw optimized topology,
and (b) FRF for the post-processed topology.

3.3. Locally Resonant Metasurfaces.

The design methodology proposed in Section 2 can be used to design a structure requiring
specific antiresonances; one application is the design of topology-optimized resonators
as demonstrated in sections 3.1 and 3.2. These resonators can be arranged to compose
ELRM, as it was introduced in Section 1. Figure 9 shows a conceptual design of an ELRM
composed of 56 topology-optimized resonators from Section 3.1 exemplifying a
metasurface that reduce the propagation of surface waves at the resonator’s frequency

of antiresonance when mounted on top of a surface.
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Transmitted

—
wave - \

Figure 9 - Total harmonic displacement field of surface waves impinging upon a locally resonant
metasurface composed of topology-optimized resonators from Figure 4.
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4. CONCLUSIONS

A systematic design methodology to realize resonant structures exhibiting antiresonances
at desired frequencies subject to specific harmonic loads was proposed as a structural
optimization problem using density-based topology optimization. The key advancement
to the well-known eigenfrequency matching approach [42] is the new harmonic-informed
identification routine that ensures recognition of antiresonance eigenmodes while
preventing common problems for this kind of eigenfrequency topology optimization. In
other words, the topology optimization problem presented in this paper is fundamentally
different from other eigenfrequency matching approaches because it not only matches
eigenfrequencies but also analyses frequency responses to select potential eigenmodes
to become antiresonances using the identification routine presented in Section 2.3. Even
though this approach is computationally more expensive than a simple eigenfrequency
matching optimization, it is still faster to compute than a harmonic-based or full dynamic
approach, making the design methodology feasible for solving large 3D dynamic
problems. Moreover, well-known problems reported in the literature such as localized
eigenmodes, repeated eigenfrequencies, or eigenmodes order switching [42], [56], [63]
are simple to overcome using the harmonic-informed routine because appropriate
eigenmodes are selected for use during the optimization. Additionally, the combination
of a density filter with a Heaviside filter contributes to realizing well-defined structures
whose dynamic response after post-processing remains coherent to the original
optimized topologies. To illustrate these contributions, we have demonstrated how the

proposed design methodology provides a robust tool to realize resonant structures for
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different initial conditions, frequency ranges, material properties, or design domain

definitions.

Interesting applications can be developed with the proposed design methodology, for
example, an antiresonance at a given frequency is known to generate frequency
bandgaps for locally resonant metasurfaces [26]; however, assessing a metasurface
performance composed of topology-optimized resonators, such as the ones presented in
this paper, is yet to be studied. Beyond the design of acoustic or elastodynamic
metasurfaces for wave propagation control at different length scales, the proposed
design methodology has broader potential applications, including designing vibration
control devices, sensors and actuators, energy harvesting devices, seismic shields, musical
instruments, or any other application where the structure’s frequency response plays an
important role. Moreover, the design methodology has been generalized to
accommodate different design objectives, such as matching resonances and
antiresonances simultaneously or introducing eigenfrequency gaps for broadband

frequency applications.
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APPENDIX A.
Harmonic-informed selection of antiresonance eigenmodes
One of the most important components of the design methodology presented in this
paper is to appropriately identify and select antiresonance eigenmodes to compute the
objective function and sensitivities. Section 2.3 introduced the harmonic-informed

selection routine step by step; here, we present a detailed explanation of each step.

Step 1. Compute antiresonance eigenvalues {1} and eigenvectors [®].

Eigenvalues are required to compute the objective function, eigenvectors are required to
identify which eigenmode corresponds to an antiresonance and to compute sensitivities.
Note that these eigenmodes must be computed with displacement constraints over the
degrees of freedom at which the harmonic load will be applied later to obtain the dynamic
response; these are called antiresonance eigenmodes. A generalized eigenproblem
provides eigenvalues {1} and eigenvectors [®]:

[K][®] = {1}[M][P]

Step 2. Delete rigid body eigenmodes below a threshold of 1Hz.
Once the eigenproblem has been solved, some rigid body modes might appear because
the structure is not fully constrained. The simplest way to remove these rigid body modes
is thresholding eigenmodes whose eigenfrequency is below 1Hz.

Delete eigenmode if —» f; < 1Hz
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Step 3. Remove localized eigenmodes.

An analysis routine that identifies and removes localized eigenmodes has been
developed. Since the identified localized eigenmodes are fully removed from the
optimization, the problem is effectively prevented. This routine removes localized
eigenmodes following these steps:

e Apply material interpolation models (SIMP or RAMP) and filters to the pseudo-
density variable p from Equations (6) to (9).

e Find solid or near-to-solid elements such that the pseudo-density is higher than
70%, i.e., Phard = Pe > 0.7. Similarly, find void or near-to-void elements such that
the pseudo-density is lower than 10%, i.e., psoft = pe > 0.1.

e For each eigenvector, extract the displacement at every node for all pparq
elements; up,q, and at every node for all psos €lements; ugqs. Do Not consider
nodes with boundary conditions applied whose displacement is already zero.

e Compute Ugpfr/Uparq displacement ratios using the following metrics:

o Percentile 90 ratio: PCI0( Ugoft/Unard )
o Maximum value ratio: max(ugos)/max(Uparq)
o Average value ratio: mean(ugos)/mean(Uparqg)

e Compute a compound ratio:

o Ratiogefr/hara = ( Percentile 90 + Maximum value + Average value)

e Identified localized modes whose compound ratio overpasses a threshold
criterion establish as Threshold = 1 x 103, such that:

o Localized mode identified if - Ratiogyf/so1iq > Threshold
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Step 4. Compute the topology’s frequency response subject to harmonic loads.

The displacement constraints used to compute the antiresonance eigenmodes must be

replaced by the harmonic loads to evaluate how antiresonances happen in the frequency

domain. The frequency responses at the nodes of interest are obtained by solving the

generalized dynamic problem subject to harmonic loads:

[M1{%} + [C1{x} + [K]{x} = {Fuarmonic}

Step 5. Analyze harmonic responses and identify an antiresonance frequency.

To properly identify antiresonances, the FRFs must be analyzed using the following steps:

Extract the FRFs on each of the nodes where the harmonic load has been applied.
Compute the average FRF over all the aforementioned nodes:
o averaged_FRF = mean(FRF)
Find local antiresonance peaks using the MATLAB function findpeaks:
[Amplitude,idx,Width,Prominence] = findpeaks(1/averaged_FRF)
Evaluate local peak frequency absolute distance to target frequency g,:
Proximity = abs(Target_ frequency - Peak Frequency)
Evaluate metrics for each local antiresonance peak identified, i.e., antiresonance
bandwidth, amplitude, prominence, and proximity to the target frequency g,. Use
the combined antiresonance evaluation factor:

o factor = Amplitude + Prominence + Width - Proximity
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e Select the local antiresonance peak with the highest evaluation factor as the

identified antiresonance frequency Ay.
Note the following metric definitions [64]:

e Amplitude: signal value of a data sample that is either larger than its two
neighboring samples or is equal to infinite.

e Prominence: measures how much the peak stands out due to its intrinsic height
and its location relative to other peaks.

e Width: distance between the points where the signal intercepts a horizontal
reference line positioned beneath the peak at a vertical distance equal to half the
peak prominence.

e Proximity: measures the distance in Hertz (Hz) from the target frequency to the

identified antiresonance frequency peak.

Step 5. Select an antiresonance eigenfrequency mode.
Once an antiresonance frequency Ay is identified, the corresponding topology’s harmonic
displacement response is matched with an antiresonance mode shape (eigenvector) using
the Modal Assurance Criterion (MAC) [48]. The following steps are used to identify an
appropriate eigenmode:

e Extract the harmonic displacement response xy at the identified frequency Ay.

e Compute the MAC between the harmonic displacement response x; and every

antiresonance eigenvector @ :

31



Journal of Mechanical Design

| xul?
o SRRRCTENICTED
554 e Select the eigenmode with the highest MAC coefficient as the identified
555 antiresonance eigenmode; its corresponding eigenvalue 1, = (anq)z is to be
556 used during the optimization in Equation (1).
557
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558 APPENDIX B.

559 Impact of penalization factors on localized eigenmodes

560 Non-zero finite frequencies localized in the void or near-to-void regions are not
561  preventable just by setting the stiffness and mass penalization factors to different values,
562 e.g. px =3, py = 1, or by modifying the stiffness-to-mass penalization ratio pg/py in
563 low-density regions. This problem is neither fully preventable by setting both penalization
564  factors to the same value as we did in the case studies in Section 3, i.e. px = py = 1,
565 however, the number of localized modes is greatly reduced while the computation time
566 is improved using equal penalization factors. To illustrate this statement, consider a
567 simple demonstration. Figure Appendix B.1 shows a design domain manually created,
568  containing a solid non-design stem surrounded by low-density elements. The stem
569  comprises 2% of the available solid space; the remaining 98% of space has near-to-void

570  density elements, a perfect scenario to observe localized modes in low-density regions.

571

572 Figure Appendix B.1. Design domain with homogeneous low-density material surrounding a solid stem.
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573  The eigenproblem is solved using both the SIMP and the RAMP models, Equations (6) and
574  (7), with both the same and different penalization factors for the stiffness (pg) and mass
575  (pym) matrices. In the frequency range between 10kHz and 50kHz, the stem has three
576  eigenmodes: two flexural modes and one extensional mode. Table Appendix B.1 shows
577  all the eigenfrequencies obtained with the SIMP model. Table Appendix B.2 shows all the
578 eigenfrequencies obtained with the RAMP model. We have used the localized eigenmode
579  recognition routine from APPENDIX A. to differentiate localized modes from real modes.
580 Notethatinthe following tables, the localized eigenmodes are in red while the real modes
581 are in black boldface. Finally, Table Appendix B.3 shows the computation time required

582  to solve each eigenproblem.

583

584 Table Appendix B.1. Eigenfrequencies obtained using SIMP model (Hz).
pk =1 pg =3 pk =3
pm =1 pm =3 pm =1
18511 17876 12511 15524 17787 18983 19947
19099 19153 12537 15629 17963 19000 19988
23272 21770 12710 15650 17984 19018 20055
24233 22670 12756 15709 18093 19035 20061
26876 25644 13070 15902 18123 19069 20155
35773 35104 13154 15942 18130 19231 20454
36377 35369 13488 16525 18240 19295 20488
37952 37443 14004 16633 18254 19301 20578
40050 38567 14418 16731 18293 19354 20587
40636 39061 14588 16847 18429 19364 20608
43469 42500 14595 16896 18551 19368 20670
44489 43492 14611 17087 18569 19502 20816
45850 45199 14620 17308 18609 19529 20925
46572 46117 15128 17567 18635 19547 21056
48305 47864 15188 17613 18685 19662 21059

49712 15469 17631 18885 19663 21145
585
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pk=1|px =3 Pk =3

pv=1|py=3 pm =1

18679 | 18203 | 16455 36994
18791 | 19048 | 17131 37906
23271 | 23271 | 17159 38805
24232 | 24232 | 18100 39216
26875 | 26875 | 19004 40077
35774 | 35774 | 25296 42393
36377 | 36377 | 25722 42557
37952 | 37952 | 26836 43743
39967 | 39156 | 28320 44560
40050 | 40050 | 30738 44836
43469 | 43469 | 31459 45650
44489 | 44489 | 32421 46911
45850 | 45850 | 32932 47159
46572 46572 34157 47828
48305 | 48305 | 35985 49636

36755

Table Appendix B.2. Eigenfrequencies obtained using RAMP model (Hz).

Table Appendix B.3. SIMP vs RAMP model computation time in seconds (s).

SIMP model RAMP model
pk=1|pk=3 |pxk=3 pk=1|pxk=3 |pxk=3
pu=1|pu=3|pu=1 pu=1|py=3|pu=1

68 (s) 69 (s)

These results demonstrate that using different penalization factors not only leads to
significantly more localized modes but also to higher computation time, especially when
the SIMP model is used. It also shows that when using the same penalization factors,

fewer localized modes are obtained while improving computation time.
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APPENDIX C.
Volume constraints study
Section 3 presented topologies where volume constraints are not active during the
optimization process as they are not needed to converge to optimized solutions; the
design objective is achieved regardless of volume constraints. Here, we present a

comparative study on how different volume constraints influence the solution.

Consider the following demonstration to illustrate the volume constraint effect. For the
same design problem of Section 3.1 a set of optimized topologies are obtained by varying
the maximum volume constraint while keeping all the optimization parameters from
Table 1 the same. The selected maximum volume constraints are 100%, 90%, 80%, 70%,
60%, 50%, 40%, 30%, and 20%. Figure Appendix C.1. presents the volume evolution as a
function of the iteration number for each of the maximum volume constraints considered.
The starting point is always the maximum volume fraction for all design variables, except
for the bottom layer of elements, as explained in Section 3. Please note that the 10%
volume constraint case was also considered, but this low percentage results in an over-

constrained problem for which no feasible solution is found.

Note that in all the cases presented in Figure Appendix C.1., the imposed volume
constraint is never active, i.e., the optimization never attempts to push the volume to the
constraint. Instead, the volume fraction is freely reduced by the optimization, converging

to a certain volume fraction after 100 iterations. For the cases with the maximum volume

36



618

619

620

621

622

623

624

625

626
627
628

629

630

631

632

633

Journal of Mechanical Design

constraint of 40%, 30%, and 20%, the convergence occurs around 17%. When the
constraint is set to 50%, the convergence value is around a volume fraction of 27%. The
convergence points for the other cases are not shown as they are not reached after 100
iterations. The convergence point is different because of disconnected members adding
to the volume without decreasing the design objective; if the disconnected members are
excluded, the converge point would be similar irrespective of the initially set volume
constraint. This analysis indicates that the volume constraints are never active during the

optimization process as they neither improve nor deteriorate the optimization results.

100 T T
—100%

50%

—90% 40%
8]0 - 80% 30%|
70% —20%

—60%

Volume percentage

0 I ! ! I
20 40 60 80 100

Iteration

Figure Appendix C.1. Volume evolution using different maximum volume constraints.

Figure Appendix C.2 shows the topologies obtained at iteration 100 for each maximum
volume constraint considered. Each subfigure shows the raw topology on the left-hand
side and the binarized topology on the right-hand side. Note that the raw topologies show
half of the structure as it includes a symmetry condition, while the binarized topologies

present a post-processed topology with its symmetry recovered.
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0 0
(a) Maximum volume constraint: 100%

0 0
(b) Maximum volume constraint: 90%

0 0
(c) Maximum volume constraint: 80%
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10

5 5
0 0

(g) Maximum volume constraint: 40%

0 0

(h) Maximum volume constraint: 30%

// \

Figure Appendix C.2. Resultant optimized topologies for different maximum volume constraints.

0 0
(1) Maximum volume constraint: 20%

The resultant topologies in Figure Appendix C.2 show that a volume constraint does not

prevent disconnected members and that well-defined topologies are achieved regardless
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of the constraint value. Interestingly, when using the volume constraint of 90% the
resultant topology does not exhibit disconnected members. When the volume constraint
is set to a lower value, the amount of available material is reduced, therefore the
optimization removes unnecessary material as seen for the cases of 40% and 30%;
however, when the volume constraint is further reduced, the optimization finds solutions
in @ more constrained solution space, leading to different topologies and disconnected
members, as shown in the case of volume constraint 20%. If the volume constraint is set
to even lower values, i.e., 10% or 15%, the optimization becomes over-constrained and
does not find feasible solutions. This observation suggests that disconnected members
can be obtained with both high and low volume constraint values. Therefore, finding an
appropriate constraint value requires a search that must be attempted heuristically for

every design problem.

Disconnected members do not influence the solution as they do not contribute to the
design objective. Consider the optimized topology shown in Figure Appendix C.3. The
disconnected elements have been manually removed from the raw topology and both
frequency responses, with and without disconnected elements, have been computed.
Please note that the typical post-processing does not remove these disconnected
elements directly from the raw topology. Instead, the raw topology is binarized to obtain
fully solid members with properly defined boundaries, then, disconnected parts can be

discarded before meshing and simulating the final post-processed topology.
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(a) (b)

Figure Appendix C.3. Optimized topology with disconnected members. (a) original raw topology, and (b)
raw topology with disconnected elements manually removed.

Figure Appendix C.4 compares the frequency responses for the original topology and the
manually-removed elements topology, demonstrating that both frequency responses are
the same. Any differences come from post-processing steps because small deviations from
the raw topology might result in frequency response changes. This is especially critical for
very small structural features that after post-processing could change significantly. Despite
some differences, the original and the post-processed topologies achieved the design
objective while maintaining high-quality metrics in their dynamic responses, as shown and

discussed throughout the results section.
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T T
Original raw topology
- ©-Disconnected members removed

Amplitude (a.u.)

20 30 40 50 60 70 30
Frequency (kHz)

Figure Appendix C.4. Frequency response functions for topologies presented in Figure Appendix C.3.

Differences between the raw and post-processed frequency response can be minimized
by adjusting the threshold value used during the binarization process. This threshold
controls how the boundaries are defined; a higher threshold reduces the amount of solid
material; a lower threshold increases solid material. In the proposed design methodology,
the threshold value is always set to 50% because this value does not promote solid
material over void space, and vice versa. All the presented results were post-processed
using the same threshold value to maintain consistency; therefore, frequency response

differences are expected.
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