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Finding frequent subgraph patterns in a big graph is an important problem with many applications such as
classifying chemical compounds and building indexes to speed up graph queries. Since this problem is NP-hard,
some recent parallel systems have been developed to accelerate the mining. However, they often have a huge
memory cost, very long running time, suboptimal load balancing, and possibly inaccurate results. In this paper,
we propose an efficient system called T-FSM for parallel mining of frequent subgraph patterns in a big graph.
T-FSM adopts a novel task-based execution engine design to ensure high concurrency, bounded memory
consumption, and effective load balancing. It also supports a new anti-monotonic frequentness measure called
Fraction-Score, which is more accurate than the widely used MNI measure. Our experiments show that T-FSM
is orders of magnitude faster than SOTA systems for frequent subgraph pattern mining. Our system code has
been released at https://github.com/lyuheng/T-FSM.
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1 INTRODUCTION

The Problem. Frequent subgraph pattern mining (FSM) finds all subgraph patterns that appear
more frequently than a given threshold in a graph database. FSM is essential for knowledge
discovery from graph data such as biological networks [38] and social networks. The extracted
patterns can be used as features for classifying chemical compounds [8] and for building indexes to
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speed up graph queries [37]. Other applications include graph clustering [24], protein functionality
prediction [5], privacy preservation [39] and image processing [6].

FSM has 2 problem settings: finding frequent patterns either (i) in a database comprising many
graph transactions (e.g., a set of chemical compounds), or (ii) from a single big input graph (e.g.,
a social network or a PPI network). In the transactional setting, FSM enumerates all subgraph
patterns that appear in > 7 transactions, where 7 is a user-defined support threshold. However, in
a single-graph setting, subgraph frequency violates the anti-monotonicity principle required for
effective pattern pruning in FSM algorithms. Consider graph G; in Figure 1: subgraph pattern S,
contains only a vertex labeled A, so it matches to only 1 data vertex v; in G;. Also, subgraph pattern
S consists of two vertices labeled A and B, respectively, connected by an edge; it is a super-pattern
to Sy, but it has 3 isomorphisms in Gy: (v1, v2), (v1,v3) and (v1,v4).

Several anti-monotonic support P T R ~
measures have been proposed in the o !’ G ol _v; """" K @ ‘:
single-graph setting, among which ‘\_@«' - : !
only minimum image (MNI) [2] ! i 0 i “G8) !
is computationally tractable (other Lem 7T . i | ' i
measures are NP-complete [10]) ‘sfﬂfzx‘ ! :\ RO “® 1 @ QOMN
and hence it becomes the de fac- 77~ N rzoozoooooos . 2
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tor standard adopted by all prior
works including ScaleMine [23], Dist-
Graph [9], Arabesque [28], RStream [31], Fractal [11], Pangolin [4] and Peregrine [16]. Next, we
illustrate the concept of MNIL. We say that a data vertex v € G is a valid match to a pattern vertex
u € S, denoted by v ~» u, iff there exists an isomorphism of subgraph pattern S in G that contains
v, where u is mapped to v. Then, given a subgraph pattern S containing vertices uy, uy, . . ., ux,
the MNI of S measures the least number of distinct valid matches of all u; € S. For example,
for pattern S, and graph G; in Figure 1, u; has one valid match vy, while u; has three valid matches
g, v3 and vy, so the MNI of S, in Gy is min{1, 3} = 1, which is more reasonable than the frequency
support of value 3, since we can only find one pair of connected vertices with labels A and B in G;j.

However, we notice that MNI often significantly overestimates the true support. For example,
consider pattern S, in G,, where u; has four valid matches vy, vg, v7 and vg, and u, has four valid
matches vy, vs, v4 and vs, so the MNI of S in G, is min{4, 4} = 4, but only two pairs of connected
vertices with labels A and B can occur at any time in G,. Figure 17 in Section 4 empirically shows
how much MNI overestimates the true support. Surprisingly, this overestimation issue of MNI did
not raise attention in prior works that unanimously used MNI for support. We overcome this issue
by generalizing the Fraction-Score [3] measure from the context of co-location pattern mining
to our single-graph setting, which can recover the ideal support value of 2 in the above example.
Section 2.2 will explain the definition of Fraction-Score in our context and how it is different from
Fraction-Score in co-location pattern mining [3].

This paper focuses on the single-graph setting. Solutions to transactional settings have been well
studied including algorithms gSpan [36], Gaston [18] and the parallel PrefixFPM [35, 34] system.

Algorithm Framework. In the single-graph FSM setting, GraMi [10] is the state-of-the-art serial
mining algorithm, which we illustrate using the example in Figure 2. Specifically, for each vertex u
in pattern S, we define the domain of u, denoted by D(u), to be the set of candidate data vertices in
G that u can be mapped to. For example, D(u;) = {v1, v4, v7, vs} in Figure 2 since these vertices have
the same label A. Here, GraMi would conduct 4 subgraph matching operations of S in G, one for
each vertex v in D(u;) assuming that u; has been mapped to v. Each subgraph matching operation
returns by confirming v ~» u; as soon as a matched subgraph in G is found, without enumerating

Fig. 1. Subgraph Patterns S1, Sz in Two Data Graphs G1, G2
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Fig. 2. Domain Illustration

all matched subgraph instances as in a regular subgraph matching operation. In contrast, if no
matched subgraph is found, candidate v is not a valid match to u; (denoted by v 9~ uy). Referring
to Figure 2 again, we can see that vy, v4, 07 ~» ug but vg 9~ uy, so u; has 3 valid matches and
we say that its valid domain is D*(u;) = {v1,v4, v7}. Similarly, we obtain D*(u;) = {vz,vs} and
D*(u3) = {03, 04}, so the MNI of S is min{3, 2,2} = 2.

Given an MNI support threshold 7, GraMi allows early termination when checking a domain
D(u) as soon as 7 valid matches have been found. For example, in Figure 2, if 7 = 2 and we already
find v; ~» 4y and vs ~> u;, we do not need to continue checking v; and vg in D(u4) but can move
on to examine D(u;) and D(u3), since u; will not cause MNI to be less than 7 (i.e., cause S to be
infrequent). This early termination is the key reason why GraMi is efficient, since |D*(u;)| can be
much larger than 7 in a real dataset.

A lot of pruning opportunities are possible in this algorithm framework. For example, in Figure 2
when examining D(u;), if the subgraph matching from v; finds a match to S, i.e., {v1, v2, v3}, we can
also add v, (resp. v3) to D*(uy) (resp. D*(u3)), so that later when examining D(u,) (resp. D(us)),
we can skip subgraph matching from v, (resp. v3) and conclude that v, > u, (resp. v3 w» u3). As
another example, let 7 be 4, and assume we have checked vy, v4 and vg in D(u4) in Figure 2, then we
have two valid matches v; and v4 and can conclude that |[D*(u;)| < 7 without conducting subgraph
matching from the last vertex v; in D(u;) (as even if v; ~» uy, the support to u; is at most 1+2 < 7).
Also, once |D*(uy)| < 7, we know that S is infrequent without checking D(uy) and D(us).

Parallelization. Since FSM is computationally expensive (NP-hard), some recent parallel systems
have been developed to accelerate FSM in the single-graph setting. However, most of them (e.g.,
DistGraph [27] and Fractal [22]) grow and materialize patterns and all their matched instances
in G, so they fail to utilize the above pruning opportunities and often incur a huge memory cost,
limiting their scalability. Even though ScaleMine [1] conducts pruning, it uses some approximate
approaches that treat patterns as frequent (resp. infrequent) as long as they are frequent (resp.
infrequent) with a high probability, but we find that the results are often not accurate and could
be inconsistent even in different runs. Also, previous works mainly focus on mining small-sized
patterns, since their subgraph matching procedure is inefficient. We observed prohibitively long
running time or out-of-memory error when they mine patterns with > 6 vertices. However, some
advanced subgraph matching algorithms have emerged recently [25, 26, 17] that are much more
efficient. Therefore, it is important to integrate the latest subgraph matching techniques in FSM.
In this paper, we propose an efficient task-based parallel system, called T-FSM, for FSM in a
single big graph. T-FSM enumerates subgraph patterns using the redundancy-free rightmost path
extension technique from gSpan [36], and for each pattern S with vertices uy, u,, . . ., ux, the basic
unit of execution is a task that conducts subgraph matching from some data vertex v € D(u;),
i=1,2---,k, using the latest subgraph matching algorithm [25]. Note that each pattern has many
tasks, and these fine-grained tasks allow massive parallelization and effective load balancing. Our
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underlying execution engine is designed to ensure all computing threads are kept busy computing
the available tasks without the straggler problem.

There are a few challenges in implementing this task-based scheme efficiently. For example,
(1) how can we ensure low memory consumption? T-FSM makes sure that at most n/}.57  subgraph
patterns are under computation at any time, where n %7  is a user-specified parameter to limit
memory usage. T-FSM only conducts subgraph matching to examine the frequentness of a new
subgraph pattern when memory space permits (e.g., an existing pattern finishes processing).
Moreover, each active pattern only maintains a limited number of subgraph-matching tasks from
its domain table that are just sufficient to keep all the computing threads of T-FSM busy. This is in
contrast to systems like DistGraph [27] that keep and process numerous patterns at the same time.

As another example, since each pattern S has many active tasks in computation, (2) if one task
determines that S is frequent (resp. infrequent) using the pruning rules described previously, how can
we terminate the other tasks in time? T-FSM maintains the latest status of each pattern currently
under computation, so that its tasks can check the pattern status to avoid wasted computation.

Also, we find that subgraph matching from some data vertices v € D(u) can be much more
expensive than others, causing the straggler problem in parallel execution. (3) How can we eliminate
straggler tasks? For each pattern S, T-FSM initially puts those subgraph-matching tasks that run
beyond a certain time threshold ;. to a temporary buffer, in hope that the results from the other
tasks can already determine that S is frequent; if not, those timeout tasks will be fetched back from
the buffer to continue their computation. Moreover, a timeout task is allowed to time out again, in
which case it will be decomposed into some smaller tasks to avoid becoming a straggler.

The main contributions of this work are summarized as follows:

e T-FSM uses a novel system design that ensures full CPU core utilization to compute fine-
grained subgraph-matching tasks with bounded memory consumption, while utilizing ad-
vanced pruning techniques and effective load balancing enabled by a task-timeout mechanism.

e T-FSM integrates the state-of-the-art subgraph matching algorithm, allowing us to mine
much larger patterns than existing systems, and to mine patterns in much less time.

e We indicate the support overestimation issue of the current de facto standard support measure,
MNI, and generalize the concept of Fraction-Score in co-location pattern mining as a more
accurate measure which is integrated in T-FSM.

e We conduct extensive experiments on 10 real graphs with diverse characteristics, which
show that T-FSM significantly outperforms existing systems in terms of running time.

The rest of this paper is organized as follows. Section 2 first formally defines our FSM problem,
describes our new Fraction-Score measure, and reviews the related work. Section 3 then describes
the system design of T-FSM. Finally, Section 4 reports our experiments and Section 5 concludes
this paper and discusses the future work.

2 PRELIMINARIES

This section first formally define our single-graph FSM problem and the useful notations in Sec-
tion 2.1. Section 2.2 then introduces our new and more accurate support measure Fraction-Score.
Finally, Section 2.3 reviews related work on subgraph matching and FSM.

2.1 Problem Definition

Without loss of generality, we consider an undirected graph G = (VG, EC, LG) with a vertex set VC,
an edge set E¢ C VO x VO, a label set LC for vertices and edges. We only consider simple graphs
without self-loops and multiple edges. Our algorithms can be easily generalized to a directed graph,
as we shall discuss in Section 5.
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Given a query graph S, subgraph matching finds all isomorphisms of S in data graph G, i.e.,
to find all mappings ¢ : V¥ — VO, such that (1) for each u € V¥, we have L%(u) = L°(/(u)),
and (2) for each e = (u;,u;) € ES, there exists (/(u;), V(uj)) € EC and L%(e) = L(¢/(e)). As an
illustration, consider query graph S, and data graph G; in Figure 1, where A and B are vertex labels.
Then, S, has 3 isomorphisms in Gy, namely (vy,v), (v1, v3) and (v, v4).

Given a support threshold 7, FSM in G finds all subgraph patterns S with support > 7, where
support is an anti-monotonic measure such as MNI [10] or Fraction-Score (see Section 2.2). Recall
that we say that a data vertex v € G is a valid match to a pattern vertex u € S, denoted by v ~» u,
iff there exists an isomorphism of subgraph pattern S in G that contains v, where u is mapped to v.
Also recall from Figure 2 that each pattern S is associated with a domain table, which maintains
a column D(u) of candidate data vertices to match to u for each u € S. MNI [10] is a popular
anti-monotonic support measure for single-graph FSM, which measures the least number of valid
matches of every vertex u € S, i.e., mni(S) = min,es |D*(u)|. A pattern S is said to be frequent iff
mni(S) > .

2.2 Fraction-Score

We now define a more accurate support measure, Fraction-Score, in our single-graph FSM setting.
Fraction-Score was originally proposed for mining co-location patterns from a single big spatial
database, and has been proved to be anti-monotonic [3], and more accurate than other measures.
We will explain our difference in the end; the anti-monotonicity proof is similar and thus omitted.

Let us denote the set of neighbors of a vertex v € G (resp. u € S) by N°(v) (resp. N°(u)), and
denote those neighbors with label £ by N, ,G (v) (resp. N t,S (u)). Recall from Section 1 that pattern S, in
Figure 1 has mni(S;) = 4 which overestimates the ground-truth support 2. Our new Fraction-Score
measure to be described below ideally addresses this problem and recovers the true support.

The problem with MNI is that (v, v2), (v1,v3) and (v1,v4) all contribute 1 to the support of S in
Figure 1, while there is only one vertex v; with label A shared by 3 vertices with label B. Ideally,
each of them should contribute only 1/3 to the support, since the contribution of v; is split by the 3
vertices vs, 03 and v4. Let us define the fraction of v’ € NG(Z)) that a vertex v € G receives by

Ay (v) = (1)

| LG(U) (U,)

For example, in Figure 1, A,, (v;) = 1/3 because L°(v;) = B and NBc(vl) = {v,,v3,04}. Next, we
define the total fractional contribution to v from all its neighbors with label ¢ by

Ay (v) = min Z Ay(v), 1¢, (2)

U’EN{G(U)

where we bound the total contribution by 1 since v should not contribute more than 1 to the support.
For example, in Figure 1,

Ag(v;) =min{l1+1+ 1,1} =1 (3)
since Ay, (v1) = Ay, (v1) = Ay, (v1) = 1; while
1
Ap(vs) = Ap(v7) = Ap(vs) = 3 (4)
since vs is the only neighbor of v6, v; and vg with label B, and A, (v6) = Ay (v7) = Ay, (vs) = %
Given a graph G, we preprocess it by computing A, (v) for every v € G and every neighbor

v’ € N%(v), and then using them to compute A,(v) for every v € G and every label £ (if N (v) # 0).
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Later during FSM, given a pattern S with vertices {uy, us, . . ., ur }, we next define the fractional
contribution to each data vertex v € D*(u;),i=1,2,-- -,k (i.e., v is a valid match to u;). For such
a vertex v, we consider the contributions to be coming from all its neighbors v’ that match some
vertex uj € N 5 (u;) (already captured by Aps(uj) (v) defined in Eq (2)). Specifically, the contribution
to v € D*(u;) given a pattern S is defined to be the minimum fractional contribution to v among all
such neighbors v as follows:

ME)= min A () (5)
To illustrate, for pattern S, in Figure 1 and vertex v; € D*(u;), we have N°(u;) = {u} and
L3(u3) = B, so
A%(vy) = Ap(oy) = 1 (6)
(recall Eq (3)); and for pattern S; and vertex v, € D*(u3), we have N°(uy) = {u;} and L% (u;) = A,
S0

A%(0) = Ma(es) = 5 )

(recall Eq (4) and the symmetry of the two components of Gy).
Now that we have defined the contribution from each v € D*(u;) to pattern S (i.e., Eq (5)), we
define the total contribution of u; € S to pattern S as the sum of contributions from all v € D*(w;):

o ()= Y. A(o). (8)

veD* (u;)

For example, for G, in Figure 1, 0,,,(S2) = AS(01) + A5 (vg) + A% (v7) + AS(vg) = 1+ % + % + % =2
since A%(v;) = 1 (recall Eq (6)) and AS(vg) = % (recall Eq (7) and symmetry between v, and vg).
Finally, as in MNI, the Fraction-Score of pattern S takes minimum among the total contributions
of all pattern vertices u; € S:
FS(S) = min 0y, (5). )

For G, in Figure 1, FS(S;) = min{oy, (S2), 0, (S2)} = min{2, 2} = 2. Note that FS(S;) matches the
exact ground truth that we expect!

Contributions and Differences from [3]. We remark that our Fraction-Score definition is a
non-trivial generalization of that in co-location pattern mining [3] (CPM) for the following reasons.

Firstly, in single-graph FSM, MNI is the de factor standard support measure adopted by all
prior works including ScaleMine [23], DistGraph [9], Arabesque [28], RStream [31], Fractal [11],
Pangolin [4] and Peregrine [16], despite its support overestimation issue.

Secondly, in CPM, we are given k categories of POIs (points-of-interest) with different labels #;, £,
..., & (e.g., restaurants, hotels, banks, outlets), and the goal is to find subsets of labels such that their
POIs co-occur (i.e., with pairwise distance < d) frequently in a POI dataset, where d is a user-defined
distance parameter. There does not exist an explicit graph structure, so our definition needs to
be properly redesigned for the graph context. For example, our Eq (5) defines the contribution
of pattern S to v (where v ~» u;) based on u;’s neighbors in subgraph pattern S, while the CPM
counterpart (Eq (3) of [3]) is defined simply based on all other labels that are not the label of POI v
in the POI label set S (i.e., pattern S).

Finally, even if we reformulate CPM as an FSM problem, CPM is still just a special case. Specifically,
if we create an edge between any two POIs within distance d, then CPM basically mines the resulting
graph G (called POI proximity graph) for frequent clique patterns where vertices (or, objects) have
different labels. For example, our FSM algorithm can find a pattern S like the one in Figure 3 from
the POI proximity graph G, where (i) on one day a tourist wants to visit a theme park and then
to have dinner at a restaurant, so wants to find a hotel that co-occurs with a theme park and a
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restaurant; and (ii) on another day the tourist wants 2o pin
to go shopping at an outlet where he/she can find an

ATM nearby to withdraw money and find a restau- <d =

rant to have lunch, so he/she wants these POIs and <d

the hotel to co-occur; there is, however, no need -

(1) for the outlet and the theme park to be within
distance d, and no need (2) for the two restaurants
to be the same restaurant; both relaxations are not
possible for a co-location pattern.

The anti-monotonicity proof of our extended Fraction-Score measure is omitted since it is similar
to that by [3] in its Lemma 1.

Fig. 3. A POI Pattern

2.3 Related Work Table 1. Feature Comparison of FSM systems

In this subsection, we first review the .

state-of-the-art (SOTA) parallel FSM sys- Q?LgoQ o & fa & %@%"

tems and explain their weaknesses. Ta- @0&“@@ bé@& Lo @@o\“ §c%§ & Q<§°

) & > .

ble 1 summarizes the features of these \d@:@@' o"{‘i\\& Qed?;gé‘o & @6\‘?@"} /\,5}\0 &
A > &

systems and compares them with our O \Q;O&" v = & e @

T-FSM system. We then preser%t the v v T v v T v v v v

SOTA subgraph pattern enumeration al- _ R, ;

gorithm gSpan [36] and the SOTA sub- S¢@eMine x | x X X

graph matching algorithm by [25], which ~ DistGraph | x | x | x | ¥ | NA | x | X

are two primitives used by T-FSM. Fractal | ¥ | ¥ | x | ¥ | NA| x x

ScaleMine. ScaleMine [1] solves FSM in A@esave | v/ | x | x | v | NA | x | x

two phases. The first phase is approxi- ~ Fanelin | v | x X | V[ NA] X x

mate, which (1) quickly identifies sub- Peregine | v | vV | x | v | x | vV | X

graph patterns that are frequent or in-

frequent with high probability, and for the remaining patterns, it (2) collects statistics to estimate
the mining loads for the purpose of load balancing in the second phase. To estimate if a pattern
S is frequent or not, for each u; € S, ScaleMine samples some candidates from D(u;) to perform
subgraph matching, and uses their results to estimate the distribution of |D* (u;)].

The second phase determines the frequentness of the remaining patterns, where each pattern S is
processed by a task ts so that the patterns are processed in parallel. If the mining loads of ts is large,
ScaleMine partitions it into subtasks either vertically (by domain table columns, recall Figure 2) or
horizontally (i.e., by hashing data vertices among workers). Here, a task tg is coarse-grained since
it processes the entire domain table of a pattern; in contrast, T-FSM uses fine-grained tasks: each
entry in a domain table is a subgraph-matching task. Also, a subtasks of T-FSM can run on any idle
thread, while ScaleMine hardwires vertices to workers by hashing.

Moreover, evaluation in Phase 2 is approximate to save computation. We find that the results
of ScaleMine can be different even for the same graph in different runs. The running time also
tends to be very long when mining larger patterns (> 6 vertices), likely due to using a suboptimal
algorithm for subgraph matching.

DistGraph. DistGraph [27] partitions vertices to different workers so that the distributed memory
can collectively hold a giant graph. DistGraph enumerates patterns in level-wise breadth-first
search (BFS), where at level i it computes the support of candidate subgraph patterns comprising i
edges. As a distributed system, it relies on efficient collective communication operations (AllToAll,
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AllGather and AllReduce) to minimize communication, and uses pruning techniques to avoid
communication for definitely (in)frequent patterns.

Since each graph partition is expanded by 1-hop in each round, the partitions can become very
large after a few rounds and overlap a lot, leading to redundant computation. Moreover, each
worker not only holds its partition but also the matched subgraph instances, leading to prohibitive
memory space cost.

Fractal, Arabesque, RStream and Pangolin. These systems focus on unifying several graph
mining problems such as motif counting and FSM. Their programming models materialize all the
matched subgraph instances of the subgraph patterns, and count these instances to determine
pattern frequentness. Arabesque [28], RStream [31] and Pangolin [4] expand the matched subgraph
instances in BFS manner to create and examine larger and larger subgraph instances, which is
very costly since the number of subgraph instances grows exponentially. This is in contrast to
GraMi’s early-termination idea that determines a pattern S as frequent as soon as its current support
becomes larger than 7. Pangolin [4] exposes the pattern extending phase so that programmers can
more effectively prune the enumeration space by eagerly detecting duplicate embeddings. Pangolin
also allows architectural optimizations (e.g., data structures) and can run not only on CPU but also
on GPU like cuTS [32].

Fractal [22] mitigates the performance issue by allowing its execution engine to conduct depth-
first subgraph-instance backtracking without actually materializing the instances, but it still ex-
haustively mines all valid subgraph instances without any early termination (as in GraMi). Due to
this algorithm inefficiency, Fractal requires users to specify a maximum pattern size n,qy, so that
patterns with more than n,,,, vertices will not be grown.

Peregrine. Peregrine [16] adopts a ‘pattern-first” programming model that treats graph patterns as
first-class constructs. This allows analysis of the pattern structure to more effectively guide the
exploration on the data graph G. Peregrine’s FSM program still grows patterns in a BFS manner,
but instead of maintaining the huge number of intermediate pattern embeddings in G, Peregrine
only maintains patterns themselves, and conducts subgraph matchings for their domain tables
on demand to check pattern frequentness as in GraMi. Peregrine’s subgraph matching algorithm
for subgraph pattern S avoids non-canonical matches by enforcing a partial ordering on matched
vertices to break pattern symmetries. It then computes the core of S as the subgraph induced by its
minimum connected vertex cover, and computes matching orders by enumerating all permutations
of vertices in the core that meet the partial ordering, which are then matched towards G.

As we shall see next, T-FSM uses the depth-first pattern extension method of gSpan that minimizes
the number of active patterns that need subgraph matchings (and hence minimizes memory
consumption). Moreover, T-FSM uses the latest subgraph matching algorithm [25] that does initial
vertex candidate pruning and enumerates subgraphs in a small index (c.f. Figure 5). None of these
optimizations is considered in Peregrine. Peregrine also treats the matching computation for each
matching order as the smallest unit of parallelism, while T-FSM allows each subgraph matching
task to further decompose if it times out, to avoid the straggler problem.

Pattern Enumeration. gSpan [36] is the SOTA algorithm for FSM in the transactional setting. It
enumerates the subgraph patterns in depth-first manner. Figure 4 illustrates the pattern-growth
tree of gSpan [36] where each circle represents a subgraph pattern, and each edge (S, S’) grows
pattern S by adding an adjacent edge to generate pattern S’. Different subgraph patterns may grow
into the same pattern: for example, pattern A-B—-C may be generated either by growing A-B by
edge B-C, or by growing B-C by edge A-B. To avoid examining redundant patterns, gSpan encodes
each subgraph pattern into a unique sequence called DFS code [36] computed from a ‘DFS code
tree’ that connects pattern vertices in the order of their extension, and defines the minimum DFS
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code among all isomorphic subgraphs of a pattern S as
the canonical encoding of S, denoted by min(S). For all
isomorphic patterns, only the one whose DFS code is
canonical would be processed. As an illustration, assume
that S, and S;, are isomorphic and since only S,’s encod-
ing equals its canonical encoding, only S, is checked for
frequentness and for further pattern growth, while S,
(and its potential pattern-growth subtree) is pruned. Ad-
ditionally, gSpan only extends a pattern S by an edge on  n-edge
the rightmost path of S’s DFS code tree, since [36] shows
that other extensions cannot be canonical. Fig. 4. Pattern-Growth Tree [36]

As an FSM algorithm in the transactional setting,
gSpan [36] tracks the set of matched instances for each
pattern S, so that they can be incrementally extended when considering patterns grown from
S. In our single-graph setting, the pattern frequentness is examined using the domain table, so
T-FSM only uses gSpan’s depth-first pattern-growth scheme (with pattern canonicality check +
rightmost path extension on DFS code tree) to enumerate new patterns for processing. This is more
space-efficient than the BFS scheme of existing systems since we only keep a small number of
active patterns for mining at any time: new patterns are evaluated only if space allows (i.e., some
patterns finish evaluation).

2-edge

Subgraph Matching. Subgraph matching finds all subgraph instances in a data graph G that is
isomorphic to a given query graph S. Most existing SOTA algorithms for subgraph matching are
built on top of Ullmann’s backtracking algorithm [30]. Ullmann’s algorithm orders the vertices
of S as a sequence 7 = [uy, uy, ..., ux], and recursively matches each vertex u; to one candidate
data vertex in G with the same label. If u; is matched, a pattern is found and outputted; while if ;
cannot find a match for some i < k, the algorithm backtracks to match u;_; with its next candidate
in G.

Sun and Luo [25] summarizes the SOTA algorithms on top of
Ullmann’s algorithm in terms of their optimization techniques, such
as (1) initial candidate vertex pruning (e.g., vy in Figure 2 cannot be
a candidate of u, since its degree is less than u,’s); (2) an auxiliary
structure Ag for a pattern S, where each u; is associated with a
set of pruned candidates C(u;), and for each edge (u;, u;) € ES, its
matched edges in G between C(u;) and C(u;) are materialized (to  Fig 5. Auxiliary Structure Ag
illustrate, Figure 5 shows Ag for pattern S in Figure 2); (3) query
vertex ordering in 7 (e.g., u; with smaller |C(u;)| should appear earlier in 7 to reduce recursion
fanout). Ullmann’s algorithm then enumerates the matched subgraphs on the smaller Ag rather
than the original G following the selected vertex order 7 to achieve maximum efficiency. Following
the recommendation by [25], we use the method of DP-iso [14] to compute C(u;) for all u; € S, use
the method of GraphQL [15] to compute 7z, and use the DP-iso-style auxiliary structure.

As the SOTA serial FSM algorithm for a single graph, GraMi [10] simply treats subgraph matching
as a constraint satisfaction problem (CSP), and [25] has shown that constraint programming is
slower than Ullmann-style backtracking. In T-FSM, our subgraph-matching search stops as soon
as a matched subgraph instance is found, but if there is no match, our search will complete the
entire Ullmann-style backtracking algorithm, which may cause the straggler problem without our
timeout-based task decomposition.
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3 THE T-FSM SYSTEM

T-FSM is currently implemented as a shared-memory parallel system focusing on parallel task
scheduling and computation, but it is easy to be extended for distributed execution using the vertex
pulling technique of G-thinker [33], which we will discuss in Section 5. A T-FSM program runs a
main thread called worker, and a pool of computing threads, called compers, for task computation.

This section first overviews the mining process of T-FSM and provides a brief cost analysis,
followed by the technical details.

3.1 Overview of the Mining Process

Job Initialization and Initial Pattern Candidates. A T-FSM program begins by letting the
worker (1) load the input graph G, (2) scan G to obtain and output the set of frequent vertex labels
Vfreq and frequent 1-edge patterns Ef,q, (3) prune those edges of G that do not match any 1-edge
pattern in Efy.q, and (4) use Ef ¢4 to create an initial set of 2-edge candidate patterns, denoted by
Cgat, for parallel task-based pattern frequentness evaluation and pattern extension by compers to
maximize CPU utilization. To illustrate, recall Figure 2 and assume that support threshold 7 = 3.
Then Vy,.q = {A, B} and Ef,.q = {(A, B)}. Label C is pruned since only 2 vertices in G have label
C, which is < 7, and G is pruned to contain only 4 edges (v1,v2), (v4, v5), (vs,07) and (vs, v9) to
accelerate subsequent mining. Finally, Cgat = {A-B-A, B-A-B}.

Pattern Containers. Figure 6 overviews
the system architecture of T-FSM

with two pattern containers: (1) Cpar \ _
keeping candidate patterns to be eval- head | @ feteh a task (1) |ta'|

uated, and (2) Lacrive keeping a list of | 'l

. (2) update status
active patterns currently under task- —
based frequentness evaluation. Lactive -~ — ces

5) delete capsule

Specifically, Cpq; is a stack pro-
tected by a mutex for concurrent ac-
cess by compers. We initialized Cpq; i i
with Cp,,, the set of 2-edge candi- & (ﬁo
date patterns obtained by the worker. :

When the capacity of Lgcrive is not ;
full, a comper may pop a new can- PRONSIRITRIPFSMFRE ¥ :

didate pattern S from C,,; for eval- H

uation, in which case S is added to | Initial 2-edge patterns
Lactive With its status (e.g., the do- (&)Q(ﬁo (ﬁ(_)o (computed by the worker)
main table) being allocated and ini-
tialized. Also, when a frequent pat-
tern is found, it will be extended with edges in E freq to create more candidate patterns, which are
then pushed to Cy4;. We use gSpan’s pattern extension approach which extends a new edge along
the rightmost path of S’s DFS code tree [36].

We implement Cpq; as a stack so that we tend to grow existing frequent patterns to be larger to
achieve a near depth-first traversal order on the pattern-growth tree (recall Figure 4), to keep the
number of candidates in Cpq; small (in contrast to queue-based BFS). Note that only subgraphs are
kept in Cpq; without any status information, so the memory consumption of Cp; is low.

On the other hand, £, is a linked list of active patterns. To keep memory bounded, we only
allow Lgcrive to contain at most n%F active patterns, where n%* is a user-specified capacity

active active
parameter set to 32 by default. A pattern S appears earlier in Lyctive. if it was fetched from Cpq; to

[ graph matching from v; }

Fig. 6. System Architecture of T-FSM
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the tail of L0 for evaluation earlier. Whenever a comper tries to obtain a subgraph-matching
task for processing, it will check the task availability of active patterns starting from the head of
Lactive; the comper will fetch a task from the first active pattern S € Lg¢¢ive With an available task.
We implement L,.¢ive as such so that active patterns are evaluated in a near FIFO order to keep the
number of active patterns minimal: a pattern that starts its evaluation earlier tends to be prioritized
for task-based frequentness computation, so that its evaluation can finish sooner to make room for
a new candidate pattern in Cpq;.

As Figure 6 shows, each active pattern S in L,csi0e is actually associated with a structure called
“pattern capsule,” which keeps the tasks of S and S’s evaluation status. Section 3.2 will describe
pattern capsule in detail, which is designed to (i) keep memory bounded by only having a small
number of active subgraph-matching tasks at any time (as we shall see in Section 3.3), and to
(ii) fully utilize pruning methods by keeping the latest pattern status.

Memory Cost Analysis. Recall that Cy,; only keeps candidate subgraph patterns without any
status information, so the memory cost is dominated by Lc;ipe- The memory cost of Lgcsipe is
well bounded since it can contain at most n].}} = active patterns at any time, and each active
pattern is associated with a pattern capsule that contains a small and bounded number of active

subgraph-matching tasks. Our appendix [19] provides an analysis and proof of our memory bound.

Worker Mining Procedure. In T-FSM, each comper is a thread that keeps fetching the next task
for processing if available, or sets its state to idle otherwise. The worker periodically checks if there
are still tasks to be processed (i.e., Lactive 0r Cpar is not empty), or if some comper is still computing
(which may generate new candidate patterns into Cp4;). Case i: if so, it wakes up idle compers
to process them (worker-compers notification is via condition variables); otherwise, Case ii: all
compers are idle and Lgcsipe and Cpq; are empty, so the worker terminates the T-FSM program.

Mining Procedure of a Comper: An Overview of the Steps. A comper keeps fetching tasks
from L,csipe for evaluation as follows. It first scans L;¢sipe from the head to obtain a subgraph-
matching task from the capsule of the first active pattern S € L,¢4ipe With an available task (c.f.
@ in Figure 6). Case 1: if a task (for subgraph matching from v;) is successfully fetched from the
capsule of a pattern S, the task is executed and the status of S is updated accordingly (c.f. 2)). Case
1.1: if this task determines that S is frequent (c.f. 3), it will extend S to generate larger candidate
patterns, push them into Cyu; (c.f. @), and delete S from Lctive (c.f. ®). While Case 1.2: if the
task determines that S is infrequent (c.f. 3)), it directly deletes S from Lgctive (c.f. B)). The comper
then continues the next round to fetch another task from £ ;¢sipe for evaluation.

Case 2: if in a round, a comper cannot find any task after scanning the whole L;ctipe, then
Case 2.1: if | Lactivel < nlnyr,., the comper pops a new candidate pattern S € C,q, allocates a
pattern capsule for S, and inserts it to the tail of L,csi0e (c.f. (6)); it then continues the next round
to fetch another task from L.y for evaluation. While Case 2.2: if the capacity of Lgcsize is full,
the comper goes idle directly, which may be awakened by the worker later (i) to process new tasks,
or (ii) to terminate the task probing loop if the worker flags the T-FSM program to terminate.

Time Cost Analysis. Recall that Step @ in Figure 6 extends each frequent pattern by an edge
using rightmost path extension and conducts canonicality check on each newly extended pattern
as in gSpan, so no redundant patterns would ever be inserted in Cp4;, and any pattern candidate in
Cpar must be extended from a frequent pattern. In other words, we never examine patterns that are
more than one-edge-extension away from the set of frequent patterns.

Let us denote the number of frequent patterns by nf,¢q, and assume that the average number of
rightmost extensions of a frequent pattern’s DFS code tree is nfanous, then we examine at most
Nfreq * Nfanour candidate patterns (some may be filtered by canonicality check directly). While
the value of nf.eq and nfaney; is difficult to analyze (e.g., there is no such analysis in gSpan’s
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Fig. 8. Task Management Inside Pattern Capsule

paper [36]), their values are well-bounded in practice when a selective support threshold 7 is used
to find only very frequent patterns. For each candidate pattern S with vertices {uy, ug, ..., ux},
each entry in the domain table may initiate a subgraph-matching task, giving at most Y,X, |D(u;)|
subgraph-matching runs in total. Note that the actual number is much smaller since we use many
pruning techniques (see Section 3.4). Let the average cost of each subgraph-matching run be
Cratch» then the time complexity of FSM is O(nfreq * Nfanour * Cmatch Zle |D(u;)|). While subgraph
isomorphism is NP-complete [7], we use the latest algorithm for subgraph matching with a lot of
pruning techniques [25] so Cpqtcn is well-bounded.

3.2 Task Containers in a Pattern Capsule

Domain Table fiiiaicies

Recall that the frequentness evaluation of a pattern S

with vertices {us, uy, . . ., ux } can be regarded as subgraph- “ ﬂ u ﬂ

matching tasks starting from individual data vertices g1, b1, @ = @

v € D(u;) (i=1,2,---,k) in the domain table of S (see ~ ,  p,

Figure 2). Let us denote such a task by t,. il e
Different subgraph-matching tasks can have drastically ~ finish Bx P Ox - ~_ Finish-Counters

Qs

different computing workloads, so load balancing is es- finish%v %x .
sentllal to eliminate thfe straggler pr9blem. In fac.t, we can as Cs o —
avoid the full evaluation of some time-consuming tasks s ~ match

v

by postponing them after a timeout. For example, assume
that our MNI support threshold is 7 = 2, and consider the
evaluation of D(uq) in Figure 7. We will evaluate tasks
tays tay, ta, and t,, to find that u; does not breach the frequentness requirement, but if t,, and t,,
are very time-consuming (e.g., need 10 seconds for full evaluation), a wiser solution is to put them
aside after they run beyond a certain time threshold 7, (We use 74, = 0.1 second by default),
since t,, and t,, both confirm that a, and a4 are valid matches to u; which suffices for 7 = 2. In
this case, we can save 19.8 seconds! If after evaluating all non-timeout tasks in a domain D(u;), we
still cannot find 7 valid matches to u;, we can then resume the evaluation of timeout tasks. For our
previous example, if 7 = 4, then after evaluating the entire D(u;), we can find at most 3 matches,
so we have to resume t,, and t,, to determine whether a; and a5 are valid matches to u;.

Figure 8 shows the internal of a pattern capsule for pattern S, where we create tasks t, from
entries v in the domain table of S into a regular task queue Q,, (in gray) to be fetched by compers
for subgraph matching. The tasks are created and appended to Q,, following the order uy, u, .

Fig. 7. Status Maintenance

.y
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uy. If a task times out, it will be temporarily moved to a timeout task list L;imeous (dashed rectangle).
We organize L;imeour as a list of queues, one for each u; to keep all the timeout tasks t, where
v € D(u;). For Limeour in Figure 8, the blue (resp. orange, green) queue keeps the timeout tasks of
uy (resp. uz, us). The queues of Ltimeour are ordered based on the order of u;’s in S, so that compers
will endeavor to finish all tasks from D(u;) before those from D(u;) if i < j. This is beneficial since
if all tasks from D(u;) are finished and we find that |D*(u;)| < 7, we know S is infrequent which
avoids evaluating tasks from D(u;).

Task Fetching. Recall from (@) in Figure 6 that a comper fetches a task t, from some pattern
capsule for subgraph matching at a time. We next explain how to decide where the comper fetches
t, from a pattern capsule, i.e., from Q4 or from Lyimeou:? We remark that all queues in Figure 8
are concurrent queues for efficient access by multiple compers. Additionally, L;imeou: is protected
by a read-write lock, where compers obtain tasks by reading the head of L;imeou: for its first queue
in most of the time, but when 7 valid matches to u; have been found, a comper will garbage-collect
the queue for tasks of D(u;) from L;imeour after pattern status update.

We first define some concepts for ease of presentation. For a task t, where v € D(u;), we say that
i is the pattern-vertex ID (PID) of .. In Figure 8, the PIDs of t,, and t,, in Q,¢, are both 2 since
02,05 € D(uz). Also, let us denote the minimum PID of the tasks in Q4 (resp. Ltimeour) by ming
(resp. ming). Since tasks are created from the domain table and appended to O, in the strict order
of uy, uy, ..., ug, ming is the PID of the task at the head of Q¢y. If Oreg = 0 (resp. Liimeour = 0), we
set ming = oo (resp. miny = o).

Recall that a comper fetches a task t, from some pattern capsule for subgraph matching at a time,
and that we would like to finish all tasks from D(u;) before those from D(u;) if i < j. Following
this principle, Case 1: if ming > ming, a comper fetches the next task from .L;imeou:. For example,
in Figure 8 if the blue queue of L;imeou: has tasks which are from D(u;), the comper should fetch a
task from the queue rather than one from Q,.4 which is from D(u,). Case 2: if ming < miny, (£ i),
a comper fetches the next task from Q,., since the evaluation of timeout tasks from D(u;) should
be postponed till all tasks from D(u;) in Qy¢,4 are processed.

A special case is when both Q,.y and Lyimeou: are empty, which we handle as follows. Initially
when a pattern S is newly moved from Cpqr to Lgctive (recall () in Figure 6), a comper will refill
Qreq using tasks from the domain table of S. Later when a comper finds that both Q,¢y and Limeout
are empty in S’s capsule, we determine that it fails to obtain a task from pattern S, so it will move
to the next pattern in L.y (recall ) in Figure 6) to try to fetch a task; this is because a comper
automatically refills Q;cy when Q¢4 has insufficient tasks (see Section 3.3), so if Q4 is empty, all
entries from the domain table must have exhausted their tasks.

3.3 Task Processing by Each Comper

Assume that a comper successfully obtains a subgraph-matching task t, from the current task
capsule for processing as discussed above, Figure 8 shows the steps that the comper processes t,,.

Specifically, the comper first fetches t, (c.f. ). If £, is from Q,,, the comper first checks if Q,,
has less than n;'éig” tasks, where n;’é;” is a user-defined size lower bound for Q¢4 (= 800 by default); if
so, the comper refills up to npaych tasks into Qrey by creating them from entries in the domain table
following the order of u;’s (c.f. D). Here, npasep is a user-defined batch size set to 800 by default.
Note that Q4 has at least nfgg” tasks to keep compers busy, but Oy, has at most n;'éig" + Nparch tasks
so the memory cost is bounded.

If a comper finishes ¢, without timing out, it updates S’s status (saved in the capsule) using the
result, and then deletes t,. Recall that if ¢, times out, the comper will postpone its processing by

adding it to Lyimeou: (¢.f. 3) in Figure 8). However, if such a task t, has to be finally evaluated, it can
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Algorithm 1 subgraph_match(S, G)

1: generate matching order 7 = [ug, ua, . . ., uk]
2: enumerate(0, 1, 77, teyr)
Procedure enumerate(M, i, 7, ty):
if i = k + 1 then output M; return
Cum(u;) < viable vertex candidates in G to match u;
for each v € Cy(u;)
append M with (u;, v)
if teyr — to < Toplir do enumerate(M, i+ 1, 7, to)
else create task (M, i + 1, 7) and add it to system
pop (u;,v) from M
Task (M, i, rr):
10:  enumerate(M, i, 7, tcyr)

R A A

still become a straggler if it is evaluated by only one comper. Therefore, we allow t, (let v € D(u;))
to time out again, in which case we will decompose it into multiple smaller tasks (c.f. ) which
are added back to u;’s queue in Lyjmeour (c.f. B)) so that they can be processed by the compers in
parallel (each may time out again and decompose).

We incrementally maintain ming for quick access. Specifically, whenever a comper fetches a task
from Q,y (c.f. @) in Figure 8) or refills tasks into Q4 (c.f. (D), it updates ming to keep it up-to-date.

To determine miny, a comper read-locks Lyjmeous and probes it for the first non-empty queue.
Assume that the queue is for keeping tasks from D(u;), then miny is determined to be i.

ty io/

Vi

Straggler Elimination by Task Decomposition.
We next explain how we decompose a task ¢, ;
in Step @ of Figure 8 when t, times out. Algo- :
rithm 1 sketches our Ullmann-style recursive algo- 7). 4, i
rithm, where we match data vertices to query vertices it

1

1

1

n[1]: u,

Uy, Uy, . . ., Ui one at a time, with M recording the cur-  n[3]: u,
rent partial match. The search process can be depicted

by a search tree in Figure 9 for query graph S on data

graph G in Figure 2. Here, for ease of presentation,

we simply assume Cj(u;) in Lines 4-5 of Algorithm 1 Fig. 9. Task Decomposition

to be equal to C(u;) as shown in Figure 5. The actual

Cum(u;) in our implementation is much tighter, and please refer to Section 3.3 of [25] for the details

of Cy(u;) computation.

In Figure 9, the leftmost path gives the recursion path M = [(u1,v1), (uz, v2), (43, v3)] which leads
to a valid matching subgraph Av;v,05 (see G in Figure 2). In contrast, path M = [(uy, v1), (u2, v2), (u3, v6) ]
fails since (v, v6) € G so cannot match (u,, u3); in reality when using the auxiliary structure Ag
shown in Figure 5, we will not extend M = [(uy,v1), (uz, v2)] with (us, vg), since (v,,06) ¢ As.

In Algorithm 1, Line 2 implements a root task where M = ( and the task beginning time f, is
set to be the current time f.,,. Lines 3-9 implements the Ullmann-style backtracking algorithm.
Specifically, if k vertices have been successfully matched, Line 3 outputs the match M and returns.
Otherwise, we proceed to match the next u; whose candidate data vertices Cys(u;) are computed
based on the current partial-match M: for each data vertex v € Cp(u;), we match it to u; by updating
M in Line 6, and continue to match one more query vertex ;.1 by recursion in Line 7 (let us ignore
timeout for now). Once the recursion returns, Line 9 removes that match (u;, v) and continues to
consider the next candidate in Cp(u;).
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Next, let us consider how the timeout mechanism works to avoid straggler tasks. Note that after
a task sets its initial time #y, this initial time is passed on in subsequent recursion (c.f. Line 7). Each
time before we match a candidate data vertex v to u;, we check if more than zyp;;; time has passed
since t; (c.f. Line 7, the if-condition). If not, we continue recursion; otherwise, the task times out
and we create a new task (M, i + 1, ) to process the corresponding search-space subtree rather
than recursively processing it by the current task itself. The new task will reset its beginning time
in Line 10 when it starts computation and may time out again in Line 7.

Figure 9 illustrates this timeout process: the current task traverses the search-space tree in
depth-first order, processing for 3 recursive steps (o, t; and ;) and when reaching Line 7 to check
vs € Cum(us), the current time t; times out, so the subtree from extending v, is wrapped as an
independent task by Line 8 and added to the system. Also, when the current task backtracks the
recursion stack, three subsequent tasks are created due to timeout (4, t5 and t5). Note that these
tasks are created at different granularities that are necessary and not over-decomposed.

So far, we described the general subgraph matching algorithm. In our application, each task
t, with v € D(u;) starts by first matching u;, so 7 is computed by fixing u; as the first element,
and computing the order among the remaining pattern vertices using the method described in
Section 3.2 of [25]. In other words, each task f, begins with M = [(u;,v)]. Note that even though
tasks from D(u;) of different pattern vertices u; have different matching order x, the auxiliary
structure Asg is the same, so Ag is created when we initialize the capsule of S and is used by all
tasks for pattern S. Another difference of ¢, from general subgraph matching is that, as soon as
we find a complete match M, t, completes by determining v as a valid match to u;, rather than
traversing the entire search-space tree to find all matches. For example, in Figure 9, t, completes as
soon as its finds the leftmost path to be a valid subgraph match.

CPU Utilization Analysis. Recall that we eliminate any straggler subgraph-matching task by
decomposing it after running computation for 7s,;;; time, and the decomposed tasks are inserted
back to Limeour for parallel processing by idle compers. Moreover, a comper automatically refills
Qreg by generating tasks from the domain table. As a result, both Q;.y and L;imeou: have sufficient
tasks to keep compers busy (unless tasks from domain table are exhausted for the current pattern
S, in which case next pattern capsule in L;ctige Will be accessed). Therefore, T-FSM can maintain a
high CPU utilization rate during the course of FSM computation.

Capsule Deletion. Recall from Figure 6 that if a comper can determine that a pattern S is frequent
or infrequent after processing a task (c.f. ), it will delete the capsule of S from Lcsive (c.f. (B).
However, this naive solution may result in a segmentation fault.

Consider the pattern capsule in Figure 10 - ~
and assume that the support threshold Compers Capsule for Pattern S
7 = 2. We also assume that (1) the pattern n(S) 61 6 6 D: main Table

S)

only has 3 entries yet to create subgraph- ! @ @ GB n
matching tasks: c;, ¢4 and c5, while all 5 i

other entries have finished (or pruned) their | 1T 1 B
subgraph-matching tasks; and assume that s Bt et o S

3
X
m | status fields
4

=

a b c
fin TX fin '/ fin T X

i

' a3 bs G
(2) compers 01, 0, and 65 process tasks t.,, | fin X fin T
. y 2 ity b4>< Ca,
tc, and ., respectively. If ¢, finds that c4 is - - pass X not match
a valid match to us so all u;’s have at least | Tee | I ER Gy v match
: . . 10 jcapsule H fin task finished
2 valid matches, then S is determined to  y v v v Qass"i pass taskpruned )
be frequent and 6, will delete S’s capsule.
However, 6; and 05 may still be processing Fig. 10. lllustration of Capsule Deletion (r = 2)
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Algorithm 2 An Iteration of Comper Computation

obtain the first capsule S € L;tive With available task(s)

lock n(S); n(S) <« n(S)+1; unlock 5(S)

compute a task in capsule S and update its status (Fig. 6 D @)

lock 7(S);  7(S) — n(S) — 1

if n(S) = 0 and S’s frequentness is determined (Fig. 6 ) then
extend S if it is frequent; delete S’s capsule (Fig. 6 @)

else unlock 7(S)

N Dok Wy

tc, and t,,, and will need to access As for subgraph enumeration and then update S’s status in the
capsule!

Our solution is to assign each pattern S a counter 5(S) that is kept in S’s capsule, which records
the number of compers that are currently processing subgraph-matching tasks of S or updating S’s
status. Algorithm 2 shows how we update the counter in each iteration of comper computation. As
soon as we obtain a capsule S € Ly¢tige, We increment 7(S) in Line 2. After finishing a task ¢, € S,
we decrement 7(S) in Line 4. Moreover, if the frequentness of S has been determined, and 7(S) = 0
(i-e., the current comper 6 is the last one still processing S), then 6 deletes capsule S (including
1n(S)) in Line 6. Otherwise, 1(S) is unlocked in Line 7 so other compers can increment it again later
in Line 2. In our previous example in Figure 10, 6, processing t., will not delete S’s capsule since
n(S) = 2, and S’s capsule will finally be deleted by 6, after finishing t.,. As an optimization, in
Line 2 after a comper locks 5(S), if it finds that S’s frequentness has been determined and 5(S) > 0,
it will unlock n(S) and continue to check the next capsule in Lyctipe-

In Algorithm 2, a comper needs to (a) read-lock L4tipe in Line 1, and (b) the lock can be released
as soon as a task is obtained from S in Line 3 before conducting subgraph matching. If such a task
cannot be obtained, (c) then the lock needs to be released right after Line 4, since (d) Line 6 needs
to write-lock Lgcrive to delete S’s capsule. However, a deadlock can happen here. For example,
consider two compers 6; and 6;, where (1) 6; has read-locked Lctise in Line 1 and is waiting to
lock 5 (S) in Line 2; while (2) 0, has locked 1(S) in Line 4 and is waiting to write-lock L ,ctipe in
Line 6 to delete S’s capsule. Our solution is to let Line 2 try-lock n(S), so that if 0; failed to lock
1n(S), it directly goes back to Line 1 to check the next capsule in Lcsipe; 61 will ultimately release
the read-lock of Lctive, S0 02 will be able to write-lock L;c;ipe to delete S’s capsule.

3.4 Pattern Status and Pruning Techniques

Our MNI and Fraction-Score measures take minimum over the “frequencies” of matching data
vertices for all u; € S. Recall from the end of Section 2.1 that mni(S) = miny,cs |D*(u;)|, and
from Eq (9) and Eq (8) in Section 2.2 that FS(S) = miny,es 0,(S) = miny,es Ypeps (u;) AS ().
In other words, instead of adding 1 for each valid match v € D*(u;) as in MNI, FS(S) adds
AS(v) = miny,; ens (u;) ALS (u)) (v) (c.f. Eq (5)) where A;(v) is precomputed.

Lazy Search. Since we take minimum over the “frequencies” of matching data vertices for all
u; € S, if some vertex u; € S has frequency |D*(u;)| < 7 (or ZUeD*(uj) AS(v) < 1), S is infrequent
and there is no need to check the other u;’s. Similarly, if the current candidates of u; € S has a
cumulative frequency nJF > 7, then u; will not be a reason for S to be infrequent, so the remaining
candidates in D(u;) can be skipped. Let us denote the number of remaining candidates in D(u;) by
nJR. To summarize:

e If nf + nf < 7, then S is flagged infrequent immediately.
e If nf' > 7, then skip the remaining nR tasks of u;.
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Here, we use the property that nf upper-bounds the sum of A%(v) for the remaining v € D(u;),
since A%(v) < 1by Eq (2).

Note that each capsule keeps the status of its pattern S to facilitate pruning, which are a few flags,
counters, and a Domain-Match Table (described below) that are lock-protected to be thread-safe.
Here, we illustrate how these status fields assist lazy search.

e Finish-Counter (c.f. Figure 7) is an array where Finish-Counter|[i] represents how many
tasks for u; have finished. In Figure 7, suppose u;’s tasks ay, az, as and a4 have finished, so
Finish-Counter[1] = 4.

e Domain-Match Table (DMT, c.f. Figure 7) is a table where DMT(i] keeps the set of valid
matches in D(u;) found so far. For example, in Figure 2, when t,, finds a valid match Av,050s3,
it will insert v3 to DMT|3]; later when another match Av40505 is found by another task, v;
will be inserted again so DMT]|3] is organized as a set for deduplication. In Figure 7, while
tasks aj, ay, as and a4 have finished, only a; and a4 are valid matches, so they are in DMT[1].

With Finish-Counter and DMT, lazy search is straightforward. For example, in Figure 7, if 7 = 5,

as soon as as is finished, there is no need to examine u;’s remaining tasks and all tasks of u; and us:
nf = |DMT[1]| = 1 (i.e., a is found valid), and nf = |D(u;)| — Finish-Counter[1] = 6 — 3 = 3, so
nf + n’f < t and the whole pattern is flagged infrequent immediately.
Domain Initialization. Assume that a pattern S is obtained by extending an edge from its parent
pattern Sj,,. When creating S’s capsule, we initialize the domain table of S with that of S;,. This is
because for any u; € Spq, if v € D(u;) is invalid in Sy, it must also be invalid for S so can be pruned.
This conclusion holds generally for any subgraph S’ of S, besides S,,. Therefore, GraMi [10] caches
all patterns that are examined so far, which are indexed by signatures that allows to quickly identify
those subgraph patterns of S with one edge removed (denoted by S’), and GraMi removes from
D(u;) of S those invalid candidate vertices v € D(u;) previously found for S’. This push-down
pruning technique is inherited by T-FSM.

To implement this parent-inherited domain table initialization, in Figure 6, when Step () deletes
the capsule of a frequent pattern S, its domain table (denoted by 7,,) will not be deleted immedi-
ately, so that its extended child-patterns S can access 7, to create their own domain tables. To
ensure that 7,, will be properly garbage-collected, we maintain a counter 1, with 7,, which gets in-
cremented whenever a child pattern is fetched for processing (c.f. ®). Assume that S, was extended
to create n,, child patterns, then the last child pattern will find 1,, = np, so it will delete 7.

Other Pruning Rules. T-FSM integrates all pruning rules of GraMi. Besides push-down pruning
above, it also uses the following 3 pruning rules. (1) Unique label: [10] proves that if pattern S
is acyclic and every u; € S has a distinct label, then D(u;) = D*(u;) so subgraph matching is not
needed. As a result, if S satisfies this requirement, a comper directly validates S’s frequency without
moving S to Lacrive by creating a capsule. (2) Decomposition pruning: if a task ¢, of S timed out
and was moved to L;imeon: Of a capsule, the timeout tasks of S tend to be expensive so we conduct
additional pruning of S by removing an edge from S (let the subgraph be S™), computing connected
components (CCs) of S7, and check if subgraph matching from v using any CC fails; if so, t, fails
immediately without using S for subgraph matching. (3) Automorphism: it avoids redundant
computation for symmetric vertices in a pattern. Specifically, if u; and u; are symmetric and u; has
a valid match v, then v must also be a valid match for u;.

Lineage Tracking of Timeout Tasks. Recall from Line 8 of Algorithm 1 that a task ¢, may time
out and be decomposed into many smaller tasks, each of which may again decompose, forming a
task lineage tree with a tree edge (tpqg, teur) if teyr is created by decomposing t,, (Which generates
m tasks). This lineage tree is tracked so that whenever t.,, completes, it will increment a counter
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Fig. 11. Our Implementation v.s. Original GraMi [12]

at tyq, and if the counter equals m, we increment the counter of t,,’s parent task; this process goes
on, and if the counter of task ¢, at the tree root indicates that all t,’s child tasks are complete, then
teur is the last task of t,, so it updates S’s status to flag v as valid match to u; iff any task in the task
lineage tree found a valid match. In fact, as soon as a task f,, finds a valid match, it will flag v as
valid match to u;, and the other subtasks of t, will probe this flag and terminate immediately (we
let each task probe pattern status at Line 8 of Algorithm 1 so that subtasks will not be generated if
v is already flagged as valid or u; is already flagged as (in)frequent).

Timeout tasks may cause another problem. For example, if tasks t,, and t,, in Figure 7 finish so
two valid matches a, and a4 are found, then if 7 = 2, we can flag u; as frequent; the subtasks of #,,
will probe and detect this flag to skip their computation, but since t,, is not complete, we do not
know whether aj is a valid match, so we should not flag as as invalid. To implement this, when t.,,,
skips computation, we let it propagate the SKIP flag upwards in the lineage tree; if ¢, at the tree
root gets a SKIP flag, v € D(u;) should not be flagged invalid.

4 EXPERIMENTS Table 2. Datasets

We now evaluate T-FSM and compare it with SOTA sys-

Dataset v |E| day |L| Category
tems ScaleMine [1], Fractal [22], DistGraph [27], Pan- ggeq740 998 5006 1021 2| Biology
golin [4] and Peregrine [16]. These systems only support  yeast 3112 12519 805 71 Biology
MNI so we use MNI by default. Section 4.7 compares MNI | Human* 4674 86282 3692 44  Biology
with Fraction-Score using T-FSM. WordNet* 76,853 120,399 3143 5  Lexical

MiCo* 100,000 1,080,298 21.61 29| Citation
4.1 Datasets and Environmental Setup UK POI* 182,334 2,816,000 30.89 36  Spatial
We select 10 real-world graph datasets with various sizes, > 317.080| 1,049,866 662115 Socil

Youtube | 1,134,800 2987624 527 25  Social

densities and categories as summarized in Table 2, where
datasets Yeast, Human, WordNet, DBLP and Youtube are
from [25], GSE17301is from [13], MiCo is from [10], Patent
is from [1], UK POI is from [3] where an edge is added
between every pair of POIs with distance < 500 m, and Twitter is from [29]. Datasets with name
accompanied by “*” come with their original vertex labels, and MiCo additionally has edge labels.
The remaining graphs are not labeled, so we follow previous works [25, 26] by randomly assigning
a label to each vertex from a predefined label set L. Experiments are run on a server with 48 cores
(Intel Xeon Gold 6248R CPU 3.00GHz) and 64 GB RAM. Each reported experiment is repeated for
3 times with the average reported. We use 7;ime = 0.1 s and z5p;;; = 1 s for T-FSM by default.

Patent* 2,745,761 | 13,965,409  10.17 | 37 Citation

Twitter 11,316,811 | 85,331,846  15.08 25 Social

4.2 Serial GraMi Implementation

We notice that the original implementation of GraMi at [12] has several performance issues:
(1) instead of using effective heuristics to find a good matching order [uy, us, . .., ux], GraMi uses a
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simple DFS order which might not be optimal as indicated in [25]; (2) GraMi does not utilize an
auxiliary structure Ag but enumerates directly on G. We, therefore, integrate the latest subgraph
matching algorithm with GraMi’s logic to develop a more efficient C++ implementation. We
compare our serial implementation with that of [12]. Figure 11 illustrates their performance on
MiCo and WordNet, which shows that our implementation is 3X to 5x faster. Note that since large
patterns on WordNet are expensive to mine, we stop extending a pattern if its size reaches 8 vertices
(i.e., [V®] < 8). The time increases with 7 on WordNet since more candidates in each D(u;) needs
evaluation, but the # of results does not change much.

4.3 Comparison with Existing Systems

Figure 12 shows the performance of T-FSM compared with ScaleMine [23], Fractal [11], Dist-
Graph [9], Pangolin [20] and Peregrine [21] on all 10 graphs shown in Table 2 for different values
of support threshold 7. For some graphs, mining large patterns are expensive, so following [1],
we stop extending a pattern if its size goes beyond a certain threshold. We also set the maximum
running time as 10* seconds. In Figure 12, “M" means Out of Memory (64 GB), “T" means Out
of Time (10* s), “A” means the program aborts (occurs only in Pangolin [20] due to an assertion
error), and “X" means results returned are not exact. Note that even though a program fails and
may terminate quickly for the case of “M” or “A,” we still plot its hatched bar to the top like for “T”
to help readers easily see which system the bar corresponds to. Also, there is no bar on MiCo for
Fractal and Peregrine since they do not support edge labels.

Figure 12 shows that T-FSM generally has the best performance on all the graphs, especially
the denser ones. For example, on Human, T-FSM is the only system that can mine all pattern with
no more than 6 vertices, since Human is very dense with an average degree of 36.92. A similar
observation can be reached for UK POI where ScaleMine is the only other system that can finish
for some tested values of 7.

On GSE1730 and DBLP, although ScaleMine sometimes has a lower running time than T-FSM, we
observe that ScaleMine’s results are frequently not exact and even inconsistent from two different
runs. For example, on DBLP when 7 = 1800, T-FSM returns 1745 patterns which is the same as that
returned by GraMi [12], but ScaleMine returns 830 patterns in one run and 832 patterns in another
run. This shows that the approximate pruning techniques of ScaleMine can be far from accurate.

DistGraph can only handle two graphs DBLP and Patent. Since DistGraph extends patterns by
BFS, it suffers frequently from Out-of-Memory errors on Human, MiCo, UK POI Youtube and Twitter.
The approach does work well when the number of patterns is small, where performance comparable
to T-FSM is achieved on DBLP when 7 = 1800 and 2000. The problem of pattern extension by BFS
also applies to Pangolin, which aborts on all datasets except for DBLP and Patent. Moreover, we find
that the results of Pangolin are different from the exact results on DBLP (see Section 4.4), which is
likely due to implementation issues.

Although Fractal supports depth-first pattern extension, it exhaustively mines all valid subgraphs
without any early termination (after r matches are found), so it is the slowest among all systems.
Peregrine conducts breadth-first pattern extension but considers domain table as in T-FSM where
subgraph matching is conducted in a depth-first manner. However, its subgraph matching and
load balancing approaches are less efficient. As a result, Peregrine runs out of time (10* s) on most
datasets except for DBLP and Patent, and Youtube only when 7 = 2000. Both Fractal and Peregrine
do not support edge labels, so we cannot show their results on MiCo.

We show the CPU utilization rates of all the systems when running 32 computing threads on
Patent with 7 = 24k, in which setting all systems can complete their FSM jobs. Figure 13 shows the
CPU rates for the first 120 seconds, where we can see that the CPU rate of T-FSM (blue line) jumps
to 3200% and completes the job quickly. DistGraph and Peregrine also achieve 3200% but their
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Fig. 12.

running times are much longer. ScaleMine has a slightly lower CPU rate but is able to complete
within 120 seconds. The peak CPU rate of Fractal is far from 3200%, while the CPU rate of Pangolin

gradually drops with a very long tailing period of low CPU utilization rate.
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4.4 Result Exactness of ScaleMine and Pangolin Table 3. Number of Results
Recall that ScaleMine returns only approximate results. Ta- Youtube
ble 3 shows the exact number of subgraph patterns (i.e, MNI) | g,00t 2000 1600 1500 1400 1300
and those returned by ScaleMine on Youtube and DBLP, where — 350 | 6678| 7846| 8296 | 14,577
we see that ScaleMine misses a lot of patterns due to an overly | gi.iemine | 332 2741 3204 3083 3614
aggressive pruning heuristic. Surprisingly, we find that Pan- DBLP
golin returns more patterns than the exact ones on DBLP,
even though it is supposed to be an exact approach. This is PPt 2000 1800 1700 1600 1500
likely due to implementation issues. SR 1695 1745| 2626 | 15,347 25,842
ScaleMine | 785 830 997 1182 2411
4.5 Ablation Study Pangolin | 3047 3178 4202 15986 26,065

Recall that when evaluating candidates of D(u;), we put a

candidate v aside into L;imeou: if t, runs for more than 7;;me = 0.1 s; and if a task from Limeour
runs for more than 7, = 15, we decompose it again to avoid the straggler problem. These default
parameter values have been carefully tuned to work well in general.

There are performance tradeoffs for the values of 7;;,me and 7,py;;. Specifically, if there are sufficient
candidates v € D(u;) that can be quickly checked to be a valid match to u;, then if 7;;p,, is set too
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large, we might stick on expensive tasks ¢, that can otherwise be skipped to save time. Also, while a
smaller 7yp;;; improves load balancing, it causes more overhead for subtask creation and scheduling.
We tested different combinations of 7;im. and 7;,;;;, and some results are shown in Figure 14 for
GSE1730 and Yeast. Note that our default parameters (red line) lead to the best performance.

Moreover, these techniques are very important in reducing the running time. For example, if we
increase 7yime from 0.1 s to 10 s (green line), the running time is increased by up to 8x on GSE1730
and 20X on Yeast. We did not further increase ;e in Figure 14 since the time would continue to
increase significantly. Also, if we increase 7,;;; from 1 s to oo (purple line), the running time is
increased by up to 30x on Yeast. We did not show the results for z,;; = co on GSE1730 in Figure 14
since the job runs out of time.

4.6 Scalability

Figure 15 shows the vertical scalability of T-FSM, i.e., the running time and peak memory consump-
tion when we vary the number of compers as 1, 2, 4, 8, 16, 32 and 48 on Patent and Yeast. We can
see that the scale-up speedup is near ideal: nearly 27X (resp. 30X) on Patent (resp. Yeast) with 32
compers, nearly 33X (resp. 37X) on Patent (resp. Yeast) with 48 compers. Note that even with 48
compers, the memory space consumed by tasks is only around 3 GB. Patent uses more memory
because its graph is much larger.

4.7 Fraction-Score v.s. MNI

Accuracy Comparison. To study the support accuracy of Fraction-Score and MNI, we generate
a synthetic dataset following the exact approach in Section IV-A of [3] so that we can obtain the
ground-truth support for comparison.

We configure the data-generation parameters defined in [3], Neo_1oc: Moveriaps A1s Azs D, d, Mepump,
Tnoisy_label a0d Tnoisy_num, to be 20, 10, 5, 40, 10, 5, 5, 0.5 and 0.5, respectively. We refer interested
readers to [3] for the details, but give a brief but intuitive description here. Specifically, we consider
a spatial area of size D X D that is partitioned by a grid with cell size d x d. Since D = 10° and
d = 5, we have 200,000 X 200,000 grid cells in total. The goal is to generate a labeled object
dataset that contains N, j,c = 20 frequent co-location patterns. For each frequent pattern, say
S = {A,B, D, E, F} shown in Figure 16, we put the corresponding data instances into ng grid cells,
where ng is randomly sampled from a Poisson distribution with mean A,. In Figure 16, we have
ns = 3. For each cell, we randomly generate n, data instances for each label ¢ € S, where n; is a
random integer sampled from 1 to mcpymp = 5. In Figure 16, we have ng = 3,ng = 2,np = 2, ng = 3
and np = 2 for all the cells. Some noisy data instances and noisy labels are also added following [3]
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Fig. 16. Synthetic Dataset Illustration

summing the support from all occupied cells, which is 2 + 2 + 2 = 6 for co-location pattern
{A, B, D, E, F} in Figure 16. We create a graph from this dataset for FSM, by indexing all objects in
an R-tree and conducting a range query of radius d = 5 on each object to build its adjacency list.

Figure 17 shows the support of the top-10 most fre-
quent ground-truth patterns, as well as their MNI and
Fraction-Score. We can see that while both measures
overestimates the ground-truth support, Fraction-Score
is much closer so is clearly a better measure.

Running Time and Pattern Number. So far, we have
only reported T-FSM efficiency when MNI is used as
the support. The results for Fraction-Score are similar.
To illustrate, Figure 18 shows the running time and the
number of frequent patterns on Patent and UK POI us-
ing Fraction-Score as the support when 7 varies, and for
comparison purpose, Figure 19 shows these results using
MNI as the support. As expected, the running time and
pattern number decrease as 7 increases. However, the

1500
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Support

T T T T T T T
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/
500; 5§ Hj QE

Fig. 17. Support Values

running time (resp. pattern number) of Fraction-Score is much shorter (resp. smaller) than MNI for
the same 7. This is because Fraction-Score is a much tighter support measure than MNI, so most
overestimated false-positive patterns are avoided. Note that we add a restriction |V| < 4 on Patent

since otherwise the running time using MNI is too long.
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Pattern Visualization. Figure 20 shows two example frequent patterns from the POI dataset

UK POI that are not co-location patterns, where each vertex represents a POI type. For example,

“Community” POIs locate in residential areas (e.g., churches). In Figure 20, we indicate the frequency

of POI types in red under the vertices, and we indicate the Fraction-Score of each pattern in blue.
The first pattern (left) contains

four POI types, and has a Fraction- Fraction-score = 424571 Fracton Score = 103128 _

. . . ATM ~ 3765 A\
Scor? of .4245.71 which is very high /\ (FoodiDin e \
considering that there are only 9390 / 23756 ~ \
“Supermarkets” POIs in UK POL The

9390 23756 9390
pattern matches our intuition that a ™~ (Community )~
i 28113 _—

convenient residential area usually Fuel
has “Supermarkets” and “Food” POIs
nearby, both of which have an ATM Fig. 20. Two Frequent Patterns from UK POI

POI within a reachable range for cus-
tomers to withdraw cash. However, the “Supermarkets” POI and “Food” POI do not have to be
very close to each other. The second pattern (right) is larger with 5 POI types, so its Fraction-Score
(1031.28) is smaller. Again, we see the “Community”-“Supermarkets”-“Food” triangle, as well as
another “Supermarkets”-“Car_Parts”-“Fuel” triangle which matches intuition (e.g., a Costco store
usually co-locates with a “Tire Center” and a gas station).

We can see that our FSM formulation finds much richer POI patterns than conventional co-

location pattern mining formulation.

5 CONCLUSIONS AND FUTURE WORK

We presented an efficient system called T-FSM for parallel mining of frequent subgraph patterns in
a big graph. T-FSM adopts a novel task-based execution engine design to ensure high concurrency,
bounded memory consumption, effective load balancing. T-FSM integrates the latest subgraph
matching algorithm to enable the efficient mining of much larger patterns. It also supports a new
measure called Fraction-Score which is more accurate than the widely used MNI measure. Our
experiments show that T-FSM is orders of magnitude faster than SOTA systems for FSM.

While we have assumed the input graph G to be undirected in our description, our approach can
be easily generalized to mine a directed graph, by treating edge direction as part of an edge label.

For example, assume we grow a pattern S by an edge from a vertex u € S: u A4 (resp. u & v),
then we treat the edge as undirected but with the edge label being a tuple (A, out) (resp. (A, in)).

As a future work, we will extend T-FSM to a shared-nothing distributed environment. This can
be achieved by maintaining a distributed vertex store as in G-thinker (c.f. Section V-A of [33]) for
collecting task data, and by using the task management design of G-thinker (c.f. Section V-B of
[33]) to allow tasks to wait for data and to be notified to compute when its data are ready.
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