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Finding frequent subgraph patterns in a big graph is an important problem with many applications such as
classifying chemical compounds and building indexes to speed up graph queries. Since this problem is NP-hard,
some recent parallel systems have been developed to accelerate the mining. However, they often have a huge
memory cost, very long running time, suboptimal load balancing, and possibly inaccurate results. In this paper,
we propose an efficient system called T-FSM for parallel mining of frequent subgraph patterns in a big graph.
T-FSM adopts a novel task-based execution engine design to ensure high concurrency, bounded memory
consumption, and effective load balancing. It also supports a new anti-monotonic frequentness measure called
Fraction-Score, which is more accurate than the widely used MNI measure. Our experiments show that T-FSM
is orders of magnitude faster than SOTA systems for frequent subgraph pattern mining. Our system code has
been released at https://github.com/lyuheng/T-FSM.
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1 INTRODUCTION

The Problem. Frequent subgraph pattern mining (FSM) finds all subgraph patterns that appear
more frequently than a given threshold in a graph database. FSM is essential for knowledge
discovery from graph data such as biological networks [38] and social networks. The extracted
patterns can be used as features for classifying chemical compounds [8] and for building indexes to
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speed up graph queries [37]. Other applications include graph clustering [24], protein functionality
prediction [5], privacy preservation [39] and image processing [6].

FSM has 2 problem settings: finding frequent patterns either (i) in a database comprising many
graph transactions (e.g., a set of chemical compounds), or (ii) from a single big input graph (e.g.,
a social network or a PPI network). In the transactional setting, FSM enumerates all subgraph
patterns that appear in ≥ 𝜏 transactions, where 𝜏 is a user-defined support threshold. However, in
a single-graph setting, subgraph frequency violates the anti-monotonicity principle required for
effective pattern pruning in FSM algorithms. Consider graph 𝐺1 in Figure 1: subgraph pattern 𝑆1
contains only a vertex labeled𝐴, so it matches to only 1 data vertex 𝑣1 in𝐺1. Also, subgraph pattern
𝑆2 consists of two vertices labeled 𝐴 and 𝐵, respectively, connected by an edge; it is a super-pattern
to 𝑆1, but it has 3 isomorphisms in 𝐺1: (𝑣1, 𝑣2), (𝑣1, 𝑣3) and (𝑣1, 𝑣4).
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Fig. 1. Subgraph Patterns 𝑆1, 𝑆2 in Two Data Graphs 𝐺1, 𝐺2

Several anti-monotonic support
measures have been proposed in the
single-graph setting, among which
only minimum image (MNI) [2]
is computationally tractable (other
measures are NP-complete [10])
and hence it becomes the de fac-
tor standard adopted by all prior
works including ScaleMine [23], Dist-
Graph [9], Arabesque [28], RStream [31], Fractal [11], Pangolin [4] and Peregrine [16]. Next, we
illustrate the concept of MNI. We say that a data vertex 𝑣 ∈ 𝐺 is a valid match to a pattern vertex
𝑢 ∈ 𝑆 , denoted by 𝑣 ⇝ 𝑢, iff there exists an isomorphism of subgraph pattern 𝑆 in 𝐺 that contains
𝑣 , where 𝑢 is mapped to 𝑣 . Then, given a subgraph pattern 𝑆 containing vertices 𝑢1, 𝑢2, . . ., 𝑢𝑘 ,

the MNI of 𝑆 measures the least number of distinct valid matches of all 𝑢𝑖 ∈ 𝑆 . For example,
for pattern 𝑆2 and graph𝐺1 in Figure 1, 𝑢1 has one valid match 𝑣1, while 𝑢2 has three valid matches
𝑣2, 𝑣3 and 𝑣4, so the MNI of 𝑆2 in 𝐺1 is min{1, 3} = 1, which is more reasonable than the frequency
support of value 3, since we can only find one pair of connected vertices with labels 𝐴 and 𝐵 in 𝐺1.
However, we notice that MNI often significantly overestimates the true support. For example,

consider pattern 𝑆2 in 𝐺2, where 𝑢1 has four valid matches 𝑣1, 𝑣6, 𝑣7 and 𝑣8, and 𝑢2 has four valid
matches 𝑣2, 𝑣3, 𝑣4 and 𝑣5, so the MNI of 𝑆2 in 𝐺2 is min{4, 4} = 4, but only two pairs of connected
vertices with labels 𝐴 and 𝐵 can occur at any time in 𝐺2. Figure 17 in Section 4 empirically shows
how much MNI overestimates the true support. Surprisingly, this overestimation issue of MNI did
not raise attention in prior works that unanimously used MNI for support. We overcome this issue
by generalizing the Fraction-Score [3] measure from the context of co-location pattern mining
to our single-graph setting, which can recover the ideal support value of 2 in the above example.
Section 2.2 will explain the definition of Fraction-Score in our context and how it is different from
Fraction-Score in co-location pattern mining [3].

This paper focuses on the single-graph setting. Solutions to transactional settings have been well
studied including algorithms gSpan [36], Gaston [18] and the parallel PrefixFPM [35, 34] system.

Algorithm Framework. In the single-graph FSM setting, GraMi [10] is the state-of-the-art serial
mining algorithm, which we illustrate using the example in Figure 2. Specifically, for each vertex 𝑢
in pattern 𝑆 , we define the domain of 𝑢, denoted by 𝐷 (𝑢), to be the set of candidate data vertices in
𝐺 that 𝑢 can be mapped to. For example, 𝐷 (𝑢1) = {𝑣1, 𝑣4, 𝑣7, 𝑣8} in Figure 2 since these vertices have
the same label 𝐴. Here, GraMi would conduct 4 subgraph matching operations of 𝑆 in 𝐺 , one for
each vertex 𝑣 in 𝐷 (𝑢1) assuming that 𝑢1 has been mapped to 𝑣 . Each subgraph matching operation
returns by confirming 𝑣 ⇝ 𝑢1 as soon as a matched subgraph in𝐺 is found, without enumerating
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Fig. 2. Domain Illustration

all matched subgraph instances as in a regular subgraph matching operation. In contrast, if no
matched subgraph is found, candidate 𝑣 is not a valid match to 𝑢1 (denoted by 𝑣 ̸⇝ 𝑢1). Referring
to Figure 2 again, we can see that 𝑣1, 𝑣4, 𝑣7 ⇝ 𝑢1 but 𝑣8 ̸⇝ 𝑢1, so 𝑢1 has 3 valid matches and
we say that its valid domain is 𝐷∗ (𝑢1) = {𝑣1, 𝑣4, 𝑣7}. Similarly, we obtain 𝐷∗ (𝑢2) = {𝑣2, 𝑣5} and
𝐷∗(𝑢3) = {𝑣3, 𝑣6}, so the MNI of 𝑆 is min{3, 2, 2} = 2.
Given an MNI support threshold 𝜏 , GraMi allows early termination when checking a domain

𝐷 (𝑢) as soon as 𝜏 valid matches have been found. For example, in Figure 2, if 𝜏 = 2 and we already
find 𝑣1 ⇝ 𝑢1 and 𝑣4 ⇝ 𝑢1, we do not need to continue checking 𝑣7 and 𝑣8 in 𝐷 (𝑢1) but can move
on to examine 𝐷 (𝑢2) and 𝐷 (𝑢3), since 𝑢1 will not cause MNI to be less than 𝜏 (i.e., cause 𝑆 to be
infrequent). This early termination is the key reason why GraMi is efficient, since |𝐷∗ (𝑢1) | can be
much larger than 𝜏 in a real dataset.

A lot of pruning opportunities are possible in this algorithm framework. For example, in Figure 2
when examining 𝐷 (𝑢1), if the subgraph matching from 𝑣1 finds a match to 𝑆 , i.e., {𝑣1, 𝑣2, 𝑣3}, we can
also add 𝑣2 (resp. 𝑣3) to 𝐷∗ (𝑢2) (resp. 𝐷

∗ (𝑢3)), so that later when examining 𝐷 (𝑢2) (resp. 𝐷 (𝑢3)),
we can skip subgraph matching from 𝑣2 (resp. 𝑣3) and conclude that 𝑣2 ⇝ 𝑢2 (resp. 𝑣3 ⇝ 𝑢3). As
another example, let 𝜏 be 4, and assume we have checked 𝑣1, 𝑣4 and 𝑣8 in 𝐷 (𝑢1) in Figure 2, then we
have two valid matches 𝑣1 and 𝑣4 and can conclude that |𝐷∗ (𝑢1) | < 𝜏 without conducting subgraph
matching from the last vertex 𝑣7 in 𝐷 (𝑢1) (as even if 𝑣7 ⇝ 𝑢1, the support to 𝑢1 is at most 1+ 2 < 𝜏 ).
Also, once |𝐷∗ (𝑢1) | < 𝜏 , we know that 𝑆 is infrequent without checking 𝐷 (𝑢2) and 𝐷 (𝑢3).

Parallelization. Since FSM is computationally expensive (NP-hard), some recent parallel systems
have been developed to accelerate FSM in the single-graph setting. However, most of them (e.g.,
DistGraph [27] and Fractal [22]) grow and materialize patterns and all their matched instances
in 𝐺 , so they fail to utilize the above pruning opportunities and often incur a huge memory cost,
limiting their scalability. Even though ScaleMine [1] conducts pruning, it uses some approximate
approaches that treat patterns as frequent (resp. infrequent) as long as they are frequent (resp.
infrequent) with a high probability, but we find that the results are often not accurate and could
be inconsistent even in different runs. Also, previous works mainly focus on mining small-sized
patterns, since their subgraph matching procedure is inefficient. We observed prohibitively long
running time or out-of-memory error when they mine patterns with ≥ 6 vertices. However, some
advanced subgraph matching algorithms have emerged recently [25, 26, 17] that are much more
efficient. Therefore, it is important to integrate the latest subgraph matching techniques in FSM.
In this paper, we propose an efficient task-based parallel system, called T-FSM, for FSM in a

single big graph. T-FSM enumerates subgraph patterns using the redundancy-free rightmost path
extension technique from gSpan [36], and for each pattern 𝑆 with vertices 𝑢1, 𝑢2, . . ., 𝑢𝑘 , the basic
unit of execution is a task that conducts subgraph matching from some data vertex 𝑣 ∈ 𝐷 (𝑢𝑖 ),
𝑖 = 1, 2, · · · , 𝑘 , using the latest subgraph matching algorithm [25]. Note that each pattern has many
tasks, and these fine-grained tasks allow massive parallelization and effective load balancing. Our

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 74. Publication date: May 2023.



74:4 Lyuheng Yuan et al.

underlying execution engine is designed to ensure all computing threads are kept busy computing
the available tasks without the straggler problem.
There are a few challenges in implementing this task-based scheme efficiently. For example,

(1) how can we ensure low memory consumption? T-FSM makes sure that at most 𝑛𝑚𝑎𝑥
𝑎𝑐𝑡𝑖𝑣𝑒 subgraph

patterns are under computation at any time, where 𝑛𝑚𝑎𝑥
𝑎𝑐𝑡𝑖𝑣𝑒 is a user-specified parameter to limit

memory usage. T-FSM only conducts subgraph matching to examine the frequentness of a new
subgraph pattern when memory space permits (e.g., an existing pattern finishes processing).
Moreover, each active pattern only maintains a limited number of subgraph-matching tasks from
its domain table that are just sufficient to keep all the computing threads of T-FSM busy. This is in
contrast to systems like DistGraph [27] that keep and process numerous patterns at the same time.
As another example, since each pattern 𝑆 has many active tasks in computation, (2) if one task

determines that 𝑆 is frequent (resp. infrequent) using the pruning rules described previously, how can

we terminate the other tasks in time? T-FSM maintains the latest status of each pattern currently
under computation, so that its tasks can check the pattern status to avoid wasted computation.
Also, we find that subgraph matching from some data vertices 𝑣 ∈ 𝐷 (𝑢) can be much more

expensive than others, causing the straggler problem in parallel execution. (3) How can we eliminate

straggler tasks? For each pattern 𝑆 , T-FSM initially puts those subgraph-matching tasks that run
beyond a certain time threshold 𝜏𝑡𝑖𝑚𝑒 to a temporary buffer, in hope that the results from the other
tasks can already determine that 𝑆 is frequent; if not, those timeout tasks will be fetched back from
the buffer to continue their computation. Moreover, a timeout task is allowed to time out again, in
which case it will be decomposed into some smaller tasks to avoid becoming a straggler.

The main contributions of this work are summarized as follows:

• T-FSM uses a novel system design that ensures full CPU core utilization to compute fine-
grained subgraph-matching tasks with bounded memory consumption, while utilizing ad-
vanced pruning techniques and effective load balancing enabled by a task-timeout mechanism.
• T-FSM integrates the state-of-the-art subgraph matching algorithm, allowing us to mine
much larger patterns than existing systems, and to mine patterns in much less time.
• We indicate the support overestimation issue of the current de facto standard support measure,
MNI, and generalize the concept of Fraction-Score in co-location pattern mining as a more
accurate measure which is integrated in T-FSM.
• We conduct extensive experiments on 10 real graphs with diverse characteristics, which
show that T-FSM significantly outperforms existing systems in terms of running time.

The rest of this paper is organized as follows. Section 2 first formally defines our FSM problem,
describes our new Fraction-Score measure, and reviews the related work. Section 3 then describes
the system design of T-FSM. Finally, Section 4 reports our experiments and Section 5 concludes
this paper and discusses the future work.

2 PRELIMINARIES

This section first formally define our single-graph FSM problem and the useful notations in Sec-
tion 2.1. Section 2.2 then introduces our new and more accurate support measure Fraction-Score.
Finally, Section 2.3 reviews related work on subgraph matching and FSM.

2.1 Problem Definition

Without loss of generality, we consider an undirected graph𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝐿𝐺 ) with a vertex set𝑉𝐺 ,
an edge set 𝐸𝐺 ⊆ 𝑉𝐺 ×𝑉𝐺 , a label set 𝐿𝐺 for vertices and edges. We only consider simple graphs
without self-loops and multiple edges. Our algorithms can be easily generalized to a directed graph,
as we shall discuss in Section 5.
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Given a query graph 𝑆 , subgraph matching finds all isomorphisms of 𝑆 in data graph 𝐺 , i.e.,
to find all mappings 𝜓 : 𝑉 𝑆 → 𝑉𝐺 , such that (1) for each 𝑢 ∈ 𝑉 𝑆 , we have 𝐿𝑆 (𝑢) = 𝐿𝐺 (𝜓 (𝑢)),
and (2) for each 𝑒 = (𝑢𝑖 , 𝑢 𝑗 ) ∈ 𝐸

𝑆 , there exists (𝜓 (𝑢𝑖 ),𝜓 (𝑢 𝑗 )) ∈ 𝐸
𝐺 and 𝐿𝑆 (𝑒) = 𝐿𝐺 (𝜓 (𝑒)). As an

illustration, consider query graph 𝑆2 and data graph𝐺1 in Figure 1, where 𝐴 and 𝐵 are vertex labels.
Then, 𝑆2 has 3 isomorphisms in 𝐺1, namely (𝑣1, 𝑣2), (𝑣1, 𝑣3) and (𝑣1, 𝑣4).

Given a support threshold 𝜏 , FSM in 𝐺 finds all subgraph patterns 𝑆 with support ≥ 𝜏 , where
support is an anti-monotonic measure such as MNI [10] or Fraction-Score (see Section 2.2). Recall
that we say that a data vertex 𝑣 ∈ 𝐺 is a valid match to a pattern vertex 𝑢 ∈ 𝑆 , denoted by 𝑣 ⇝ 𝑢,
iff there exists an isomorphism of subgraph pattern 𝑆 in 𝐺 that contains 𝑣 , where 𝑢 is mapped to 𝑣 .
Also recall from Figure 2 that each pattern 𝑆 is associated with a domain table, which maintains
a column 𝐷 (𝑢) of candidate data vertices to match to 𝑢 for each 𝑢 ∈ 𝑆 . MNI [10] is a popular
anti-monotonic support measure for single-graph FSM, which measures the least number of valid
matches of every vertex 𝑢 ∈ 𝑆 , i.e.,𝑚𝑛𝑖 (𝑆) = min𝑢∈𝑆 |𝐷

∗ (𝑢) |. A pattern 𝑆 is said to be frequent iff
𝑚𝑛𝑖 (𝑆) ≥ 𝜏 .

2.2 Fraction-Score

We now define a more accurate support measure, Fraction-Score, in our single-graph FSM setting.
Fraction-Score was originally proposed for mining co-location patterns from a single big spatial
database, and has been proved to be anti-monotonic [3], and more accurate than other measures.
We will explain our difference in the end; the anti-monotonicity proof is similar and thus omitted.

Let us denote the set of neighbors of a vertex 𝑣 ∈ 𝐺 (resp. 𝑢 ∈ 𝑆) by 𝑁𝐺 (𝑣) (resp. 𝑁 𝑆 (𝑢)), and
denote those neighbors with label ℓ by 𝑁𝐺

ℓ (𝑣) (resp. 𝑁
𝑆
ℓ (𝑢)). Recall from Section 1 that pattern 𝑆2 in

Figure 1 has𝑚𝑛𝑖 (𝑆2) = 4 which overestimates the ground-truth support 2. Our new Fraction-Score
measure to be described below ideally addresses this problem and recovers the true support.

The problem with MNI is that (𝑣1, 𝑣2), (𝑣1, 𝑣3) and (𝑣1, 𝑣4) all contribute 1 to the support of 𝑆2 in
Figure 1, while there is only one vertex 𝑣1 with label 𝐴 shared by 3 vertices with label 𝐵. Ideally,
each of them should contribute only 1/3 to the support, since the contribution of 𝑣1 is split by the 3
vertices 𝑣2, 𝑣3 and 𝑣4. Let us define the fraction of 𝑣 ′ ∈ 𝑁𝐺 (𝑣) that a vertex 𝑣 ∈ 𝐺 receives by

Δ𝑣′ (𝑣) =
1���𝑁𝐺

𝐿𝐺 (𝑣)
(𝑣 ′)

���
. (1)

For example, in Figure 1, Δ𝑣1 (𝑣2) = 1/3 because 𝐿𝐺 (𝑣2) = 𝐵 and 𝑁𝐺
𝐵
(𝑣1) = {𝑣2, 𝑣3, 𝑣4}. Next, we

define the total fractional contribution to 𝑣 from all its neighbors with label ℓ by

Δℓ (𝑣) = min





∑︁

𝑣′∈𝑁𝐺
ℓ
(𝑣)

Δ𝑣′ (𝑣), 1




, (2)

where we bound the total contribution by 1 since 𝑣 should not contribute more than 1 to the support.
For example, in Figure 1,

Δ𝐵 (𝑣1) = min{1 + 1 + 1, 1} = 1 (3)

since Δ𝑣2 (𝑣1) = Δ𝑣3 (𝑣1) = Δ𝑣4 (𝑣1) = 1; while

Δ𝐵 (𝑣6) = Δ𝐵 (𝑣7) = Δ𝐵 (𝑣8) =
1

3
(4)

since 𝑣5 is the only neighbor of 𝑣6, 𝑣7 and 𝑣8 with label 𝐵, and Δ𝑣5 (𝑣6) = Δ𝑣5 (𝑣7) = Δ𝑣5 (𝑣8) =
1

3
.

Given a graph 𝐺 , we preprocess it by computing Δ𝑣′ (𝑣) for every 𝑣 ∈ 𝐺 and every neighbor
𝑣 ′ ∈ 𝑁𝐺 (𝑣), and then using them to compute Δℓ (𝑣) for every 𝑣 ∈ 𝐺 and every label ℓ (if 𝑁𝐺

ℓ (𝑣) ≠ ∅).
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Later during FSM, given a pattern 𝑆 with vertices {𝑢1, 𝑢2, . . ., 𝑢𝑘 }, we next define the fractional
contribution to each data vertex 𝑣 ∈ 𝐷∗ (𝑢𝑖 ), 𝑖 = 1, 2, · · · , 𝑘 (i.e., 𝑣 is a valid match to 𝑢𝑖 ). For such
a vertex 𝑣 , we consider the contributions to be coming from all its neighbors 𝑣 ′ that match some
vertex 𝑢 𝑗 ∈ 𝑁

𝑆 (𝑢𝑖 ) (already captured by Δ𝐿𝑆 (𝑢 𝑗 ) (𝑣) defined in Eq (2)). Specifically, the contribution

to 𝑣 ∈ 𝐷∗ (𝑢𝑖 ) given a pattern 𝑆 is defined to be the minimum fractional contribution to 𝑣 among all
such neighbors 𝑣 ′ as follows:

Δ
𝑆 (𝑣) = min

𝑢 𝑗 ∈𝑁𝑆 (𝑢𝑖 )
Δ𝐿𝑆 (𝑢 𝑗 ) (𝑣), (5)

To illustrate, for pattern 𝑆2 in Figure 1 and vertex 𝑣1 ∈ 𝐷∗ (𝑢1), we have 𝑁 𝑆 (𝑢1) = {𝑢2} and
𝐿𝑆 (𝑢2) = 𝐵, so

Δ
𝑆 (𝑣1) = Δ𝐵 (𝑣1) = 1 (6)

(recall Eq (3)); and for pattern 𝑆2 and vertex 𝑣2 ∈ 𝐷
∗ (𝑢2), we have 𝑁

𝑆 (𝑢2) = {𝑢1} and 𝐿
𝑆 (𝑢1) = 𝐴,

so

Δ
𝑆 (𝑣2) = Δ𝐴 (𝑣2) =

1

3
(7)

(recall Eq (4) and the symmetry of the two components of 𝐺2).
Now that we have defined the contribution from each 𝑣 ∈ 𝐷∗ (𝑢𝑖 ) to pattern 𝑆 (i.e., Eq (5)), we

define the total contribution of 𝑢𝑖 ∈ 𝑆 to pattern 𝑆 as the sum of contributions from all 𝑣 ∈ 𝐷∗ (𝑢𝑖 ):

𝜎𝑢𝑖 (𝑆) =
∑︁

𝑣∈𝐷∗ (𝑢𝑖 )

Δ
𝑆 (𝑣). (8)

For example, for 𝐺2 in Figure 1, 𝜎𝑢1
(𝑆2) = Δ

𝑆 (𝑣1) + Δ
𝑆 (𝑣6) + Δ

𝑆 (𝑣7) + Δ
𝑆 (𝑣8) = 1 + 1

3
+ 1

3
+ 1

3
= 2

since Δ𝑆 (𝑣1) = 1 (recall Eq (6)) and Δ
𝑆 (𝑣6) =

1

3
(recall Eq (7) and symmetry between 𝑣2 and 𝑣6).

Finally, as in MNI, the Fraction-Score of pattern 𝑆 takes minimum among the total contributions
of all pattern vertices 𝑢𝑖 ∈ 𝑆 :

𝐹𝑆 (𝑆) = min
𝑢𝑖 ∈𝑆

𝜎𝑢𝑖 (𝑆). (9)

For 𝐺2 in Figure 1, 𝐹𝑆 (𝑆2) = min{𝜎𝑢1
(𝑆2), 𝜎𝑢2

(𝑆2)} = min{2, 2} = 2. Note that 𝐹𝑆 (𝑆2) matches the
exact ground truth that we expect!

Contributions and Differences from [3]. We remark that our Fraction-Score definition is a
non-trivial generalization of that in co-location pattern mining [3] (CPM) for the following reasons.
Firstly, in single-graph FSM, MNI is the de factor standard support measure adopted by all

prior works including ScaleMine [23], DistGraph [9], Arabesque [28], RStream [31], Fractal [11],
Pangolin [4] and Peregrine [16], despite its support overestimation issue.

Secondly, in CPM, we are given 𝑘 categories of POIs (points-of-interest) with different labels ℓ1, ℓ2,
. . ., ℓ𝑘 (e.g., restaurants, hotels, banks, outlets), and the goal is to find subsets of labels such that their
POIs co-occur (i.e., with pairwise distance ≤ 𝑑) frequently in a POI dataset, where 𝑑 is a user-defined
distance parameter. There does not exist an explicit graph structure, so our definition needs to
be properly redesigned for the graph context. For example, our Eq (5) defines the contribution
of pattern 𝑆 to 𝑣 (where 𝑣 ⇝ 𝑢𝑖 ) based on 𝑢𝑖 ’s neighbors in subgraph pattern 𝑆 , while the CPM
counterpart (Eq (3) of [3]) is defined simply based on all other labels that are not the label of POI 𝑣
in the POI label set 𝑆 (i.e., pattern 𝑆).

Finally, even if we reformulate CPM as an FSM problem, CPM is still just a special case. Specifically,
if we create an edge between any two POIs within distance𝑑 , then CPM basically mines the resulting
graph 𝐺 (called POI proximity graph) for frequent clique patterns where vertices (or, objects) have
different labels. For example, our FSM algorithm can find a pattern 𝑆 like the one in Figure 3 from
the POI proximity graph 𝐺 , where (i) on one day a tourist wants to visit a theme park and then
to have dinner at a restaurant, so wants to find a hotel that co-occurs with a theme park and a
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Fig. 3. A POI Pattern

restaurant; and (ii) on another day the tourist wants
to go shopping at an outlet where he/she can find an
ATM nearby to withdraw money and find a restau-
rant to have lunch, so he/she wants these POIs and
the hotel to co-occur; there is, however, no need
(1) for the outlet and the theme park to be within
distance 𝑑 , and no need (2) for the two restaurants
to be the same restaurant; both relaxations are not
possible for a co-location pattern.

The anti-monotonicity proof of our extended Fraction-Score measure is omitted since it is similar
to that by [3] in its Lemma 1.

2.3 Related Work Table 1. Feature Comparison of FSM systems

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ x x x ✓ x

x x x ✓ N/A x x

✓ ✓ x ✓ N/A x x

✓ x x ✓ N/A x x

✓ x x ✓ N/A x x

✓ ✓ x ✓ x ✓ x
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In this subsection, we first review the
state-of-the-art (SOTA) parallel FSM sys-
tems and explain their weaknesses. Ta-
ble 1 summarizes the features of these
systems and compares them with our
T-FSM system. We then present the
SOTA subgraph pattern enumeration al-
gorithm gSpan [36] and the SOTA sub-
graph matching algorithm by [25], which
are two primitives used by T-FSM.

ScaleMine. ScaleMine [1] solves FSM in
two phases. The first phase is approxi-
mate, which (1) quickly identifies sub-
graph patterns that are frequent or in-
frequent with high probability, and for the remaining patterns, it (2) collects statistics to estimate
the mining loads for the purpose of load balancing in the second phase. To estimate if a pattern
𝑆 is frequent or not, for each 𝑢𝑖 ∈ 𝑆 , ScaleMine samples some candidates from 𝐷 (𝑢𝑖 ) to perform
subgraph matching, and uses their results to estimate the distribution of |𝐷∗ (𝑢𝑖 ) |.

The second phase determines the frequentness of the remaining patterns, where each pattern 𝑆 is
processed by a task 𝑡𝑆 so that the patterns are processed in parallel. If the mining loads of 𝑡𝑆 is large,
ScaleMine partitions it into subtasks either vertically (by domain table columns, recall Figure 2) or
horizontally (i.e., by hashing data vertices among workers). Here, a task 𝑡𝑆 is coarse-grained since
it processes the entire domain table of a pattern; in contrast, T-FSM uses fine-grained tasks: each
entry in a domain table is a subgraph-matching task. Also, a subtasks of T-FSM can run on any idle
thread, while ScaleMine hardwires vertices to workers by hashing.
Moreover, evaluation in Phase 2 is approximate to save computation. We find that the results

of ScaleMine can be different even for the same graph in different runs. The running time also
tends to be very long when mining larger patterns (≥ 6 vertices), likely due to using a suboptimal
algorithm for subgraph matching.

DistGraph. DistGraph [27] partitions vertices to different workers so that the distributed memory
can collectively hold a giant graph. DistGraph enumerates patterns in level-wise breadth-first
search (BFS), where at level 𝑖 it computes the support of candidate subgraph patterns comprising 𝑖
edges. As a distributed system, it relies on efficient collective communication operations (AllToAll,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 74. Publication date: May 2023.



74:8 Lyuheng Yuan et al.

AllGather and AllReduce) to minimize communication, and uses pruning techniques to avoid
communication for definitely (in)frequent patterns.

Since each graph partition is expanded by 1-hop in each round, the partitions can become very
large after a few rounds and overlap a lot, leading to redundant computation. Moreover, each
worker not only holds its partition but also the matched subgraph instances, leading to prohibitive
memory space cost.

Fractal, Arabesque, RStream and Pangolin. These systems focus on unifying several graph
mining problems such as motif counting and FSM. Their programming models materialize all the
matched subgraph instances of the subgraph patterns, and count these instances to determine
pattern frequentness. Arabesque [28], RStream [31] and Pangolin [4] expand the matched subgraph
instances in BFS manner to create and examine larger and larger subgraph instances, which is
very costly since the number of subgraph instances grows exponentially. This is in contrast to
GraMi’s early-termination idea that determines a pattern 𝑆 as frequent as soon as its current support
becomes larger than 𝜏 . Pangolin [4] exposes the pattern extending phase so that programmers can
more effectively prune the enumeration space by eagerly detecting duplicate embeddings. Pangolin
also allows architectural optimizations (e.g., data structures) and can run not only on CPU but also
on GPU like cuTS [32].

Fractal [22] mitigates the performance issue by allowing its execution engine to conduct depth-
first subgraph-instance backtracking without actually materializing the instances, but it still ex-
haustively mines all valid subgraph instances without any early termination (as in GraMi). Due to
this algorithm inefficiency, Fractal requires users to specify a maximum pattern size 𝑛𝑚𝑎𝑥 , so that
patterns with more than 𝑛𝑚𝑎𝑥 vertices will not be grown.

Peregrine. Peregrine [16] adopts a ‘pattern-first’ programming model that treats graph patterns as
first-class constructs. This allows analysis of the pattern structure to more effectively guide the
exploration on the data graph 𝐺 . Peregrine’s FSM program still grows patterns in a BFS manner,
but instead of maintaining the huge number of intermediate pattern embeddings in 𝐺 , Peregrine
only maintains patterns themselves, and conducts subgraph matchings for their domain tables
on demand to check pattern frequentness as in GraMi. Peregrine’s subgraph matching algorithm
for subgraph pattern 𝑆 avoids non-canonical matches by enforcing a partial ordering on matched
vertices to break pattern symmetries. It then computes the core of 𝑆 as the subgraph induced by its
minimum connected vertex cover, and computes matching orders by enumerating all permutations
of vertices in the core that meet the partial ordering, which are then matched towards 𝐺 .

As we shall see next, T-FSM uses the depth-first pattern extensionmethod of gSpan that minimizes
the number of active patterns that need subgraph matchings (and hence minimizes memory
consumption). Moreover, T-FSM uses the latest subgraph matching algorithm [25] that does initial
vertex candidate pruning and enumerates subgraphs in a small index (c.f. Figure 5). None of these
optimizations is considered in Peregrine. Peregrine also treats the matching computation for each
matching order as the smallest unit of parallelism, while T-FSM allows each subgraph matching
task to further decompose if it times out, to avoid the straggler problem.

Pattern Enumeration. gSpan [36] is the SOTA algorithm for FSM in the transactional setting. It
enumerates the subgraph patterns in depth-first manner. Figure 4 illustrates the pattern-growth
tree of gSpan [36] where each circle represents a subgraph pattern, and each edge (𝑆, 𝑆 ′) grows
pattern 𝑆 by adding an adjacent edge to generate pattern 𝑆 ′. Different subgraph patterns may grow
into the same pattern: for example, pattern 𝐴ś𝐵ś𝐶 may be generated either by growing 𝐴ś𝐵 by
edge 𝐵ś𝐶 , or by growing 𝐵ś𝐶 by edge𝐴ś𝐵. To avoid examining redundant patterns, gSpan encodes
each subgraph pattern into a unique sequence called DFS code [36] computed from a ‘DFS code
tree’ that connects pattern vertices in the order of their extension, and defines the minimum DFS
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Fig. 4. Pattern-Growth Tree [36]

code among all isomorphic subgraphs of a pattern 𝑆 as
the canonical encoding of 𝑆 , denoted by𝑚𝑖𝑛(𝑆). For all
isomorphic patterns, only the one whose DFS code is
canonical would be processed. As an illustration, assume
that 𝑆𝑎 and 𝑆𝑏 are isomorphic and since only 𝑆𝑎’s encod-
ing equals its canonical encoding, only 𝑆𝑎 is checked for
frequentness and for further pattern growth, while 𝑆𝑏
(and its potential pattern-growth subtree) is pruned. Ad-
ditionally, gSpan only extends a pattern 𝑆 by an edge on
the rightmost path of 𝑆 ’s DFS code tree, since [36] shows
that other extensions cannot be canonical.
As an FSM algorithm in the transactional setting,

gSpan [36] tracks the set of matched instances for each
pattern 𝑆 , so that they can be incrementally extended when considering patterns grown from
𝑆 . In our single-graph setting, the pattern frequentness is examined using the domain table, so
T-FSM only uses gSpan’s depth-first pattern-growth scheme (with pattern canonicality check +
rightmost path extension on DFS code tree) to enumerate new patterns for processing. This is more
space-efficient than the BFS scheme of existing systems since we only keep a small number of
active patterns for mining at any time: new patterns are evaluated only if space allows (i.e., some
patterns finish evaluation).

Subgraph Matching. Subgraph matching finds all subgraph instances in a data graph 𝐺 that is
isomorphic to a given query graph 𝑆 . Most existing SOTA algorithms for subgraph matching are
built on top of Ullmann’s backtracking algorithm [30]. Ullmann’s algorithm orders the vertices
of 𝑆 as a sequence 𝜋 = [𝑢1, 𝑢2, . . . , 𝑢𝑘 ], and recursively matches each vertex 𝑢𝑖 to one candidate
data vertex in 𝐺 with the same label. If 𝑢𝑘 is matched, a pattern is found and outputted; while if 𝑢𝑖
cannot find a match for some 𝑖 ≤ 𝑘 , the algorithm backtracks to match 𝑢𝑖−1 with its next candidate
in 𝐺 .

C(u3)

C(u1)

C(u2)

v1 v4 v7

v2 v5

v3 v6

Fig. 5. Auxiliary Structure A𝑆

Sun and Luo [25] summarizes the SOTA algorithms on top of
Ullmann’s algorithm in terms of their optimization techniques, such
as (1) initial candidate vertex pruning (e.g., 𝑣9 in Figure 2 cannot be
a candidate of 𝑢2 since its degree is less than 𝑢2’s); (2) an auxiliary
structure A𝑆 for a pattern 𝑆 , where each 𝑢𝑖 is associated with a
set of pruned candidates 𝐶 (𝑢𝑖 ), and for each edge (𝑢𝑖 , 𝑢 𝑗 ) ∈ 𝐸

𝑆 , its
matched edges in 𝐺 between 𝐶 (𝑢𝑖 ) and 𝐶 (𝑢 𝑗 ) are materialized (to
illustrate, Figure 5 shows A𝑆 for pattern 𝑆 in Figure 2); (3) query
vertex ordering in 𝜋 (e.g., 𝑢𝑖 with smaller |𝐶 (𝑢𝑖 ) | should appear earlier in 𝜋 to reduce recursion
fanout). Ullmann’s algorithm then enumerates the matched subgraphs on the smaller A𝑆 rather
than the original𝐺 following the selected vertex order 𝜋 to achieve maximum efficiency. Following
the recommendation by [25], we use the method of DP-iso [14] to compute 𝐶 (𝑢𝑖 ) for all 𝑢𝑖 ∈ 𝑆 , use
the method of GraphQL [15] to compute 𝜋 , and use the DP-iso-style auxiliary structure.

As the SOTA serial FSM algorithm for a single graph, GraMi [10] simply treats subgraph matching
as a constraint satisfaction problem (CSP), and [25] has shown that constraint programming is
slower than Ullmann-style backtracking. In T-FSM, our subgraph-matching search stops as soon
as a matched subgraph instance is found, but if there is no match, our search will complete the
entire Ullmann-style backtracking algorithm, which may cause the straggler problem without our
timeout-based task decomposition.
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3 THE T-FSM SYSTEM

T-FSM is currently implemented as a shared-memory parallel system focusing on parallel task
scheduling and computation, but it is easy to be extended for distributed execution using the vertex
pulling technique of G-thinker [33], which we will discuss in Section 5. A T-FSM program runs a
main thread calledworker, and a pool of computing threads, called compers, for task computation.
This section first overviews the mining process of T-FSM and provides a brief cost analysis,

followed by the technical details.

3.1 Overview of the Mining Process

Job Initialization and Initial Pattern Candidates. A T-FSM program begins by letting the
worker (1) load the input graph 𝐺 , (2) scan 𝐺 to obtain and output the set of frequent vertex labels
𝑉𝑓 𝑟𝑒𝑞 and frequent 1-edge patterns 𝐸𝑓 𝑟𝑒𝑞 , (3) prune those edges of 𝐺 that do not match any 1-edge
pattern in 𝐸𝑓 𝑟𝑒𝑞 , and (4) use 𝐸𝑓 𝑟𝑒𝑞 to create an initial set of 2-edge candidate patterns, denoted by

C0𝑝𝑎𝑡 , for parallel task-based pattern frequentness evaluation and pattern extension by compers to
maximize CPU utilization. To illustrate, recall Figure 2 and assume that support threshold 𝜏 = 3.
Then 𝑉𝑓 𝑟𝑒𝑞 = {𝐴, 𝐵} and 𝐸𝑓 𝑟𝑒𝑞 = {(𝐴, 𝐵)}. Label 𝐶 is pruned since only 2 vertices in𝐺 have label
𝐶 , which is < 𝜏 , and 𝐺 is pruned to contain only 4 edges (𝑣1, 𝑣2), (𝑣4, 𝑣5), (𝑣5, 𝑣7) and (𝑣8, 𝑣9) to
accelerate subsequent mining. Finally, C0𝑝𝑎𝑡 = {𝐴ś𝐵ś𝐴, 𝐵ś𝐴ś𝐵}.

Cpat
⑥ pop

…L

head tail① fetch a task

graph matching from vi

vi

② update status

③ if pattern frequentness finalized

⑤ delete capsule

…

④ if frequent: extend & push

…

Initial 2-edge patterns

(computed by the worker)

active

Fig. 6. System Architecture of T-FSM

PatternContainers. Figure 6 overviews
the system architecture of T-FSM
with two pattern containers: (1) C𝑝𝑎𝑡
keeping candidate patterns to be eval-
uated, and (2)L𝑎𝑐𝑡𝑖𝑣𝑒 keeping a list of
active patterns currently under task-
based frequentness evaluation.
Specifically, C𝑝𝑎𝑡 is a stack pro-

tected by a mutex for concurrent ac-
cess by compers. We initialized C𝑝𝑎𝑡
with C0𝑝𝑎𝑡 , the set of 2-edge candi-
date patterns obtained by the worker.
When the capacity of L𝑎𝑐𝑡𝑖𝑣𝑒 is not
full, a comper may pop a new can-
didate pattern 𝑆 from C𝑝𝑎𝑡 for eval-
uation, in which case 𝑆 is added to
L𝑎𝑐𝑡𝑖𝑣𝑒 with its status (e.g., the do-
main table) being allocated and ini-
tialized. Also, when a frequent pat-
tern is found, it will be extended with edges in 𝐸𝑓 𝑟𝑒𝑞 to create more candidate patterns, which are
then pushed to C𝑝𝑎𝑡 . We use gSpan’s pattern extension approach which extends a new edge along
the rightmost path of 𝑆 ’s DFS code tree [36].

We implement C𝑝𝑎𝑡 as a stack so that we tend to grow existing frequent patterns to be larger to
achieve a near depth-first traversal order on the pattern-growth tree (recall Figure 4), to keep the
number of candidates in C𝑝𝑎𝑡 small (in contrast to queue-based BFS). Note that only subgraphs are
kept in C𝑝𝑎𝑡 without any status information, so the memory consumption of C𝑝𝑎𝑡 is low.

On the other hand, L𝑎𝑐𝑡𝑖𝑣𝑒 is a linked list of active patterns. To keep memory bounded, we only
allow L𝑎𝑐𝑡𝑖𝑣𝑒 to contain at most 𝑛𝑚𝑎𝑥

𝑎𝑐𝑡𝑖𝑣𝑒 active patterns, where 𝑛
𝑚𝑎𝑥
𝑎𝑐𝑡𝑖𝑣𝑒 is a user-specified capacity

parameter set to 32 by default. A pattern 𝑆 appears earlier in 𝐿𝑎𝑐𝑡𝑖𝑣𝑒 , if it was fetched from C𝑝𝑎𝑡 to
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the tail of L𝑎𝑐𝑡𝑖𝑣𝑒 for evaluation earlier. Whenever a comper tries to obtain a subgraph-matching
task for processing, it will check the task availability of active patterns starting from the head of
L𝑎𝑐𝑡𝑖𝑣𝑒 ; the comper will fetch a task from the first active pattern 𝑆 ∈ L𝑎𝑐𝑡𝑖𝑣𝑒 with an available task.
We implement L𝑎𝑐𝑡𝑖𝑣𝑒 as such so that active patterns are evaluated in a near FIFO order to keep the
number of active patterns minimal: a pattern that starts its evaluation earlier tends to be prioritized
for task-based frequentness computation, so that its evaluation can finish sooner to make room for
a new candidate pattern in C𝑝𝑎𝑡 .

As Figure 6 shows, each active pattern 𝑆 in L𝑎𝑐𝑡𝑖𝑣𝑒 is actually associated with a structure called
łpattern capsule,ž which keeps the tasks of 𝑆 and 𝑆’s evaluation status. Section 3.2 will describe
pattern capsule in detail, which is designed to (i) keep memory bounded by only having a small
number of active subgraph-matching tasks at any time (as we shall see in Section 3.3), and to
(ii) fully utilize pruning methods by keeping the latest pattern status.

Memory Cost Analysis. Recall that C𝑝𝑎𝑡 only keeps candidate subgraph patterns without any
status information, so the memory cost is dominated by L𝑎𝑐𝑡𝑖𝑣𝑒 . The memory cost of L𝑎𝑐𝑡𝑖𝑣𝑒 is
well bounded since it can contain at most 𝑛𝑚𝑎𝑥

𝑎𝑐𝑡𝑖𝑣𝑒 active patterns at any time, and each active
pattern is associated with a pattern capsule that contains a small and bounded number of active
subgraph-matching tasks. Our appendix [19] provides an analysis and proof of our memory bound.

Worker Mining Procedure. In T-FSM, each comper is a thread that keeps fetching the next task
for processing if available, or sets its state to idle otherwise. The worker periodically checks if there
are still tasks to be processed (i.e., L𝑎𝑐𝑡𝑖𝑣𝑒 or C𝑝𝑎𝑡 is not empty), or if some comper is still computing
(which may generate new candidate patterns into C𝑝𝑎𝑡 ). Case i: if so, it wakes up idle compers
to process them (worker-compers notification is via condition variables); otherwise, Case ii: all
compers are idle and L𝑎𝑐𝑡𝑖𝑣𝑒 and C𝑝𝑎𝑡 are empty, so the worker terminates the T-FSM program.

Mining Procedure of a Comper: An Overview of the Steps. A comper keeps fetching tasks
from L𝑎𝑐𝑡𝑖𝑣𝑒 for evaluation as follows. It first scans L𝑎𝑐𝑡𝑖𝑣𝑒 from the head to obtain a subgraph-
matching task from the capsule of the first active pattern 𝑆 ∈ L𝑎𝑐𝑡𝑖𝑣𝑒 with an available task (c.f.
1○ in Figure 6). Case 1: if a task (for subgraph matching from 𝑣𝑖 ) is successfully fetched from the
capsule of a pattern 𝑆 , the task is executed and the status of 𝑆 is updated accordingly (c.f. 2○). Case
1.1: if this task determines that 𝑆 is frequent (c.f. 3○), it will extend 𝑆 to generate larger candidate
patterns, push them into C𝑝𝑎𝑡 (c.f. 4○), and delete 𝑆 from L𝑎𝑐𝑡𝑖𝑣𝑒 (c.f. 5○). While Case 1.2: if the
task determines that 𝑆 is infrequent (c.f. 3○), it directly deletes 𝑆 from L𝑎𝑐𝑡𝑖𝑣𝑒 (c.f. 5○). The comper
then continues the next round to fetch another task from L𝑎𝑐𝑡𝑖𝑣𝑒 for evaluation.
Case 2: if in a round, a comper cannot find any task after scanning the whole L𝑎𝑐𝑡𝑖𝑣𝑒 , then

Case 2.1: if |L𝑎𝑐𝑡𝑖𝑣𝑒 | < 𝑛𝑚𝑎𝑥
𝑎𝑐𝑡𝑖𝑣𝑒 , the comper pops a new candidate pattern 𝑆 ∈ C𝑝𝑎𝑡 , allocates a

pattern capsule for 𝑆 , and inserts it to the tail of L𝑎𝑐𝑡𝑖𝑣𝑒 (c.f. 6○); it then continues the next round
to fetch another task from L𝑎𝑐𝑡𝑖𝑣𝑒 for evaluation. While Case 2.2: if the capacity of L𝑎𝑐𝑡𝑖𝑣𝑒 is full,
the comper goes idle directly, which may be awakened by the worker later (i) to process new tasks,
or (ii) to terminate the task probing loop if the worker flags the T-FSM program to terminate.

Time Cost Analysis. Recall that Step 4○ in Figure 6 extends each frequent pattern by an edge
using rightmost path extension and conducts canonicality check on each newly extended pattern
as in gSpan, so no redundant patterns would ever be inserted in C𝑝𝑎𝑡 , and any pattern candidate in
C𝑝𝑎𝑡 must be extended from a frequent pattern. In other words, we never examine patterns that are
more than one-edge-extension away from the set of frequent patterns.

Let us denote the number of frequent patterns by 𝑛𝑓 𝑟𝑒𝑞 , and assume that the average number of
rightmost extensions of a frequent pattern’s DFS code tree is 𝑛𝑓 𝑎𝑛𝑜𝑢𝑡 , then we examine at most
𝑛𝑓 𝑟𝑒𝑞 · 𝑛𝑓 𝑎𝑛𝑜𝑢𝑡 candidate patterns (some may be filtered by canonicality check directly). While
the value of 𝑛𝑓 𝑟𝑒𝑞 and 𝑛𝑓 𝑎𝑛𝑜𝑢𝑡 is difficult to analyze (e.g., there is no such analysis in gSpan’s
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paper [36]), their values are well-bounded in practice when a selective support threshold 𝜏 is used
to find only very frequent patterns. For each candidate pattern 𝑆 with vertices {𝑢1, 𝑢2, . . . , 𝑢𝑘 },

each entry in the domain table may initiate a subgraph-matching task, giving at most
∑𝑘

𝑖=1 |𝐷 (𝑢𝑖 ) |

subgraph-matching runs in total. Note that the actual number is much smaller since we use many
pruning techniques (see Section 3.4). Let the average cost of each subgraph-matching run be

𝐶𝑚𝑎𝑡𝑐ℎ , then the time complexity of FSM is𝑂 (𝑛𝑓 𝑟𝑒𝑞 ·𝑛𝑓 𝑎𝑛𝑜𝑢𝑡 ·𝐶𝑚𝑎𝑡𝑐ℎ

∑𝑘
𝑖=1 |𝐷 (𝑢𝑖 ) |). While subgraph

isomorphism is NP-complete [7], we use the latest algorithm for subgraph matching with a lot of
pruning techniques [25] so 𝐶𝑚𝑎𝑡𝑐ℎ is well-bounded.

3.2 Task Containers in a Pattern Capsule
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Recall that the frequentness evaluation of a pattern 𝑆

with vertices {𝑢1, 𝑢2, . . . , 𝑢𝑘 } can be regarded as subgraph-
matching tasks starting from individual data vertices
𝑣 ∈ 𝐷 (𝑢𝑖 ) (𝑖 = 1, 2, · · · , 𝑘) in the domain table of 𝑆 (see
Figure 2). Let us denote such a task by 𝑡𝑣 .

Different subgraph-matching tasks can have drastically
different computing workloads, so load balancing is es-
sential to eliminate the straggler problem. In fact, we can
avoid the full evaluation of some time-consuming tasks
by postponing them after a timeout. For example, assume
that our MNI support threshold is 𝜏 = 2, and consider the
evaluation of 𝐷 (𝑢1) in Figure 7. We will evaluate tasks
𝑡𝑎1 , 𝑡𝑎2 , 𝑡𝑎3 and 𝑡𝑎4 to find that 𝑢1 does not breach the frequentness requirement, but if 𝑡𝑎1 and 𝑡𝑎3
are very time-consuming (e.g., need 10 seconds for full evaluation), a wiser solution is to put them
aside after they run beyond a certain time threshold 𝜏𝑡𝑖𝑚𝑒 (we use 𝜏𝑡𝑖𝑚𝑒 = 0.1 second by default),
since 𝑡𝑎2 and 𝑡𝑎4 both confirm that 𝑎2 and 𝑎4 are valid matches to 𝑢1 which suffices for 𝜏 = 2. In
this case, we can save 19.8 seconds! If after evaluating all non-timeout tasks in a domain 𝐷 (𝑢𝑖 ), we
still cannot find 𝜏 valid matches to 𝑢𝑖 , we can then resume the evaluation of timeout tasks. For our
previous example, if 𝜏 = 4, then after evaluating the entire 𝐷 (𝑢1), we can find at most 3 matches,
so we have to resume 𝑡𝑎1 and 𝑡𝑎3 to determine whether 𝑎1 and 𝑎3 are valid matches to 𝑢1.
Figure 8 shows the internal of a pattern capsule for pattern 𝑆 , where we create tasks 𝑡𝑣 from

entries 𝑣 in the domain table of 𝑆 into a regular task queue 𝑄𝑟𝑒𝑔 (in gray) to be fetched by compers
for subgraph matching. The tasks are created and appended to 𝑄𝑟𝑒𝑔 following the order 𝑢1, 𝑢2, . . .,
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𝑢𝑘 . If a task times out, it will be temporarily moved to a timeout task list L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 (dashed rectangle).
We organize L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 as a list of queues, one for each 𝑢𝑖 to keep all the timeout tasks 𝑡𝑣 where
𝑣 ∈ 𝐷 (𝑢𝑖 ). For L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 in Figure 8, the blue (resp. orange, green) queue keeps the timeout tasks of
𝑢1 (resp. 𝑢2, 𝑢3). The queues of L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 are ordered based on the order of 𝑢𝑖 ’s in 𝑆 , so that compers
will endeavor to finish all tasks from 𝐷 (𝑢𝑖 ) before those from 𝐷 (𝑢 𝑗 ) if 𝑖 < 𝑗 . This is beneficial since
if all tasks from 𝐷 (𝑢𝑖 ) are finished and we find that |𝐷∗ (𝑢𝑖 ) | < 𝜏 , we know 𝑆 is infrequent which
avoids evaluating tasks from 𝐷 (𝑢 𝑗 ).

Task Fetching. Recall from 1○ in Figure 6 that a comper fetches a task 𝑡𝑣 from some pattern
capsule for subgraph matching at a time. We next explain how to decide where the comper fetches
𝑡𝑣 from a pattern capsule, i.e., from 𝑄𝑟𝑒𝑔 or from L𝑡𝑖𝑚𝑒𝑜𝑢𝑡? We remark that all queues in Figure 8
are concurrent queues for efficient access by multiple compers. Additionally, L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 is protected
by a read-write lock, where compers obtain tasks by reading the head of L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 for its first queue
in most of the time, but when 𝜏 valid matches to 𝑢𝑖 have been found, a comper will garbage-collect
the queue for tasks of 𝐷 (𝑢𝑖 ) from L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 after pattern status update.

We first define some concepts for ease of presentation. For a task 𝑡𝑣 where 𝑣 ∈ 𝐷 (𝑢𝑖 ), we say that
𝑖 is the pattern-vertex ID (PID) of 𝑡𝑣 . In Figure 8, the PIDs of 𝑡𝑣2 and 𝑡𝑣5 in 𝑄𝑟𝑒𝑔 are both 2 since
𝑣2, 𝑣5 ∈ 𝐷 (𝑢2). Also, let us denote the minimum PID of the tasks in 𝑄𝑟𝑒𝑔 (resp. L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ) by𝑚𝑖𝑛𝑄
(resp.𝑚𝑖𝑛𝐿). Since tasks are created from the domain table and appended to 𝑄𝑟𝑒𝑔 in the strict order
of 𝑢1, 𝑢2, . . ., 𝑢𝑘 ,𝑚𝑖𝑛𝑄 is the PID of the task at the head of𝑄𝑟𝑒𝑔 . If𝑄𝑟𝑒𝑔 = ∅ (resp. L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = ∅), we
set𝑚𝑖𝑛𝑄 = ∞ (resp.𝑚𝑖𝑛𝐿 = ∞).

Recall that a comper fetches a task 𝑡𝑣 from some pattern capsule for subgraph matching at a time,
and that we would like to finish all tasks from 𝐷 (𝑢𝑖 ) before those from 𝐷 (𝑢 𝑗 ) if 𝑖 < 𝑗 . Following
this principle, Case 1: if𝑚𝑖𝑛𝑄 > 𝑚𝑖𝑛𝐿 , a comper fetches the next task from L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 . For example,
in Figure 8 if the blue queue of L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 has tasks which are from 𝐷 (𝑢1), the comper should fetch a
task from the queue rather than one from 𝑄𝑟𝑒𝑔 which is from 𝐷 (𝑢2). Case 2: if𝑚𝑖𝑛𝑄 ≤ 𝑚𝑖𝑛𝐿 (≜ 𝑖),
a comper fetches the next task from 𝑄𝑟𝑒𝑔 since the evaluation of timeout tasks from 𝐷 (𝑢𝑖 ) should
be postponed till all tasks from 𝐷 (𝑢𝑖 ) in 𝑄𝑟𝑒𝑔 are processed.

A special case is when both 𝑄𝑟𝑒𝑔 and L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 are empty, which we handle as follows. Initially
when a pattern 𝑆 is newly moved from C𝑝𝑎𝑡 to L𝑎𝑐𝑡𝑖𝑣𝑒 (recall 6○ in Figure 6), a comper will refill
𝑄𝑟𝑒𝑔 using tasks from the domain table of 𝑆 . Laterwhen a comper finds that both𝑄𝑟𝑒𝑔 and L𝑡𝑖𝑚𝑒𝑜𝑢𝑡

are empty in 𝑆 ’s capsule, we determine that it fails to obtain a task from pattern 𝑆 , so it will move
to the next pattern in L𝑎𝑐𝑡𝑖𝑣𝑒 (recall 1○ in Figure 6) to try to fetch a task; this is because a comper
automatically refills 𝑄𝑟𝑒𝑔 when 𝑄𝑟𝑒𝑔 has insufficient tasks (see Section 3.3), so if 𝑄𝑟𝑒𝑔 is empty, all
entries from the domain table must have exhausted their tasks.

3.3 Task Processing by Each Comper

Assume that a comper successfully obtains a subgraph-matching task 𝑡𝑣 from the current task
capsule for processing as discussed above, Figure 8 shows the steps that the comper processes 𝑡𝑣 .

Specifically, the comper first fetches 𝑡𝑣 (c.f. 2○). If 𝑡𝑣 is from 𝑄𝑟𝑒𝑔, the comper first checks if 𝑄𝑟𝑒𝑔

has less than 𝑛𝑚𝑖𝑛
𝑟𝑒𝑔 tasks, where 𝑛𝑚𝑖𝑛

𝑟𝑒𝑔 is a user-defined size lower bound for𝑄𝑟𝑒𝑔 (= 800 by default); if
so, the comper refills up to 𝑛𝑏𝑎𝑡𝑐ℎ tasks into 𝑄𝑟𝑒𝑔 by creating them from entries in the domain table
following the order of 𝑢𝑖 ’s (c.f. 1○). Here, 𝑛𝑏𝑎𝑡𝑐ℎ is a user-defined batch size set to 800 by default.
Note that𝑄𝑟𝑒𝑔 has at least 𝑛

𝑚𝑖𝑛
𝑟𝑒𝑔 tasks to keep compers busy, but𝑄𝑟𝑒𝑔 has at most 𝑛𝑚𝑖𝑛

𝑟𝑒𝑔 +𝑛𝑏𝑎𝑡𝑐ℎ tasks
so the memory cost is bounded.

If a comper finishes 𝑡𝑣 without timing out, it updates 𝑆 ’s status (saved in the capsule) using the
result, and then deletes 𝑡𝑣 . Recall that if 𝑡𝑣 times out, the comper will postpone its processing by
adding it to L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 (c.f. 3○ in Figure 8). However, if such a task 𝑡𝑣 has to be finally evaluated, it can

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 74. Publication date: May 2023.



74:14 Lyuheng Yuan et al.

Algorithm 1 subgraph_match(𝑆,𝐺)

1: generate matching order 𝜋 = [𝑢1, 𝑢2, . . . , 𝑢𝑘 ]

2: enumerate(∅, 1, 𝜋, 𝑡𝑐𝑢𝑟 )
Procedure enumerate(𝑀, 𝑖, 𝜋, 𝑡0):

3: if 𝑖 = 𝑘 + 1 then output𝑀 ; return
4: 𝐶𝑀 (𝑢𝑖 ) ← viable vertex candidates in 𝐺 to match 𝑢𝑖
5: for each 𝑣 ∈ 𝐶𝑀 (𝑢𝑖 )

6: append𝑀 with (𝑢𝑖 , 𝑣)
7: if 𝑡𝑐𝑢𝑟 − 𝑡0 ≤ 𝜏𝑠𝑝𝑙𝑖𝑡 do enumerate(𝑀, 𝑖 + 1, 𝜋, 𝑡0)
8: else create task ⟨𝑀, 𝑖 + 1, 𝜋⟩ and add it to system
9: pop (𝑢𝑖 , 𝑣) from𝑀

Task ⟨𝑀, 𝑖, 𝜋⟩:
10: enumerate(𝑀, 𝑖, 𝜋, 𝑡𝑐𝑢𝑟 )

still become a straggler if it is evaluated by only one comper. Therefore, we allow 𝑡𝑣 (let 𝑣 ∈ 𝐷 (𝑢𝑖 ))
to time out again, in which case we will decompose it into multiple smaller tasks (c.f. 4○) which
are added back to 𝑢𝑖 ’s queue in L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 (c.f. 5○) so that they can be processed by the compers in
parallel (each may time out again and decompose).

We incrementally maintain𝑚𝑖𝑛𝑄 for quick access. Specifically, whenever a comper fetches a task
from𝑄𝑟𝑒𝑔 (c.f. 2○ in Figure 8) or refills tasks into𝑄𝑟𝑒𝑔 (c.f. 1○), it updates𝑚𝑖𝑛𝑄 to keep it up-to-date.
To determine𝑚𝑖𝑛𝐿 , a comper read-locks 𝐿𝑡𝑖𝑚𝑒𝑜𝑢𝑡 and probes it for the first non-empty queue.

Assume that the queue is for keeping tasks from 𝐷 (𝑢𝑖 ), then𝑚𝑖𝑛𝐿 is determined to be 𝑖 .
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Fig. 9. Task Decomposition

Straggler Elimination by Task Decomposition.

We next explain how we decompose a task 𝑡𝑣
in Step 4○ of Figure 8 when 𝑡𝑣 times out. Algo-
rithm 1 sketches our Ullmann-style recursive algo-
rithm, where we match data vertices to query vertices
𝑢1, 𝑢2, . . ., 𝑢𝑘 one at a time, with𝑀 recording the cur-
rent partial match. The search process can be depicted
by a search tree in Figure 9 for query graph 𝑆 on data
graph 𝐺 in Figure 2. Here, for ease of presentation,
we simply assume𝐶𝑀 (𝑢𝑖 ) in Lines 4ś5 of Algorithm 1
to be equal to 𝐶 (𝑢𝑖 ) as shown in Figure 5. The actual
𝐶𝑀 (𝑢𝑖 ) in our implementation is much tighter, and please refer to Section 3.3 of [25] for the details
of 𝐶𝑀 (𝑢𝑖 ) computation.

In Figure 9, the leftmost path gives the recursion path𝑀 = [(𝑢1, 𝑣1), (𝑢2, 𝑣2), (𝑢3, 𝑣3)] which leads
to a validmatching subgraph△𝑣1𝑣2𝑣3 (see𝐺 in Figure 2). In contrast, path𝑀 = [(𝑢1, 𝑣1), (𝑢2, 𝑣2), (𝑢3, 𝑣6)]

fails since (𝑣2, 𝑣6) ∉ 𝐺 so cannot match (𝑢2, 𝑢3); in reality when using the auxiliary structure A𝑆

shown in Figure 5, we will not extend𝑀 = [(𝑢1, 𝑣1), (𝑢2, 𝑣2)] with (𝑢3, 𝑣6), since (𝑣2, 𝑣6) ∉ A𝑆 .
In Algorithm 1, Line 2 implements a root task where 𝑀 = ∅ and the task beginning time 𝑡0 is

set to be the current time 𝑡𝑐𝑢𝑟 . Lines 3ś9 implements the Ullmann-style backtracking algorithm.
Specifically, if 𝑘 vertices have been successfully matched, Line 3 outputs the match𝑀 and returns.
Otherwise, we proceed to match the next 𝑢𝑖 whose candidate data vertices 𝐶𝑀 (𝑢𝑖 ) are computed
based on the current partial-match𝑀 : for each data vertex 𝑣 ∈ 𝐶𝑀 (𝑢𝑖 ), we match it to𝑢𝑖 by updating
𝑀 in Line 6, and continue to match one more query vertex 𝑢𝑖+1 by recursion in Line 7 (let us ignore
timeout for now). Once the recursion returns, Line 9 removes that match (𝑢𝑖 , 𝑣) and continues to
consider the next candidate in 𝐶𝑀 (𝑢𝑖 ).
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Next, let us consider how the timeout mechanism works to avoid straggler tasks. Note that after
a task sets its initial time 𝑡0, this initial time is passed on in subsequent recursion (c.f. Line 7). Each
time before we match a candidate data vertex 𝑣 to 𝑢𝑖 , we check if more than 𝜏𝑠𝑝𝑙𝑖𝑡 time has passed
since 𝑡0 (c.f. Line 7, the if-condition). If not, we continue recursion; otherwise, the task times out
and we create a new task ⟨𝑀, 𝑖 + 1, 𝜋⟩ to process the corresponding search-space subtree rather
than recursively processing it by the current task itself. The new task will reset its beginning time
in Line 10 when it starts computation and may time out again in Line 7.
Figure 9 illustrates this timeout process: the current task traverses the search-space tree in

depth-first order, processing for 3 recursive steps (𝑡0, 𝑡1 and 𝑡2) and when reaching Line 7 to check
𝑣6 ∈ 𝐶𝑀 (𝑢3), the current time 𝑡3 times out, so the subtree from extending 𝑣6 is wrapped as an
independent task by Line 8 and added to the system. Also, when the current task backtracks the
recursion stack, three subsequent tasks are created due to timeout (𝑡4, 𝑡5 and 𝑡6). Note that these
tasks are created at different granularities that are necessary and not over-decomposed.
So far, we described the general subgraph matching algorithm. In our application, each task

𝑡𝑣 with 𝑣 ∈ 𝐷 (𝑢𝑖 ) starts by first matching 𝑢𝑖 , so 𝜋 is computed by fixing 𝑢𝑖 as the first element,
and computing the order among the remaining pattern vertices using the method described in
Section 3.2 of [25]. In other words, each task 𝑡𝑣 begins with𝑀 = [(𝑢𝑖 , 𝑣)]. Note that even though
tasks from 𝐷 (𝑢𝑖 ) of different pattern vertices 𝑢𝑖 have different matching order 𝜋 , the auxiliary
structure A𝑆 is the same, so A𝑆 is created when we initialize the capsule of 𝑆 and is used by all
tasks for pattern 𝑆 . Another difference of 𝑡𝑣 from general subgraph matching is that, as soon as
we find a complete match 𝑀 , 𝑡𝑣 completes by determining 𝑣 as a valid match to 𝑢𝑖 , rather than
traversing the entire search-space tree to find all matches. For example, in Figure 9, 𝑡𝑣 completes as
soon as its finds the leftmost path to be a valid subgraph match.

CPU Utilization Analysis. Recall that we eliminate any straggler subgraph-matching task by
decomposing it after running computation for 𝜏𝑠𝑝𝑙𝑖𝑡 time, and the decomposed tasks are inserted
back to L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 for parallel processing by idle compers. Moreover, a comper automatically refills
𝑄𝑟𝑒𝑔 by generating tasks from the domain table. As a result, both 𝑄𝑟𝑒𝑔 and L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 have sufficient
tasks to keep compers busy (unless tasks from domain table are exhausted for the current pattern
𝑆 , in which case next pattern capsule in L𝑎𝑐𝑡𝑖𝑣𝑒 will be accessed). Therefore, T-FSM can maintain a
high CPU utilization rate during the course of FSM computation.

Capsule Deletion. Recall from Figure 6 that if a comper can determine that a pattern 𝑆 is frequent
or infrequent after processing a task (c.f. 3○), it will delete the capsule of 𝑆 from L𝑎𝑐𝑡𝑖𝑣𝑒 (c.f. 5○).
However, this naïve solution may result in a segmentation fault.

η(S)

u1

a1

a2

a3

a4

a5

a6

u2

b1

b2

b3

b4

u3

c1

c2

c3

c4

c5

fin

Domain Table

A B C

fin

fin

fin

pass

pass

fin

fin

fin

fin

fin

Compers

match

not match

fin task finished

pass

θ1

status fields

AS
C(u1)

C(u1)

C(u1)

Capsule for Pattern S

θ2 θ3

tim
e

c3

c4
c5

0

1

2

1

2

3

0
delete

capsule

pass task pruned

Fig. 10. Illustration of Capsule Deletion (𝜏 = 2)

Consider the pattern capsule in Figure 10
and assume that the support threshold
𝜏 = 2. We also assume that (1) the pattern
only has 3 entries yet to create subgraph-
matching tasks: 𝑐3, 𝑐4 and 𝑐5, while all
other entries have finished (or pruned) their
subgraph-matching tasks; and assume that
(2) compers 𝜃1, 𝜃2 and 𝜃3 process tasks 𝑡𝑐3 ,
𝑡𝑐4 and 𝑡𝑐5 , respectively. If 𝑡𝑐4 finds that 𝑐4 is
a valid match to 𝑢3 so all 𝑢𝑖 ’s have at least
2 valid matches, then 𝑆 is determined to
be frequent and 𝜃2 will delete 𝑆’s capsule.
However, 𝜃1 and 𝜃3 may still be processing
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Algorithm 2 An Iteration of Comper Computation

1: obtain the first capsule 𝑆 ∈ L𝑎𝑐𝑡𝑖𝑣𝑒 with available task(s)
2: lock 𝜂 (𝑆); 𝜂 (𝑆) ← 𝜂 (𝑆) + 1; unlock 𝜂 (𝑆)
3: compute a task in capsule 𝑆 and update its status (Fig. 6 1○ 2○)
4: lock 𝜂 (𝑆); 𝜂 (𝑆) ← 𝜂 (𝑆) − 1

5: if 𝜂 (𝑆) = 0 and 𝑆 ’s frequentness is determined (Fig. 6 3○) then
6: extend 𝑆 if it is frequent; delete 𝑆 ’s capsule (Fig. 6 4○ 5○)
7: else unlock 𝜂 (𝑆)

𝑡𝑐3 and 𝑡𝑐5 , and will need to access A𝑆 for subgraph enumeration and then update 𝑆 ’s status in the
capsule!

Our solution is to assign each pattern 𝑆 a counter 𝜂 (𝑆) that is kept in 𝑆 ’s capsule, which records
the number of compers that are currently processing subgraph-matching tasks of 𝑆 or updating 𝑆 ’s
status. Algorithm 2 shows how we update the counter in each iteration of comper computation. As
soon as we obtain a capsule 𝑆 ∈ L𝑎𝑐𝑡𝑖𝑣𝑒 , we increment 𝜂 (𝑆) in Line 2. After finishing a task 𝑡𝑣 ∈ 𝑆 ,
we decrement 𝜂 (𝑆) in Line 4. Moreover, if the frequentness of 𝑆 has been determined, and 𝜂 (𝑆) = 0

(i.e., the current comper 𝜃 is the last one still processing 𝑆), then 𝜃 deletes capsule 𝑆 (including
𝜂 (𝑆)) in Line 6. Otherwise, 𝜂 (𝑆) is unlocked in Line 7 so other compers can increment it again later
in Line 2. In our previous example in Figure 10, 𝜃2 processing 𝑡𝑐4 will not delete 𝑆’s capsule since
𝜂 (𝑆) = 2, and 𝑆’s capsule will finally be deleted by 𝜃1 after finishing 𝑡𝑐3 . As an optimization, in
Line 2 after a comper locks 𝜂 (𝑆), if it finds that 𝑆 ’s frequentness has been determined and 𝜂 (𝑆) > 0,
it will unlock 𝜂 (𝑆) and continue to check the next capsule in 𝐿𝑎𝑐𝑡𝑖𝑣𝑒 .

In Algorithm 2, a comper needs to (a) read-lock L𝑎𝑐𝑡𝑖𝑣𝑒 in Line 1, and (b) the lock can be released
as soon as a task is obtained from 𝑆 in Line 3 before conducting subgraph matching. If such a task
cannot be obtained, (c) then the lock needs to be released right after Line 4, since (d) Line 6 needs
to write-lock L𝑎𝑐𝑡𝑖𝑣𝑒 to delete 𝑆’s capsule. However, a deadlock can happen here. For example,
consider two compers 𝜃1 and 𝜃2, where (1) 𝜃1 has read-locked L𝑎𝑐𝑡𝑖𝑣𝑒 in Line 1 and is waiting to
lock 𝜂 (𝑆) in Line 2; while (2) 𝜃2 has locked 𝜂 (𝑆) in Line 4 and is waiting to write-lock L𝑎𝑐𝑡𝑖𝑣𝑒 in
Line 6 to delete 𝑆’s capsule. Our solution is to let Line 2 try-lock 𝜂 (𝑆), so that if 𝜃1 failed to lock
𝜂 (𝑆), it directly goes back to Line 1 to check the next capsule in L𝑎𝑐𝑡𝑖𝑣𝑒 ; 𝜃1 will ultimately release
the read-lock of L𝑎𝑐𝑡𝑖𝑣𝑒 , so 𝜃2 will be able to write-lock L𝑎𝑐𝑡𝑖𝑣𝑒 to delete 𝑆 ’s capsule.

3.4 Pattern Status and Pruning Techniques

Our MNI and Fraction-Score measures takeminimum over the łfrequenciesž of matching data
vertices for all 𝑢𝑖 ∈ 𝑆 . Recall from the end of Section 2.1 that 𝑚𝑛𝑖 (𝑆) = min𝑢𝑖 ∈𝑆 |𝐷

∗ (𝑢𝑖 ) |, and
from Eq (9) and Eq (8) in Section 2.2 that 𝐹𝑆 (𝑆) = min𝑢𝑖 ∈𝑆 𝜎𝑢𝑖 (𝑆) = min𝑢𝑖 ∈𝑆

∑
𝑣∈𝐷∗ (𝑢𝑖 ) Δ

𝑆 (𝑣).
In other words, instead of adding 1 for each valid match 𝑣 ∈ 𝐷∗ (𝑢𝑖 ) as in MNI, 𝐹𝑆 (𝑆) adds
Δ
𝑆 (𝑣) = min𝑢 𝑗 ∈𝑁𝑆 (𝑢𝑖 ) Δ𝐿𝑆 (𝑢 𝑗 ) (𝑣) (c.f. Eq (5)) where Δℓ (𝑣) is precomputed.

Lazy Search. Since we take minimum over the łfrequenciesž of matching data vertices for all
𝑢𝑖 ∈ 𝑆 , if some vertex 𝑢 𝑗 ∈ 𝑆 has frequency |𝐷∗ (𝑢 𝑗 ) | < 𝜏 (or

∑
𝑣∈𝐷∗ (𝑢 𝑗 ) Δ

𝑆 (𝑣) < 𝜏), 𝑆 is infrequent
and there is no need to check the other 𝑢𝑖 ’s. Similarly, if the current candidates of 𝑢 𝑗 ∈ 𝑆 has a
cumulative frequency nFj ≥ 𝜏 , then 𝑢 𝑗 will not be a reason for 𝑆 to be infrequent, so the remaining

candidates in 𝐷 (𝑢 𝑗 ) can be skipped. Let us denote the number of remaining candidates in 𝐷 (𝑢 𝑗 ) by
nRj . To summarize:

• If 𝑛𝐹𝑖 + 𝑛
𝑅
𝑖 < 𝜏 , then 𝑆 is flagged infrequent immediately.

• If 𝑛𝐹𝑖 ≥ 𝜏 , then skip the remaining 𝑛𝑅𝑖 tasks of 𝑢𝑖 .
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Here, we use the property that 𝑛𝑅𝑖 upper-bounds the sum of Δ𝑆 (𝑣) for the remaining 𝑣 ∈ 𝐷 (𝑢𝑖 ),

since Δ𝑆 (𝑣) ≤ 1 by Eq (2).
Note that each capsule keeps the status of its pattern 𝑆 to facilitate pruning, which are a few flags,

counters, and a Domain-Match Table (described below) that are lock-protected to be thread-safe.
Here, we illustrate how these status fields assist lazy search.

• Finish-Counter (c.f. Figure 7) is an array where Finish-Counter[𝑖] represents how many
tasks for 𝑢𝑖 have finished. In Figure 7, suppose 𝑢1’s tasks 𝑎1, 𝑎2, 𝑎3 and 𝑎4 have finished, so
Finish-Counter[1] = 4.
• Domain-Match Table (DMT, c.f. Figure 7) is a table where DMT[𝑖] keeps the set of valid
matches in 𝐷 (𝑢𝑖 ) found so far. For example, in Figure 2, when 𝑡𝑎1 finds a valid match △𝑣1𝑣2𝑣3,
it will insert 𝑣3 to DMT[3]; later when another match △𝑣4𝑣5𝑣3 is found by another task, 𝑣3
will be inserted again so DMT[3] is organized as a set for deduplication. In Figure 7, while
tasks 𝑎1, 𝑎2, 𝑎3 and 𝑎4 have finished, only 𝑎2 and 𝑎4 are valid matches, so they are in DMT[1].

With Finish-Counter and DMT, lazy search is straightforward. For example, in Figure 7, if 𝜏 = 5,
as soon as 𝑎3 is finished, there is no need to examine 𝑢1’s remaining tasks and all tasks of 𝑢2 and 𝑢3:
𝑛𝐹
1
= |DMT[1] | = 1 (i.e., 𝑎2 is found valid), and 𝑛𝑅

1
= |𝐷 (𝑢1) | − Finish-Counter[1] = 6 − 3 = 3, so

𝑛𝐹
1
+ 𝑛𝑅

1
< 𝜏 and the whole pattern is flagged infrequent immediately.

Domain Initialization. Assume that a pattern 𝑆 is obtained by extending an edge from its parent
pattern 𝑆𝑝𝑎 . When creating 𝑆 ’s capsule, we initialize the domain table of 𝑆 with that of 𝑆𝑝𝑎 . This is
because for any 𝑢𝑖 ∈ 𝑆𝑝𝑎 , if 𝑣 ∈ 𝐷 (𝑢𝑖 ) is invalid in 𝑆𝑝𝑎 , it must also be invalid for 𝑆 so can be pruned.
This conclusion holds generally for any subgraph 𝑆 ′ of 𝑆 , besides 𝑆𝑝𝑎 . Therefore, GraMi [10] caches
all patterns that are examined so far, which are indexed by signatures that allows to quickly identify
those subgraph patterns of 𝑆 with one edge removed (denoted by 𝑆 ′), and GraMi removes from
𝐷 (𝑢𝑖 ) of 𝑆 those invalid candidate vertices 𝑣 ∈ 𝐷 (𝑢𝑖 ) previously found for 𝑆 ′. This push-down

pruning technique is inherited by T-FSM.
To implement this parent-inherited domain table initialization, in Figure 6, when Step 5○ deletes

the capsule of a frequent pattern 𝑆𝑝𝑎 , its domain table (denoted by T𝑝𝑎) will not be deleted immedi-
ately, so that its extended child-patterns 𝑆 can access T𝑝𝑎 to create their own domain tables. To
ensure that T𝑝𝑎 will be properly garbage-collected, wemaintain a counter𝜂𝑝𝑎 with T𝑝𝑎 which gets in-
cremented whenever a child pattern is fetched for processing (c.f. 6○). Assume that 𝑆𝑝𝑎 was extended
to create 𝑛𝑝𝑎 child patterns, then the last child pattern will find 𝜂𝑝𝑎 = 𝑛𝑝𝑎 so it will delete T𝑝𝑎 .

Other Pruning Rules. T-FSM integrates all pruning rules of GraMi. Besides push-down pruning

above, it also uses the following 3 pruning rules. (1) Unique label: [10] proves that if pattern 𝑆

is acyclic and every 𝑢𝑖 ∈ 𝑆 has a distinct label, then 𝐷 (𝑢𝑖 ) = 𝐷∗(𝑢𝑖 ) so subgraph matching is not
needed. As a result, if 𝑆 satisfies this requirement, a comper directly validates 𝑆 ’s frequency without
moving 𝑆 to L𝑎𝑐𝑡𝑖𝑣𝑒 by creating a capsule. (2) Decomposition pruning: if a task 𝑡𝑣 of 𝑆 timed out
and was moved to L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 of a capsule, the timeout tasks of 𝑆 tend to be expensive so we conduct
additional pruning of 𝑆 by removing an edge from 𝑆 (let the subgraph be 𝑆−), computing connected
components (CCs) of 𝑆−, and check if subgraph matching from 𝑣 using any CC fails; if so, 𝑡𝑣 fails
immediately without using 𝑆 for subgraph matching. (3) Automorphism: it avoids redundant
computation for symmetric vertices in a pattern. Specifically, if 𝑢𝑖 and 𝑢 𝑗 are symmetric and 𝑢𝑖 has
a valid match 𝑣 , then 𝑣 must also be a valid match for 𝑢 𝑗 .

Lineage Tracking of Timeout Tasks. Recall from Line 8 of Algorithm 1 that a task 𝑡𝑣 may time
out and be decomposed into many smaller tasks, each of which may again decompose, forming a
task lineage tree with a tree edge (𝑡𝑝𝑎, 𝑡𝑐𝑢𝑟 ) if 𝑡𝑐𝑢𝑟 is created by decomposing 𝑡𝑝𝑎 (which generates
𝑚 tasks). This lineage tree is tracked so that whenever 𝑡𝑐𝑢𝑟 completes, it will increment a counter
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Fig. 11. Our Implementation v.s. Original GraMi [12]

at 𝑡𝑝𝑎 , and if the counter equals𝑚, we increment the counter of 𝑡𝑝𝑎’s parent task; this process goes
on, and if the counter of task 𝑡𝑣 at the tree root indicates that all 𝑡𝑣 ’s child tasks are complete, then
𝑡𝑐𝑢𝑟 is the last task of 𝑡𝑣 , so it updates 𝑆 ’s status to flag 𝑣 as valid match to 𝑢𝑖 iff any task in the task
lineage tree found a valid match. In fact, as soon as a task 𝑡𝑐𝑢𝑟 finds a valid match, it will flag 𝑣 as
valid match to 𝑢𝑖 , and the other subtasks of 𝑡𝑣 will probe this flag and terminate immediately (we
let each task probe pattern status at Line 8 of Algorithm 1 so that subtasks will not be generated if
𝑣 is already flagged as valid or 𝑢𝑖 is already flagged as (in)frequent).

Timeout tasks may cause another problem. For example, if tasks 𝑡𝑎2 and 𝑡𝑎4 in Figure 7 finish so
two valid matches 𝑎2 and 𝑎4 are found, then if 𝜏 = 2, we can flag 𝑢1 as frequent; the subtasks of 𝑡𝑎3
will probe and detect this flag to skip their computation, but since 𝑡𝑎3 is not complete, we do not
know whether 𝑎3 is a valid match, so we should not flag 𝑎3 as invalid. To implement this, when 𝑡𝑐𝑢𝑟
skips computation, we let it propagate the SKIP flag upwards in the lineage tree; if 𝑡𝑣 at the tree
root gets a SKIP flag, 𝑣 ∈ 𝐷 (𝑢𝑖 ) should not be flagged invalid.

4 EXPERIMENTS
Table 2. Datasets

Dataset |V| |E| d avg |L| Category

GSE1730 998 5,096 10.21 2 Biology

Yeast* 3,112 12,519 8.05 71 Biology

Human* 4,674 86,282 36.92 44 Biology

WordNet* 76,853 120,399 3.13 5 Lexical

MiCo* 100,000 1,080,298 21.61 29 Citation

UK POI* 182,334 2,816,000 30.89 36 Spatial

DBLP 317,080 1,049,866 6.62 15 Social

Youtube 1,134,890 2,987,624 5.27 25 Social

Patent* 2,745,761 13,965,409 10.17 37 Citation

Twitter 11,316,811 85,331,846 15.08 25 Social

We now evaluate T-FSM and compare it with SOTA sys-
tems ScaleMine [1], Fractal [22], DistGraph [27], Pan-
golin [4] and Peregrine [16]. These systems only support
MNI so we use MNI by default. Section 4.7 compares MNI
with Fraction-Score using T-FSM.

4.1 Datasets and Environmental Setup

We select 10 real-world graph datasets with various sizes,
densities and categories as summarized in Table 2, where
datasets Yeast, Human,WordNet, DBLP and Youtube are
from [25], GSE1730 is from [13],MiCo is from [10], Patent
is from [1], UK POI is from [3] where an edge is added
between every pair of POIs with distance ≤ 500 m, and Twitter is from [29]. Datasets with name
accompanied by ł*ž come with their original vertex labels, and MiCo additionally has edge labels.
The remaining graphs are not labeled, so we follow previous works [25, 26] by randomly assigning
a label to each vertex from a predefined label set 𝐿. Experiments are run on a server with 48 cores
(Intel Xeon Gold 6248R CPU 3.00GHz) and 64 GB RAM. Each reported experiment is repeated for
3 times with the average reported. We use 𝜏𝑡𝑖𝑚𝑒 = 0.1 s and 𝜏𝑠𝑝𝑙𝑖𝑡 = 1 s for T-FSM by default.

4.2 Serial GraMi Implementation

We notice that the original implementation of GraMi at [12] has several performance issues:
(1) instead of using effective heuristics to find a good matching order [𝑢1, 𝑢2, . . . , 𝑢𝑘 ], GraMi uses a
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simple DFS order which might not be optimal as indicated in [25]; (2) GraMi does not utilize an
auxiliary structure A𝑆 but enumerates directly on 𝐺 . We, therefore, integrate the latest subgraph
matching algorithm with GraMi’s logic to develop a more efficient C++ implementation. We
compare our serial implementation with that of [12]. Figure 11 illustrates their performance on
MiCo and WordNet, which shows that our implementation is 3× to 5× faster. Note that since large
patterns onWordNet are expensive to mine, we stop extending a pattern if its size reaches 8 vertices
(i.e., |𝑉 𝑆 | ≤ 8). The time increases with 𝜏 onWordNet since more candidates in each 𝐷 (𝑢𝑖 ) needs
evaluation, but the # of results does not change much.

4.3 Comparison with Existing Systems

Figure 12 shows the performance of T-FSM compared with ScaleMine [23], Fractal [11], Dist-
Graph [9], Pangolin [20] and Peregrine [21] on all 10 graphs shown in Table 2 for different values
of support threshold 𝜏 . For some graphs, mining large patterns are expensive, so following [1],
we stop extending a pattern if its size goes beyond a certain threshold. We also set the maximum
running time as 104 seconds. In Figure 12, łM" means Out of Memory (64 GB), łT" means Out
of Time (104 s), łAž means the program aborts (occurs only in Pangolin [20] due to an assertion
error), and łX" means results returned are not exact. Note that even though a program fails and
may terminate quickly for the case of łMž or łA,ž we still plot its hatched bar to the top like for łTž
to help readers easily see which system the bar corresponds to. Also, there is no bar on MiCo for
Fractal and Peregrine since they do not support edge labels.
Figure 12 shows that T-FSM generally has the best performance on all the graphs, especially

the denser ones. For example, on Human, T-FSM is the only system that can mine all pattern with
no more than 6 vertices, since Human is very dense with an average degree of 36.92. A similar
observation can be reached for UK POI, where ScaleMine is the only other system that can finish
for some tested values of 𝜏 .

On GSE1730 and DBLP, although ScaleMine sometimes has a lower running time than T-FSM, we
observe that ScaleMine’s results are frequently not exact and even inconsistent from two different
runs. For example, on DBLP when 𝜏 = 1800, T-FSM returns 1745 patterns which is the same as that
returned by GraMi [12], but ScaleMine returns 830 patterns in one run and 832 patterns in another
run. This shows that the approximate pruning techniques of ScaleMine can be far from accurate.
DistGraph can only handle two graphs DBLP and Patent. Since DistGraph extends patterns by

BFS, it suffers frequently from Out-of-Memory errors on Human,MiCo, UK POI, Youtube and Twitter.
The approach does work well when the number of patterns is small, where performance comparable
to T-FSM is achieved on DBLP when 𝜏 = 1800 and 2000. The problem of pattern extension by BFS
also applies to Pangolin, which aborts on all datasets except for DBLP and Patent. Moreover, we find
that the results of Pangolin are different from the exact results on DBLP (see Section 4.4), which is
likely due to implementation issues.

Although Fractal supports depth-first pattern extension, it exhaustively mines all valid subgraphs
without any early termination (after 𝜏 matches are found), so it is the slowest among all systems.
Peregrine conducts breadth-first pattern extension but considers domain table as in T-FSM where
subgraph matching is conducted in a depth-first manner. However, its subgraph matching and
load balancing approaches are less efficient. As a result, Peregrine runs out of time (104 s) on most
datasets except for DBLP and Patent, and Youtube only when 𝜏 = 2000. Both Fractal and Peregrine
do not support edge labels, so we cannot show their results on MiCo.
We show the CPU utilization rates of all the systems when running 32 computing threads on

Patent with 𝜏 = 24𝑘 , in which setting all systems can complete their FSM jobs. Figure 13 shows the
CPU rates for the first 120 seconds, where we can see that the CPU rate of T-FSM (blue line) jumps
to 3200% and completes the job quickly. DistGraph and Peregrine also achieve 3200% but their
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Fig. 12. T-FSM v.s. existing FSM systems with 32 Compers

running times are much longer. ScaleMine has a slightly lower CPU rate but is able to complete
within 120 seconds. The peak CPU rate of Fractal is far from 3200%, while the CPU rate of Pangolin
gradually drops with a very long tailing period of low CPU utilization rate.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 74. Publication date: May 2023.



T-FSM: A Task-Based System for Massively Parallel Frequent Subgraph Pattern Mining from a Big Graph 74:21

0 40 80 120
Mining Time (s)

1600

3200

CP
U 

Ut
iliz

at
io

n

ScaleMine
Fractal
DistGraph
Peregrine
Pangolin
T-FSM

Fig. 13. CPU Utilization Rates

280
|VS| ≤ 18

280
|VS| ≤ 17

280
|VS| ≤ 16

280
|VS| ≤ 15

280
|VS| ≤ 14

Support threshold τ

10

100

1000

Ru
nn

in
g 

tim
e 

(s
)

GSE1730

τtime = 0.1, τsplit = 1
τtime = 1, τsplit = 1
τtime = 10, τsplit = 1
τtime = 0.1, τsplit = 10
τtime = 0.1, τsplit = ∞

250 260 270 280 290
Support threshold τ

10

100

1000

Ru
nn

in
g 

tim
e 

(s
)

Yeast, |VS| ≤ 12

Fig. 14. Ablation Study

4.4 Result Exactness of ScaleMine and Pangolin Table 3. Number of Results

Youtube

Support 2,000 1600 1500 1400 1300

MNI 350 6678 7846 8296 14,577

ScaleMine 332 2741 3224 3283 3614

DBLP

Support 2000 1800 1700 1600 1500

MNI 1695 1745 2826 15,347 25,842

ScaleMine 785 830 997 1182 2411

Pangolin 3047 3178 4202 15,986 26,065

Recall that ScaleMine returns only approximate results. Ta-
ble 3 shows the exact number of subgraph patterns (i.e., MNI)
and those returned by ScaleMine on Youtube andDBLP, where
we see that ScaleMine misses a lot of patterns due to an overly
aggressive pruning heuristic. Surprisingly, we find that Pan-
golin returns more patterns than the exact ones on DBLP,
even though it is supposed to be an exact approach. This is
likely due to implementation issues.

4.5 Ablation Study

Recall that when evaluating candidates of 𝐷 (𝑢𝑖 ), we put a
candidate 𝑣 aside into L𝑡𝑖𝑚𝑒𝑜𝑢𝑡 if 𝑡𝑣 runs for more than 𝜏𝑡𝑖𝑚𝑒 = 0.1 s; and if a task from L𝑡𝑖𝑚𝑒𝑜𝑢𝑡

runs for more than 𝜏𝑠𝑝𝑙𝑖𝑡 = 1 s, we decompose it again to avoid the straggler problem. These default
parameter values have been carefully tuned to work well in general.

There are performance tradeoffs for the values of 𝜏𝑡𝑖𝑚𝑒 and 𝜏𝑠𝑝𝑙𝑖𝑡 . Specifically, if there are sufficient
candidates 𝑣 ∈ 𝐷 (𝑢𝑖 ) that can be quickly checked to be a valid match to 𝑢𝑖 , then if 𝜏𝑡𝑖𝑚𝑒 is set too

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 74. Publication date: May 2023.



74:22 Lyuheng Yuan et al.

1 2 4 8 16 32 48
# Compers

0

250

 500

M
in

in
g 

tim
e 

(s
)

449.7

246.5

119.1

57.6 29.3 16.2 13.6

175 Patterns

Mining time

5000

7000

9000

5507 5507

5507

5674

6202

7258

8314

Patent, τ = 24k
Memory

1 2 4 8 16 32 48
# Compers

0

500

1000
830.4

427.8

215.1

107.23 54.5
28.7 22.0

175 Patterns

Mining time

0

1500

3000

M
em

or
y 

(M
B)

152 217
350

614

1142

2198

3254

Yeast, τ = 270, |VS| ≤ 12
Memory

Fig. 15. Scalability

large, we might stick on expensive tasks 𝑡𝑣 that can otherwise be skipped to save time. Also, while a
smaller 𝜏𝑠𝑝𝑙𝑖𝑡 improves load balancing, it causes more overhead for subtask creation and scheduling.
We tested different combinations of 𝜏𝑡𝑖𝑚𝑒 and 𝜏𝑠𝑝𝑙𝑖𝑡 , and some results are shown in Figure 14 for
GSE1730 and Yeast. Note that our default parameters (red line) lead to the best performance.

Moreover, these techniques are very important in reducing the running time. For example, if we
increase 𝜏𝑡𝑖𝑚𝑒 from 0.1 s to 10 s (green line), the running time is increased by up to 8× on GSE1730

and 20× on Yeast. We did not further increase 𝜏𝑡𝑖𝑚𝑒 in Figure 14 since the time would continue to
increase significantly. Also, if we increase 𝜏𝑠𝑝𝑙𝑖𝑡 from 1 s to ∞ (purple line), the running time is
increased by up to 30× on Yeast. We did not show the results for 𝜏𝑠𝑝𝑙𝑖𝑡 = ∞ on GSE1730 in Figure 14
since the job runs out of time.

4.6 Scalability

Figure 15 shows the vertical scalability of T-FSM, i.e., the running time and peak memory consump-
tion when we vary the number of compers as 1, 2, 4, 8, 16, 32 and 48 on Patent and Yeast. We can
see that the scale-up speedup is near ideal: nearly 27× (resp. 30×) on Patent (resp. Yeast) with 32
compers, nearly 33× (resp. 37×) on Patent (resp. Yeast) with 48 compers. Note that even with 48
compers, the memory space consumed by tasks is only around 3 GB. Patent uses more memory
because its graph is much larger.

4.7 Fraction-Score v.s. MNI

Accuracy Comparison. To study the support accuracy of Fraction-Score and MNI, we generate
a synthetic dataset following the exact approach in Section IV-A of [3] so that we can obtain the
ground-truth support for comparison.

We configure the data-generation parameters defined in [3], 𝑁𝑐𝑜_𝑙𝑜𝑐 ,𝑚𝑜𝑣𝑒𝑟𝑙𝑎𝑝 , 𝜆1, 𝜆2,𝐷 , 𝑑 ,𝑚𝑐𝑙𝑢𝑚𝑝 ,

𝑟𝑛𝑜𝑖𝑠𝑦_𝑙𝑎𝑏𝑒𝑙 and 𝑟𝑛𝑜𝑖𝑠𝑦_𝑛𝑢𝑚 , to be 20, 10, 5, 40, 106, 5, 5, 0.5 and 0.5, respectively. We refer interested
readers to [3] for the details, but give a brief but intuitive description here. Specifically, we consider
a spatial area of size 𝐷 × 𝐷 that is partitioned by a grid with cell size 𝑑 × 𝑑 . Since 𝐷 = 10

6 and
𝑑 = 5, we have 200, 000 × 200, 000 grid cells in total. The goal is to generate a labeled object
dataset that contains 𝑁𝑐𝑜_𝑙𝑜𝑐 = 20 frequent co-location patterns. For each frequent pattern, say
𝑆 = {𝐴, 𝐵, 𝐷, 𝐸, 𝐹 } shown in Figure 16, we put the corresponding data instances into 𝑛𝑆 grid cells,
where 𝑛𝑆 is randomly sampled from a Poisson distribution with mean 𝜆2. In Figure 16, we have
𝑛𝑆 = 3. For each cell, we randomly generate 𝑛ℓ data instances for each label ℓ ∈ 𝑆 , where 𝑛ℓ is a
random integer sampled from 1 to𝑚𝑐𝑙𝑢𝑚𝑝 = 5. In Figure 16, we have 𝑛𝐴 = 3, 𝑛𝐵 = 2, 𝑛𝐷 = 2, 𝑛𝐸 = 3

and 𝑛𝐹 = 2 for all the cells. Some noisy data instances and noisy labels are also added following [3]
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Fig. 16. Synthetic Dataset Illustration

but they usually do not produce frequent pat-
terns. In total, our dataset has 359,262 objects
and 441 labels.
The ground-truth support of each frequent

co-location pattern 𝑆 can be easily estimated.
For example, in Figure 16, each of the 3 cells has
the smallest𝑚𝑐𝑙𝑢𝑚𝑝 value being 2 (i.e., for labels
𝐵,𝐷 and 𝐹 ), so we assume it contributes 2 to the
overall support assuming that every pair of data
instances in the 𝑑 × 𝑑 cell are within distance
𝑑 (which happens with a high probability). We
also assume that instances from different cells
will not form a match to 𝑆 , which is usually true
since we have many grid cells but 𝜆2 is merely
40. Therefore, the total support is obtained by
summing the support from all occupied cells, which is 2 + 2 + 2 = 6 for co-location pattern
{𝐴, 𝐵, 𝐷, 𝐸, 𝐹 } in Figure 16. We create a graph from this dataset for FSM, by indexing all objects in
an R-tree and conducting a range query of radius 𝑑 = 5 on each object to build its adjacency list.
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Fig. 17. Support Values

Figure 17 shows the support of the top-10 most fre-
quent ground-truth patterns, as well as their MNI and
Fraction-Score. We can see that while both measures
overestimates the ground-truth support, Fraction-Score
is much closer so is clearly a better measure.

Running Time and Pattern Number. So far, we have
only reported T-FSM efficiency when MNI is used as
the support. The results for Fraction-Score are similar.
To illustrate, Figure 18 shows the running time and the
number of frequent patterns on Patent and UK POI us-
ing Fraction-Score as the support when 𝜏 varies, and for
comparison purpose, Figure 19 shows these results using
MNI as the support. As expected, the running time and
pattern number decrease as 𝜏 increases. However, the
running time (resp. pattern number) of Fraction-Score is much shorter (resp. smaller) than MNI for
the same 𝜏 . This is because Fraction-Score is a much tighter support measure than MNI, so most
overestimated false-positive patterns are avoided. Note that we add a restriction |𝑉 𝑆 | ≤ 4 on Patent

since otherwise the running time using MNI is too long.
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Fig. 19. Results with MNI as Support

Pattern Visualization. Figure 20 shows two example frequent patterns from the POI dataset
UK POI that are not co-location patterns, where each vertex represents a POI type. For example,
łCommunityž POIs locate in residential areas (e.g., churches). In Figure 20, we indicate the frequency
of POI types in red under the vertices, and we indicate the Fraction-Score of each pattern in blue.

ATM
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Food&Drink

23756

Supermarkets

9390

Community
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17976

Fraction-Score = 1031.28

Fig. 20. Two Frequent Patterns from UK POI

The first pattern (left) contains
four POI types, and has a Fraction-
Score of 4245.71 which is very high
considering that there are only 9390
łSupermarketsž POIs in UK POI. The
pattern matches our intuition that a
convenient residential area usually
has łSupermarketsž and łFoodž POIs
nearby, both of which have an ATM
POI within a reachable range for cus-
tomers to withdraw cash. However, the łSupermarketsž POI and łFoodž POI do not have to be
very close to each other. The second pattern (right) is larger with 5 POI types, so its Fraction-Score
(1031.28) is smaller. Again, we see the łCommunityžśłSupermarketsžśłFoodž triangle, as well as
another łSupermarketsžśłCar_PartsžśłFuelž triangle which matches intuition (e.g., a Costco store
usually co-locates with a łTire Centerž and a gas station).
We can see that our FSM formulation finds much richer POI patterns than conventional co-

location pattern mining formulation.

5 CONCLUSIONS AND FUTURE WORK

We presented an efficient system called T-FSM for parallel mining of frequent subgraph patterns in
a big graph. T-FSM adopts a novel task-based execution engine design to ensure high concurrency,
bounded memory consumption, effective load balancing. T-FSM integrates the latest subgraph
matching algorithm to enable the efficient mining of much larger patterns. It also supports a new
measure called Fraction-Score which is more accurate than the widely used MNI measure. Our
experiments show that T-FSM is orders of magnitude faster than SOTA systems for FSM.

While we have assumed the input graph𝐺 to be undirected in our description, our approach can
be easily generalized to mine a directed graph, by treating edge direction as part of an edge label.

For example, assume we grow a pattern 𝑆 by an edge from a vertex 𝑢 ∈ 𝑆 : 𝑢
𝐴
−→ 𝑣 (resp. 𝑢

𝐴
←− 𝑣),

then we treat the edge as undirected but with the edge label being a tuple ⟨𝐴,𝑜𝑢𝑡⟩ (resp. ⟨𝐴, 𝑖𝑛⟩).
As a future work, we will extend T-FSM to a shared-nothing distributed environment. This can

be achieved by maintaining a distributed vertex store as in G-thinker (c.f. Section V-A of [33]) for
collecting task data, and by using the task management design of G-thinker (c.f. Section V-B of
[33]) to allow tasks to wait for data and to be notified to compute when its data are ready.
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