
Accelerating k-Core Decomposition by a GPU

Akhlaque Ahmad†, Lyuheng Yuan∗, Da Yan∗, Guimu Guo‡, Jieyang Chen∗, Chengcui Zhang∗

∗University of Alabama at Birmingham, Birmingham, AL, USA {lyuan, yanda, jchen3, czhang02}@uab.edu
†TED University, Ankara, Turkey akhlaque.ahmad@tedu.edu.tr ‡Rowan University, NJ, USA guog@rowan.edu

Abstract—The k-core of a graph is the largest induced sub-
graph with minimum degree k. The problem of k-core decompo-
sition finds the k-cores of a graph for all valid values of k, and it
has many applications such as network analysis, computational
biology and graph visualization. Currently, there are two types
of parallel algorithms for k-core decomposition: (1) degree-based
vertex peeling, and (2) iterative h-index refinement. There is,
however, few studies on accelerating k-core decomposition using
GPU. In this paper, we propose a highly optimized peeling algo-
rithm on a GPU, and compare it with possible implementations
on top of think-like-a-vertex graph-parallel GPU systems as well
as existing serial and parallel k-core decomposition algorithms
on CPUs. Extensive experiments show that our GPU algorithm
is the overall winner in both time and space. Our source code is
released at https://github.com/akhlaqueak/KCoreGPU.

Index Terms—GPU, k-core, graph, h-index

I. INTRODUCTION

Networks are ubiquitously used to model interacting entities

in modern applications, such as social networks, biological

networks, and knowledge graphs. These networks are often

huge, so it is important to accelerate their analysis using

modern hardware such as GPU with thousands of cores.

One popular tool for network analysis is k-core decompo-

sition [70]. Formally, the k-core of a graph G = (V,E) is the

largest induced subgraph with minimum degree k (i.e., where

every vertex has degree ≥ k). For example, Fig. 1 shows the

1-core, 2-core and 3-core of a graph. Specifically, the 2-core

contains all the yellow and red nodes in the yellow dashed

contour, since it is the largest induced subgraph where every

vertex has degree ≥ 2, as any green vertex has degree 1. Note

that even though vertex A has degree 3, it is not in 3-core since

its neighbor B has degree 2 so cannot be in 3-core, hence A
has at most 2 neighbors in 3-core. k-core decomposition finds

the core number of every v ∈ V , denoted by core(v), which is

the largest value of k that v belongs to a k-core. For example,

core(A) = 2 in Fig. 1 since A is in 2-core but not 3-core.

Applications of k-core decomposition include detecting

dense social communities [65], [66], finding influential spread-

ers [55], detecting protein interactions [28], analyzing gene

Fig. 1. Illustration of k-Cores

networks [36], and understanding the Internet topology [27],

[34]. Moreover, since k-core decomposition can be computed

in linear time [30], it often serves as an effective lightweight

preprocessing to prune unpromising vertices when computing

denser structures whose computations have a much higher time

complexity [39], [43], [48], [49], [52], [67], [83].

Intuitively, k-core decomposition can be computed in linear

time [30] using the serial peeling algorithm of Batagelj and

Zaversnik [30], called BZ hereafter, which removes the vertex

with the smallest degree from G each time. For example, Fig. 1

gives the 1-core, and as we remove all degree-1 vertices that

are green, we obtain 2-core; and as we remove all degree-

2 vertices one at a time (e.g., B will be removed so that

A has degree 2 and then removed), all yellow vertices will

be removed and we obtain 3-core. The parallelization of BZ

is, however, not straightforward. ParK [41] is a pioneering

parallel algorithm that adapts the peeling algorithm to run

in a shared-memory multicore environment, and it is later

improved by PKC [51] to reduce synchronization overhead.

Montresor, De Pellegrini, and Miorandi [63] propose a very

different distributed algorithm, called MPM hereafter, where

every vertex repeatedly performs h-index-style local updates to

estimate its core number from the latest core-number estimates

of its neighbors until convergence. In MPM, each vertex may

compute for multiple times, so the total workload is higher

than BZ and its parallel counterparts such as PKC where each

vertex computes only once. MPM was found to be slower

than PKC when implemented in a shared-memory multicore

environment [51]. However, MPM has been favored and pop-

ularly adopted in the latest research [56], [79] for distributed

computation, since MPM allows all vertices to conduct local

updates simultaneously with minimal dependency.

Despite the increasing availability of GPUs, there are

few GPU-based tools for k-core decomposition. Specifically,

VETGA [60] is currently the fastest GPU implementation of

k-core decomposition. It follows the peeling paradigm, but

reframes the problem in terms of vector primitives so that it

can be executed using highly optimized GPU vector processing

operations in PyTorch. This approach was found to be orders

of magnitude faster than the other GPU-based algorithm [75]

we are aware of, which uses a suboptimal approach that peels

from the highest core number to the lowest, in contrast to BZ

that peels from the lowest core number. The implementation

of [75] is also not publicly released for use by graph analysts.

In this paper, we study the implementation of both BZ- and

MPM-style parallel algorithms (that have been proven effective

in a CPU environment) for execution directly on a GPU. While

PKC has proven to be faster than MPM-style algorithm in a

1818

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00142

2
0
2
3
 I

E
E

E
 3

9
th

 I
n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 D

at
a

E
n
g
in

ee
ri

n
g
 (

IC
D

E
)

| 9
7
9
-8

-3
5
0
3
-2

2
2
7
-9

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

C
D

E
5
5
5
1
5
.2

0
2
3
.0

0
1
4
2

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

multicore machine [51], it is still interesting to compare them

in the GPU setting since a GPU has thousands of threads

and thus supports massive parallelism, which could offset the

higher total workload of MPM given its minimal dependency

(hence high concurrency) for vertex local updates.

Unlike [60] that relies on PyTorch for GPU execution, we

develop a tailor-made PKC counterpart directly using CUDA

to achieve native performance. Moreover, we notice that both

the peeling algorithm and the h-index-style MPM algorithm

can be formulated using a think-like-a-vertex paradigm, and

can thus be implemented with vertex-centric GPU systems

for graph processing, such as Medusa [85], Gunrock [77] and

GSWITCH [61]. We, therefore, provide implementations of all

the above discussed methods and compare them via extensive

empirical studies to provide insights. All our implementations

are released at https://github.com/akhlaqueak/KCoreGPU.

Our main contributions are summarized as follows:

• We develop a peeling algorithm on GPU to achieve the

native performance, and we implement many optimiza-

tion techniques on top to verify their effectiveness.

• We implement k-core decomposition algorithms on

three representative GPU-based graph-parallel systems,

Medusa [85], Gunrock [77] and GSWITCH [61].

• We compare the above algorithms and CPU-based k-

core decomposition algorithms comprehensively using 20

public graph datasets of various characteristics.

In the rest of this paper, Section II briefly surveys existing

parallel algorithms for k-core decomposition and other related

works, and Section III reviews the important concepts in GPU

programming. Then, Section IV describes our GPU-based

peeling algorithm and its optimization techniques. Section V

briefly discusses how to implement k-core decomposition

on existing GPU graph-parallel systems. Finally, Section VI

reports our experiments, and Section VII concludes this paper.

II. EXISTING ALGORITHMS FOR k-CORE DECOMPOSITION

This section reviews the related work. Specifically, Sec-

tion II-A briefly surveys the existing algorithms for k-core

decomposition including serial, parallel, distributed and GPU-

based algorithms. Section II-B then briefly reviews the GPU-

based graph-parallel systems which can be used to implement

k-core decomposition algorithms. Finally, Section II-C reviews

some other works related to k-core decomposition.

A. Existing Algorithms for k-Core Decomposition

BZ. BZ [30] is the state-of-the-art peeling algorithm for k-core

decomposition, which runs in rounds. In the k
th

round (i =
0, 1, 2, · · ·), BZ repeatedly removes a vertex with degree equal

to k until no such vertex is left in G; the removed vertices have

core value k and constitute a vertex set called the k-shell of

G, denoted by V (k) hereafter. Let us denote the largest round

number as kmax, after which no vertex is left. We call kmax

as the core number of the graph G. To illustrate using Fig. 1,

we have kmax = 3, and the 1-, 2- and 3-shells are colored

in green, yellow and red, respectively. The k-core is given by

∪kmax

i=k
V (i), which are the subgraphs shown in Fig. 1 marked

Fig. 2. Illustration of the h-Index Operator

by dashed outlines. Note that in each round, the removal of a

vertex may produce new vertices to remove, such as vertex A
after the removal of vertex B when computing the 2-shell.

The key contribution of BZ [30] is a smart linear-time

implementation of the above idea with the help of four

carefully selected arrays (see Section II-A of [41] for details).

Multicore Peeling Algorithms. ParK [41] is the first par-

allelization of the peeling algorithm. It adopts a two-phase

approach to implement each peeling round k: (1) in the scan

phase, the vertex degree array is scanned in parallel, and each

thread collects its examined vertices with degree k into a

global buffer B; (2) the loop phase where each thread keeps

removing a vertex v from B, and adding those neighbors of

v whose degree becomes k to B for future removal.

The loop phase of ParK is broken into sub-levels where

each sub-level explores the neighbors of vertices in B to add

new vertices with degree k into a new buffer Bnew; at the

end of the sub-level, we assign Bnew to B to start a new

breadth-first propagation in the next sub-level. Instead of using

a global buffer B, PKC [51] removes the need of sub-level

synchronization within the loop phase of each round, by letting

each thread only access its local buffer Bloc. In the scan phase,

each thread collects those vertices with degree k that it scans

into Bloc. Then, each thread runs the loop phase independently

by directly removing vertices from Bloc and appending new

vertices to Bloc, so there is no sub-level synchronization.

Distributed Algorithms. MPM [63] is the pioneering dis-

tributed algorithms for k-core decomposition, followed by later

works such as [79] for core maintenance on large dynamic

graphs. In MPM, each vertex repeatedly performs h-index-

style local updates to estimate its core number from the latest

core-number estimates of its neighbors until convergence.

To illustrate using the graph G in Fig. 1, we plot the degree

of each vertex near itself in Fig. 2. MPM initializes the core-

number estimate of each vertex v, denoted by a(v), as v’s

degree in G. Each vertex then repeatedly refines a(v) by

computing the h-index of the multiset A = {a(u) | (u, v) ∈
E}, which (i) sorts A’s elements in non-increasing order,

and (ii) scans the sorted list from the beginning to find

max{i ∈ N,A[i] ≥ i} to update a(v). For example, v in

Fig. 2 has a sorted list of neighbor core-number estimates

A = [5, 5, 3, 3, 2, 2]. When i = 1 and 2, the element value

A[i] = 5 > i, so we continue to examine the 3rd element;

since A[i] = 3 = i, A[i] ≥ i holds for the first time so

1819

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

a(v) is refined from the old value 6 to 3. Intuitively, v can

find 3 neighbors with degree ≥ 3 but cannot find 4 neighbors

with degree ≥ 4, so core(v) ≤ 3. We use “≤” here since

a(u) of these 3 neighbors u may further decrease when they

are refined. When a(v) converges for all v ∈ V , we have

core(v) = a(v) and k-core decomposition completes.

GPU Algorithms. We are only aware of two works study-

ing GPU algorithms for k-core decomposition. The first is

VETGA [60], which is currently the fastest GPU implementa-

tion. To utilize GPU, VETGA reframes the peeling algorithm

in terms of vector primitives so that it can be executed

using highly optimized GPU vector processing operations in

PyTorch. The second work is [75] which peels from the highest

core number to the lowest. This method needs to compute the

graph core number for kmax times, and was found in [60] to

be orders of magnitude slower than VETGA.

B. Graph-Parallel GPU Systems

Since the advent of Google’s distributed system, Pregel [57],

which promotes a think-like-a-vertex programming model and

a bulk synchronous parallel (BSP) execution model, many

vertex-centric systems have been developed [81] including

GPU-based systems. Medusa [85] strictly mimics the vertex-

centric BSP model of Pregel, where users may define a user-

defined function (UDF) for a vertex v to send messages to its

neighbors, and to receive a batch of messages for processing

at v in the next iteration. Medusa can implement the h-index

operator of MPM in the UDF for k-core decomposition.

Later GPU systems adopt a more restricted edge-centric

UDF to enable more performance optimization, where given

an edge (u, v), users define how the value of v is updated

using the values of u and edge (u, v). While the edge-

centric interface prevents us from implementing a MPM-style

algorithm, we can still implement the peeling algorithm where

when a vertex v deletes itself due to its degree < k, it can

send a message to neighbors: the message along an edge (u, v)
simply decrements the degree of v by 1. Systems following the

edge-centric programming model include CuSha [54], Map-

Graph [45], Gunrock [77], Groute [31], Frog [72], Gluon [42],

SEP-Graph [76], and GSWITCH [61].

McSherry et al. [59] noticed that existing graph-parallel

systems add a lot of system-level overheads to the computation

as compared to a direct implementation, but that study does

not test the GPU systems. So, a goal of our current work

is to compare the performance of our direct implementation

of a peeling-based GPU algorithm with implementations of

peeling- and MPM-based algorithms in GPU systems.

C. Other Algorithms and Problem Variants

Disk-based algorithms have been explored for k-core de-

composition [35], [53], [78] to scale beyond the memory limit

of a single PC, as well as streaming algorithms [68], [69].

Hierarchical core decomposition (HCD) of a graph G builds

a forest structure where each tree node contains the vertices in

a k-core connected component, and each tree edge represents

that a k-core component contains another k′-core component

Fig. 3. GPU Architecture

with k < k′. HCD can be computed in linear time [58] and it

can be used to find the best k-core component efficiently [37].

The parallel algorithm for HCD has been studied in [38].

Variants of k-core have also been studied, such as (k, h)-
core [33], [40] which relaxes neighboring relationship to be

within h hops, (k, r)-core [84] which adds an attribute-based

pairwise vertex similarity constraint, and D-core [46], [47],

[56] which extends the concept of k-core to directed graphs.

III. GPU PRELIMINARIES

This section briefly reviews the GPU architecture and

CUDA programming, to prepare readers with minimal set of

concepts necessary to understand our GPU algorithms.

Fig. 3 summarizes the GPU architecture. Specifically, a

GPU device is connected to the host CPU via PCI-e bus.

In NVIDIA CUDA architecture, developers write device pro-

grams called kernels. A kernel is usually explicitly configured

and invoked by a CPU program to run on a GPU, with many

threads running the same kernel program in parallel. A CPU

program may call a serial of kernels for GPU execution, and

each kernel (or, kernel grid) consists of an array of thread

blocks that execute the same kernel program. Threads from

the same block have access to low-latency shared memory

and their execution can be synchronized. In contrast, different

thread blocks are independent in their execution.

From the hardware perspective, a GPU device consists of an

array of streaming multiprocessors (SMs), where each SM has

a set of execution units and a chunk of shared memory. In an

NVIDIA GPU, the basic unit of execution is warp. A warp is a

collection of 32 threads that are executed simultaneously by an

SM. Multiple warps can be executed on an SM at once. When

an SM executes an SIMD instruction of a kernel program,

it is executed on all threads. If different threads of an SM

need to execute different control flows (e.g., different branches

of an if-else block), the processor executes all paths, using

masking to disable/enable the relevant threads as appropriate.

As a result, a GPU program needs to be carefully designed to

avoid path divergence that leads to GPU underutilization.

When a CUDA program on the host CPU invokes a kernel

grid, the blocks of the grid are enumerated and distributed to

SMs with available execution capacity. The threads of a thread

block execute concurrently on one SM, and multiple thread

blocks can execute concurrently on one SM. As thread blocks

terminate, new blocks are launched on the vacated SMs.

Note that GPU threads cannot directly access the host mem-

ory so data movement is needed between the host memory

1820

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

and GPU global memory before and after a kernel call. Due

to the memory hierarchy of GPU and the intra-warp and inter-

warp parallelism within an SM, coalesced memory accesses

are preferred, and a GPU program should avoid irregular

memory accesses. It is also favorable to keep the data that are

frequently accessed by the threads of a block in the block’s

shared memory to reduce the memory latency as compared

with directly accessing data from the global memory.

In a typical CUDA program, a CPU program first uses

cudaMalloc(.) to allocate space for input data and intermediate

processing buffers on the global memory of a GPU (called

device memory hereafter), and uses cudaMemcpy(.) to move

the input data from host memory to device memory. It then

calls a series of kernel functions to let the GPU perform par-

allel computations, and finally obtains results from the device

memory back to the host memory using cudaMemcpy(.), and

frees the occupied device memory using cudaFree(.).

The name of a kernel function is specified in the form

kernel function<<<BLK NUM, BLK DIM>>>, where

• kernel function is the function name of the kernel to

launch with by the CPU program;

• BLK NUM is the number of thread blocks to run by the

kernel launch;

• BLK DIM is the number of threads in each thread block.

Therefore, a kernel launch runs NUM THREADS =
BLK NUM × BLK DIM threads in total. All these threads

run the same piece of code in serial as specified by the body of

the kernel function, but on different data. This data parallelism

is realized because each thread has access to the following

variables properly configured by the kernel launch:

• blockIdx.x: the ID of a block, which takes a value in

{0, 1, · · · , BLK NUM −1};

• blockDim.x: the number of threads in each block, aka.

the block dimension, as specified by BLK DIM;

• threadIdx.x: the ID of a thread in a block, which takes

a value in {0, 1, · · · , BLK DIM −1}.

The unique thread ID in a kernel grid can be obtained as

THREAD ID = blockIdx.x * blockDim.x + threadIdx.x.

To process an array of n items where n > NUM THREADS,

one can use the following for-loop:

for(i = THREAD ID; i < n; i += NUM THREADS)

so that, for example, the thread with THREAD ID = 2
processes data items at positions 2, NUM THREADS+2,

2 ∗NUM THREADS +2, · · · .

We have not seen the concept of warp yet, which is actually

implicit: a CUDA programmer needs to be aware that the

threads in each block is partitioned into warps of 32 threads

(we assume BLK DIM is always specified as a multiple of

32). For example, a thread can get its warp ID in a block as

WARP ID = threadIdx.x / 32 (or threadIdx.x >> 5),

and the thread can get its ID in its warp as

LANE ID = threadIdx.x % 32 (or threadIdx.x & 31).

They are very useful in our algorithm implementation in

Section IV. For example, we can let Warp 0 of a block fetch

data items needed for next iteration from global memory into

the block’s shared memory, while threads of the other warps

compute data items of the current iteration. This method over-

laps computation with IO and may reduce memory latency.

As another example, the processing of each vertex v is often

done not by an individual thread, but rather by all threads in

a warp in parallel where each thread processes one adjacency

list item of v, in order to achieve coalesced memory access

pattern of adjacency lists. Since the degree of v, denoted by

deg(v), can be > 32, the warp runs the following for-loop so

that its threads process v’s adjacency list in multiple iterations:

for(i = LANE ID; i < deg(v); i += 32),

where each thread processes the i
th

item in the adjacency

list. When deg(v) < 32, some threads in a warp are idle,

leaving GPU cores underutilized. To address this problem,

virtual warping [80] can be used to allow each physical warp

to run 4 logical warps each with 8 threads, so that each virtual

warp processes the adjacency list of an individual vertex.

This technique is mainly for those graphs with a low average

degree [80],and is orthogonal to our techniques in this work.

We next present our GPU-based peeling algorithms in

Section IV, where we keep the narrative in a high level for

readability, and the above programming details are implicit.

IV. OUR PEELING ALGORITHMS ON A GPU

GPU memory is often the key restriction of the graph size

that can be processed by a GPU algorithm, so it is important to

ensure that a graph is stored compactly in the global memory.

Graph Organization in GPU. We keep a graph G = (V,E)
in the global memory compactly as three arrays:

• neighbors: the concatenation of the adjacency lists (i.e.,

neighbor ID lists) of all vertices in V ;

• offset: offset[i] = the start location of the neighbor list of

Vertex i in neighbors;

• deg: deg[i] = the degree of Vertex i.

Here, we assume the vertex IDs are densely indexed; if they are

not, we can perform ID recoding [82] of G as preprocessing.

These three arrays are precomputed by the CPU program and

moved to the device memory before kernel launches.

With these arrays, we can obtain the neighbors of Vertex i as

neighbors[offset[i]+ j] where j = 0, 1, · · · , deg[i]−1. This is

a consecutive subarray that allows coalesced memory access.

In the sequel, we first describe our peeling-based GPU

algorithm, and then explore a few optimizations techniques.

A. Our Basic GPU Algorithm: Overview and Challenges

Our algorithm follows the two-phase algorithm framework

of PKC [51] as reviewed in Section II-A, but it is non-trivial

to implement the two-phase algorithm in a GPU setting.

We identify 3 challenges. The first challenge is to determine

the proper the smallest computing unit for parallelism. In

PKC [51], that unit is a CPU thread, but a thread is clearly

a bad choice in our GPU setting since for coalesced memory

access of adjacency lists, each vertex is examined by a warp

(with 32 threads). This leaves us two options, warp or block.

1821

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Vertex Buffers for the Thread Blocks

Recall that each thread in PKC [51] is associated with a

local buffer Bloc, and the local buffers evenly partition the

host memory space. In our GPU setting, each computing unit

needs to have a local buffer in the global memory of GPU.

Since there are many warps, if warp is the computing unit,

its local buffer has to be small. Since different warps may

collect imbalanced numbers of initial degree-k vertices in the

scan phase of iteration k, a small buffer size is more prone

to overflow. We, therefore, use block as the computing unit.

Accordingly, the remaining global memory (except the space

occupied to store G) is evenly partitioned into BLK NUM

arrays, where block i is associated with an array as its buffer,

denoted by buf[i], and all the BLK DIM threads of a block

read and write the same buffer. This is illustrated in Fig. 4.

Our two-phase algorithm is implemented by calling two

kernels in each peeling round k: (1) in the scan-phase kernel,

vertices are partitioned among all the blocks, and block i scans

its assigned portion of vertices and collects those with degree

k into buf[i]; (2) in the loop-phase kernel, each warp of block

i fetches a degree-k vertex v from buf[i], deducts 1 from the

degree of its neighbors with degree > k, and then adds all

degree-k neighbors to buf[i] for further k-shell propagation.

Intuitively, in the loop phase, the blocks conduct BFS to

reach all the k-shell vertices in parallel from their respective

initial k-shell vertices collected by the scan phase.

Here, two more challenges exist in implementation. The

second challenge is that, a vertex in the k-shell could be a

neighbor of different vertices traversed by different blocks, and

conflict resolution is needed to ensure that it is only collected

by one of the blocks to avoid redundant computation. We will

explain our solution in Section IV-B when describing the loop

kernel (Algorithm 3), with an illustration using Fig. 6.

The third challenge is that, all threads of block i are

fetching vertices from and adding vertices to the same buffer

buf[i], and mechanism is needed to ensure thread-safety of

buffer updates. Specifically, we maintain two positions s and

e for each buf[i] in the shared memory of block i for thread-

safe access by all its threads (see Fig. 4), where s denotes

the position of the next element in buf[i] to process, and e
denotes the next position in buf[i] to append an element (i.e.,

one position after the last element currently in buf[i]).

B. Details of Our Basic GPU Algorithm

The Host Program. Algorithm 1 shows our host program.

Specifically, Line 1 first loads the input graph into the device

Algorithm 1 GPU-Based Peeling Algorithm: Host Program

Input: G = (V,E)
Output: Core value core(v) for every vertex v ∈ V

1: Load G into the device memory, including deg[.]

2: Set vertex counter count ← 0
3: Load count to device memory as gpu count
4: k ← 0; Allocate buffers buf[.][.] in device memory

5: while count < |V | do

6: Launch kernel scan(k)

7: Launch kernel loop(k)

8: Read gpu count back to count
9: k ← k + 1

10: Read deg[.] back to host memory and return as core values

memory including the three arrays neighbors[.], offset[.] and

deg[.] introduced at the beginning of Section IV. Note that

our algorithm will update deg[.] when vertices in k-shells are

being removed so that in the end, for every vertex v ∈ V ,

deg[v] keeps the value of core(v) (c.f. Line 10). Then, Line 2

initializes count to 0, which is a counter indicating how

many vertices have already been removed during the course of

algorithm execution. Since vertex examinations are conducted

on the GPU, we need to mirror count to the device memory as

gpu count in Line 4 so that GPU threads can update it. Before

beginning the k-shell removal for k = 0, 1, 2, . . . by the while-

loop in Lines 5–9, Line 4 initializes k as 0 and allocates space

of the buffers for all thread blocks in the device memory.

The k-shell removal is repeated until all |V | vertices have

been removed (see Line 5). Specifically, we call the kernel

scan(k) in Line 6 to let thread blocks collect their initial sets

of k-shell vertices into their buffers, which are then used by

the other kernel loop(k) in Line 7 to collect and remove the

remaining vertices in the k-shell using parallel BFS. These

two kernels are described in Algorithms 2 and 3, respectively.

The Scan-Phase Kernel. Algorithm 2 shows the scan-phase

kernel, where the vertices of G are distributed to the threads for

checking their degrees. Lines 3–5 ensure that every vertex is

assigned to a unique thread. For example, Thread j processes

all vertices with IDs of the form n ∗ NUM THREADS + j
(n ∈ N) is processed by Thread n2. If vertex v has degree

k (Line 6), it must be in the k-shell (since k′-shells with

k′ < k have been removed in previous rounds), so Lines 7

and 9 append v to the buffer of the current thread’s thread

Algorithm 2 Kernel Function scan(k)

Assumption: e is in shared memory

1: if THREAD ID = 0 do e ← 0
2: syncthreads()

3: for (s ← 0; s < |V |; s += NUM THREADS) do

4: v ← s + THREAD ID

5: if v ≥ |V | do continue

6: if deg[v] = k then

7: pos ← atomicAdd(e, 1)

8: {Let the thread block of the current thread be i}
9: buf[i][pos] ← v

1822

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

block. Here, CUDA function atomicAdd(e, 1) returns pos as

the current value of e (i.e., the next position to append a new

buffer element), and it advances e atomically so that other

threads later can only write to buffer positions after pos.

Recall from Fig. 4 that e is shared by all threads of

a block and is kept in the block’s shared memory. It is

initialized by Thread 0 of the block in Line 1, and a block-level

synchronization barrier in Line 2 then ensures that no update

of e in Line 7 can be executed before Line 1 of Thread 0.

While a block contains many threads that update e, shared

memory atomic operations have been highly optimized by

NVIDIA with native hardware support [64].

At the end of kernel scan(k), Thread 0 of each block also

needs to back up e from its shared memory to buf [i].e in the

global memory for use by the second kernel loop(k), which

is omitted in Algorithm 2 to make it succinct.

The Loop-Phase Kernel. Algorithm 3 shows the loop-phase

kernel. Specifically, each block i first initializes its buffer

head and tail positions, s and e (both in shared memory),

respectively, in Line 2. Here, (1) e basically loads buf [i].e in

the global memory previously written by scan(k); (2) this is

done only by Thread 0 of each block (see Line 1); (3) Line 4

ensures initialized s and e to be seen by all threads of a block.

Afterwards, each block i repeatedly fetches k-shell vertices

from buf[i] for processing (Lines 4–24) until there are no more

vertices in buf[i], i.e., s = e as checked in Line 5. Recall that

Algorithm 3 Kernel Function loop(k)

Assumption: s and e are in shared memory

1: if THREAD ID = 0 then

2: s ← 0, e ← buf [i].e
3: repeat

4: syncthreads()

5: if s = e do break

6: s′ ← s+ WARP ID, e′ ← e
7: syncthreads()

8: if s′ ≥ e′ do continue

9: if THREAD ID = 0 do

10: s ← min{s+ BLK DIM >> 5, e}
11: {Let the thread block of the current thread be i}
12: v ← buf[i][s′]
13: pos s = offset[v], pos e = offset[v + 1]
14: repeat

15: syncwarp()

16: if pos s ≥ pos e do break

17: pos ← pos s+ LANE ID, pos s ← pos s+ 32
18: if pos ≥ pos e do continue

19: u ← neighbors[pos]
20: if deg[u] > k do

21: deg u ← atomicSub(deg[u], 1)

22: if deg u = k + 1 do

23: loc ← atomicAdd(e, 1), buf[i][loc] ← u
24: if deg u ≤ k do atomicAdd(deg[u], 1)

25: syncthreads()

26: if THREAD ID = 0 do atomicAdd(gpu count, e)

Fig. 5. Illustration of Algorithm 3 (Assuming a Block has 32 Warps)

(1) each block has BLK DIM/32 warps, and (2) each vertex

v (i.e., its neighbor list) is processed by a warp. Therefore, in

each iteration, a block processes BLK DIM/32 vertices.

We break each iteration into 3 parts: (i) Lines 4–8 determine

if the loop phase of the current block i terminates; (ii) Lines 9–

13 advance to the next batch of vertices in buf[i], and retrieve

from buf[i] the vertex v that is assigned to the current warp;

and (iii) Lines 14–24 let the 32 threads of the current warp

process v’s neighbors u in parallel, where u is added to buf[i]
if its degree becomes k after the removal of v from G.

First consider Part (i) in Lines 4–8. Let the block of the

current thread be block i. Due to the block-level synchro-

nization barrier in Line 4, all threads of a block will see the

same value of s in Line 5, which equals the next location

of buf[i]; the warps of block i will retrieve vertices buf[i][s],
buf[i][s+1], buf[i][s+2], · · · for processing, i.e., v in Line 12

where s′ = s+ WARP ID was set in Line 6. Fig. 5 shows

how elements in buf[i] are assigned to the warps of block i.
Note that s was advanced in the previous iteration by Line 10.

Now let us return back to Line 5: if s = e, then buf[i] is

empty and all threads of block i are finished and thus break

out of the loop. Otherwise, Line 6 obtains the vertex position

s′ in buf[i] that the warp of the current thread should process;

it also backs up the buffer tail e after the last iteration into

e′, so that if s′ ≥ e′ (i.e., block i has more warps than the

remaining vertices in buf[i]) in Line 8, v = buf[i][s′] does not

exist so the current warp skips Parts (ii) and (iii). For example,

in Fig. 5, e′ ← e = s + 29 in Line 6, and since s′ = s +
WARP ID ≥ e′ for Warps 29, 30, and 31, these three threads

execute “continue”. Note that “continue” is used rather than

“break” here, since the warp needs to stay active to process the

next iteration as more vertices could be appended to buf[i] in

the current iteration. For example, in Fig. 5, Warp 2 processes

vertex v, so its threads will examine v’s neighbors u1, . . .,
u5 in Part (iii) and may add up to 5 vertices into buf[i]. Since

each vertex in this iteration may add multiple vertices to buf[i],
there could be many new k-shell vertices in buf[i] to keep all

warps of block i busy in the next iteration.

The block-level barrier in Line 7 is needed, since warps of

a block may run in any order; without the barrier, there is no

guarantee that the read of s and e in Line 6 is executed strictly

before any updates of s and e in Lines 10 and 23, respectively.

Moreover, we cannot swap Lines 7 and 8 since otherwise,

when some warps cannot find a vertex in buf[i] to process,

“continue” is called so they will never run syncthreads() to

1823

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Redundancy Avoidance and Core Number Maintenance

advance the barrier, causing the kernel program to get stuck.

Next consider Part (ii) in Lines 9–13. Since s′ has been

computed in Line 6 for each warp to retrieve vertex buf[i][s′] in

Line 12, s is no longer used in the rest of the current iteration,

and thus advanced by Thread 0 of block i in Line 10 for use

by the next iteration. For example, in Fig. 5, s ← min{s +
32, e} = min{s+32, s+29} = e, which is right after the last

element of buf[i] for the current iteration. Afterwards, Line 12

retrieves v = buf[i][s′] and Line 13 retrieves its adjacency list

for use in Part (iii). Fig. 5 shows how pos s and pos e are

set by Line 13 for vertex v processed by Warp 2.

Finally consider Part (iii) in Lines 14–24, where the 32

threads of a warp process up to 32 neighbors of v in each

iteration of the inner-loop given by Line 14, until all neighbors

of v are processed. This latter condition is examined in

Line 16, and to ensure that all 32 threads see the same values

of pos s and pos e, a warp-level barrier is added in Line 15.

As Lines 17 and 19 show, the j
th

thread of a warp examines

v’s neighbor u = neighbors[pos s+j], and pos s is advanced

by 32 for use by the next inner-iteration. For example, in

Fig. 5, the first five threads of Warp 2 process v’s five

neighbors u1–u5, respectively. Here, pos s is a local variable

and each thread of a warp has a replica. It is possible that

there are fewer than 32 neighbor items left in the neighbor

list of v, in which case Line 18 skips the execution of those

threads without a corresponding u to examine. For example,

in Fig. 5, the thread of Warp 2 with LANE ID = 5 finds that

pos = pos s+ 5 ≥ pos e, so Line 18 executes “continue”.

Each thread then processes a neighbor u of v in Lines 20–

24. Specifically, the removal of v reduces u’s degree by 1, so

Line 20 skips u if its degree ≤ k since such a u belongs to k′-
shell for some k′ < k, and thus deg[u] should have converged

to core(u) in a previous round. Otherwise, Line 21 decrements

deg[u] to reflect the removal of v. CUDA’s atomicSub(.) in

Line 21 returns the old value of deg[u] before its decrement,

so if the returned value deg u = k+1 in Line 22, deg[u] has

been decremented to k by Line 21. Thus, u belongs to the

k-shell and is hence appended to buf[i] in Line 23.

Finally in Line 26, each block adds its collected number

of k-shell vertices in this round (i.e., e) to gpu count. Recall

that Algorithm 1 relies on gpu count to decide the program

termination condition (see Lines 5 and 8 of Algorithm 1).

Avoiding Redundant Vertex Traversal. One issue remains

(i.e., the second challenge introduced in Section IV-A) as is

illustrated in Fig. 6, where we consider the toy example of

two blocks each with two warps, and assume that (1) we are

now in the loop phase for finding 2-shell, and that (2) in the

scan phase, buf[1] has collected degree-2 vertices 1 and 2,

while buf[2] has collected vertices 3 and 4. Since Warps A

(v = 1), B (v = 2), C (v = 3) and D (v = 4) will all see

neighbor u = 0 in Line 19, assuming that their four respective

threads processing 0 reach Line 20 simultaneously and find

deg[0] = 4 > 2, then they will all run Line 21 to decrement

deg[0] from 4 all the way to 0. Since each thread decrements

deg[0] atomically, the thread that executes Line 21 the second

will find deg u = 3 (i.e., deg[u] = 2) and add vertex 0 to its

block’s buffer; note that a k-shell vertex will only be captured

by one block so there is no redundant computation.

After all the 4 threads complete Line 21 simultaneously,

deg[0] is reduced to 0 but the core number of vertex 0 is 2.

To allow deg[0] to converge correctly to core(0) = 2, we thus

need to have Line 24, which will be executed twice by the

2 threads seeing deg u = 1 and 2 (i.e., deg[u] = 0 and 1),

respectively, to recover deg[u] back to 2.

In general, Case 1: if u is in k-shell, then if any k-

shell vertex v causes deg[u] to be decremented below k, this

decrement will be canceled by Line 24, and since u has at

least k such k-shell neighbors v, deg[u] will be added back

to k to reach the correct core(u). Case 2: if u is in k′-shell

with k′ > k, then deg u ≥ k in Line 24 cannot happen

since u has at least k′ neighbors in k′-shell, and this round

simply reduces deg[u] by the number of neighbors in k-shell

by Line 21 for correct peeling. Case 3: if u is in k′-shell with

k′ < k, then deg[u] > k in Line 20 cannot hold, so deg[u]
will not be updated in this round (and also in future rounds

by induction), i.e., core(u) has converged to k′.

C. Optimization Techniques

We explore a few optimization techniques to our algorithm.

Ring Buffers. In Fig. 4, the buffer of each block is organized

as an array of fixed size (let the size be B). There are two

problems: (1) if e reaches B (which can be checked by an

assert statement), we have a block overflow so that the graph

is too large to be processed given the space limit of the global

memory; (2) since s is incremented in one direction, buffer

slots before position s cannot be recycled and are thus wasted.

To address these problems, we can organize each buffer buf[i]
as a ring buffer, where we update Line 23 of Algorithm 3

with buf[i][loc mod B] ← u so that if e is incremented to B
or beyond, it wraps around from the beginning of the buffer

array. Similarly, we set v ← buf[i][s′ mod B] in Line 12.

Utilizing Shared Memory for Buffering. While we have used

the shared memory of each block i to keep s and e of its

buffer buf[i], buffer elements are still read from and written to

the global memory: see Line 9 of Algorithm 2, and Lines 12

and 23 of Algorithm 3. A natural idea is to use the remaining

space in the shared memory of a block as a low-latency buffer,

denoted by B. We use B only in the loop phase, not the scan

phase since otherwise, we would still need to flush its content

to buf[i] in global memory for use by the “loop” kernel, which

causes additional overheads. Ideally, when the k-shell is small

enough, a block i in the loop phase should only add new vertex

1824

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

B

B

B

B

B

B

B

B

Fig. 7. Vertex Buffering in Shared Memory

to B for k-shell propagation, though the initial set of k-shell

vertices are read from buf[i] as collected by the scan kernel.

Fig. 7 illustrates this idea, where we assume the capacity

of B is nB = 8, and initially, block i has already collected

einit = 6 k-shell vertices into buf[i] during the scan phase. In

Line 12, we now need to translate s′ into a position in either B
or buf[i] when fetching a vertex, which is illustrated in Fig. 7.

For example, if s′ = 3, we read buf[i][3]. As soon as the initial

k-shell vertices in buf[i] have all been fetched, we start to read

from B, e.g., if s′ = 7, we read B[7− einit] = B[1]. When B
has been exhausted, we read again from buf[i], e.g., if s′ = 14,

we read buf[i][14− nB] = buf[i][6].
Similarly, in Line 23, we now translate loc into a position

in either B or buf[i] when appending a vertex, which is also

illustrated in Fig. 7. For example, if loc = 7, we write B[1].
When B has been exhausted, we then continue to append

to buf[i], e.g., if loc = 14, we write buf[i][6]. Note that the

position translation by all threads in block i needs to access

einit, so we let Thread 0 read it into the shared memory when

the “loop” kernel begins.

Vertex Frontier Prefetching. In our kernel implementation,

we adopt BLK DIM = 1024, so each block has BLK DIM

>> 5 = 32 warps, equaling the number of threads in a warp!

With this setting, we can implement a prefetching strategy

where Warp 0 of each block i fetches 31 k-shell vertices at

the propagation frontier (i.e., v in Line 12) into the shared

memory, for the remaining 31 warps to process in the next

iteration; while in the meanwhile, the other 31 warps are

processing the 31 vertices fetched by Warp 0 in the previous

iteration, without reading from buf[i] in the global memory.

To implement this logic, we maintain a small vertex array

pref[.] in the shared memory where pref[j] keeps the prefetched

vertex for Warp j. In Algorithm 3, the Thread-0 logic in

Lines 9–10 is now replaced by Warp-0 logic, where (1) the

thread with LANE ID = 0 first advances s, (2) followed

by syncwarp() to ensure other threads in Warp 0 sees the

advanced s, then (3) the remaining 31 threads fetch the next

batch of up to 31 k-shell vertices into pref[.], where each

thread fetches buf[i][s′ − 1] into pref[LANE ID], where s′

was computed in Line 6.

Reducing Contention for Buffer Appending. In Line 7 of

Algorithm 2 and Line 23 of Algorithm 3, all the 1024 threads

of each block (atomically) increments the same variable e

Fig. 8. Illustration of Compacting and Appending

in the shared memory, so the contention is high. In each

iteration, a thread only examines at most one vertex v (in the

scan kernel) or one neighbor u (in the loop kernel) in each

iteration, so each warp (or block) collects at most 32 (or 1024)

elements. Let the number of collected items be m, then we let

a thread of the warp (or block) advance e by m positions in

one atomicAdd(.) operation, and then let all the threads write

these m elements to the m advanced positions in buf[i].

This can be achieved using the “compact” operation with

the help of the “scan” (or, prefix sum) operation, as illustrated

by Fig. 8 where we assume warp-level compaction. To save

figure space, we show a warp as having 8 threads instead of

32, and array indices are marked with local ones in a warp.

As Fig. 8(a) shows, each block i keeps three arrays of

size BLK DIM in shared memory: (1) vid[j] tracks the ID

of the vertex examined by Thread j; (2) p[j] is set to 1

if Thread j finds vertex vid[j] to be in k-shell (for buf[i]
insertion), and 0 otherwise; (3) a[j] tracks the number of 1’s in

p[.] before position j and inside Thread j’s warp. For example,

in Fig. 8(a), the first thread checks vertex a and finds that it

should be appended to buf[i], so p[0] = 1. The second thread

checks vertex b and decides not to append it to buf[i], so

p[1] = 0. Also, a[5] = 3 since before position 5 there are

3 ones: p[0], p[3] and p[4]. We will explain how to compute

a[.] from p[.] in the next paragraph using prefix sum (Lines 1–

2). Note that the # of elements to insert for a warp equals the

sum of the last elements of a[.] and p[.] in the warp, which is

summed by the warp’s last thread in Lines 3–4. For example,

a[7] = 4 since the first 7 threads set 4 ones in p[.], and as p[7]
is also one, we advance e by 5. So far, only the last thread in

the warp gets eold for the warp to start writing the 5 elements

from, so Line 5 broadcasts it to the other 31 threads in the

warp using a CUDA warp-level primitive. Each thread then

gets its write location in Line 6, and writes its checked k-

shell vertex to buf[i] in Lines 7–8. For example, vertices a, d,

e, f and h are written to locations eold, eold + 1, eold + 2,

eold + 3, eold + 4, respectively. Here, locations are computed

as eold + a[j], j = 0, 3, 4, 5, 7 where p[j] = 1.

1825

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Intra-Block Scan

We now explain how the warp-level scan in Line 2 of

Fig. 8(a) is implemented. A straightforward approach is to use

a logarithmic-span scan algorithm such as Hillis and Steele

(HS) algorithm [50] and Blelloch algorithm [32]. We adopt

HS as illustrated in Fig. 8(b) which runs for log n iterations

since Blelloch algorithm needs twice the number of iterations.

As shown in Fig. 8(b), in the i
th

iteration, Thread j sums

a[j] with a[j − 2i−1] if it is within the warp, so for example,

a[7] counts the number of 1’s from positions 6, 4, 0 to the

current position 7 in iterations 1, 2, 3, respectively. Note that

HS is inclusive meaning that the final prefix count includes

the current position, so we need to compute exclusive counts

(see the blue arrow in Fig. 8) for use by “compact” operation.

We also explore the more efficient Ballot scan algo-

rithm [29] designed specifically for the warp-level scan, as

illustrated in Fig. 8(c). Specifically, all threads of a warp

first call CUDA warp-level primitive ballot sync to compact

their 0-1 values into a 32-bit bitmap bits. Then, each thread j
computes a mask to fetch the last j bits of bits, and counts

the number of 1’s therein using CUDA’s popc function.

Warp-level compacting can be applied in both the scan

kernel and the loop kernel. We can also adopt block-level

compacting in the scan kernel, but not the loop kernel since it

operates in warp level where all threads of a warp check the

neighbors of a vertex u simultaneously. While we can directly

use HS for intra-block scan, it is more efficient to use the two-

stage algorithm of [71] as illustrated in Fig. 9. Specifically,

(1) each warp first computes the warp-local offsets using HS

scan; (2) recall that we can obtain the number of 1’s in each

warp from the last element, so these sums are collected to

Warp 0; (3) there are 1024 threads (32 warps) in a block

and thus 32 sums are collected by Warp 0, which runs HS

to compute their prefix sums (we cannot use ballot scan here

since elements are not 0-1); (4) the offsets in each warp add

the global offset computed by Warp 0, to get the block-level

offsets for block-level compact. This approach has overheads

since a block-level barrier is needed between two consecutive

steps, and only Warp 0 computes in Steps (2) and (3).

V. ALGORITHMS ON GRAPH-PARALLEL SYSTEMS

We study k-core decomposition algorithms on three rep-

resentative GPU-based graph-parallel systems, Medusa [85],

Gunrock [77] and GSWITCH [61]. We choose Medusa [85]

since it strictly mimics the model of Pregel where a vertex

has access to the messages/values of all its neighbors in

a UDF so that the h-index operator can be supported to

implement an MPM-style algorithm in addition to the peeling

algorithm. Gunrock [77] is selected since it features a then

novel data-centric abstraction centered on operations on a

vertex or edge frontier, and is known for its high performance.

GSWITCH [61] is selected as a very recent system that sup-

ports algorithmic autotuning which configures a GPU kernel of

a computing iteration for favorable performance based on fea-

tures observed from the previous iteration. These three systems

were proposed in 2014, 2016 and 2019, respectively, spanning

evenly in the entire period of active development of GPU-

based graph-parallel systems and are hence representative.

MPM-Style Algorithm on Medusa. A Medusa program re-

quires users to implement 3 UDFs, (1) SendMessage, (2) Com-

bineMessage, and (3) UpdateVertex. To implement MPM,

“SendMessage” simply sends the core-number estimate of the

current vertex to all its neighbors; “CombineMessage” im-

plements the h-index operator over the received core-number

estimates from all neighbors; “UpdateVertex” simply updates

the core-number estimate of the current vertex using the new

h-index value, and if the estimate value changes, a global

aggregate flag is set to indicate more iterations are needed.

Peeling Algorithm on Medusa. In our implementation,

“SendMessage” checks if the current vertex v is marked as

deleted or if it has degree > k. If so, v sends 0 to all

neighbors, while otherwise, v is in the k-shell, so we set

core(v) = k, mark v as deleted, and send 1 to all neighbors.

“CombineMessage” simply sums all messages received at a

vertex v, which counts the number of deleted neighbors of v
in the k-shell. “UpdateVertex” deducts the degree of a vertex

v by this count, and if the resulting degree ≤ k, we set a

global aggregate flag to indicate that the current k-shell round

should run more iterations. A typical Medusa program only

has one level of iteration looping. We further add an outer loop

of rounds, which terminates if all vertices are marked deleted.

Peeling Algorithm on Gunrock and GSWITCH. We directly

use the k-core decomposition algorithm already implemented

in Gunrock. Its idea is similar to our GSWITCH program to

be described next. Specifically, a GSWITCH program requires

users to implement 2 key UDFs, (1) “filter” which identifies

new vertices with degree k to emit messages, and (2) “comp”

which decrements the degree of each vertex for each received

message. GSWITCH also provides a UDF “emit” for aggre-

gating vertex states to indicate if the inner loop of iterations

for a round k still needs computation. However, GSWITCH

does not support an easy way to write the outer loop of rounds,

so we simply repeat the iterative computations for n rounds,

where n is hardcoded as the core number of each input graph.

VI. EXPERIMENTS

We report our empirical results of the serial, CPU-parallel

and GPU-parallel k-core decomposition programs in this sec-

tion. Our CPU programs were run on a server with two Intel

Xeon E5-2680 v4 CPU @ 2.40 GHz (48 threads) and 256 GB

RAM. Our GPU kernels were run with NVIDIA Tesla P100

GPU with a global memory of 16 GB.

We find that different runs of our GPU programs may vary

sometimes by over 30% in time, so we run each program

1826

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DATASETS

Dataset |V| |E| davg std dmax kmax Category

amazon0601 403,394 3,387,388 16.8 15 2,752 10 Co-purchasing

wiki-Talk 2,394,385 5,021,410 4.2 103 100,029 131 Communication

web-Google 875,713 5,105,039 11.7 39 6,332 44 Web Graph

web-BerkStan 685,230 7,600,595 22.2 285 84,230 201 Web Graph

as-Skitter 1,696,415 11,095,298 13.1 137 35,455 111 Internet Topology

patentcite 3,774,768 16,518,948 8.8 10 793 64 Citation Network

in-2004 1,382,908 16,917,053 24.5 147 21,869 488 Web Graph

dblp-author 5,624,219 24,564,102 8.7 11 1,389 14 Collaboration

wb-edu 9,845,725 57,156,537 11.6 49 25,781 448 Web Graph

soc-LiveJournal1 4,847,571 68,993,773 28.5 52 20,333 372 Social Network

wikipedia-link-de 3,603,726 96,865,851 53.8 498 434,234 837 Web Graph

hollywood-2009 1,139,905 113,891,327 199.8 272 11,467 2,208 Collaboration

com-Orkut 3,072,441 117,185,083 76.3 155 33,313 253 Social Network

trackers 27,665,730 140,613,762 10.2 2,774 11,571,953 438 Web Graph

indochina-2004 7,414,866 194,109,311 52.4 391 256,425 6,869 Web Graph

uk-2002 18,520,486 298,113,762 32.2 145 194,955 943 Web Graph

arabic-2005 22,744,080 639,999,458 56.3 555 575,628 3,247 Web Graph

uk-2005 39,459,925 936,364,282 47.5 1,536 1,776,858 588 Web Graph

webbase-2001 118,142,155 1,019,903,190 17.3 76 263,176 1,506 Web Graph

it-2004 41,291,594 1,150,725,436 55.7 883 1,326,744 3,224 Web Graph

for 100 times and report the average and standard deviation

(std). For all the other programs, each reported experiment

was repeated for 3 times with the average reported.

We configure a kernel grid to have BLK NUM = 108
blocks, each with BLK DIM = 1024 threads (or, 32 warps).

The global-memory buffer capacity of each thread block (i.e.,

capacity of buf[i]) is set to hold 1 million vertex IDs. Each

block also has a shared-memory buffer B with a capacity of

10,000 vertex IDs, close to the space limit of a shared memory.
TABLE II

ABLATION STUDY (TIME UNIT: MILLISECOND; AVG ± STD)

Dataset Ours SM VP

amazon0601 1*±0.2 1±0.0 1±4.1

wiki-Talk 36*±0.5 38±0.0 38±0.0

web-Google 5*±0.2 6±0.0 6±0.0

web-BerkStan 24*±0.5 24±0.4 26±0.5

as-skitter 37*±0.6 38±0.5 40±0.6

patentcite 16*±0.3 18±0.0 19±0.4

in-2004 41*±0.5 43±0.5 46±0.4

dblp-author 10*±0.3 14±0.0 13±0.0

wb-edu 90*±0.9 96±0.4 98±0.2

soc-LiveJournal1 90*±0.9 93±0.7 96±0.8

wikipedia-link-de 317*±1.2 322±1.5 342±1.2

hollywood-2009 239*±1.2 241±0.6 250±0.6

com-orkut 179*±12.9 182±15.8 190±12.6

trackers 1508±61.2 1471±54.3 1452*±16.6

indochina-2004 804*±1.2 810±0.9 817±1.2

uk-2002 311*±0.7 329±0.7 330±0.7

arabic-2005 1291*±3.4 1313±3.5 1340±3.4

uk-2005 552*±16.5 617±19.5 612±25.6

webbase-2001 1850*±0.7 1935±0.7 1912±0.9

it-2004 1926*±10.5 1985±3.2 1987±11.2

BC BC+SM BC+VP

1±0.0 1±0.0 2±0.0

45±0.4 45±0.1 48±0.3

6±0.0 7±0.0 8±0.0

31±0.5 28±0.2 33±0.6

45±0.5 45±0.7 49±0.6

20±0.0 22±0.0 23±0.0

56±0.3 55±0.6 62±0.5

13±0.0 16±0.0 16±0.0

150±0.5 154±0.5 161±0.3

119±0.6 119±0.7 127±1.0

396±1.2 389±1.6 428±1.2

305±0.7 294±1.2 319±0.8

203±15.4 200±17.6 219±16.9

1858±75.3 1799±69.8 1812±31.3

1430±1.1 1421±1.2 1464±1.2

547±0.7 556±0.6 572±0.7

2306±3.5 2296±4.2 2374±3.5

906±21.0 960±23.4 992±25.3

4014±0.57 4078±0.6 4094±0.8

3696±10.1 3687±2.7 3764±14.8

EC EC+SM EC+VP

1±0.5 2±0.0 2±0.0

59±0.3 60±0.0 60±0.1

8±0.0 9±0.0 8±0.3

38±0.6 38±0.5 41±0.9

56±0.7 57±0.6 58±0.7

28±0.0 30±0.1 28±0.0

81±0.4 80±0.5 83±0.4

17±0.1 20±0.0 16±0.0

283±0.3 287±0.3 287±0.4

176±0.7 178±1.1 179±0.9

517±1.7 518±2.0 539±1.6

400±1.3 398±1.3 409±1.4

239±19.0 243±21.0 247±16.8

2503±19.2 2421±79.2 2330±21.4

2936±1.6 2936±1.5 2945±1.6

1067±0.7 1080±0.6 1070±0.9

4495±4.0 4503±4.0 4536±3.7

1627±18.3 1690±28.9 1632±18.1

9069±0.8 9135±0.6 9069±0.9

7582±5.8 7599±4.4 7596±14.1

Datasets. We test our GPU algorithm

and the other baselines extensively on

20 public graph datasets of various

size, density, and core number, as

shown in Table I where the datasets

are listed in ascending order of the

number of edges. These datasets are

from different categories including

(1) web graphs web-Google [23],

web-BerkStan [24], in-2004 [21],

wb-edu [10], wikipedia-link-de [25],

trackers [18], indochina-2004 [2], uk-

2002 [1], arabic-2005 [4], uk-2005 [5],

webbase-2001 [16], it-2004 [3];

(2) interaction networks such as

communication network wiki-Talk [26],

citation network patentcite [8],

collaboration networks dblp-author [9]

and hollywood-2009 [13], and social

networks oc-LiveJournal1 [17] and

com-Orkut [19]; (3) co-purchasing network amazon0601 [6];

(4) Internet topology as-Skitter [14]. These datasets are

widely used in prior works on serial and parallel k-core

decomposition. Some graphs are directed and we make them

undirected by ignoring the edge direction.

As we can see, the graphs have very different characteristics.

The number of edges is up to 1.15 billion on it-2004. The

average (resp. max) vertex degree is up to 199.8 on hollywood-

2009 (resp. 11.57 million on trackers). The core number (i.e.,

kmax, the largest k for a k-core) is up to 6,869 on indochina-

2004 meaning that peeling-based computation needs to run for

6,870 rounds. The degree distribution can be very biased with a

standard deviation of 2774 on trackers while its average degree

is merely 10.2. Our GPU program can handle all these graphs

since our graph is stored compactly in the global memory.

Ablation Study. We first compare our basic GPU algorithm

described in Section IV-B, denoted by Ours, with its variants

that integrate the various optimization techniques described in

Section IV-C. The first two techniques concern how to reduce

the memory latency of reading vertices from buf[i]:

• SM (Shared-Memory Buffering) uses a shared-memory

buffer B to reduce the cost of accessing buf[i] (c.f. Fig. 7).

• VP (Vertex Frontier Prefetching) lets Warp 0 of a block

fetch k-shell vertices from buf[i] into shared memory.

The next two techniques concern how new k-shell vertices

are collected and appended to buf[i], instead of appending them

to buf[i] one at a time using atomicAdd(.) as in Ours:

• BC (Ballot Compaction), for both scan and loop kernels,

conducts warp-level compacting first as illustrated in

Fig. 8 and then appends to buf[i] in one batch.

• EC (Efficient Compaction) conducts block-level com-

pacting in scan kernel (c.f. Fig. 9) to append to buf[i]
in one batch, and warp-level compacting in loop kernel.

For each of Ours, BC and EC, we can create a variant with

SM or VP, leading to 9 program versions whose performance

are reported in Table II. In Table II, the three variants of each

of Ours, BC and EC constitute a subtable, and the overall best

among the 9 versions are highlighted with asterisks.

1827

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

Surprisingly, our basic GPU algorithm performs the best

on all datasets except for trackers where VP performs the

best. Note that the results are reported based on 100 runs and

thus very stable, and VP wins on trackers since this dataset

has a very biased degree distribution (recall from Table I that

the degree std is 2774 while the average degree is 10.2), so

the majority of vertices have a low degree and hence their

computation cost is low, and the overlapped vertex prefetching

effectively hides the memory latency. For all the other datasets,

VP is not favorable since computation cost dominates, and

the fact that each block has only 31 warps doing the actual

computation rather than 32 increases the running time.

SM is not helpful (except on trackers where computation

cost does not dominate) since, as Fig. 7 shows, we need to

run additional instructions for write-location translation (with

a case checking), and the buf[i]-appending operation is very

frequent. This overhead outweighs the benefit of having up

to |B| items appended to and read from the shared memory

rather than buf[i], which could be just a very small fraction of

all the k-shell vertices traversed by block i in iteration k.

Both BC and EC slow down the computation as com-

pared with Ours. This is because AtomicAdd(.) has been so

optimized in the latest GPUs [11] that the contention for

result collection is no longer a disadvantage as compared

with the old-school compaction approaches [12] that determine

result offsets in batch before concurrent writing. After all,

compaction runs additional instructions to compute offsets,

the cost of which is non-trivial especially given that buffer

appending is frequent. Similar observation has been found by

CuTS [80] for subgraph matching on GPUs. In addition, BC

is often twice as fast as EC (although twice as slow as Ours)

especially on the last few big datasets. This shows that Ballot

scan for warp-level compacting during the scan phase is highly

efficient thanks to the use of CUDA primitives ballot sync

and popc (c.f. Fig. 8(c)). On the other hand, block-level

compacting for large-batch appending backfires, since as Fig. 9

shows, block-level offset computation takes 4 steps where only

Warp 0 computes in Stages (2) and (3).

In summary, the Occam’s razor principle applies for algo-

rithm design on modern GPU architecture where operations

(e.g., AtomicAdd(.)) have been highly optimized in perfor-

mance, and memory latency is not as high as worthy of hiding

by additional thread computations (which can often be more

expensive). While our integration of the best optimization

practices in the GPU algorithm literature does not help in most

cases, our exploration is still valuable in hinting that future

works on GPU algorithms should compare with simplistic

designs for ablation study to justify the use of optimizations.

Comparison with GPU Baselines. We compare Ours with

the GPU baselines as shown in Table III, which we have

introduced in Sections II and V, where Medusa-Peel, Gun-

rock and GSwitch all run the edge-centric peeling algorithm

while Medusa-MPM runs the vertex-centric MPM algorithm.

Medusa-Peel is clearly faster than Medusa-MPM due to less

computing workloads, but both of them has graphs that run

TABLE III
COMPUTATION TIME OF GPU PROGRAMS (UNIT: MILLISECOND)

Dataset Ours VETGA Medusa-MPM Medusa-Peel Gunrock GSwitch

Amazon0601 1* 133 34,835 588 38 30

wiki-Talk 36* 675 > 1hr 12,657 1,236 168

web-Google 5* 225 44,423 1,986 127 62

web-BerkStan 24* 1,556 > 1hr 38,141 822 309

as-skitter 37* 732 > 1hr 22,665 723 238

patentcite 16* 637 7,964 17,290 1,282 319

in-2004 41* 2,294 > 1hr 37,089 2,577 523

dblp-author 10* 122 15,110 2,209 233 78

wb-edu 90* 10,522 > 1hr 187,674 10,880 5,096

soc-LiveJournal1 90* 2,868 3,128,970 181,851 7,567 1,343

wikipedia-link-de 317* 5,674 > 1hr 598,142 54,046 1,240

hollywood-2009 239* 7,279 > 1hr 455,682 26,442 1,077

com-orkut 179* 7,186 > 1hr 929,049 10,800 1,635

trackers 1425* 50,169 > 1hr > 1hr 208,473 5,072

indochina-2004 804* 28,350 > 1hr 2,455,986 248,785 10,278

uk-2002 311* 18,835 > 1hr 1,596,779 44,604 11,070

arabic-2005 1291* LD > 1hr OOM OOM OOM 35,190

uk-2005 552* LD > 1hr OOM OOM OOM 23,914

webbase-2001 1850* LD > 1hr OOM OOM OOM OOM

it-2004 1926* LD > 1hr OOM OOM OOM OOM

beyond 1 hour so we force-terminate the programs. The GPU

graph-parallel systems also cannot process large graphs and

run out of the global memory (OOM) while Ours does not

have this problem. Overall, Medusa is slower than Gunrock,

which is in turn slower than GSwitch. GSwitch is even faster

than VETGA that does not use a vertex-centric system, which

shows that its execution engine is really well designed and

effective. However, Table III shows that GSwitch is still often

tens of times slower than Ours, showing the benefit of a tailor-

made GPU program that achieves native hardware speed.

VETGA [22] runs with PyTorch to utilize GPU, and its

graph loading code uses a slow NumPy array program which

we revise to eliminate NumPy to speed up loading, but even

so, it still cannot load the last four big graphs after 1 hour so

we force-terminate these VETGA programs. In Table III, “LD

> 1hr” means data loading takes more than 1 hour and is thus

force-terminated. Table III shows that on graphs that VETGA

can load, it is 1 to 2 orders of magnitude slower than Ours.

Comparison with CPU Baselines. We compare Ours with

the CPU baselines as shown in Table IV, which we have

introduced in Sections II. Specifically, [51] has implemented

the serial BK algorithm, the serial and parallel versions of

ParK, PKC (including a slower variant PKC-o [51]) and

MPM, so we directly use their implementations [20]. We

also include the implementation of BK in the Python library

NetworkX [15]. We can see that NetworkX is really not for

big graphs as the loading time can go beyond 1 hour, and the

running time is many orders of magnitude longer than BZ.

Also, the parallel ParK and MPM are often slower than the

serial BZ, while PKC can be a few times faster. However, in

all cases Ours is a clear winner, showing that using a GPU is

advantageous even compared with using all 48 CPU cores of a

high-end server. In fact, parallel ParK, PKC and MPM are far

from achieving 48× speedup compared with serial variants,

1828

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
COMPUTATION TIME OF CPU PROGRAMS (UNIT: MILLISECOND)

Dataset Ours NetworkX BZ
Serial

ParK
ParK

Serial

PKC-o
PKC-o MPM

Serial

PKC
PKC

amazon0601 1* 14,889 84 42 102 40 36 79 41 24

wiki-Talk 36* 163,028 116 434 326 323 143 310 116 93

web-Google 5* 62,443 150 124 188 112 64 91 103 57

web-BerkStan 24* 1,393,519 103 213 954 184 113 228 83 87

as-skitter 37* 301,474 279 270 420 229 132 247 187 110

patentcite 16* 155,717 878 647 467 587 220 591 519 221

in-2004 41* 240,000 198 1,053 1,175 884 351 404 186 202

dblp-author 10* 136,541 674 334 183 316 142 388 294 133

wb-edu 90* 320,773 1,868 6,658 3,776 6,630 1,637 4,530 1,011 470

soc-LiveJournal1 90* 520,355 2,358 2,919 2,066 2,389 891 2,663 1,336 678

wikipedia-link-de 317* LD > 1hr 2,432 5,206 2,722 4,647 1,573 2,596 1,724 964

hollywood-2009 239* 1,630,000 1,208 2,151 2,177 1,896 916 1,711 763 663

com-orkut 179* 1,814,440 4,456 2,256 4,431 203 2,700 21,533 2,156 2,781

trackers 1425* LD > 1hr 5,295 11,389 4,772 11,304 4,124 15,869 4,426 3,081

indochina-2004 804* LD > 1hr 2,378 63,581 18,173 64,137 14,454 6,434 2,991 2,636

uk-2002 311* LD > 1hr 8,782 26,943 9,390 26,834 6,741 5,441 3,655 1,618

arabic-2005 1291* LD > 1hr 14,733 106,899 29,903 106,306 25,857 14,304 8,239 4,176

uk-2005 552* LD > 1hr 24,941 37,212 13,034 36,976 9,720 8,821 8,910 3,917

webbase-2001 1850* LD > 1hr 38,590 189,330 45,044 189,208 39,342 48,452 14,834 5,474

it-2004 1926* LD > 1hr 31,732 195,887 54,286 195,609 45,637 39,346 15,171 7,104

due to memory latency and contention for buffer appending.

Peak GPU Memory Usage. We also let a daemon program

continuously run the “nvidia-smi” command to log the GPU

memory consumption when running experiment of Tables II

and III. Table V reports the peak global memory usage results,

where our peeling algorithm is clearly the overall winner,

while Gunrock and GSwitch win on some small datasets.
TABLE V

PEAK GLOBAL MEMORY USAGE (UNIT: MB)

Dataset Ours SM VP EC BC VETGA Medusa-MPM Medusa-Peel Gunrock GSwitch

amazon0601 303 305 305 409 409 1,025 427 429 325 253*

wiki-Talk 751 751 751 893 893 1,291 N/A 579 511* 663

web-Google 737 737 737 845 845 1,077 521 527 467* 611

web-BerkStan 755 755 755 897 897 1,109 N/A 635 559* 647

as-skitter 797 797 797 939 939 1,239 N/A 861 745* 747

patentcite 855* 855* 855* 997 997 1,449 1,137 1,161 991 897

in-2004 811 811 811 953 953 1,253 N/A 959 829 767*

dblp-author 833 833 833 881 881 1,595 959 993 855 531*

wb-edu 1,125* 1,125* 1,125* 1,267 1,267 2,313 N/A 2,645 2,223 1,529

soc-LiveJournal1 1,063* 1,063* 1,063* 1,205 1,205 1,949 2,353 2,387 2,015 1,329

wikipedia-link-de 1,315* 1,315* 1,315* 1,457 1,457 2,403 N/A 3,935 3,307 1,809

hollywood-2009 1,139* 1,139* 1,139* 1,281 1,281 2,051 N/A 2,927 5,097 1,423

com-orkut 1,617* 1,617* 1,617* 1,720 1,720 2,925 N/A 5,751 4,815 2,401

trackers 1,981* 1,981* 1,981* 2,123 2,123 4,603 N/A N/A 6,131 3,519

indochina-2004 1,907* 1,907* 1,907* 2,049 2,049 4,817 N/A 7,391 8,851 3,057

uk-2002 2,837* 2,837* 2,837* 2,979 2,979 5,589 N/A 12,707 10,597 5,095

arabic-2005 5,097* 5,097* 5,097* 5,239 5,239 N/A N/A N/A N/A 9,679

uk-2005 5,811* 5,811* 5,811* 5,953 5,953 N/A N/A N/A N/A 13,697

webbase-2001 6,319* 6,319* 6,319* 6,461 6,461 N/A N/A N/A N/A N/A

it-2004 8,851* 8,851* 8,851* 8,993 8,993 N/A N/A N/A N/A N/A

Case Study. Having a lightening fast k-

core decomposition program like Ours is

important when studying networks that

change dynamically so that k-core de-

composition can be performed frequently

or even continuously on the network

snapshots, such as studying the gene co-

expression and protein-protein interaction

networks during the onset of Arabidop-

sis leaf senescence [62], and tracking

an evolving interaction network such as

online social networks or collaboration

networks. Here, we conduct a case study

using the citation network from [7] which

consists of papers chosen from Arnet-

Miner [73], [74] that fall in 10 topics such

as Data Mining and Database Systems, as

well as their citation relationship. Each

paper is associated with the year of publishing as well as the

list of authors. We preprocess the paper citation network into

an author interaction network, where an edge (u, v) is added

if there exists a paper (co-)authored by u that cited another

paper (co-)authored by v, and vice versa.

We consider two co-citation networks: G1 (resp. G2) which

includes all papers in or before 1995 (resp. 2000), whose

kmax = 12 (resp. 18) and whose kmax-core denoted by S1

(resp. S2) has 81 (resp. 107) authors. In Figure 10, we use

Fig. 10. Case Study: Co-Citation Network Analysis

word cloud to show (1) S1∩S2 in the center with authors like

PhilipSYu and HVJagadish who were most active in both G1

and G2, (2) (S2 − S1) in the middle ring with authors like

ChristianSJensen and BengChinOoi who became most active

in G2, and (3) (S1 − S2) in the bottom with authors fall out

of the most active kmax-core moving from 1995 to 2000.

VII. CONCLUSION AND FUTURE WORK

We have designed a highly-efficient peeling algorithm for

k-core decomposition on a GPU, which achieves native speed

compared with other GPU solutions built with PyTorch or

vertex-centric graph-parallel systems. Our GPU algorithm is

also faster than existing serial and parallel CPU solutions.

Currently, our GPU program will fail if buf[i] of any block

overflows, which poses a limit on the graph size that a GPU

can process. As a future work, we plan to extend our algorithm

for multi-GPU computation, where as in [44], we can partition

a graph among worker GPUs running our kernels, but degree

updates of border vertices would be aggregated afterwards,

which can be computed at a master GPU. Moreover, the

updates may cause new border vertices to be in k-shell, so

more than one round may be needed to compute a k-shell.

1829

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] 2002 web crawl of .uk domain. https://sparse.tamu.edu/LAW/uk-2002.

[2] 2004 Indochina web crawl. https://sparse.tamu.edu/LAW/
indochina-2004.

[3] 2004 web crawl of .it domain. https://sparse.tamu.edu/LAW/it-2004.

[4] 2005 web crawl of Arabic domains. https://sparse.tamu.edu/LAW/
arabic-2005.

[5] 2005 web crawl of .uk domain. https://sparse.tamu.edu/LAW/uk-2005.

[6] Amazon product co-purchasing network from June 1 2003. https://snap.
stanford.edu/data/amazon0601.html.

[7] ArnetMiner Citation Network. https://lfs.aminer.cn/lab-datasets/soinf/.

[8] Citation network among US Patents. https://snap.stanford.edu/data/
cit-Patents.html.

[9] DBLP collaboration network. http://konect.cc/networks/dblp-author/.

[10] *.edu web pages, A(i,j)=1 if page i links to page j (2001). https://sparse.
tamu.edu/Gleich/wb-edu.

[11] GPU Atomic Memory Operations. https://docs.nvidia.com/cuda/
pascal-tuning-guide/index.html#atomic-ops.

[12] GPU Compact Operation. https://www.youtube.com/watch?v=
GyYfg3ywONQ&list=PLnH7E0IG44jFfiQBd Ov7FmYHq8SZx6r0&
index=170.

[13] Hollywood movie actor network. https://law.di.unimi.it/webdata/
hollywood-2011/.

[14] Internet topology graph, from traceroutes run daily in 2005. https://snap.
stanford.edu/data/as-Skitter.html.

[15] k-core decomposition in NetworkX. https://networkx.org/
documentation/stable/reference/algorithms/generated/networkx.
algorithms.core.core number.html#networkx.algorithms.core.core
number.

[16] Large web crawl in 2001. https://sparse.tamu.edu/LAW/webbase-2001.

[17] LiveJournal online social network. https://snap.stanford.edu/data/
soc-LiveJournal1.html.

[18] Network of internet domains and the trackers they contain, such as
the Facebook button and Google Analytics. http://konect.cc/networks/
trackers-trackers/.

[19] Orkut online social network. https://snap.stanford.edu/data/com-Orkut.
html.

[20] PKC. https://github.com/humayunk1/PKC.git.

[21] Small web crawl of .in domain. https://sparse.tamu.edu/LAW/in-2004.

[22] VETGA. https://github.com/mexuaz/vetga.git.

[23] Web graph from Google. https://snap.stanford.edu/data/web-Google.
html.

[24] Web graph of Berkeley and Stanford. https://snap.stanford.edu/data/
web-BerkStan.html.

[25] Wikilinks of the Wikipedia in the German language (de). http://konect.
cc/networks/wikipedia link de/.

[26] Wikipedia talk (communication) network. https://snap.stanford.edu/data/
wiki-Talk.html.

[27] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. K-
core decomposition of internet graphs: hierarchies, self-similarity and
measurement biases. Networks Heterog. Media, 3(2):371–393, 2008.

[28] G. D. Bader and C. W. Hogue. Analyzing yeast protein–protein
interaction data obtained from different sources. Nature biotechnology,
20(10):991–997, 2002.

[29] D. Bakunas-Milanowski, V. Rego, J. Sang, and C. Yu. Efficient
algorithms for stream compaction on gpus. Int. J. Netw. Comput.,
7(2):208–226, 2017.

[30] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decompo-
sition of networks. CoRR, cs.DS/0310049, 2003.

[31] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali. Groute: An asynchronous
multi-gpu programming model for irregular computations. In PPoPP,
pages 235–248. ACM, 2017.

[32] E. Blelloch Guy. Prefix sums and their applications. Technical report,
Tech. rept. CMU-CS-90-190. School of Computer Science, Carnegie
Mellon University, 1990.

[33] F. Bonchi, A. Khan, and L. Severini. Distance-generalized core decom-
position. In SIGMOD, pages 1006–1023. ACM, 2019.

[34] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir. A model
of internet topology using k-shell decomposition. Proceedings of the

National Academy of Sciences, 104(27):11150–11154, 2007.

[35] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu. Efficient core decomposition
in massive networks. In ICDE, pages 51–62. IEEE Computer Society,
2011.

[36] Y. Cheng, C. Lu, and N. Wang. Local k-core clustering for gene
networks. In IEEE BIBM, pages 9–15. IEEE Computer Society, 2013.

[37] D. Chu, F. Zhang, X. Lin, W. Zhang, Y. Zhang, Y. Xia, and C. Zhang.
Finding the best k in core decomposition: A time and space optimal
solution. In ICDE, pages 685–696. IEEE, 2020.

[38] D. Chu, F. Zhang, W. Zhang, X. Lin, and Y. Zhang. Hierarchical core
decomposition in parallel: From construction to subgraph search. In
ICDE, pages 1138–1151. IEEE, 2022.

[39] A. Conte, D. Firmani, C. Mordente, M. Patrignani, and R. Torlone. Fast
enumeration of large k-plexes. In KDD, pages 115–124. ACM, 2017.

[40] Q. Dai, R. Li, L. Qin, G. Wang, W. Yang, Z. Zhang, and Y. Yuan.
Scaling up distance-generalized core decomposition. In CIKM, pages
312–321. ACM, 2021.

[41] N. S. Dasari, D. Ranjan, and M. Zubair. Park: An efficient algorithm
for k-core decomposition on multicore processors. In IEEE BigData,
pages 9–16. IEEE Computer Society, 2014.

[42] R. Dathathri, G. Gill, L. Hoang, H. Dang, A. Brooks, N. Dryden,
M. Snir, and K. Pingali. Gluon: a communication-optimizing substrate
for distributed heterogeneous graph analytics. In PLDI, pages 752–768.
ACM, 2018.

[43] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in
sparse graphs in near-optimal time. In O. Cheong, K. Chwa, and K. Park,
editors, ISAAC, Part I, volume 6506 of Lecture Notes in Computer

Science, pages 403–414. Springer, 2010.

[44] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, Z. Zheng, B. Zhang, Y. Cao, and
C. Tian. Parallelizing sequential graph computations. In S. Salihoglu,
W. Zhou, R. Chirkova, J. Yang, and D. Suciu, editors, SIGMOD

Conference, pages 495–510. ACM, 2017.

[45] Z. Fu, B. B. Thompson, and M. Personick. Mapgraph: A high level
API for fast development of high performance graph analytics on gpus.
In Second International Workshop on Graph Data Management Expe-

riences and Systems, GRADES 2014, co-loated with SIGMOD/PODS

2014, Snowbird, Utah, USA, June 22, 2014, pages 2:1–2:6. CWI/ACM,
2014.

[46] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. D-cores: Measuring
collaboration of directed graphs based on degeneracy. In ICDM, pages
201–210. IEEE Computer Society, 2011.

[47] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. D-cores: measuring
collaboration of directed graphs based on degeneracy. Knowl. Inf. Syst.,
35(2):311–343, 2013.

[48] G. Guo, D. Yan, M. T. Özsu, Z. Jiang, and J. Khalil. Scalable mining of
maximal quasi-cliques: An algorithm-system codesign approach. Proc.

VLDB Endow., 14(4):573–585, 2020.

[49] G. Guo, D. Yan, L. Yuan, J. Khalil, C. Long, Z. Jiang, and Y. Zhou.
Maximal directed quasi -clique mining. In ICDE, pages 1900–1913.
IEEE, 2022.

[50] W. D. Hillis and G. L. S. Jr. Data parallel algorithms. Commun. ACM,
29(12):1170–1183, 1986.

[51] H. Kabir and K. Madduri. Parallel k-core decomposition on multicore
platforms. In IPDPS Workshops, pages 1482–1491. IEEE Computer
Society, 2017.

[52] J. Khalil, D. Yan, G. Guo, and L. Yuan. Parallel mining of large maximal
quasi-cliques. VLDB J., 31(4):649–674, 2022.

[53] W. Khaouid, M. Barsky, S. Venkatesh, and A. Thomo. K-core decompo-
sition of large networks on a single PC. Proc. VLDB Endow., 9(1):13–23,
2015.

[54] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. Cusha: vertex-
centric graph processing on gpus. In HPDC, pages 239–252. ACM,
2014.

[55] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse. Identification of influential spreaders in
complex networks. Nature physics, 6(11):888–893, 2010.

[56] X. Liao, Q. Liu, J. Jiang, X. Huang, J. Xu, and B. Choi. Distributed
d-core decomposition over large directed graphs. Proc. VLDB Endow.,
15(8):1546–1558, 2022.

[57] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD, pages 135–146. ACM, 2010.

[58] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and
graph coloring algorithms. J. ACM, 30(3):417–427, 1983.

[59] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what
cost? In 15th Workshop on Hot Topics in Operating Systems, HotOS XV,

Kartause Ittingen, Switzerland, May 18-20, 2015. USENIX Association,
2015.

1830

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

[60] A. Mehrafsa, S. Chester, and A. Thomo. Vectorising k-core decomposi-
tion for GPU acceleration. In E. Pourabbas, D. Sacharidis, K. Stockinger,
and T. Vergoulis, editors, SSDBM, pages 24:1–24:4. ACM, 2020.

[61] K. Meng, J. Li, G. Tan, and N. Sun. A pattern based algorithmic
autotuner for graph processing on gpus. In PPoPP, pages 201–213.
ACM, 2019.

[62] B. Mishra, Y. Sun, T. Howton, N. Kumar, and M. S. Mukhtar. Dynamic
modeling of transcriptional gene regulatory network uncovers distinct
pathways during the onset of arabidopsis leaf senescence. NPJ systems

biology and applications, 4(1):1–4, 2018.
[63] A. Montresor, F. D. Pellegrini, and D. Miorandi. Distributed k-core

decomposition. In C. Gavoille and P. Fraigniaud, editors, PODC, pages
207–208. ACM, 2011.

[64] T. NVIDIA. Nvidia® tesla® p100–the most advanced data center
accelerator ever built. Technical report, Technical Report WP-08019-
001, 2017.

[65] S. Papadopoulos, Y. Kompatsiaris, A. Vakali, and P. Spyridonos. Com-
munity detection in social media - performance and application consid-
erations. Data Min. Knowl. Discov., 24(3):515–554, 2012.

[66] M. Pellegrini, F. Geraci, and M. Baglioni. Detecting dense communities
in large social and information networks with the core & peel algorithm.
CoRR, abs/1210.3266, 2012.

[67] R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, and M. M. A. Patwary.
A fast parallel maximum clique algorithm for large sparse graphs and
temporal strong components. CoRR, abs/1302.6256, 2013.

[68] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K. Wu, and Ü. V. Çatalyürek.
Streaming algorithms for k-core decomposition. Proc. VLDB Endow.,
6(6):433–444, 2013.

[69] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K. Wu, and Ü. V. Çatalyürek.
Incremental k-core decomposition: algorithms and evaluation. VLDB J.,
25(3):425–447, 2016.

[70] S. B. Seidman. Network structure and minimum degree. Social networks,
5(3):269–287, 1983.

[71] S. Sengupta, M. J. Harris, M. Garland, and J. D. Owens. Efficient

parallel scan algorithms for many-core gpus. eScholarship, University
of California, 2011.

[72] X. Shi, X. Luo, J. Liang, P. Zhao, S. Di, B. He, and H. Jin. Frog:
Asynchronous graph processing on GPU with hybrid coloring model.
IEEE Trans. Knowl. Data Eng., 30(1):29–42, 2018.

[73] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in
large-scale networks. In KDD, pages 807–816. ACM, 2009.

[74] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer:
extraction and mining of academic social networks. In KDD, pages
990–998. ACM, 2008.

[75] A. Tripathy, F. Hohman, D. H. Chau, and O. Green. Scalable k-core
decomposition for static graphs using a dynamic graph data structure.
In IEEE BigData, pages 1134–1141. IEEE, 2018.

[76] H. Wang, L. Geng, R. Lee, K. Hou, Y. Zhang, and X. Zhang. Sep-
graph: finding shortest execution paths for graph processing under a
hybrid framework on GPU. In PPoPP, pages 38–52. ACM, 2019.

[77] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens.
Gunrock: a high-performance graph processing library on the GPU. In
PPoPP, pages 11:1–11:12. ACM, 2016.

[78] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu. I/O efficient core graph
decomposition at web scale. In ICDE, pages 133–144. IEEE Computer
Society, 2016.

[79] T. Weng, X. Zhou, K. Li, P. Peng, and K. Li. Efficient distributed
approaches to core maintenance on large dynamic graphs. IEEE Trans.

Parallel Distributed Syst., 33(1):129–143, 2022.
[80] L. Xiang, A. Khan, E. Serra, M. Halappanavar, and A. Sukumaran-

Rajam. cuts: scaling subgraph isomorphism on distributed multi-gpu
systems using trie based data structure. In SC. ACM, 2021.

[81] D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big graph analytics platforms.
Found. Trends Databases, 7(1-2):1–195, 2017.

[82] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric framework
for distributed computation on real-world graphs. Proc. VLDB Endow.,
7(14):1981–1992, 2014.

[83] K. Yao and L. Chang. Efficient size-bounded community search over
large networks. Proc. VLDB Endow., 14(8):1441–1453, 2021.

[84] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. When engagement
meets similarity: Efficient (k, r)-core computation on social networks.
Proc. VLDB Endow., 10(10):998–1009, 2017.

[85] J. Zhong and B. He. Medusa: Simplified graph processing on gpus.
IEEE Trans. Parallel Distributed Syst., 25(6):1543–1552, 2014.

1831

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.

