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Abstract—The k-core of a graph is the largest induced sub-
graph with minimum degree k. The problem of %k-core decompo-
sition finds the k-cores of a graph for all valid values of k, and it
has many applications such as network analysis, computational
biology and graph visualization. Currently, there are two types
of parallel algorithms for k-core decomposition: (1) degree-based
vertex peeling, and (2) iterative h-index refinement. There is,
however, few studies on accelerating k-core decomposition using
GPU. In this paper, we propose a highly optimized peeling algo-
rithm on a GPU, and compare it with possible implementations
on top of think-like-a-vertex graph-parallel GPU systems as well
as existing serial and parallel k-core decomposition algorithms
on CPUs. Extensive experiments show that our GPU algorithm
is the overall winner in both time and space. Our source code is
released at https://github.com/akhlaqueak/KCoreGPU.

Index Terms—GPU, k-core, graph, h-index

I. INTRODUCTION

Networks are ubiquitously used to model interacting entities
in modern applications, such as social networks, biological
networks, and knowledge graphs. These networks are often
huge, so it is important to accelerate their analysis using
modern hardware such as GPU with thousands of cores.

One popular tool for network analysis is k-core decompo-
sition [70]. Formally, the k-core of a graph G = (V, E) is the
largest induced subgraph with minimum degree £ (i.e., where
every vertex has degree > k). For example, Fig. 1 shows the
1-core, 2-core and 3-core of a graph. Specifically, the 2-core
contains all the yellow and red nodes in the yellow dashed
contour, since it is the largest induced subgraph where every
vertex has degree > 2, as any green vertex has degree 1. Note
that even though vertex A has degree 3, it is not in 3-core since
its neighbor B has degree 2 so cannot be in 3-core, hence A
has at most 2 neighbors in 3-core. k-core decomposition finds
the core number of every v € V, denoted by core(v), which is
the largest value of k that v belongs to a k-core. For example,
core(A) = 2 in Fig. 1 since A is in 2-core but not 3-core.

Applications of k-core decomposition include detecting
dense social communities [65], [66], finding influential spread-
ers [55], detecting protein interactions [28], analyzing gene

Fig. 1. Tlustration of k-Cores
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networks [36], and understanding the Internet topology [27],
[34]. Moreover, since k-core decomposition can be computed
in linear time [30], it often serves as an effective lightweight
preprocessing to prune unpromising vertices when computing
denser structures whose computations have a much higher time
complexity [39], [43], [48], [49], [52], [67], [83].

Intuitively, k-core decomposition can be computed in linear
time [30] using the serial peeling algorithm of Batagelj and
Zaversnik [30], called BZ hereafter, which removes the vertex
with the smallest degree from GG each time. For example, Fig. 1
gives the 1-core, and as we remove all degree-1 vertices that
are green, we obtain 2-core; and as we remove all degree-
2 vertices one at a time (e.g., B will be removed so that
A has degree 2 and then removed), all yellow vertices will
be removed and we obtain 3-core. The parallelization of BZ
is, however, not straightforward. ParK [41] is a pioneering
parallel algorithm that adapts the peeling algorithm to run
in a shared-memory multicore environment, and it is later
improved by PKC [51] to reduce synchronization overhead.

Montresor, De Pellegrini, and Miorandi [63] propose a very
different distributed algorithm, called MPM hereafter, where
every vertex repeatedly performs h-index-style local updates to
estimate its core number from the latest core-number estimates
of its neighbors until convergence. In MPM, each vertex may
compute for multiple times, so the total workload is higher
than BZ and its parallel counterparts such as PKC where each
vertex computes only once. MPM was found to be slower
than PKC when implemented in a shared-memory multicore
environment [51]. However, MPM has been favored and pop-
ularly adopted in the latest research [56], [79] for distributed
computation, since MPM allows all vertices to conduct local
updates simultaneously with minimal dependency.

Despite the increasing availability of GPUs, there are
few GPU-based tools for k-core decomposition. Specifically,
VETGA [60] is currently the fastest GPU implementation of
k-core decomposition. It follows the peeling paradigm, but
reframes the problem in terms of vector primitives so that it
can be executed using highly optimized GPU vector processing
operations in PyTorch. This approach was found to be orders
of magnitude faster than the other GPU-based algorithm [75]
we are aware of, which uses a suboptimal approach that peels
from the highest core number to the lowest, in contrast to BZ
that peels from the lowest core number. The implementation
of [75] is also not publicly released for use by graph analysts.

In this paper, we study the implementation of both BZ- and
MPM-style parallel algorithms (that have been proven effective
in a CPU environment) for execution directly on a GPU. While
PKC has proven to be faster than MPM-style algorithm in a
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multicore machine [51], it is still interesting to compare them
in the GPU setting since a GPU has thousands of threads
and thus supports massive parallelism, which could offset the
higher total workload of MPM given its minimal dependency
(hence high concurrency) for vertex local updates.

Unlike [60] that relies on PyTorch for GPU execution, we
develop a tailor-made PKC counterpart directly using CUDA
to achieve native performance. Moreover, we notice that both
the peeling algorithm and the h-index-style MPM algorithm
can be formulated using a think-like-a-vertex paradigm, and
can thus be implemented with vertex-centric GPU systems
for graph processing, such as Medusa [85], Gunrock [77] and
GSWITCH [61]. We, therefore, provide implementations of all
the above discussed methods and compare them via extensive
empirical studies to provide insights. All our implementations
are released at https://github.com/akhlaqueak/KCoreGPU.

Our main contributions are summarized as follows:

« We develop a peeling algorithm on GPU to achieve the
native performance, and we implement many optimiza-
tion techniques on top to verify their effectiveness.

o« We implement k-core decomposition algorithms on
three representative GPU-based graph-parallel systems,
Medusa [85], Gunrock [77] and GSWITCH [61].

o We compare the above algorithms and CPU-based k-
core decomposition algorithms comprehensively using 20
public graph datasets of various characteristics.

In the rest of this paper, Section II briefly surveys existing
parallel algorithms for k-core decomposition and other related
works, and Section III reviews the important concepts in GPU
programming. Then, Section IV describes our GPU-based
peeling algorithm and its optimization techniques. Section V
briefly discusses how to implement k-core decomposition
on existing GPU graph-parallel systems. Finally, Section VI
reports our experiments, and Section VII concludes this paper.

II. EXISTING ALGORITHMS FOR k-CORE DECOMPOSITION

This section reviews the related work. Specifically, Sec-
tion II-A briefly surveys the existing algorithms for k-core
decomposition including serial, parallel, distributed and GPU-
based algorithms. Section II-B then briefly reviews the GPU-
based graph-parallel systems which can be used to implement
k-core decomposition algorithms. Finally, Section II-C reviews
some other works related to k-core decomposition.

A. Existing Algorithms for k-Core Decomposition

BZ. BZ [30] is the state-of-the-art peeling algorithm for k-core
decomposition, which runs in rounds. In the km round (1 =
0,1,2,---), BZ repeatedly removes a vertex with degree equal
to k until no such vertex is left in GG; the removed vertices have
core value k£ and constitute a vertex set called the k-shell of
G, denoted by V' *) hereafter. Let us denote the largest round
number as k., after which no vertex is left. We call k.42
as the core number of the graph G. To illustrate using Fig. 1,
we have k.. = 3, and the 1-, 2- and 3-shells are colored
in green, yellow and red, respectively. The k-core is given by
Uf;”,g” V() which are the subgraphs shown in Fig. 1 marked

-
support =3

Fig. 2. Illustration of the h-Index Operator

by dashed outlines. Note that in each round, the removal of a
vertex may produce new vertices to remove, such as vertex A
after the removal of vertex B when computing the 2-shell.
The key contribution of BZ [30] is a smart linear-time
implementation of the above idea with the help of four
carefully selected arrays (see Section II-A of [41] for details).

Multicore Peeling Algorithms. ParK [41] is the first par-
allelization of the peeling algorithm. It adopts a two-phase
approach to implement each peeling round £: (1) in the scan
phase, the vertex degree array is scanned in parallel, and each
thread collects its examined vertices with degree k into a
global buffer B; (2) the loop phase where each thread keeps
removing a vertex v from B, and adding those neighbors of
v whose degree becomes k to B for future removal.

The loop phase of ParK is broken into sub-levels where
each sub-level explores the neighbors of vertices in B to add
new vertices with degree k into a new buffer B™*"; at the
end of the sub-level, we assign B"“ to B to start a new
breadth-first propagation in the next sub-level. Instead of using
a global buffer B, PKC [51] removes the need of sub-level
synchronization within the loop phase of each round, by letting
each thread only access its local buffer B!°°. In the scan phase,
each thread collects those vertices with degree k that it scans
into B'°¢. Then, each thread runs the loop phase independently
by directly removing vertices from B'¢ and appending new
vertices to B¢, so there is no sub-level synchronization.

Distributed Algorithms. MPM [63] is the pioneering dis-
tributed algorithms for k-core decomposition, followed by later
works such as [79] for core maintenance on large dynamic
graphs. In MPM, each vertex repeatedly performs h-index-
style local updates to estimate its core number from the latest
core-number estimates of its neighbors until convergence.

To illustrate using the graph G in Fig. 1, we plot the degree
of each vertex near itself in Fig. 2. MPM initializes the core-
number estimate of each vertex v, denoted by a(v), as v’s
degree in G. Each vertex then repeatedly refines a(v) by
computing the h-index of the multiset A = {a(u) | (u,v) €
E}, which (i) sorts A’s elements in non-increasing order,
and (ii) scans the sorted list from the beginning to find
max{: € N, A[{] > i} to update a(v). For example, v in
Fig. 2 has a sorted list of neighbor core-number estimates
A = 1[5,5,3,3,2,2]. When ¢ = 1 and 2, the element value
Ali] = 5 > i, so we continue to examine the 3™ element;
since Afi] = 3 = 4, A[i] > 4 holds for the first time so
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a(v) is refined from the old value 6 to 3. Intuitively, v can
find 3 neighbors with degree > 3 but cannot find 4 neighbors
with degree > 4, so core(v) < 3. We use “<” here since
a(u) of these 3 neighbors u may further decrease when they
are refined. When a(v) converges for all v € V, we have
core(v) = a(v) and k-core decomposition completes.

GPU Algorithms. We are only aware of two works study-
ing GPU algorithms for k-core decomposition. The first is
VETGA [60], which is currently the fastest GPU implementa-
tion. To utilize GPU, VETGA reframes the peeling algorithm
in terms of vector primitives so that it can be executed
using highly optimized GPU vector processing operations in
PyTorch. The second work is [75] which peels from the highest
core number to the lowest. This method needs to compute the
graph core number for k., times, and was found in [60] to
be orders of magnitude slower than VETGA.

B. Graph-Parallel GPU Systems

Since the advent of Google’s distributed system, Pregel [57],
which promotes a think-like-a-vertex programming model and
a bulk synchronous parallel (BSP) execution model, many
vertex-centric systems have been developed [81] including
GPU-based systems. Medusa [85] strictly mimics the vertex-
centric BSP model of Pregel, where users may define a user-
defined function (UDF) for a vertex v to send messages to its
neighbors, and to receive a batch of messages for processing
at v in the next iteration. Medusa can implement the h-index
operator of MPM in the UDF for k-core decomposition.

Later GPU systems adopt a more restricted edge-centric
UDF to enable more performance optimization, where given
an edge (u,v), users define how the value of v is updated
using the values of u and edge (u,v). While the edge-
centric interface prevents us from implementing a MPM-style
algorithm, we can still implement the peeling algorithm where
when a vertex v deletes itself due to its degree < k, it can
send a message to neighbors: the message along an edge (u,v)
simply decrements the degree of v by 1. Systems following the
edge-centric programming model include CuSha [54], Map-
Graph [45], Gunrock [77], Groute [31], Frog [72], Gluon [42],
SEP-Graph [76], and GSWITCH [61].

McSherry et al. [59] noticed that existing graph-parallel
systems add a lot of system-level overheads to the computation
as compared to a direct implementation, but that study does
not test the GPU systems. So, a goal of our current work
is to compare the performance of our direct implementation
of a peeling-based GPU algorithm with implementations of
peeling- and MPM-based algorithms in GPU systems.

C. Other Algorithms and Problem Variants

Disk-based algorithms have been explored for k-core de-
composition [35], [53], [78] to scale beyond the memory limit
of a single PC, as well as streaming algorithms [68], [69].

Hierarchical core decomposition (HCD) of a graph G builds
a forest structure where each tree node contains the vertices in
a k-core connected component, and each tree edge represents
that a k-core component contains another k’-core component
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with & < k’. HCD can be computed in linear time [58] and it

can be used to find the best k-core component efficiently [37].
The parallel algorithm for HCD has been studied in [38].

Variants of k-core have also been studied, such as (k, h)-

core [33], [40] which relaxes neighboring relationship to be

within h hops, (k,r)-core [84] which adds an attribute-based

pairwise vertex similarity constraint, and D-core [46], [47],

[56] which extends the concept of k-core to directed graphs.
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III. GPU PRELIMINARIES

This section briefly reviews the GPU architecture and
CUDA programming, to prepare readers with minimal set of
concepts necessary to understand our GPU algorithms.

Fig. 3 summarizes the GPU architecture. Specifically, a
GPU device is connected to the host CPU via PCl-e bus.
In NVIDIA CUDA architecture, developers write device pro-
grams called kernels. A kernel is usually explicitly configured
and invoked by a CPU program to run on a GPU, with many
threads running the same kernel program in parallel. A CPU
program may call a serial of kernels for GPU execution, and
each kernel (or, kernel grid) consists of an array of thread
blocks that execute the same kernel program. Threads from
the same block have access to low-latency shared memory
and their execution can be synchronized. In contrast, different
thread blocks are independent in their execution.

From the hardware perspective, a GPU device consists of an
array of streaming multiprocessors (SMs), where each SM has
a set of execution units and a chunk of shared memory. In an
NVIDIA GPU, the basic unit of execution is warp. A warp is a
collection of 32 threads that are executed simultaneously by an
SM. Multiple warps can be executed on an SM at once. When
an SM executes an SIMD instruction of a kernel program,
it is executed on all threads. If different threads of an SM
need to execute different control flows (e.g., different branches
of an if-else block), the processor executes all paths, using
masking to disable/enable the relevant threads as appropriate.
As a result, a GPU program needs to be carefully designed to
avoid path divergence that leads to GPU underutilization.

When a CUDA program on the host CPU invokes a kernel
grid, the blocks of the grid are enumerated and distributed to
SMs with available execution capacity. The threads of a thread
block execute concurrently on one SM, and multiple thread
blocks can execute concurrently on one SM. As thread blocks
terminate, new blocks are launched on the vacated SMs.

Note that GPU threads cannot directly access the host mem-
ory so data movement is needed between the host memory
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and GPU global memory before and after a kernel call. Due
to the memory hierarchy of GPU and the intra-warp and inter-
warp parallelism within an SM, coalesced memory accesses
are preferred, and a GPU program should avoid irregular
memory accesses. It is also favorable to keep the data that are
frequently accessed by the threads of a block in the block’s
shared memory to reduce the memory latency as compared
with directly accessing data from the global memory.

In a typical CUDA program, a CPU program first uses
cudaMalloc(.) to allocate space for input data and intermediate
processing buffers on the global memory of a GPU (called
device memory hereafter), and uses cudaMemcpy(.) to move
the input data from host memory to device memory. It then
calls a series of kernel functions to let the GPU perform par-
allel computations, and finally obtains results from the device
memory back to the host memory using cudaMemcpy(.), and
frees the occupied device memory using cudaFree(.).

The name of a kernel function is specified in the form
kernel_function< <<BLK_NUM, BLK_DIM>>>, where

o kernel_function is the function name of the kernel to

launch with by the CPU program;

« BLK_NUM is the number of thread blocks to run by the

kernel launch;

« BLK_DIM is the number of threads in each thread block.

Therefore, a kernel launch runs NUM_THREADS
BLK_NUM x BLK_DIM threads in total. All these threads
run the same piece of code in serial as specified by the body of
the kernel function, but on different data. This data parallelism
is realized because each thread has access to the following
variables properly configured by the kernel launch:
blocklIdx.x: the ID of a block, which takes a value in
{0,1,---, BLK_NUM —1};
blockDim.x: the number of threads in each block, aka.
the block dimension, as specified by BLK_DIM;
threadIdx.x: the ID of a thread in a block, which takes
a value in {0,1,--- , BLK_DIM —1}.

The unique thread ID in a kernel grid can be obtained as

THREAD _ID = blockldx.x * blockDim.x + threadIdx.x.

To process an array of n items where n > NUM_THREADS,
one can use the following for-loop:

for(z = THREAD_ID; ¢ <n; i += NUM_THREADS)
so that, for example, the thread with THREAD_ID = 2
processes data items at positions 2, NUM_THREADS + 2,
2+ NUM_THREADS +2, - --.

We have not seen the concept of warp yet, which is actually
implicit: a CUDA programmer needs to be aware that the
threads in each block is partitioned into warps of 32 threads
(we assume BLK_DIM is always specified as a multiple of
32). For example, a thread can get its warp ID in a block as

WARP_ID threadldx.x / 32  (or threadldx.x >> 5),
and the thread can get its ID in its warp as

LANE_ID threadldx.x % 32 (or threadldx.x & 31).

They are very useful in our algorithm implementation in
Section IV. For example, we can let Warp 0 of a block fetch
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data items needed for next iteration from global memory into
the block’s shared memory, while threads of the other warps
compute data items of the current iteration. This method over-
laps computation with IO and may reduce memory latency.
As another example, the processing of each vertex v is often
done not by an individual thread, but rather by all threads in
a warp in parallel where each thread processes one adjacency
list item of v, in order to achieve coalesced memory access
pattern of adjacency lists. Since the degree of v, denoted by
deg(v), can be > 32, the warp runs the following for-loop so
that its threads process v’s adjacency list in multiple iterations:

for(i = LANE_ID; i < deg(v); i += 32),

where each thread processes the ith item in the adjacency
list. When deg(v) < 32, some threads in a warp are idle,
leaving GPU cores underutilized. To address this problem,
virtual warping [80] can be used to allow each physical warp
to run 4 logical warps each with 8 threads, so that each virtual
warp processes the adjacency list of an individual vertex.
This technique is mainly for those graphs with a low average
degree [80],and is orthogonal to our techniques in this work.
We next present our GPU-based peeling algorithms in
Section IV, where we keep the narrative in a high level for
readability, and the above programming details are implicit.

IV. OUR PEELING ALGORITHMS ON A GPU

GPU memory is often the key restriction of the graph size
that can be processed by a GPU algorithm, so it is important to
ensure that a graph is stored compactly in the global memory.
Graph Organization in GPU. We keep a graph G = (V, E)
in the global memory compactly as three arrays:
neighbors: the concatenation of the adjacency lists (i.e.,
neighbor ID lists) of all vertices in V;
offset: offset[i] = the start location of the neighbor list of
Vertex ¢ in neighbors;
deg: deg[i] = the degree of Vertex i.

Here, we assume the vertex IDs are densely indexed; if they are
not, we can perform ID recoding [82] of GG as preprocessing.
These three arrays are precomputed by the CPU program and
moved to the device memory before kernel launches.

With these arrays, we can obtain the neighbors of Vertex ¢ as
neighbors[offset(i] + j] where j = 0,1, -, deg[i] — 1. This is
a consecutive subarray that allows coalesced memory access.

In the sequel, we first describe our peeling-based GPU
algorithm, and then explore a few optimizations techniques.

A. Our Basic GPU Algorithm: Overview and Challenges

Our algorithm follows the two-phase algorithm framework
of PKC [51] as reviewed in Section II-A, but it is non-trivial
to implement the two-phase algorithm in a GPU setting.

We identify 3 challenges. The first challenge is to determine
the proper the smallest computing unit for parallelism. In
PKC [51], that unit is a CPU thread, but a thread is clearly
a bad choice in our GPU setting since for coalesced memory
access of adjacency lists, each vertex is examined by a warp
(with 32 threads). This leaves us two options, warp or block.
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Recall that each thread in PKC [51] is associated with a
local buffer B, and the local buffers evenly partition the
host memory space. In our GPU setting, each computing unit
needs to have a local buffer in the global memory of GPU.
Since there are many warps, if warp is the computing unit,
its local buffer has to be small. Since different warps may
collect imbalanced numbers of initial degree-k vertices in the
scan phase of iteration k, a small buffer size is more prone
to overflow. We, therefore, use block as the computing unit.
Accordingly, the remaining global memory (except the space
occupied to store () is evenly partitioned into BLK_NUM
arrays, where block ¢ is associated with an array as its buffer,
denoted by bufli], and all the BLK_DIM threads of a block
read and write the same buffer. This is illustrated in Fig. 4.

Our two-phase algorithm is implemented by calling two
kernels in each peeling round k: (1) in the scan-phase kernel,
vertices are partitioned among all the blocks, and block 7 scans
its assigned portion of vertices and collects those with degree
k into buf[i]; (2) in the loop-phase kernel, each warp of block
i fetches a degree-k vertex v from bufi], deducts 1 from the
degree of its neighbors with degree > k, and then adds all
degree-k neighbors to bufi] for further k-shell propagation.

Intuitively, in the loop phase, the blocks conduct BFS to
reach all the k-shell vertices in parallel from their respective
initial k-shell vertices collected by the scan phase.

Here, two more challenges exist in implementation. The
second challenge is that, a vertex in the k-shell could be a
neighbor of different vertices traversed by different blocks, and
conflict resolution is needed to ensure that it is only collected
by one of the blocks to avoid redundant computation. We will
explain our solution in Section IV-B when describing the loop
kernel (Algorithm 3), with an illustration using Fig. 6.

The third challenge is that, all threads of block 7 are
fetching vertices from and adding vertices to the same buffer
buf{i], and mechanism is needed to ensure thread-safety of
buffer updates. Specifically, we maintain two positions s and
e for each bufli] in the shared memory of block ¢ for thread-
safe access by all its threads (see Fig. 4), where s denotes
the position of the next element in buf{i] to process, and e
denotes the next position in buffi] to append an element (i.e.,
one position after the last element currently in bufi]).

B. Details of Our Basic GPU Algorithm
The Host Program. Algorithm 1 shows our host program.
Specifically, Line 1 first loads the input graph into the device
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Algorithm 1 GPU-Based Peeling Algorithm: Host Program
Input: G = (V, E)
Output: Core value core(v) for every vertex v € V/

: Load G into the device memory, including deg[.]
: Set vertex counter count < 0
: Load count to device memory as gpu_count
: k < 0; Allocate buffers buf[.][.] in device memory
while count < |V| do
Launch kernel scan(k)
Launch kernel loop(k)
Read gpu_count back to count
k+—k+1
. Read degl.] back to host memory and return as core values

RAR RSN A A e

—
(=}

memory including the three arrays neighbors|.], offset[.] and
degl.] introduced at the beginning of Section IV. Note that
our algorithm will update deg[.] when vertices in k-shells are
being removed so that in the end, for every vertex v € V,
deg[v] keeps the value of core(v) (c.f. Line 10). Then, Line 2
initializes count to 0, which is a counter indicating how
many vertices have already been removed during the course of
algorithm execution. Since vertex examinations are conducted
on the GPU, we need to mirror count to the device memory as
gpu_count in Line 4 so that GPU threads can update it. Before
beginning the k-shell removal for £k = 0, 1,2, ... by the while-
loop in Lines 5-9, Line 4 initializes k as O and allocates space
of the buffers for all thread blocks in the device memory.
The k-shell removal is repeated until all |V| vertices have
been removed (see Line 5). Specifically, we call the kernel
scan(k) in Line 6 to let thread blocks collect their initial sets
of k-shell vertices into their buffers, which are then used by
the other kernel loop(k) in Line 7 to collect and remove the
remaining vertices in the k-shell using parallel BFS. These
two kernels are described in Algorithms 2 and 3, respectively.

The Scan-Phase Kernel. Algorithm 2 shows the scan-phase
kernel, where the vertices of G are distributed to the threads for
checking their degrees. Lines 3—5 ensure that every vertex is
assigned to a unique thread. For example, Thread j processes
all vertices with IDs of the form n «* NUM_THREADS + j
(n € N) is processed by Thread no. If vertex v has degree
k (Line 6), it must be in the k-shell (since k’-shells with
k' < k have been removed in previous rounds), so Lines 7
and 9 append v to the buffer of the current thread’s thread

Algorithm 2 Kernel Function scan(k)
Assumption: e is in shared memory

1: if THREAD_ID =0do e+ 0
__syncthreads()
: for (s + 0; s < |V]|; s += NUM_THREADS) do
v < s + THREAD_ID
if v > |V| do continue
if deg[v] = k then
pos <+ atomicAdd(e, 1)
{Let the thread block of the current thread be 7}
bufli][pos] + v

R e A A R ol 4
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block. Here, CUDA function atomicAdd(e, 1) returns pos as
the current value of e (i.e., the next position to append a new
buffer element), and it advances e atomically so that other
threads later can only write to buffer positions after pos.

Recall from Fig. 4 that e is shared by all threads of
a block and is kept in the block’s shared memory. It is
initialized by Thread O of the block in Line 1, and a block-level
synchronization barrier in Line 2 then ensures that no update
of e in Line 7 can be executed before Line 1 of Thread O.

While a block contains many threads that update e, shared
memory atomic operations have been highly optimized by
NVIDIA with native hardware support [64].

At the end of kernel scan(k), Thread 0 of each block also
needs to back up e from its shared memory to buf[i].e in the
global memory for use by the second kernel loop(k), which
is omitted in Algorithm 2 to make it succinct.

The Loop-Phase Kernel. Algorithm 3 shows the loop-phase
kernel. Specifically, each block ¢ first initializes its buffer
head and tail positions, s and e (both in shared memory),
respectively, in Line 2. Here, (1) e basically loads bu f[i].e in
the global memory previously written by scan(k); (2) this is
done only by Thread O of each block (see Line 1); (3) Line 4
ensures initialized s and e to be seen by all threads of a block.

Afterwards, each block i repeatedly fetches k-shell vertices
from buf[i] for processing (Lines 4-24) until there are no more

K v
o NGNAN -~ NANO00-
WARP_ID: o‘> 1> 2‘> 3> 4 55 ------ 2(? 2? 2% 29 30 31
Warps: 3336 39639 639 B
V’s neighbors ‘
/—/% continue
neighborsl.]: - [w]w wlw] T T 1 ]
5:;2 ) 1> ) W) o) O
WarpZ-[SSSSSS 3]
Fig. 5. TIllustration of Algorithm 3 (Assuming a Block has 32 Warps)

(1) each block has BLK_DIM/32 warps, and (2) each vertex
v (i.e., its neighbor list) is processed by a warp. Therefore, in
each iteration, a block processes BLK_DIM/32 vertices.

We break each iteration into 3 parts: (i) Lines 4-8 determine
if the loop phase of the current block 7 terminates; (ii) Lines 9—
13 advance to the next batch of vertices in buf[i], and retrieve
from buf[i] the vertex v that is assigned to the current warp;
and (iii) Lines 14-24 let the 32 threads of the current warp
process v’s neighbors u in parallel, where u is added to buf[i]
if its degree becomes k after the removal of v from G.

First consider Part (i) in Lines 4-8. Let the block of the
current thread be block ¢. Due to the block-level synchro-
nization barrier in Line 4, all threads of a block will see the
same value of s in Line 5, which equals the next location

of buf[i]; the warps of block ¢ will retrieve vertices buf{i][s],
bufli][s+1], bufli][s+2], - - - for processing, i.e., v in Line 12
where s’ = s+ WARP_ID was set in Line 6. Fig. 5 shows
how elements in buf{i] are assigned to the warps of block i.
Note that s was advanced in the previous iteration by Line 10.

vertices in buf{i], i.e., s = e as checked in Line 5. Recall that

Algorithm 3 Kernel Function loop(k)

Assumption: s and e are in shared memory

; if :IiR]SjA‘]z_iDb; f([)ﬂt.l;en Now let us return back to Line 5: if s=e then bufli] is
3: repeat empty and all threads of block ¢ are finished and thus break
s syncthreads() out of the loop. Otherwise, Line 6 obtains the vertex position
s ifs—edo break s’ in buf[i] that the warp of the current thread should process;
6 s < s+WARP ID, ¢ ¢ e it also backs up the buffer tail e after the last iteration into
7 syncthreads() - €', so that if s’ > €’ (i.e., block i has more warps than the
s ifs >c do continue remaining vertices in buf{i]) in Line 8, v = buf[i][s'] does not
o if THREAD ID — 0 do f:xi;t. S0 ;he (/:urrent warp stjSS.Pait.s (ii)6and éiii?. For ?xample,
. s mm Fig. 5, ¢ < e = s+ in Line 6, and since s = s +
[ (Lot the thead block of the cumen thra be gy WARPID = ¢ for Warps 29, 30.and 31 hese tree theads
2 v buffi][s] Sxecuti contu}ue . Note that “continue” is ‘used rather than
13 pos_s = offset]v], pos_e = offset[v + 1] brea.k he.re, since the warp needs to stay active to process tl}e
14 repe_at - next iteration as more vertices cou.Id bF: appended to bufli] in
15; syncwarp() the current 1t§rat10n. For ex.arnple, in Fig. 5, Warp 2 processes
16 Epos s> pos_e do break Vert'ex v, S(.)nltS threads will examine U.’S ne%lghbors ui, e
- pos (_‘p;s < +_L ANE_ID. pos_s < pos_s + 32 us in Part (1'11) alv’ldv may addup to 5 vem'ces mto'buf[i]. Slnge
18 if pos > po_s ¢ do continue - each vertex in this iteration may add multlple vergces to bufli],
19: w ne_ig hbo_rs[pos] there could be many new k-shell vertices in bufli] to keep all
20: if deglu] > k do warps of block ¢ busy in the qext 1te.:rat10n. .
51 deg_u + atomicSub(deg[u, 1) The block—leve% barrier in Llnel 7 is needed, .smce warps of
2. it dgg w—=Fk+1do a block may run in any order; WthOHF the barrler, there 1§ no
. loc; atomicAdd(e, 1), bufli][lod] — u guarantee that the read of s an_d ein Line 6 is executed st_rlctly
" if deg_u < k do atomicAdd(deglu], 1) before any updates of s and e in Lines 10 and 23, respectlv?,ly.
’s: syncthrea dsz) - Moreover, we cannot swap Lines 7 and 8 since otherwise,

when some warps cannot find a vertex in buf[i] to process,

26: if THREAD_ID = 0 do atomicAdd t, . . .
! - o0 atome (gpu_count, ) “continue” is called so they will never run __syncthreads() to
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advance the barrier, causing the kernel program to get stuck.

Next consider Part (ii) in Lines 9-13. Since s’ has been
computed in Line 6 for each warp to retrieve vertex buf{i][s'] in
Line 12, s is no longer used in the rest of the current iteration,
and thus advanced by Thread O of block ¢ in Line 10 for use
by the next iteration. For example, in Fig. 5, s + min{s +
32,e} = min{s+32, s+ 29} = e, which is right after the last
element of bufli] for the current iteration. Afterwards, Line 12
retrieves v = bufi][s'] and Line 13 retrieves its adjacency list
for use in Part (iii). Fig. 5 shows how pos_s and pos_e are
set by Line 13 for vertex v processed by Warp 2.

Finally consider Part (iii) in Lines 14-24, where the 32
threads of a warp process up to 32 neighbors of v in each
iteration of the inner-loop given by Line 14, until all neighbors
of v are processed. This latter condition is examined in
Line 16, and to ensure that all 32 threads see the same values
of pos_s and pos_e, a warp-level barrier is added in Line 15.
As Lines 17 and 19 show, the jlh thread of a warp examines
v’s neighbor u = neighbors[pos_s+ j], and pos_s is advanced
by 32 for use by the next inner-iteration. For example, in
Fig. 5, the first five threads of Warp 2 process v’s five
neighbors uj—us, respectively. Here, pos_s is a local variable
and each thread of a warp has a replica. It is possible that
there are fewer than 32 neighbor items left in the neighbor
list of v, in which case Line 18 skips the execution of those
threads without a corresponding u to examine. For example,
in Fig. 5, the thread of Warp 2 with LANE_ID = 5 finds that
pos = pos_s + 5 > pos_e, so Line 18 executes “continue”.

Each thread then processes a neighbor u of v in Lines 20—
24. Specifically, the removal of v reduces u’s degree by 1, so
Line 20 skips wu if its degree < k since such a u belongs to k’-
shell for some k' < k, and thus deg[u] should have converged
to core(u) in a previous round. Otherwise, Line 21 decrements
deg[u] to reflect the removal of v. CUDA’s atomicSub(.) in
Line 21 returns the old value of deg[u] before its decrement,
so if the returned value deg_u = k+ 1 in Line 22, deg[u] has
been decremented to k by Line 21. Thus, u belongs to the
k-shell and is hence appended to buf[i] in Line 23.

Finally in Line 26, each block adds its collected number
of k-shell vertices in this round (i.e., e) to gpu_count. Recall
that Algorithm 1 relies on gpu_count to decide the program
termination condition (see Lines 5 and 8 of Algorithm 1).

Avoiding Redundant Vertex Traversal. One issue remains
(i.e., the second challenge introduced in Section IV-A) as is
illustrated in Fig. 6, where we consider the toy example of
two blocks each with two warps, and assume that (1) we are
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now in the loop phase for finding 2-shell, and that (2) in the
scan phase, buf[1] has collected degree-2 vertices 1 and 2,
while buf[2] has collected vertices 3 and 4. Since Warps A
(w=1,Bw=2),C (=23 and D (v = 4) will all see
neighbor v = 0 in Line 19, assuming that their four respective
threads processing O reach Line 20 simultaneously and find
deg[0] = 4 > 2, then they will all run Line 21 to decrement
deg|0] from 4 all the way to 0. Since each thread decrements
deg|0] atomically, the thread that executes Line 21 the second
will find deg_u = 3 (i.e., deg[u] = 2) and add vertex 0 to its
block’s buffer; note that a k-shell vertex will only be captured
by one block so there is no redundant computation.

After all the 4 threads complete Line 21 simultaneously,
deg|0] is reduced to O but the core number of vertex 0 is 2.
To allow deg[0] to converge correctly to core(0) = 2, we thus
need to have Line 24, which will be executed twice by the
2 threads seeing deg_u = 1 and 2 (i.e., deg[u] = 0 and 1),
respectively, to recover deg[u] back to 2.

In general, Case 1: if u is in k-shell, then if any k-
shell vertex v causes deg|u] to be decremented below k, this
decrement will be canceled by Line 24, and since u has at
least k& such k-shell neighbors v, deg[u] will be added back
to k to reach the correct core(u). Case 2: if u is in k’-shell
with k¥ > k, then deg_u > k in Line 24 cannot happen
since u has at least &’ neighbors in k’-shell, and this round
simply reduces deg[u] by the number of neighbors in k-shell
by Line 21 for correct peeling. Case 3: if u is in &’-shell with
k' < k, then deg[u] > k in Line 20 cannot hold, so deg[u]
will not be updated in this round (and also in future rounds
by induction), i.e., core(u) has converged to &'.

C. Optimization Techniques
We explore a few optimization techniques to our algorithm.

Ring Buffers. In Fig. 4, the buffer of each block is organized
as an array of fixed size (let the size be B). There are two
problems: (1) if e reaches B (which can be checked by an
assert statement), we have a block overflow so that the graph
is too large to be processed given the space limit of the global
memory; (2) since s is incremented in one direction, buffer
slots before position s cannot be recycled and are thus wasted.
To address these problems, we can organize each buffer buyli]
as a ring buffer, where we update Line 23 of Algorithm 3
with buf{i][loc mod B] < u so that if e is incremented to B
or beyond, it wraps around from the beginning of the buffer
array. Similarly, we set v < bufli][s’ mod B] in Line 12.

Utilizing Shared Memory for Buffering. While we have used
the shared memory of each block ¢ to keep s and e of its
buffer buf[i], buffer elements are still read from and written to
the global memory: see Line 9 of Algorithm 2, and Lines 12
and 23 of Algorithm 3. A natural idea is to use the remaining
space in the shared memory of a block as a low-latency buffer,
denoted by B. We use B only in the loop phase, not the scan
phase since otherwise, we would still need to flush its content
to buf[i] in global memory for use by the “loop” kernel, which
causes additional overheads. Ideally, when the k-shell is small
enough, a block ¢ in the loop phase should only add new vertex
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Fig. 7. Vertex Buffering in Shared Memory

to B for k-shell propagation, though the initial set of k-shell
vertices are read from buf[i] as collected by the scan kernel.

Fig. 7 illustrates this idea, where we assume the capacity
of B is ng = 8, and initially, block ¢ has already collected
€init = 6 k-shell vertices into buf]i] during the scan phase. In
Line 12, we now need to translate s’ into a position in either 5
or buf[i] when fetching a vertex, which is illustrated in Fig. 7.
For example, if s’ = 3, we read buf[i|[3]. As soon as the initial
k-shell vertices in bufli] have all been fetched, we start to read
from B, e.g., if s =7, we read B[7 — ;1] = B[1]. When B
has been exhausted, we read again from buf{i], e.g., if ' = 14,
we read bufli][14 — ng| = buf[i][6].

Similarly, in Line 23, we now translate [oc into a position
in either B or buf[i] when appending a vertex, which is also
illustrated in Fig. 7. For example, if loc = 7, we write B[1].
When B has been exhausted, we then continue to append
to bufli], e.g., if loc = 14, we write buf{i][6]. Note that the
position translation by all threads in block ¢ needs to access
€init> SO we let Thread O read it into the shared memory when
the “loop” kernel begins.

Vertex Frontier Prefetching. In our kernel implementation,
we adopt BLK_DIM = 1024, so each block has BLK_DIM
>> 5 = 32 warps, equaling the number of threads in a warp!

With this setting, we can implement a prefetching strategy
where Warp 0 of each block ¢ fetches 31 k-shell vertices at
the propagation frontier (i.e., v in Line 12) into the shared
memory, for the remaining 31 warps to process in the next
iteration; while in the meanwhile, the other 31 warps are
processing the 31 vertices fetched by Warp 0 in the previous
iteration, without reading from buf[i] in the global memory.

To implement this logic, we maintain a small vertex array
pref|.] in the shared memory where pref[j] keeps the prefetched
vertex for Warp j. In Algorithm 3, the Thread-0 logic in
Lines 9-10 is now replaced by Warp-0 logic, where (1) the
thread with LANE_ID = 0 first advances s, (2) followed
by __syncwarp() to ensure other threads in Warp O sees the
advanced s, then (3) the remaining 31 threads fetch the next
batch of up to 31 k-shell vertices into pref[.], where each
thread fetches buf[i][s’ — 1] into prefLAN E_I D], where s’
was computed in Line 6.

Reducing Contention for Buffer Appending. In Line 7 of
Algorithm 2 and Line 23 of Algorithm 3, all the 1024 threads
of each block (atomically) increments the same variable e
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in the shared memory, so the contention is high. In each
iteration, a thread only examines at most one vertex v (in the
scan kernel) or one neighbor u (in the loop kernel) in each
iteration, so each warp (or block) collects at most 32 (or 1024)
elements. Let the number of collected items be m, then we let
a thread of the warp (or block) advance e by m positions in
one atomicAdd(.) operation, and then let all the threads write
these m elements to the m advanced positions in buf(i].

1: a[THREAD_ID] = p[THREAD_ID]

2:loc = prefix_sum(a)

3:1f (LANE_ID == 31):

4: eqq=atomicAdd(e, loc + p[THREAD_ID])
5:eqq = __shfl_sync(OXFFFFFFFF, eqq, 31)
6:10C += eqy

7:if (p[THREAD_ID] == 1):

8:  write vid[THREAD_ID] to buf(i][loc]

This can be achieved using the “compact” operation with
the help of the “scan” (or, prefix sum) operation, as illustrated
by Fig. 8 where we assume warp-level compaction. To save
figure space, we show a warp as having 8 threads instead of
32, and array indices are marked with local ones in a warp.

As Fig. 8(a) shows, each block ¢ keeps three arrays of
size BLK_DIM in shared memory: (1) vid[j] tracks the ID
of the vertex examined by Thread j; (2) p[j] is set to 1
if Thread j finds vertex vid[j] to be in k-shell (for buf[i]
insertion), and 0 otherwise; (3) a[j] tracks the number of 1’s in
pl.] before position j and inside Thread j’s warp. For example,
in Fig. 8(a), the first thread checks vertex a and finds that it
should be appended to bufi], so p[0] = 1. The second thread
checks vertex b and decides not to append it to buf[i], so

p[l] = 0. Also, a[5] = 3 since before position 5 there are
3 ones: p[0], p[3] and p[4]. We will explain how to compute

a[.] from pl[.] in the next paragraph using prefix sum (Lines 1-
2). Note that the # of elements to insert for a warp equals the
sum of the last elements of a[.] and p|.] in the warp, which is
summed by the warp’s last thread in Lines 3—4. For example,
a[7] = 4 since the first 7 threads set 4 ones in p[.], and as p[7|
is also one, we advance e by 5. So far, only the last thread in
the warp gets e,;q for the warp to start writing the 5 elements
from, so Line 5 broadcasts it to the other 31 threads in the
warp using a CUDA warp-level primitive. Each thread then
gets its write location in Line 6, and writes its checked k-
shell vertex to buf{i] in Lines 7-8. For example, vertices a, d,
e, f and h are written to locations e,q, €o1qa + 1, €01a + 2,
eold + 3, eoq + 4, respectively. Here, locations are computed
as e,1q + alj], 7 =0,3,4,5,7 where p[j] = 1.
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We now explain how the warp-level scan in Line 2 of
Fig. 8(a) is implemented. A straightforward approach is to use
a logarithmic-span scan algorithm such as Hillis and Steele
(HS) algorithm [50] and Blelloch algorithm [32]. We adopt
HS as illustrated in Fig. 8(b) which runs for logn iterations
since Blelloch algorithm needs twice the number of iterations.
As shown in Fig. 8(b), in the ith iteration, Thread j sums
a[j] with a[j — 2871 if it is within the warp, so for example,
a[7] counts the number of 1’s from positions 6, 4, 0 to the
current position 7 in iterations 1, 2, 3, respectively. Note that
HS is inclusive meaning that the final prefix count includes
the current position, so we need to compute exclusive counts
(see the blue arrow in Fig. 8) for use by “compact” operation.

We also explore the more efficient Ballot scan algo-
rithm [29] designed specifically for the warp-level scan, as
illustrated in Fig. 8(c). Specifically, all threads of a warp
first call CUDA warp-level primitive __ballot_sync to compact
their 0-1 values into a 32-bit bitmap bits. Then, each thread j
computes a mask to fetch the last j bits of bits, and counts
the number of 1’s therein using CUDA’s __popc function.

Warp-level compacting can be applied in both the scan
kernel and the loop kernel. We can also adopt block-level
compacting in the scan kernel, but not the loop kernel since it
operates in warp level where all threads of a warp check the
neighbors of a vertex v simultaneously. While we can directly
use HS for intra-block scan, it is more efficient to use the two-
stage algorithm of [71] as illustrated in Fig. 9. Specifically,
(1) each warp first computes the warp-local offsets using HS
scan; (2) recall that we can obtain the number of 1’s in each
warp from the last element, so these sums are collected to
Warp 0; (3) there are 1024 threads (32 warps) in a block
and thus 32 sums are collected by Warp 0, which runs HS
to compute their prefix sums (we cannot use ballot scan here
since elements are not 0-1); (4) the offsets in each warp add
the global offset computed by Warp 0, to get the block-level
offsets for block-level compact. This approach has overheads
since a block-level barrier is needed between two consecutive
steps, and only Warp 0 computes in Steps (2) and (3).

V. ALGORITHMS ON GRAPH-PARALLEL SYSTEMS

We study k-core decomposition algorithms on three rep-
resentative GPU-based graph-parallel systems, Medusa [85],
Gunrock [77] and GSWITCH [61]. We choose Medusa [85]
since it strictly mimics the model of Pregel where a vertex
has access to the messages/values of all its neighbors in
a UDF so that the h-index operator can be supported to
implement an MPM-style algorithm in addition to the peeling

algorithm. Gunrock [77] is selected since it features a then
novel data-centric abstraction centered on operations on a
vertex or edge frontier, and is known for its high performance.
GSWITCH [61] is selected as a very recent system that sup-
ports algorithmic autotuning which configures a GPU kernel of
a computing iteration for favorable performance based on fea-
tures observed from the previous iteration. These three systems
were proposed in 2014, 2016 and 2019, respectively, spanning
evenly in the entire period of active development of GPU-
based graph-parallel systems and are hence representative.

MPM-Style Algorithm on Medusa. A Medusa program re-
quires users to implement 3 UDFs, (1) SendMessage, (2) Com-
bineMessage, and (3) UpdateVertex. To implement MPM,
“SendMessage” simply sends the core-number estimate of the
current vertex to all its neighbors; “CombineMessage” im-
plements the h-index operator over the received core-number
estimates from all neighbors; “UpdateVertex” simply updates
the core-number estimate of the current vertex using the new
h-index value, and if the estimate value changes, a global
aggregate flag is set to indicate more iterations are needed.

Peeling Algorithm on Medusa. In our implementation,
“SendMessage” checks if the current vertex v is marked as
deleted or if it has degree > k. If so, v sends O to all
neighbors, while otherwise, v is in the k-shell, so we set
core(v) = k, mark v as deleted, and send 1 to all neighbors.
“CombineMessage” simply sums all messages received at a
vertex v, which counts the number of deleted neighbors of v
in the k-shell. “UpdateVertex” deducts the degree of a vertex
v by this count, and if the resulting degree < k, we set a
global aggregate flag to indicate that the current k-shell round
should run more iterations. A typical Medusa program only
has one level of iteration looping. We further add an outer loop
of rounds, which terminates if all vertices are marked deleted.

Peeling Algorithm on Gunrock and GSWITCH. We directly
use the k-core decomposition algorithm already implemented
in Gunrock. Its idea is similar to our GSWITCH program to
be described next. Specifically, a GSWITCH program requires
users to implement 2 key UDFs, (1) “filter” which identifies
new vertices with degree k to emit messages, and (2) “comp”
which decrements the degree of each vertex for each received
message. GSWITCH also provides a UDF “emit” for aggre-
gating vertex states to indicate if the inner loop of iterations
for a round k£ still needs computation. However, GSWITCH
does not support an easy way to write the outer loop of rounds,
so we simply repeat the iterative computations for n rounds,
where n is hardcoded as the core number of each input graph.

VI. EXPERIMENTS

We report our empirical results of the serial, CPU-parallel
and GPU-parallel k-core decomposition programs in this sec-
tion. Our CPU programs were run on a server with two Intel
Xeon E5-2680 v4 CPU @ 2.40 GHz (48 threads) and 256 GB
RAM. Our GPU kernels were run with NVIDIA Tesla P100
GPU with a global memory of 16 GB.

We find that different runs of our GPU programs may vary
sometimes by over 30% in time, so we run each program
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TABLE I

DATASETS
Dataset v |E] davg  std dmax kmax Category
amazon0601 403,394 3,387,388 16.8 15 2,752 10 | Co-purchasing
wiki-Talk 2,394,385 5,021,410 4.2 103 100,029 131 Communication
web-Google 875,713 5,105,039 11.7 39 6,332 44 Web Graph
web-BerkStan 685,230 7,600,595  22.2 285 84,230 201 Web Graph
as-Skitter 1,696,415 11,095,298 | 13.1 137 35,455 111 | Internet Topology
patentcite 3,774,768 16,518,948 8.8 10 793 64 | Citation Network
in-2004 1,382,908 16,917,063 | 24.5 147 21,869 488 Web Graph
dblp-author 5,624,219 24,564,102 8.7 11 1,389 14 | Collaboration
whb-edu 9,845,725 57,156,537 | 11.6 49 25,781 448 Web Graph
soc-LiveJournall 4,847,571 68,993,773 | 28.5 52 20,333 372 Social Network
wikipedia-link-de 3,603,726 96,865,851 53.8 498 434,234 837 Web Graph
hollywood-2009 1,139,905 113,891,327 | 199.8 272 11,467 | 2,208 Collaboration
com-Orkut 3,072,441 117,185,083 | 76.3 155 33,313 253 Social Network
trackers 27,665,730 140,613,762 | 10.2 2,774 | 11,571,953 438 Web Graph
indochina-2004 7,414,866 194,109,311 524 | 391 256,425 6,869 Web Graph
uk-2002 18,520,486 | 298,113,762 | 32.2 145 194,955 943 Web Graph
arabic-2005 22,744,080 639,999,458  56.3 555 575,628 | 3,247 Web Graph
uk-2005 39,459,925 936,364,282 47.5 1,536 1,776,858 588 Web Graph
webbase-2001 | 118,142,155 | 1,019,903,190 17.3 76 263,176 | 1,506 Web Graph
it-2004 41,291,594 | 1,150,725,436 | 55.7 883 1,326,744 3,224 Web Graph

for 100 times and report the average and standard deviation
(std). For all the other programs, each reported experiment
was repeated for 3 times with the average reported.

We configure a kernel grid to have BLK_NUM = 108
blocks, each with BLK_DIM = 1024 threads (or, 32 warps).
The global-memory buffer capacity of each thread block (i.e.,
capacity of buf{i]) is set to hold 1 million vertex IDs. Each
block also has a shared-memory buffer B with a capacity of
10,000 vertex IDs, close to the space limit of a shared memory.

As we can see, the graphs have very different characteristics.
The number of edges is up to 1.15 billion on i-2004. The
average (resp. max) vertex degree is up to 199.8 on hollywood-
2009 (resp. 11.57 million on trackers). The core number (i.e.,
Kmaa, the largest k for a k-core) is up to 6,869 on indochina-
2004 meaning that peeling-based computation needs to run for
6,870 rounds. The degree distribution can be very biased with a
standard deviation of 2774 on trackers while its average degree
is merely 10.2. Our GPU program can handle all these graphs
since our graph is stored compactly in the global memory.

Ablation Study. We first compare our basic GPU algorithm
described in Section IV-B, denoted by Ours, with its variants
that integrate the various optimization techniques described in
Section IV-C. The first two techniques concern how to reduce
the memory latency of reading vertices from bufi]:

o SM (Shared-Memory Buffering) uses a shared-memory
buffer B to reduce the cost of accessing buf{i] (c.f. Fig. 7).

o VP (Vertex Frontier Prefetching) lets Warp O of a block
fetch k-shell vertices from buf[i] into shared memory.

The next two techniques concern how new k-shell vertices
are collected and appended to buf]:], instead of appending them
to bufli] one at a time using atomicAdd(.) as in Ours:

« BC (Ballot Compaction), for both scan and loop kernels,
conducts warp-level compacting first as illustrated in
Fig. 8 and then appends to bufi] in one batch.

« EC (Efficient Compaction) conducts block-level com-
pacting in scan kernel (c.f. Fig. 9) to append to buf[i]
in one batch, and warp-level compacting in loop kernel.

TABLE II
. ABLATION STUDY (TIME UNIT: MILLISECOND; AVG =+ STD)
Datasets. We test our GPU algorithm
. . Dataset o sm vP BC BC+SM  BC+VP EC EC+SM  EC+VP
and the other baselines extensively on =< e i i * *
. . amazon0601 14402 10.0 1241 1£0.0 1£0.0 210.0 1205 2:0.0 2100
20 public graph datasets of various =

A . wiki-Talk 36405  38:00 38400 45:04  45:01 48203 50:03|  60:0.0  60:0.1
size, d@nsﬁy, and core number’ as web-Google 5%£0.2 6:0.0 6+0.0 6:0.0 70.0 8+0.0 8:0.0 9:+0.0 8:0.3
shown in Table I where the datasets web-BerkStan | 24*:05  24:04 26105 31:05 28102  33:06 38:06  38s05 4109
are listed in ascending order of the as-skitter 37':0.6  38:05  40:06 | 45:05  45s0.7 49406 56:07  57:06 5807
number of edges. These datasets are patentcite 16%20.3 | 18:00  19:04 20:00 22100  23:0.0 28:00  30s01  28:0.0
from different categories including in-2004 414405 43:05  46+04 56103 55:06  62:05 81104 80:05  83:0.4
(] ) Web graphs Web-GOOgle [23] dblp-author 10*+0.3 14+0.0 13+0.0 13+0.0 16+0.0 16+0.0 17+0.1 20+0.0 16+0.0

,
. wh-edu 9009 96:04  98:02  150:0.5 154:05 161:0.3 = 283:0.3  287+03  287:0.4
web-BerkStan  [24], in-2004 [21], -

b d 10 k d 1 k d 25 soc-LiveJournali 90*+0.9 93+0.7 96+0.8 119+0.6 119+0.7 127+1.0 176+0.7 178+1.1 179+0.9
wb-edu [10], .Wl lpt? ia-link-de [25], wikipedia-link-de | 317*¢1.2 322415 342612 396112 38916  428:1.2 | 517s1.7  518:20 539416
trackers [18], indochina-2004 [2], uk- hollywood-2000 | 239*s1.2| 241x0.6 25006 | 305:0.7  204:12  319:0.8 40013  398+1.3  409:1.4
2002 [1], arabic-2005 [4], uk-2005 [5], com-orkut | 179°+12.9 | 182:158 190:12.6  203+15.4| 200:17.6 219:169  239+19.0 243:21.0 247+16.8
webbase-2001 [16]’ 1t-2004 [3]; trackers 1508+61.2 | 1471+54.3 1452*:16.6 | 1858+75.3 | 1799+60.8  1812+31.3  2503+19.2 2421+79.2  2330+21.4
(2) interaction networks such as indochina-2004 | 804*s1.2  810:09  B817+1.2  1430:1.1| 142112 1464:1.2| 2936:1.6 2936+1.5 2045:16
communication network wiki-Talk [26], uk-2002 311%40.7  329:0.7  330:07 | 547+0.7  556:06  572:0.7 | 1067:0.7 1080+0.6 107009

. . arabic-2005 | 1291*:3.4 | 1313135 1340:34| 2306:35 2296:42 2374:35 | 4495:4.0 4503+40 4536:3.7
citation network  patentcite [8],

llab . Ks dbl h 9 uk-2005 5524165 617:19.5 612:256 & 906:21.0 960234 992:253 1627+18.3 1690+28.9 1632+18.1
collaboration networks p-author [ ] webbase-2001 | 1850":0.7 1935:07 1912:0.9 | 4014:0.57 4078:0.6 4094:0.8 | 9069:0.8 9135:0.6 9069:0.9
and hollywood-2009 [13], and social t-2004 1926*+10.5  1985:3.2 1987112 | 3696:10.1 3687:2.7 3764+14.8| 7582458 7599+4.4  7596:14.1

networks oc-LiveJournall [17] and

com-Orkut [19]; (3) co-purchasing network amazon0601 [6];
(4) Internet topology as-Skitter [14]. These datasets are
widely used in prior works on serial and parallel k-core
decomposition. Some graphs are directed and we make them
undirected by ignoring the edge direction.

For each of Ours, BC and EC, we can create a variant with
SM or VP, leading to 9 program versions whose performance
are reported in Table II. In Table II, the three variants of each
of Ours, BC and EC constitute a subtable, and the overall best
among the 9 versions are highlighted with asterisks.
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Surprisingly, our basic GPU algorithm performs the best
on all datasets except for trackers where VP performs the
best. Note that the results are reported based on 100 runs and
thus very stable, and VP wins on trackers since this dataset
has a very biased degree distribution (recall from Table I that
the degree std is 2774 while the average degree is 10.2), so
the majority of vertices have a low degree and hence their
computation cost is low, and the overlapped vertex prefetching
effectively hides the memory latency. For all the other datasets,
VP is not favorable since computation cost dominates, and
the fact that each block has only 31 warps doing the actual
computation rather than 32 increases the running time.

SM is not helpful (except on trackers where computation
cost does not dominate) since, as Fig. 7 shows, we need to
run additional instructions for write-location translation (with
a case checking), and the bufli]-appending operation is very
frequent. This overhead outweighs the benefit of having up
to |B| items appended to and read from the shared memory
rather than bufli], which could be just a very small fraction of
all the k-shell vertices traversed by block i in iteration k.

Both BC and EC slow down the computation as com-
pared with Ours. This is because AtomicAdd(.) has been so
optimized in the latest GPUs [11] that the contention for
result collection is no longer a disadvantage as compared
with the old-school compaction approaches [12] that determine
result offsets in batch before concurrent writing. After all,
compaction runs additional instructions to compute offsets,
the cost of which is non-trivial especially given that buffer
appending is frequent. Similar observation has been found by
CuTS [80] for subgraph matching on GPUs. In addition, BC
is often twice as fast as EC (although twice as slow as Ours)
especially on the last few big datasets. This shows that Ballot
scan for warp-level compacting during the scan phase is highly
efficient thanks to the use of CUDA primitives __ballot_sync
and __popc (c.f. Fig. 8(c)). On the other hand, block-level
compacting for large-batch appending backfires, since as Fig. 9
shows, block-level offset computation takes 4 steps where only
Warp 0 computes in Stages (2) and (3).

In summary, the Occam’s razor principle applies for algo-
rithm design on modern GPU architecture where operations
(e.g., AtomicAdd(.)) have been highly optimized in perfor-
mance, and memory latency is not as high as worthy of hiding
by additional thread computations (which can often be more
expensive). While our integration of the best optimization
practices in the GPU algorithm literature does not help in most
cases, our exploration is still valuable in hinting that future
works on GPU algorithms should compare with simplistic
designs for ablation study to justify the use of optimizations.

Comparison with GPU Baselines. We compare Ours with
the GPU baselines as shown in Table III, which we have
introduced in Sections II and V, where Medusa-Peel, Gun-
rock and GSwitch all run the edge-centric peeling algorithm
while Medusa-MPM runs the vertex-centric MPM algorithm.
Medusa-Peel is clearly faster than Medusa-MPM due to less
computing workloads, but both of them has graphs that run

TABLE III
COMPUTATION TIME OF GPU PROGRAMS (UNIT: MILLISECOND)
Dataset Ours VETGA Medusa-MPM Peel

Amazon0601 1* 133 34,835 588 38 30
wiki-Talk 36* 675 > 1hr 12,657 1,236 168
web-Google 5* 225 44,423 1,986 127 62
web-BerkStan 24> 1,556 > 1hr 38,141 822 309
as-skitter 37 732 > 1hr 22,665 723 238
patentcite 16* 637 7,964 17,290 1,282 319
in-2004 41* 2,294 >1hr 37,089 2,577 523
dblp-author 10* 122 15,110 2,209 233 78
whb-edu 90* | 10,522 > 1hr 187,674 10,880 5,096
soc-LiveJournall 90* 2,868 3,128,970 181,851 7,567 1,343
wikipedia-link-de 317* 5,674 > 1hr 598,142 54,046 1,240
hollywood-2009 239* 7,279 > 1hr 455,682 26,442 1,077
com-orkut 179* 7,186 > 1hr 929,049 10,800 1,635
trackers 1425 50,169 >1hr >1hr | 208,473 5,072
indochina-2004 804* 28,350 > 1hr 2,455,986 = 248,785 10,278
uk-2002 311*| 18,835 > 1hr 1,596,779 44,604 11,070
arabic-2005 1291* LD > thr OOM ooM ooM 35,190
uk-2005 552* | LD > 1hr OOM OOM ooM 23,914
webbase-2001 1850* LD > thr OOM [e[e) ] ooM OooM
it-2004 1926* LD > 1hr OOM OOM ooM OooM

beyond 1 hour so we force-terminate the programs. The GPU
graph-parallel systems also cannot process large graphs and
run out of the global memory (OOM) while Ours does not
have this problem. Overall, Medusa is slower than Gunrock,
which is in turn slower than GSwitch. GSwitch is even faster
than VETGA that does not use a vertex-centric system, which
shows that its execution engine is really well designed and
effective. However, Table III shows that GSwitch is still often
tens of times slower than Ours, showing the benefit of a tailor-
made GPU program that achieves native hardware speed.

VETGA [22] runs with PyTorch to utilize GPU, and its
graph loading code uses a slow NumPy array program which
we revise to eliminate NumPy to speed up loading, but even
s0, it still cannot load the last four big graphs after 1 hour so
we force-terminate these VETGA programs. In Table III, “LD
> lhr” means data loading takes more than 1 hour and is thus
force-terminated. Table III shows that on graphs that VETGA
can load, it is 1 to 2 orders of magnitude slower than Ours.

Comparison with CPU Baselines. We compare Ours with
the CPU baselines as shown in Table IV, which we have
introduced in Sections II. Specifically, [51] has implemented
the serial BK algorithm, the serial and parallel versions of
ParK, PKC (including a slower variant PKC-o [51]) and
MPM, so we directly use their implementations [20]. We
also include the implementation of BK in the Python library
NetworkX [15]. We can see that NetworkX is really not for
big graphs as the loading time can go beyond 1 hour, and the
running time is many orders of magnitude longer than BZ.
Also, the parallel ParK and MPM are often slower than the
serial BZ, while PKC can be a few times faster. However, in
all cases Ours is a clear winner, showing that using a GPU is
advantageous even compared with using all 48 CPU cores of a
high-end server. In fact, parallel ParK, PKC and MPM are far
from achieving 48x speedup compared with serial variants,

1828

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 05,2023 at 17:32:16 UTC from IEEE Xplore. Restrictions apply.



TABLE 1V
COMPUTATION TIME OF CPU PROGRAMS (UNIT: MILLISECOND)

Dataset Ours Networkk Bz  pordl park Sl pkc.o mpm @ pKc
amazon0601 1* 14,889 84 42 102 40 36 79 41 24
wiki-Talk 36*| 163028 116 434 326 323 143 310 116 93
web-Google 5 2443 150 124 188 112 64 91 103 &7
web-BerkStan | 24+ 1393519 103 213 954 184 113 228 83 87
as-skitter 37| 01474 279 270 420 220 132 247 187 110
patentcite 16* 155,717 878 647 467 587 220 591 519 221
in-2004 41*| 240000 198 1053 1175 8e4 351 404 186 202
dblp-author 10* 136,541 674 334 183 316 142 388 294 133
wh-edu 90| 320773 1,868 6658 3776 6630 1637 4530 1011 470
soc-LiveJournall | 90* 520355 2,358 2919 2066 2,389 891 2,663 1336 678
wikipedia-fink-de| 317 LD>1hr| 2432 5206 2722 4647 1573 2,59 1724 964
hollywood-2009 | 239" 1630000 1208 2151 2177 1896 916 1711 763 663
com-orkut 179 1814440 4456 2256 4431 203 2700 21533 2156 2,781
trackers 1425*  LD>1hr| 5205 11,380 4772 11304 4124 15860 4,426 3081
indochina-2004 804* LD>1hr| 2,378 63,581 18,173 64,137 14,454 6,434 2,991 2,636
uk-2002 311 LD>1hr| 8782 26943 9390 26834 6741 5441 8655 1,618
arabic-2005 1291* LD > 1hr | 14,733 | 106,899 29,903 106,306 25,857 14,304 8,239 4,176
uk-2005 552 LD>1hr 24941 37212 13034 86976 9720 8821 8910 3,917
webbase-2001 | 1850*| LD > 1hr | 38,500 189,330 45044 189,208 39,342 | 48452 14834 5474
it-2004 1926* LD >1hr 31,732 195887 54,286 195609 45637 39,346 15171 7,104

due to memory latency and contention for buffer appending.

Peak GPU Memory Usage. We also let a daemon program
continuously run the “nvidia-smi” command to log the GPU
memory consumption when running experiment of Tables II
and III. Table V reports the peak global memory usage results,
where our peeling algorithm is clearly the overall winner,
while Gunrock and GSwitch win on some small datasets.
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Fig. 10. Case Study: Co-Citation Network Analysis

word cloud to show (1) S1 NS5 in the center with authors like
PhilipSYu and HVJagadish who were most active in both G
and Ga, (2) (S2 — S1) in the middle ring with authors like
ChristianSJensen and BengChinOoi who became most active
in Go, and (3) (S; — S2) in the bottom with authors fall out
of the most active ky,q,-core moving from 1995 to 2000.
VII. CONCLUSION AND FUTURE WORK

We have designed a highly-efficient peeling algorithm for
k-core decomposition on a GPU, which achieves native speed
compared with other GPU solutions built with PyTorch or
vertex-centric graph-parallel systems. Our GPU algorithm is
also faster than existing serial and parallel CPU solutions.

TABLE V
PEAK GLOBAL MEMORY USAGE (UNIT: MB)

Case Stlldy Having a lightening fast k- Dataset Ours SM VP EC BC VETGA Medusa-MPM Medusa-Peel Gunrock GSwitch
.. . . amazon0601 303 305 305 409 409 1,025 427 429 325 253*

core decomposition program like Ours is
. . wiki-Talk 751 751 751 893 893 1,291 N/A 579 511* 663
lmportant When Studylng networks that web-Google 737 737 737 845 845 1,077 521 527 467 611
change dynamically so that k-core de- web-BerkStan 755 755 755 897 897 1,109 N/A 635 550 647
composition can be performed frequently as-skitter 797 797 7e7| 838 939 1239 NA 81| 745t 747
or even Contlnuously on the network patentcite 855* 855* 855* 997 997 1,449 1,137 1,161 991 897
Sl’lapShOtS, SuCh as Studylng the gene co- in-2004 811 811 811 953 953 1,253 N/A 959 829 767*
. . . . . dblp-author 833 833 833 881 881 1,595 959 993 855 531*

expression and proteln-proteln interaction
. . wb-edu 1,126 1,125 1,125* 1,267 1,267 2,313 N/A 2,645 2,223 1,629
netWOI‘kS durlng the onset Of Arabldop_ soc-LiveJournall 1,063*  1,063* 1,063* 1,205 1,205 1,949 2,353 2,387 2,015 1,329
sis leaf senescence [62], and tracklng wikipedia-link-de | 1,315*  1,315*  1,315* 1,457 1,457 2,403 N/A 3935 3307 1,809
an evo]ving interaction network such as hollywood-2009 | 1,139* 1,139* 1,139* 1281 1281 2,051 N/A 2927 5007 1423
online social networks or collaboration com-orkut 1,617 1,617* 1,617* 1,720 1,720 2,925 N/A 5751 4815 2401
ke 1,981* 1,981*  1,981* 2,123 | 2,123 4,603 N/A N/A 6,131 3,519

networks. Here, we conduct a case study frackers

. . . . indochina-2004 1,907* | 1,907* | 1,907* 2,049 | 2,049 4,817 N/A 7,391 8,851 3,057

using the citation network from [7] which
~ uk-2002 2,837 2,837* 2,837 2,979| 2,979 5,589 N/A 12,707 10,597 5,095
consists Of papers Chosen from Arnet— arabic-2005 5,097 5,097* 5,097 5239| 5,239 N/A N/A N/A N/A 9,679
Miner [73], [74] that fall in 10 tOplCS such uk-2005 5811* 5811 5811 5953 5953 N/A N/A N/A N/A | 13,697
as Data Minjng and Database Systems, as webbase-2001 6,319* 6319* 6319 6461 6,461 N/A N/A N/A N/A N/A
it-2004 8851* 8851 8851* 8993 8993 NA N/A N/A N/A N/A

well as their citation relationship. Each
paper is associated with the year of publishing as well as the
list of authors. We preprocess the paper citation network into
an author interaction network, where an edge (u,v) is added
if there exists a paper (co-)authored by wu that cited another
paper (co-)authored by v, and vice versa.

We consider two co-citation networks: GG (resp. G2) which
includes all papers in or before 1995 (resp. 2000), whose
kmaz = 12 (resp. 18) and whose k,,q.-core denoted by S;
(resp. S3) has 81 (resp. 107) authors. In Figure 10, we use

Currently, our GPU program will fail if buf[i] of any block
overflows, which poses a limit on the graph size that a GPU
can process. As a future work, we plan to extend our algorithm
for multi-GPU computation, where as in [44], we can partition
a graph among worker GPUs running our kernels, but degree
updates of border vertices would be aggregated afterwards,
which can be computed at a master GPU. Moreover, the
updates may cause new border vertices to be in k-shell, so
more than one round may be needed to compute a k-shell.
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