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Gradients of voltage, pressure, temperature, and salinity can transport objects in micro-

and nanofluidic systems by well-known mechanisms. This paper explores the dynamics

of particles in a viscosity gradient with numerical simulations. The different stochastic

rules used to integrate the random motion of Brownian particles affect the steady-state

distribution of particles in a diffusivity gradient. Importantly, the simulations illuminate

the important role that the boundary conditions play, disallowing a steady-state flux

when the boundary conditions mimic those of a closed container, but allowing flux

when they mimic electrodes. These results provide an interpretation for measurements

of a steady ionic current flowing between electrodes separated by a nanofluidic

channel with a liquid viscosity gradient.

1 Introduction
Einstein famously showed that the Brownian motion of an object is fundamen-
tally linked to its viscous drag in a uid because the same atomic-scale bumps
that cause Brownian motion also randomize the motion of a driing particle and
eventually bring it to rest.1,2 It is not possible to know the details of the atomic-
scale bumps, but one can model a Brownian motion as a string of stochastic
processes that resembles a random walk.3,4 The stochastic step size is positively
related to the diffusivity, D, which is inversely related to the viscosity, h.

The mathematician Kiyosi Itô invented a method for integrating stochastic
processes.5,6 He generalized the Riemann–Stieltjes integral, whereby one divides
a function into tiny intervals and sums the area under the curve based on the
value of the function in each interval. A smooth function can be sampled
anywhere within the interval because the possible choices all converge to the
same value in the limit of small intervals. However, a Brownian motion is not
smooth on any scale, and no matter how small the interval, the integral depends
on the arbitrary choice of where within each interval one evaluates the function.
Itô’s convention is to evaluate the function at the beginning of each interval.5

Ruslan Stratonovich,7,8 Donald Fisk,9 and Peter Hänggi10,11 later developed
alternatives to Itô’s integral, each giving a different but completely self-consistent
formulation of stochastic calculus. The Stratonovich (–Fisk) integral evaluates the
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function in the middle of each interval and preserves the chain rule of ordinary
calculus, while the Hänggi (or isothermal) integral evaluates the function at the
end of each interval.

The differences between the integration conventions are physically meaning-
ful in the case of a Brownian particle moving in a liquid viscosity gradient because
that particle’s stochastic step size depends on the viscosity, and hence on its
location.12–15 Fig. 1 illustrates how the Itô, Stratonovich, and isothermal conven-
tions affect the stochastic step size in the presence of a viscosity gradient. A
particle will exhibit no average dri in a viscosity gradient if it obeys Itô’s calculus,
since its steps will have the same size regardless of the direction. If it evolves
according to the isothermal convention, it will dri toward lower viscosity as it
takes larger average steps in that direction. From another perspective, the ques-
tion of integration convention boils down to how one should generalize Fick’s
Law of diffusion for a concentration r of particles, J = −DVr(x), in cases where D
varies in space.4 The Fokker–Planck generalization, which corresponds to the Itô
integration rule, puts the gradient operator outside the diffusivity and gives J =
−V(D(x)r(x)). This results in a contribution to the ux that depends explicitly on
the diffusivity gradient, the term −r(x)VD(x). The Fick generalization, which
corresponds to the isothermal integration rule, leaves the gradient operator
inside the diffusivity and gives J = −D(x)Vr(x). This results in no explicit
dependence of the ux on the diffusivity gradient.

We were inspired to explore the properties of these stochastic dynamical
models in more detail when, in a series of nanouidics experiments to be

Fig. 1 Stochastic displacement models. Illustrations show leftward and rightward steps of
random walks corresponding to (a) the Itô rule, (b) the Stratonovich rule, and (c) the
isothermal rule. The graphic at the top indicates the directions in which the particle
approaches either a region of low diffusivity and high viscosity or a region of high diffusivity
and low viscosity.
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reported elsewhere, wemeasured a current of counterions owing in the direction
of decreasing viscosity (i.e., increasing diffusivity). This seemed difficult to square
with the −rVD ux term in the Fick generalization (which points in the opposite
direction) or the VD-independent ux of the Fokker–Planck generalization. It led
one of us to initially believe he might have reversed the leads on the ammeter in
our experiment, or in some other way inverted the current. Instead, as we will
show below, it is possible to nd a ux without an explicitly VD-dependent term in
the ux expression.

The key to explaining sustained currents of the kind we measured lies in the
boundary conditions. Commonly, studies of inhomogeneous diffusion focus on
some closed domain which particles cannot enter or leave.15–18 Such closed
boundary conditions require a ux-less steady state.13 On the other hand, an
electrochemical system with electrodes at two or more boundaries has no such
restriction. A pair of electrodes carries a faradaic current when one electrode
absorbs an ion from solution, transfers the charge through an external circuit to
the other electrode, which then releases another ion into solution. Periodic ux
boundary conditions provide a simple model of the essential charge transfer
processes at the electrodes. We show below how a viscosity gradient gives rise to
a steady ux of particles inside a domain with periodic ux boundary conditions.

Along related lines, Marchesoni showed theoretically how the viscosity-
induced dri of particles under the isothermal convention could be harnessed
to design a Maxwell demon that transmits information in a preferred direction
between boundaries that act as sources and sinks of particles.19 Also, De Haan and
Slater used simulations to show that a viscosity gradient causes a polymer,
starting halfway inside a nanopore, to escape preferentially on the low-viscosity
side.20

2 Simulation design
We studied diffusion in a viscosity gradient with a simple model for the motion of
particles. The basis for our model was the work of Volpe andWehr, which uses the
stochastic differential equation,21

dxt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞ

p
dWthsðxÞdWt; (1)

where dxt = xt − xt′ is the change in position between times t and t′, D is the
diffusivity, dWt =Wt−Wt′ is a random variable with mean zero and variance t− t′.
In these simulations, the continuous path of a particle is broken into discrete
steps, xn, occurring with a regular time interval Dt. It is convenient to use
sðxÞh

ffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞ

p
, which represents the size of each random step. The discrete form

of eqn (1) is

Dx ¼ xnþ1 % xn ¼ sðxÞ
"
&

ffiffiffiffiffi
Dt

p #
: (2)

The random variable dWt in eqn (1) has been represented in eqn (2) by a discrete
random variable &

ffiffiffiffiffi
Dt

p
(where the ± represents the random choice), which has

variance Dt. We set Dt = 1 and used a spatial domain 100 units wide. Typically, in
simulations like this one, when a particle would pass through a boundary at x =

0 or x= 100, it is instead reected back into the domain.21 Fig. 3a shows a diagram
of a particle whose nal position would have sent it past the boundary by
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a distance a. Instead, the particle is placed a distance a inside the domain. This
rule is known as a reective boundary condition.21

For a system without a diffusivity gradient, the application of eqn (2) is
uncomplicated. We simply generate a random choice, either

ffiffiffiffiffi
Dt

p
or %

ffiffiffiffiffi
Dt

p
,

multiply it by s, add the result to xn, and repeat. Fig. 2a shows ve sample
trajectories for particles with D = 1. Particles are just as likely to go in either
direction. The particles start tightly clustered but spread out over time. By 1000
steps, they look randomly distributed. The purple trajectory in Fig. 2a shows
a particle bumping against the wall at x = 100. Fig. 2b shows the distributions of
105 particles with uniform diffusivity D= 1 aer 10, 100, and 1000 time steps. The
particles were released from an initially Gaussian distribution centered at x = 50
with a standard deviation 1. The sharply peaked distribution spreads symmetri-
cally about x= 50, relaxing to a half-max width of about 10 aer 10 time steps and
35 aer 100 steps. By step 1000, the distribution was nearly at. We compared the
simulated distributions with the analytic solution for point-source free diffusion:
a Gaussian function whose width increases with time,

rðx; tÞ ¼ Nffiffiffiffiffiffiffiffiffiffiffi
4pDt

p e%x
2=4Dt; (3)

where N is the number of particles. Our simulation matches eqn (3) well aer 10
and 100 steps, but shows an overabundance of particles everywhere aer 1000
steps. This is because eqn (3) is a solution for diffusion in free space, but our
simulation will not let particles leave the domain.

Introducing a diffusivity gradient complicates the model in an important way.
Each particle begins a step at a position xn and ends at xn+1 so we have to choose
where in that interval to evaluate function s(x); any location from xn to xn+1 is
equally valid. We could use the Itô convention, evaluating the diffusivity at the
beginning of the step:

Fig. 2 Simulated diffusion of 105 particles with reflective boundary conditions and
spatially-constant diffusivity. (a) Five sample particle trajectories. (b) The distribution of
particles after 10, 100, and 1000 time steps. Dashed lines show theoretical expectation
according to eqn (3).
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xnþ1 ¼ xn & sðxnÞ
ffiffiffiffiffi
Dt

p
: (4)

We could use the Stratonovich convention, evaluating the diffusivity in themiddle
of the step:

xnþ1 ¼ xn & s
"xnþ1 þ xn

2

# ffiffiffiffiffi
Dt

p
: (5)

Finally, we could use the isothermal convention, evaluating it at the end:

xnþ1 ¼ xn & sðxnþ1Þ
ffiffiffiffiffi
Dt

p
: (6)

The Itô convention, represented by eqn (4), is the easiest to implement in
a simulation because we know the current position of each particle and can
straightforwardly compute the value of s(xn). Eqn (5) and (6) present an apparent
catch-22. They require us to know where the particle will land to nd the step size,
but, of course, wemust know the step size to compute where the particle will land.
We will show how to nd xn+1 in a self-consistent manner by rst noting that eqn
(4)–(6) can be expressed as special cases of a more general equation in which
a continuous parameter a represents the choice of where to evaluate s(x),

xnþ1 ¼ xn & sðxn þ aDxÞ
ffiffiffiffiffi
Dt

p
: (7)

The parameter a runs from 0 to 1, and eqn (4)–(6) are special cases with a= 0, 1/2,
and 1 respectively. We Taylor expand eqn (7) to rst order about the point xn to
nd an equation for xn+1 based on xn and the gradient in the diffusivity,

Fig. 3 (a) A particle hopping into a reflective boundary condition. (b) A particle encoun-
tering periodic flux boundary conditions that serve as a simple model of electrodes.
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sðxn þ aDxÞzsðxnÞ þ a
dsðxÞ
dx

Dx: (8)

Substituting in eqn (2) gives

sðxn þ aDxÞzsðxnÞ & asðxnÞ
dsðxnÞ
dx

ffiffiffiffiffi
Dt

p
(9)

and applying to eqn (7) gives a way to calculate xn+1 in terms of xn for any value of
a,

xnþ1 ¼ xn þ asðxnÞ
dsðxnÞ
dx

dt& sðxnÞ
ffiffiffiffi
dt

p
: (10)

In terms of D(x), this would be,

xnþ1 ¼ xn þ a
dDðxnÞ
dx

dt&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðxnÞdt

p
: (11)

Consider a step subject to the isothermal rule as given by eqn (7) with a = 1. The
diffusive third term in eqn (7) updates the position based on s(xn), as prescribed
by the Itô convention. By adding the second term, sometimes called the spurious
or noise-induced dri, we recover the results of the isothermal convention.4,21,22 In
other words, a trajectory in the isothermal convention is equivalent to one in the
Itô convention with an added dri term.21,22

3 Results of simulations with diffusivity gradients
3.1 Using reective boundary conditions

In their paper, Volpe and Wehr studied the Itô, Stratonovich, and isothermal
integration conventions using simulations and demonstrated how this choice
affects the steady-state particle distribution, nding a monotonically decreasing
particle density when using the Itô convention, and a at one when using the
isothermal convention.21 We set our simulation parameters to match those of
Volpe andWehr’s, including s(x)= 0.2 + 0.02x, a formula estimated from Fig. 4 of
ref. 21. Importantly, we used the same reective boundary condition shown in
Fig. 3 that Volpe and Wehr did. The simulation contains 105 particles with an
initial Gaussian distribution with mean 50 and standard deviation 1, sampled at
intervals up to 106 time steps, enough to reach the steady state.

Our results closely match those of Volpe and Wehr. Fig. 4a shows the distri-
bution of particles in a simulation of diffusion using the Itô convention. Aer 10
and 100 steps, the initial distributions widened and skewed slightly to the le. By
t = 103, the tails of the distribution reached the boundaries, and the distribution
is skewed noticeably le. It is clear the system has reached steady state by 104

steps because no further change is visible by 105 steps. Particles have piled up
against the le boundary. Aer reaching the steady state, we measured no
signicant ux across x = 50.

Likewise, Fig. 4b shows diffusion under the a = 1 or isothermal convention.
The distributions look roughly Gaussian until 102 steps. Aer 103 steps, the
distribution has reached the boundary at x = 100, but not the one at x = 0. By 104

steps, the system reached a steady state with a at distribution and no signicant
ux through x = 50.
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The absence of ux in these cases is not a surprise. In a closed container like
the one simulated here, ux cannot exist anywhere in steady state. This
constraint, along with spatial differences in hop length, allows us to understand
the asymmetric steady state distribution resulting from the Itô rule in Fig. 4a, as
well as the at distribution resulting from the isothermal rule in Fig. 4b. Fig. 5a
shows, for an arbitrary test point x′, the farthest points to the le and right from
which particles are capable of hopping to or past x′ for the Itô convention. The
region on the right is always larger than that on the le because the diffusivity
increases toward the right so hops originating from that direction are longer.
Fig. 5a also shows the equilibrium particle distribution, as calculated by our
simulation and shown in Fig. 4a. The regions under the r curve shaded with
orange and blue and are proportional to the number of particles that can possibly
pass x′ from the le and right respectively. Since particles jump le and right with
equal probabilities in our model, the areas of these regions are proportional to the
average number of particles that will cross x′ in each direction in a given time step.
Any difference in these areas indicates that a net ux will ow away from the
larger region. The system must reach an equilibrium where the particle distri-
bution always decreases toward the right in a way that compensates for the
difference in hop length and brings the shaded areas into equality.

Fig. 5b again shows the region to the le and right of an arbitrary point x′

inside which particles are capable of hopping past x′, but this time for the
isothermal rule. The hop lengths are based on the hop’s end position, so the sizes
of these regions are equal. In this closed system, the ux must eventually reach
zero everywhere. For the shaded regions to be equal for every choice of x′, the
equilibrium distribution must be at, which is what we see in Fig. 4b. Eqn (10)
suggests another perspective from which to view the isothermal convention of
stochastic motion. As hopping with hop-length determined by the starting posi-
tion, with a superimposed dri proportional to the gradient in the diffusivity.

Fig. 4 Simulated diffusion of 105 particles with reflective boundary conditions using
different integration conventions. Evolution of the particle distribution using (a) the Itô
convention and (b) the isothermal convention.
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Which stochastic integration convention gives the correct physical description
of ions in a liquid? The isothermal convention is strongly preferred on thermo-
dynamic grounds: only the isothermal convention gives a uniform particle
distribution in a closed domain at thermal equilibrium, so it alone respects the
Boltzmann distribution.13

3.2 Using periodic ux boundary conditions

The reective boundary conditions used above are a poor model of experiments
involving electrodes that can carry faradaic currents. When an ion arrives at an
electrode, it can initiate a string of processes that result in a net transfer of one ion
to a distant location: the electrode absorbs the ion and quickly transfers the
charge through an external circuit to a second electrode, which releases a new ion
into solution. This sequence preserves the charge neutrality of the liquid and

Fig. 5 Simulated equilibrium particle densities in the (a) Itô convention and (b) isothermal
convention. Dotted lines show the farthest positions, x+ and x−, from which particles can
cross a test point, x′, from the left and right respectively. The areas of the shaded regions
below the curve are proportional to the approximate number of particles that can cross x′

from the left (orange) and the right (blue) in one step.
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breaks the requirement that the ux between the electrodes be zero. Imposing
periodic ux boundary conditions at electrode surfaces offers a simple way to
model the essential behavior. We imposed periodic ux boundary conditions in
our one-dimensional particle simulations as follows: any particle that would pass
a boundary in the simulation is counted and moved to the opposite boundary.
Fig. 3b illustrates a particle hopping into the right boundary and inducing a new
particle to be released into the domain from the opposite boundary.

Fig. 6a shows the evolution of the simulated particles distribution using the
isothermal convention. This simulation was the same as the one in Fig. 4b, but
with the periodic ux boundary conditions described above. Fig. 6b shows the
diffusivity function used in the simulation. By step 104, the system reached the
steady state. This time, the distribution is not at. The concentration is highest on
the le and decreases monotonically to the right.

Fig. 7a illustrates the regions in which particles can reach or pass x′ in one step,
along with the distribution of particles found in the isothermal experiment with
periodic ux boundary conditions. The le shaded region under the curve is
larger than the right shaded region, meaning that we expect net right-ward ux. In
the steady state, this ux must be constant for every choice of x′, including at the
boundaries. This constraint determines the magnitude of the ux. Fig. 7b shows
the regions inside which particles can reach the boundaries at L = 0 and L = 100.
The difference in the areas of these regions represents the ux through the
boundary, which must be equal to the ux everywhere else in the steady state.

4 Comparison with experiment
Our simulations show the effects of the integration convention and boundary
conditions, but do they predict currents that are measurable in experiments? We
performed simulations that approximate the features of experiments in which we
varied the liquid viscosity at both ends of a nanochannel. The channel length L

Fig. 6 Simulated diffusion of 105 particles with periodic flux boundary conditions using
the isothermal convention. (a) Evolution of the particle distribution. (b) Diffusivity as
a function of x.
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could vary from 50 to 200 in units of micrometers. In the simulations discussed
above, we used linear functions for s(x) to match the conditions used by Volpe
and Wehr.21 In the simulations reported below, we used a linear diffusivity
gradient to describe the inside of the nanochannel, where two different liquids
would intermix. We used a at initial particle distribution to hasten the arrival at
the steady state. We modeled the particle dynamics using the isothermal inte-
gration rule, and we modeled the electrodes by imposing periodic ux boundary
conditions.

Fig. 7 Simulated equilibrium particle density in the isothermal convention with periodic
flux boundary conditions. (a) Dotted lines show farthest positions fromwhich particles can
reach or cross a test point, x′, from the left and right. The areas of the shaded regions are
proportional to the number of particles that can reach or cross x′ from the left (orange) or
right (blue) in one step. (b) Dotted lines show the farthest positions from which particles
can reach or cross the boundaries at L = 0 and L = 100. Area of the shaded regions is
proportional to the number of particles with a chance to hit the boundary at x= 0 (orange)
or x = 100 (blue) in one step.

Faraday Discussions Paper

56 | Faraday Discuss., 2023, 246, 47–59 This journal is © The Royal Society of Chemistry 2023



The result, we noticed, was that the simulator would initially register ux at the
boundaries, but no ux at the center. Aer a relatively long delay, the ux at the
center would catch up. Fig. 8a shows the evolution of a at particle distribution
toward the steady state. The initially at distribution at the midpoint of the
channel explains the lack of ux there. The gradient in r(x) seems to build in from
the boundaries. Fig. 8b shows the absolute difference between the center and
boundary uxes (as a fraction of the boundary ux) for a range of times as the
system approaches the steady state. Two different simulations, with domain sizes
of 100 and 200, are compared. Initially, the fractional ux difference is 1, because
all of the ux is at the boundary. At about step 2000 for the L= 100 simulation and
step 10 000 for the L = 200 simulation, that difference starts to drop. Eventually,
the difference becomes negligible as the uxes converge to the same number and
the system enters the steady state. We used analysis like this to guide the lengths
of our simulations.

To compare with our viscosity-varying experiments, we performed simulations
with a variety of diffusivity proles. We simulated 105 particles according to the
isothermal rule for 2 × 105 time steps, counting ux for the last 5 × 104 steps.
Aer the system reached equilibrium, we started counting the ux at the
boundaries and at x = L/2.

Fig. 9 shows the simulated ux as a function of the viscosity at the right end of
the domain, h(x = 100), with the viscosity at the le end held constant at h(x =

0) = 10. The inset shows the diffusivity proles corresponding to each data point.
We have used the viscosity at the right end as the independent variable because it
is relatively straightforward to control that parameter in an experiment. The
interpretation of the results is clear: particles ow toward lower viscosity. When
the viscosity is lower at the right end than the le, the ux of particles is positive
(rightward). When the viscosity is higher at the right than the le, the ux of
particles is negative (leward). We also note that the curve attens out as the right
viscosity increases. This can be understood as a slowing of the transport processes
as the average viscosity in the channel increases.

Fig. 10a shows the simulated ux as a function of the simulation domain size.
The particle number density, N/L, and diffusivities at the boundaries, D(x= 0) and
D(x = L), were kept constant. Fig. 10b shows the diffusivity gradients used, where

Fig. 8 (a) The evolution of an initially flat particle distribution with the isothermal rule and
electrode boundary conditions. (b) The fractional absolute difference in flux at the center
and at the boundaries for simulations with domain sizes of 100 and 200.
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the color corresponds to the color of the data points in Fig. 10a. As the domain
gets longer, the gradient decreases and so does the dri speed. The dotted line in
Fig. 10a shows the expected ux dependence, 1/L. This matches the linear
dependence of the current on the viscosity gradient observed experimentally.

5 Conclusions
Simulations have illuminated the mechanisms of diffusive ion transport in
a gradient of liquid viscosity. The boundary conditions turn out to be essential. The
reective boundary conditions that simulate a closed container make it impossible
for a steady-state ux to exist. However, boundary conditions which model the
ability of electrodes to absorb and release ions at different locations allow a steady-
state ux. Using the isothermal convention and periodic ux boundary conditions,

Fig. 9 Simulated particle flux obtained using the isothermal rule and periodic flux
boundary conditions for several values of the viscosity at the right end of the channel
relative to the fixed viscosity at the left end. Inset shows the diffusivity profiles, with colors
corresponding to the symbols in the main plot.

Fig. 10 Simulated flux in simulations with several domain lengths using the isothermal rule
and periodic flux boundary conditions. (a) Dependence of flux on L. The flux is measured in
simulation units corresponding to net crossings of the right boundary in the final 5 × 104

time steps of each simulation. (b) Diffusivity profiles, color coded to match points in (a).
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particles exhibit a noise-induced dri in the direction of lower viscosity that
produces a ux, and this ux has the important features of ionic currentsmeasured
in our nanochannels. Finally, we note that a viscosity-driven current of particles
does not violate any thermodynamic principle. In order to experimentally maintain
a viscosity gradient in a nanochannel, one needs to replenish the different-viscosity
liquids at either end, and this holds the system out of equilibrium. As the liquids
intermix, the free energy of mixing is available to drive a steady current.
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