

1 Regimes of Convective Self-Aggregation in Convection-Permitting

2 Beta-Plane Simulations

3 Jacob D. Carstens,^{a,b} Allison A. Wing,^a

4 ^a*Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee,
5 Florida, USA*

6 ^b*Department of Meteorology and Atmospheric Science, The Pennsylvania State University,
7 University Park, Pennsylvania, USA*

8 Corresponding author: Jacob Carstens, jdcarstens17@gmail.com

9 Jacob Carstens' current affiliation: Penn State University

10 ABSTRACT: The spontaneous self-aggregation (SA) of convection in idealized model experiments highlights the importance of interactions between tropical convection and the surrounding
11 environment. The authors have shown that SA fundamentally changes with the background rotation
12 in previous f -plane simulations, both in terms of the resulting forms of organized convection, and
13 the relative roles of the physical feedbacks driving them. This study considers the dependence of
14 SA on rotation in one large domain on the β -plane, introducing an additional layer of complex-
15 ity. Simulations are performed with uniform thermal forcing and explicit convection. Focuses
16 include statistical and structural analysis of the convective modes, process-oriented diagnostics
17 of how they develop, and resulting mean states. Two regimes of SA emerge within the first 15
18 days, separated by a critical zone where f is analogous to 10-15° latitude. Organized convection
19 at near-equatorial values of f primarily consists of convectively-coupled Kelvin waves. Wind
20 speed-surface enthalpy flux feedbacks are the dominant process driving moisture variability early
21 on, then clear-sky shortwave radiative feedbacks are strongest in wave maintenance. In contrast, at
22 higher f , numerous tropical cyclones develop and co-exist, dominated by surface flux and longwave
23 processes. Tropical cyclogenesis is most pronounced at intermediate f (analogous to 25-40°), but
24 are longer-lived at higher f . The resulting modes of SA at low f differ between these β -plane
25 simulations (convectively-coupled waves) and prior f -plane simulations (weak tropical cyclones
26 or non-rotating clusters). Otherwise, these results provide further evidence for the changing roles
27 of radiative, surface flux, and advective processes in influencing SA as f changes, as found in our
28 previous study.

30 **SIGNIFICANCE STATEMENT:** In model simulations, convection often self-organizes due to
31 interactions with its surrounding environment. These interactions are relevant in the real-world
32 organization of rainfall and clouds, and may thus be useful to understand for improved prediction
33 of tropical weather and climate. Previous work using a set of simple model experiments with
34 constant Coriolis force showed that at different latitudes, different processes dominate, and different
35 types of organized convection result. This study verifies that finding using a more complex and
36 realistic model, where the Coriolis force varies within the domain to resemble different latitudes.
37 Specifically, the convection here self-organizes into atmospheric waves (periodic disturbances) at
38 low latitudes, and tropical cyclones at high latitudes.

39 **1. Introduction**

40 Systems of organized convection are fundamental to tropical weather and climate. These encom-
41 pass many spatial scales, including mesoscale convective systems (Houze 2004), synoptic-scale
42 features such as tropical waves (Kiladis et al. 2009) and tropical cyclones (Emanuel 2003), and
43 planetary-scale oscillations (Madden and Julian 1971). Organized convection also couples to
44 the moisture, circulation, and radiation of the surrounding environment, consequently influencing
45 tropical and global climate (Khairoutdinov and Emanuel 2010; Wing 2019). Numerous studies us-
46 ing simple, idealized models have shed light on many of the convection-environment interactions
47 contributing to convective organization. Specifically, the spontaneous self-aggregation (SA) of
48 convection from radiative-convective equilibrium (RCE) (Manabe and Strickler 1964) has revealed
49 mechanisms relevant to real-world convective organization (Held et al. 1993; Tompkins and Craig
50 1998; Bretherton et al. 2005; Muller and Held 2012; Craig and Mack 2013; Wing and Emanuel
51 2014; Coppin and Bony 2015; Hohenegger and Stevens 2016; Holloway and Woolnough 2016;
52 Wing and Cronin 2016; Yang 2018a,b; Patrizio and Randall 2019; Windmiller and Craig 2019;
53 Yanase et al. 2020). These mechanisms include differential radiative cooling between cloudy and
54 clear areas, differential surface enthalpy fluxes, and radiatively-driven mesoscale circulations.

55 While much of the SA literature has focused on the non-rotating space, rotating RCE environments
56 often yield tropical cyclones (TCs) and provide insight into TC genesis, structure, size, and intensity
57 (Bretherton et al. 2005; Nolan et al. 2007; Held and Zhao 2008; Khairoutdinov and Emanuel 2013;
58 Zhou et al. 2014; Davis 2015; Reed and Chavas 2015; Boos et al. 2016; Merlis et al. 2016; Wing

59 et al. 2016; Zhou et al. 2017; Muller and Romps 2018; Cronin and Chavas 2019; Wang et al. 2019;
60 Ramsay et al. 2020; Ramirez Reyes and Yang 2021). Spontaneous TC formation in this setting
61 is particularly interesting for genesis studies, as it captures upscale convective growth into a TC
62 without a clear precursor disturbance. Carstens and Wing (2020) (hereafter CW20) introduced
63 a spectrum of rotating f -plane simulations to examine TC genesis processes, spanning effective
64 latitudes of 0.1-20°. The resulting modes of organized convection, as well as the physical pathways
65 to TC genesis, varied markedly as a function of the background Coriolis parameter (f). Carstens
66 and Wing (2022) (hereafter CW22) confirmed using process-oriented diagnostics that the relative
67 roles of the mechanisms contributing to SA varied systematically with f . A critical threshold of
68 f separated two well-defined regimes of SA in that model configuration. The “low- f ” regime
69 resembled non-rotating SA, triggered by differential surface enthalpy fluxes and maintained by
70 radiative feedbacks. A single non-rotating cluster resulted, either in circular or banded geometry.
71 Unlike non-rotating SA, circular patches of convection then underwent TC genesis via a “bottom-
72 up” vortex generation pathway marked by vorticity development originating in the lowest levels,
73 then continuing through the middle troposphere (CW20). Beyond about 5° effective latitude, SA
74 was halted by increased dynamic export of moist static energy from regions of deep convection (a
75 negative advective feedback). However, as f continued to increase beyond about 8°, a “top-down”
76 TC genesis process eventually took place where vortex development originated in the middle
77 troposphere, and the surface flux and radiative feedbacks caused by the TC helped to dry the
78 surrounding environment. This resulted in an aggregated state that was comparable to the low- f
79 regime, in terms of the spatial variance of moist static energy.

80 While powerful to isolate the role of rotation on convective processes, Cartesian f -plane simu-
81 lations lack the real-world meridional variation of f (β), which has implications for various forms
82 of tropical convection. TCs are a key example, where advection of planetary vorticity by the TC
83 circulation causes a poleward and westward steering influence (Holland 1983), and β is shown to
84 affect TC structure and intensity (Fang and Zhang 2012), size (Lu and Chavas 2022), and minimum
85 distance from the equator (Chavas and Reed 2019). β is also essential to the development and
86 propagation of equatorial waves (Matsuno 1966; Gill 1982; Kiladis et al. 2009). Thus, incorporat-
87 ing β into the framework of CW20 and CW22 is a natural next step in the model hierarchy, adding
88 one additional layer of complexity to study the dependence of SA on rotation. This type of sim-

ulation requires a much larger domain, but should accommodate non-rotating and rotating modes of convection simultaneously. Indeed, aquaplanet simulations under uniform thermal forcing have shown latitudinally-dependent regimes of organized convection, including tropical cyclones and equatorial waves that develop spontaneously (Shi and Bretherton 2014; Merlis et al. 2016; Chavas and Reed 2019; Hsieh et al. 2020; Stansfield and Reed 2021). The β -plane has been used in several recent studies considering TC genesis and behavior (Fedorov et al. 2018; Fu et al. 2019, 2021; Bercos-Hickey and Patricola 2021; Vu et al. 2021). However, process-oriented diagnostics of latitudinally-varying modes of organized convection have been primarily limited to GCMs, which are limited by relatively coarse resolution and the necessity to employ a convective parameterization. With computational advances, global or near-global cloud resolving model (CRM) simulations have become feasible (Satoh et al. 2019), but are quite computationally expensive to run on the time scales needed to simulate RCE.

In this manuscript, convection-permitting β -plane simulations test the findings of CW20 and CW22 in a more realistic setting. The model configuration is designed to accommodate multiple modes of organized convection without the need for a cumulus parameterization, over a sufficient time to reach an equilibrium state. In reality, β varies with the cosine of the latitude, approaching zero near the poles and becoming dynamically equivalent to an f -plane at high latitudes (Chavas and Reed 2019). Here, β is held constant in each simulation, such that f varies linearly in a Cartesian grid. The overarching goal is to understand fundamental modes and mechanisms of SA as a function of background rotation (represented by f and β), absent other influences. We center our discussion around three key questions. First, how do the mechanisms contributing to SA onset and maintenance change as a function of f , and where does aggregation onset occur most quickly? Second, how does equilibrium TC activity vary as a function of both f and β , including genesis, intensity, and density? Finally, what are the dominant modes of SA at low latitudes when β is introduced, and how do they evolve from the spinup to equilibrium periods? Information about the model and simulation design is provided in Section 2. Section 3 describes the SA process using diagnostics such as the frozen moist static energy (FMSE) variance budget of Wing and Emanuel (2014). Specific high-latitude and low-latitude modes of organized convection are discussed in greater detail in Sections 4 and 5, respectively. Section 6 discusses how the results presented

118 in this work compare to those from similar model configurations in the prior literature. Finally,
119 conclusions and future research priorities are presented in Section 7.

120 2. Simulation Design

121 Five 100-day β -plane simulations are developed using the System for Atmospheric Modeling
122 (SAM) version 6.11.2 (Khairoutdinov and Randall 2003), which employs the anelastic equations
123 of motion. The prognostic thermodynamic variables are total non-precipitating water, total pre-
124 precipitating water, and liquid water/ice static energy. A square domain spans 10240 km in each
125 horizontal dimension, analogous to roughly 90° of latitude on Earth and 6.7 times larger in each
126 dimension than the f -plane simulations in CW20 and CW22. Simulations are run with explicit
127 convection (5 km horizontal grid spacing) on an Arakawa-C grid. The lowest vertical level is at
128 37 m, and a stretched vertical grid is used with 75 m grid spacing near the surface, expanding to
129 500 m above 3.5 km. There are 74 vertical levels up to the model top at 33 km, with Newtonian
130 damping applied in a sponge layer spanning the upper third of the domain. The east and west
131 boundaries are periodic, but the incorporation of β here necessitates rigid walls along the north
132 and south boundaries.

133 There is uniform thermal forcing following the RCEMIP protocol (Wing et al. 2018), with
134 constant 300 K SST and insolation of 413 W m⁻² (corresponding to the tropical annual mean
135 with a solar constant of 650.83 W m⁻² and a zenith angle of 50.5°). The model schemes are
136 the Rapid Radiative Transfer Model for radiation (Clough et al. 2005; Iacono et al. 2008; Mlawer
137 et al. 1997), a Smagorinsky-type parameterization for subgrid-scale fluxes, and SAM’s default
138 one-moment microphysics. The initial sounding is an equilibrium sounding from the 300 K non-
139 rotating small-domain SAM simulation in RCEMIP (Wing et al. 2020). Motion and convection
140 are initialized by random temperature perturbations of 0.1 K in the lowest level, reducing linearly
141 to 0.02 K at the fifth vertical level. These settings are largely kept identical to those in the prior
142 f -plane simulations in CW20 and CW22, in order to better constrain the role of varying f in a single
143 domain. At the same time, the favorable conditions for TCs under higher f here (sufficiently warm
144 SST, no prescribed vertical wind shear, strong planetary vorticity) yield a large sample of TCs to
145 study with convection-permitting resolutions. This provides a more realistic analog to “TC World”
146 simulations (Khairoutdinov and Emanuel 2013; Cronin and Chavas 2019), which increase f by an

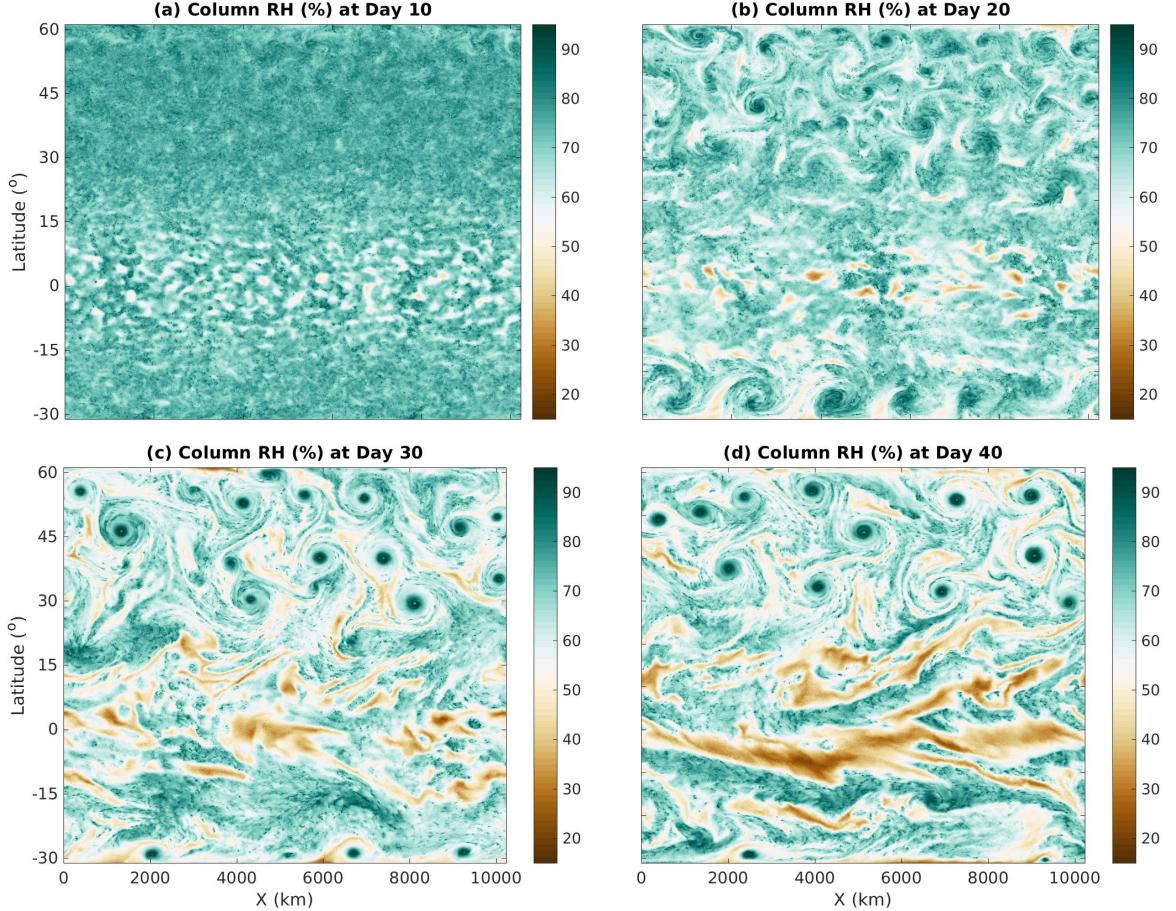
147 order of magnitude above normal tropical values to accommodate numerous small TCs in a small
 148 domain. We also produce a convection-permitting counterpart to aquaplanet GCM simulations
 149 that employ uniform thermal forcing (Shi and Bretherton 2014; Merlis et al. 2016; Chavas and
 150 Reed 2019), which can be used to evaluate the importance of resolution and explicit convection on
 151 the depiction of TCs in this environment.

152 We refer to f via the effective latitude, or the latitude on the real Earth corresponding to a given
 153 value of f . Three simulations are centered on 15°N (Table 1). One employs an approximate
 154 real-Earth mid-latitude (51°N) value of β (FULL15), another reduces this value to capture half
 155 of the effective latitudinal range (HALF15), and the third enhances that range by a factor of 1.5
 156 (ENHD15). Reducing β increases the area between effective latitudes relative to FULL15, and vice
 157 versa. These three simulations assess how the magnitude of β influences the time scales, relevant
 158 processes, and resulting modes of convective organization, as well as TC characteristics such as
 159 frequency and intensity. The range of effective latitudes covered by each of these simulations
 160 includes both an equator and at least subtropical latitudes where numerous TCs are expected. Two
 161 additional simulations employ the “full” value of β , but are centered at 0° (FULL00) and 45°N
 162 (FULL45). FULL00 is designed to assess near-equatorial convection with minimal influence by
 163 the rigid meridional boundaries, while FULL45 targets high-latitude cyclone activity.

164 TABLE 1. Full list of β -plane simulations developed for this study, with domain settings. The first three test
 165 the sensitivity of SA to the magnitude of β , while the latter two target low-latitude and high-latitude modes with
 166 minimal influence from the rigid meridional walls. All simulations are the same physical size - a 10240 km
 167 square.

Simulation Name	Center Effective Latitude	Effective Latitude Range	Range of f (s^{-1})	Value of β ($\text{s}^{-1} \text{m}^{-1}$)
FULL15	15°N	30°S-60°N	-7.29×10^{-5} - 1.26×10^{-4}	1.43×10^{-11}
HALF15	15°N	7.5°S-37.5°N	-1.90×10^{-5} - 8.88×10^{-5}	1.05×10^{-11}
ENHD15	15°N	52.5°S-82.5°N	-1.16×10^{-4} - 1.45×10^{-4}	2.55×10^{-11}
FULL45	45°N	0°-90°N	0 - 1.46×10^{-4}	1.43×10^{-11}
FULL00	0°	45°S-45°N	-1.03×10^{-4} - 1.03×10^{-4}	1.43×10^{-11}

168 **3. Regimes of Self-Aggregation**


169 *a. Spatial and Temporal Evolution of Convection*

170 The spatial distribution of column relative humidity is shown for the first 40 days of FULL15
171 in Figure 1, noting that all simulations behave qualitatively similarly (Movie S1-S5). Dry patches
172 are initially prominent at low latitudes, consistent with non-rotating and “low- f ” SA as in CW22
173 (Figure 1a). Several TCs then spin up near the meridional boundaries, where f is highest (Figure 1b).
174 Thereafter, TCs form intermittently at lower latitudes, but generally remain poleward of 10°.
175 By day 20, two distinct latitudinal regimes of organized convection are apparent. The low-
176 latitude regime is mostly characterized by eastward-propagating equatorial waves. The high-
177 latitude regime exclusively features TCs, which tend to intensify into hurricanes unless interfered
178 with by other nearby systems or the meridional walls. As in CW22, intense TCs dry their
179 surrounding environments (Figure 1c-d). Between days 30-50 in the low-latitude belt, convectively-
180 coupled waves are less apparent, masked by deep-layer easterly flow. This marks a transition
181 period between the simulation’s spinup stage, which encompasses the onset of SA, to the eventual
182 equilibrium stage over the final 40 days. These three stages will be discussed further in Sections
183 4-5.

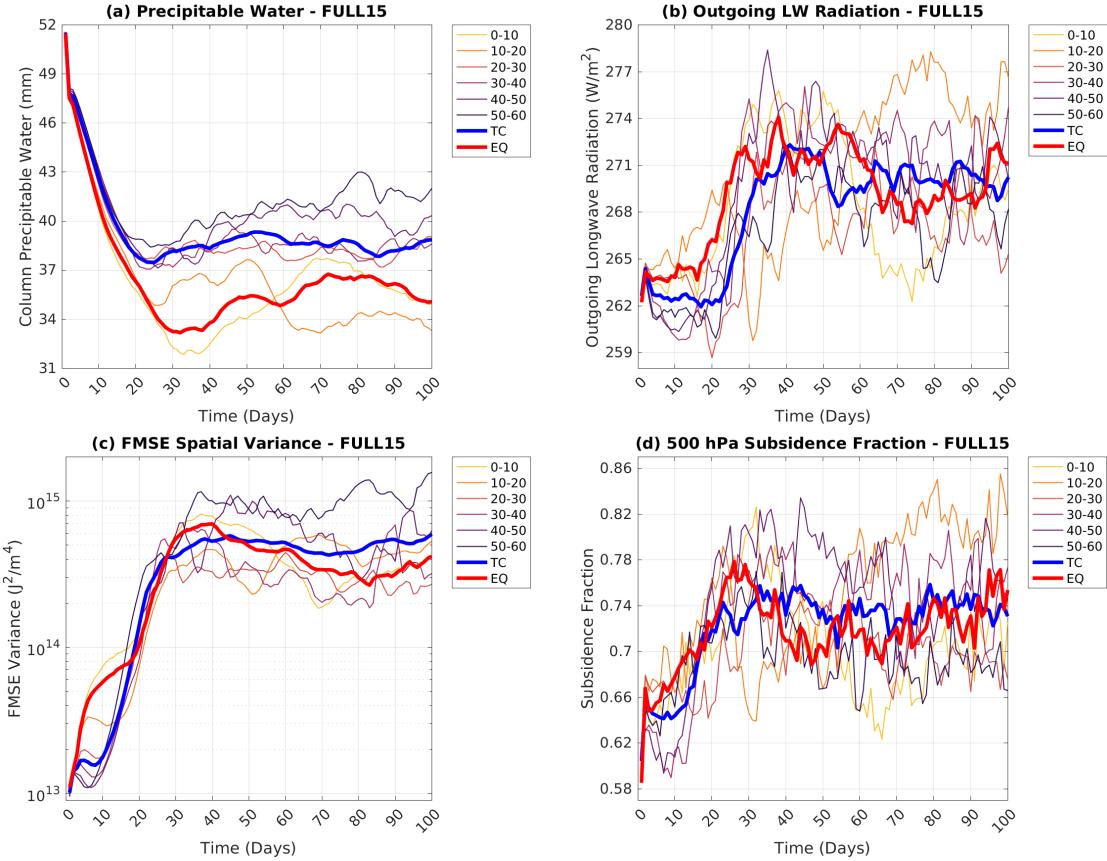
186 Given these two regimes of SA, it is appropriate to examine various thermodynamic and dynamic
187 fields as a function of the effective latitude. This includes FMSE and its spatial variance, where
188 FMSE is given by the sum of contributions from temperature ($c_p T$), gravitational potential energy
189 (gz), and latent processes from water vapor and ice ($L_v q_v$ and $L_f q_{ice}$):

$$h = c_p T + gz + L_v q_v - L_f q_{ice} \quad (1)$$

190 Figure 2 presents time series of column precipitable water (PW), outgoing longwave radiation
191 (OLR), FMSE variance, and 500 hPa subsidence fraction (SF) in FULL15. All are averaged in
192 10° latitudinal bins (averaged between hemispheres), as well as broader “TC” and “EQ” belts.
193 These are simply the areas occupied and not occupied by TCs, respectively, separated by the
194 minimum latitude where a tropical storm center is identified (wind speed $\geq 18 \text{ m s}^{-1}$, tracking
195 algorithm described in Section 4) in each simulation. All grid points “equatorward” of this latitude
196 are assigned to the EQ belt, while “poleward” grid points are assigned to the TC belt (Table 2)

184 FIG. 1. Spatial distribution of column relative humidity in FULL15, at (a) day 10; (b) day 20; (c) day 30; (d)
 185 day 40. The effective latitude is plotted on the y-axis. In this case, the equator ($f = 0$) is near $Y = 3500$ km.

197 to simplify comparison of the two regimes. The dividing latitude in FULL15 is 13.99° . SF is
 198 calculated using 500 hPa vertical velocity averaged daily in 80 km square blocks. This smooths
 199 out the effects of individual updrafts, and better captures an aggregated state over large space and
 200 time scales.


204 SA is associated with high OLR, FMSE variance, and SF, and with lower PW - a drier mean
 205 state with more large-scale subsidence and more separation between dry and moist air, regardless
 206 of the exact mode of the aggregated convection. Steady drying (reduction of PW) takes place
 207 over the first 20 days, shown for FULL15 in Figure 2a. This occurs more quickly at low latitudes,
 208 implied by the separation between the TC and EQ curves shortly after initialization. The differing
 209 behavior of the TC and EQ belts implies important differences in the time scales and dominant

201 TABLE 2. Range of latitudes (absolute value) covered by the TC and EQ belts in each simulation. The boundary
 202 between the belts is the minimum latitude at which a tropical storm (wind speed $\geq 18 \text{ m s}^{-1}$) is identified via the
 203 tracking algorithm described in Section 4.

Simulation Name	EQ Belt	TC Belt
FULL15	0°-13.99°	13.99°-60°
HALF15	0°-9.00°	9.00°-37.5°
ENHD15	0°-12.60°	12.60°-82.5°
FULL45	0°-17.46°	17.46°-90°
FULL00	0°-17.09°	17.09°-45°

210 processes behind SA onset, even during the model's spinup. Drying takes place with time at all
 211 latitudes, but mean PW increases with latitude, reflecting the increasing prevalence of TCs as a
 212 particularly moist mode of aggregated convection. Though noisier, OLR (Figure 2b) displays a
 213 similar evolution. Notably, OLR increases in the TC belt initially lag those of lower latitudes, but
 214 catch up rapidly from day 20-40. This is concurrent with the development of TCs as a rotating
 215 mode of self-aggregated convection. A lag between the initial genesis and the OLR increase exists
 216 because significant cloud cover reduction takes place after the TCs intensify.

217 The FMSE variance time series (Figure 2c) elegantly depicts the separation of the two regimes
 218 within the first 10 days, followed by the recovery of the TC belt to a “more aggregated” state by
 219 day 20. In the first 10 days, high FMSE variance at low latitudes reflects the preferential growth
 220 of dry patches near the equator. Beyond 20°, the initial separation of dry and moist patches is
 221 stunted as FMSE variance briefly decreases, and does not recover substantially until widespread TC
 222 activity begins. By day 100, FMSE variance is highest near the meridional walls, consistent across
 223 all simulations. The subsidence fraction (Figure 2d) oscillates between 0.65-0.85 and increases
 224 markedly during the spinup period over the first 30 days, which indicates that the majority of the
 225 domain is under large-scale subsidence. The first 20 days again suggest that the onset of SA occurs
 226 more quickly at low latitudes, as the subsidence fraction in the EQ belt is higher. Like the other
 227 thermodynamic parameters, the TC belt catches up by day 20. The SA onset process is consistent
 228 across all simulations, with the only difference being in the time scale of the initial TC spinup
 229 (Movie S1-S5). This difference is small (less than 10 days), where TC genesis occurs more quickly

217 FIG. 2. Time series of (a) precipitable water, (b) outgoing longwave radiation, (c) FMSE variance, and (d)
 218 subsidence fraction, averaged in 10° latitudinal bins in the FULL15 simulation. TC and EQ belts are separated by
 219 the minimum latitude of tropical storm occurrence (Table 2). Data are averaged daily, while subsidence fraction
 220 is calculated using vertical velocity averaged in $(80 \text{ km})^2$ blocks to characterize the large-scale motion.

234 for simulations that feature higher values of f at the boundaries, to be discussed further in Section
 235 4.

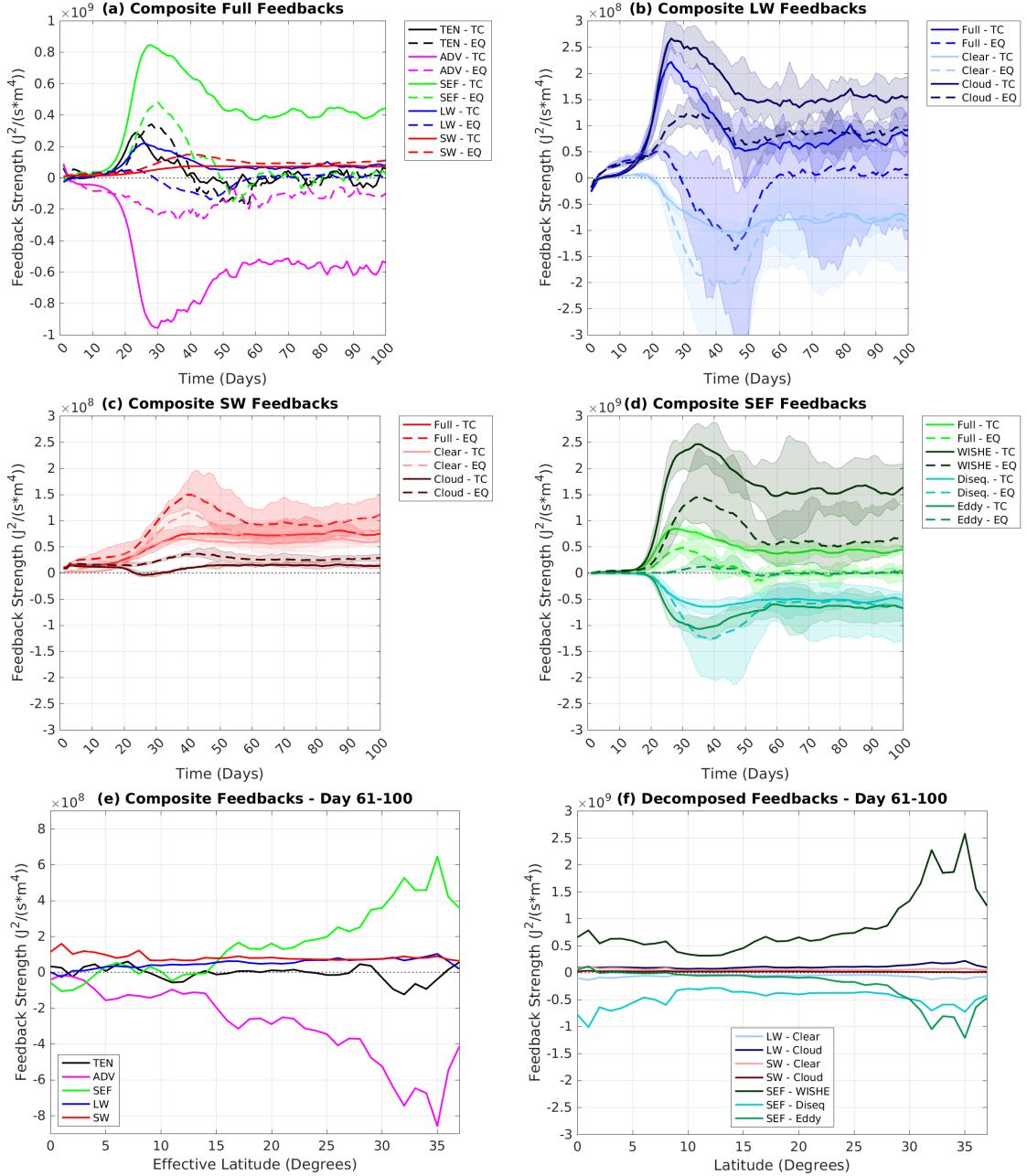
236 *b. FMSE Variance Budget*

237 Feedbacks contributing to SA are quantified with the FMSE spatial variance budget given by
 238 Eq. 2 (Wing and Emanuel 2014), capturing processes influencing the separation of dry and moist
 239 air under uniform thermal forcing. Positive feedbacks occur where anomalies of FMSE and the

240 other variables in Eq. 1 (surface enthalpy flux, radiative flux convergence, etc.) match sign.

$$\frac{1}{2} \frac{\partial \hat{h}'^2}{\partial t} = \hat{h}' SEF' + \hat{h}' NetSW' + \hat{h}' NetLW' - \hat{h}' \nabla_h \cdot \hat{\vec{u}} \hat{h} \quad (2)$$

241 Primes denote anomalies from the domain mean, and hats indicate mass-weighted vertical
242 integrals. The first term on the right-hand side is the surface flux feedback, a correlation of the
243 anomalies of FMSE and the surface enthalpy flux, the sum of latent and sensible heat fluxes. The
244 second and third terms are the radiative feedbacks, correlating anomalies of FMSE and column
245 shortwave and longwave flux convergence, respectively. The combined effects of radiative and
246 surface enthalpy fluxes make up the total feedback from diabatic processes. The final term is the
247 advective feedback, representing the column flux divergence of FMSE due to circulations. This is
248 often calculated as a residual, but is done explicitly here by diagnosing the tendency of FMSE due
249 to advection online as the model is running.


250 To break down the specific physics behind the feedbacks and their latitudinal variability, Figure 3
251 shows the composite mean feedbacks across all simulations, averaged daily. Time series of the
252 full feedbacks (similar to Figure 3a) are shown in Figure S1b-f in the Supporting Information
253 for individual simulations, to demonstrate the approximate collapse to a dependence on f . The
254 same conventions for the TC and EQ belts in Table 2 are employed here, and the spinup period is
255 again included to highlight processes behind SA onset. Longwave and shortwave feedbacks can be
256 decomposed into cloud and clear-sky contributions, while the surface flux feedback is composed
257 of wind speed, air-sea enthalpy disequilibrium, and eddy terms. The wind speed contribution
258 is essentially a wind-induced surface heat exchange (WISHE) feedback on moisture anomalies
259 (Emanuel 1986). The surface flux feedback is the strongest positive feedback at high latitudes
260 due to the co-location of strong winds and ample moisture in the TC circulation (Figure 3a).
261 In the EQ belt, the surface flux feedback is initially strongly positive, then becomes weak or
262 negative after day 30. Following a gradual increase early on, the shortwave feedback exhibits little
263 temporal variability, and is stronger at low latitudes - the strongest positive feedback there after
264 day 40. The longwave feedback is positive at high latitudes, but becomes negative or near zero
265 farther equatorward by day 30. The advective feedback is negative throughout the simulations

266 after initialization, but it is much more strongly negative at high latitudes, consistent with f -plane
267 simulations in CW22.

273 Cloud-longwave radiative effects are positive contributors to FMSE variance as deep convective
274 clouds enhance longwave radiative heating, increasing the FMSE of regions that are already moist
275 (Figure 3b). This feedback is most pronounced at high latitudes, a process that also feeds back on
276 TC intensity (Ruppert et al. 2020; Wing 2022). In dry areas with large-scale subsidence, low clouds
277 enhance radiative cooling. In contrast, the clear-sky longwave feedback is negative throughout the
278 domain after the first 20 days, cancelling or even overcompensating the positive cloud-longwave
279 feedback at low latitudes. This negative feedback stems from increased longwave emissivity in
280 regions with anomalously high FMSE, which increase OLR (Wing and Emanuel 2014). The
281 negative longwave feedback in the EQ belt is strongest from days 30-50.

282 In contrast, clear-sky effects dominate the shortwave feedback after the first 15 days (Figure 3c),
283 though the cloud shortwave feedback is also weakly positive. This is primarily due to absorption
284 of solar radiation by water vapor, causing greater shortwave heating in areas with high FMSE. This
285 becomes the strongest positive feedback in the EQ belt, while at higher latitudes it is weaker than
286 the longwave and surface flux feedbacks. The wind speed term is the positive contributor to the
287 surface flux feedback throughout the domain (Figure 3d), particularly at high latitudes in the strong
288 winds of the TCs. At low latitudes, enhanced surface fluxes still result from convective gustiness.
289 There, however, the positive wind speed feedback is later offset by a negative air-sea enthalpy
290 disequilibrium feedback. This is because dry regions feature stronger disequilibrium between the
291 ocean surface and atmosphere, which would amplify surface fluxes for the same wind speed, and
292 vice versa for moist regions. Amplified surface fluxes in a dry region, or damped surface fluxes
293 in a moist region, would counteract existing FMSE anomalies and result in a negative feedback on
294 FMSE variance.

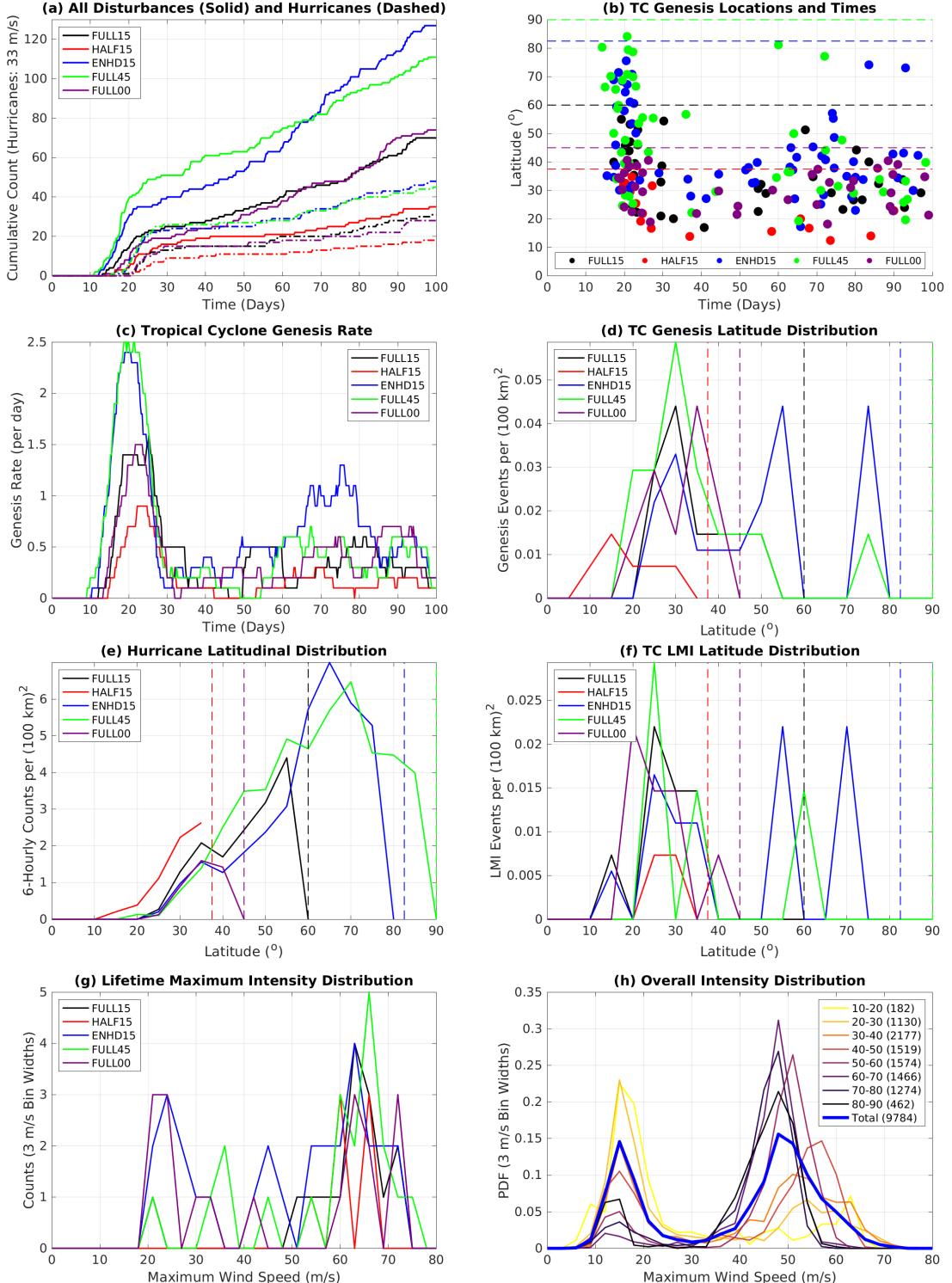
295 While the modes of organized convection differ under weak rotation in f -plane (CW22) and
296 β -plane simulations (isolated bands or circular clusters versus convectively-coupled waves), the
297 separation of SA into two well-defined regimes as a function of f in these β -plane simulations
298 is consistent with CW22. This can also be seen in Figure 3e-f, which show the overall and
299 decomposed feedbacks composited across the final 40 days of all simulations as a continuous
300 function of latitude, exhibiting a qualitatively similar dependence as in CW22. At low latitudes,

268 FIG. 3. (a-d) Composite time series of FMSE variance budget feedbacks across all simulations, including (a)
269 overall feedbacks and decomposed (b) longwave, (c) shortwave, and (d) surface enthalpy flux feedbacks. Values
270 are averaged daily in the TC (solid) and EQ (dashed) belts, as identified in Table 2. Shaded in (b-d) are the ranges
271 of each decomposed feedback across the simulations at each day. (e-f) Composited feedbacks as a continuous
272 function of latitude, averaged across the final 40 days of each simulation.

301 radiative and surface flux feedbacks drive SA onset, while shortwave clear-sky effects maintain
302 the aggregated state in the equilibrium stage (Figure 3e). Convection does not organize as easily
303 at higher latitudes early on, but the stronger background rotation permits TC genesis. The TCs
304 drive further aggregation via strong WISHE and cloud-longwave feedbacks (Figure 3f). Each of
305 these processes competes with an advective feedback that is the leading-order negative term at all
306 latitudes, but becomes more strongly negative as f increases. With the regimes of SA highlighted,
307 the next two sections will more closely examine the statistics, structure, and evolution of TCs and
308 equatorial waves.

309 4. Tropical Cyclones

310 Given the favorable environmental conditions, TCs persist for tens of days unless interfered
311 with by other TCs or the meridional boundaries. Candidates are first identified using the 850 hPa
312 relative vorticity field. Every six hours, the average relative vorticity is computed within a 150
313 km box surrounding each grid point. From this smoothed field, local maxima of at least 10^{-4} s^{-1}
314 that persist for 2.5 days are retained as disturbances. This threshold for relative vorticity is slightly
315 lower than that used by Zhang et al. (2021) and Hsieh et al. (2020) for identifying seeds from an
316 unsmoothed vorticity field in a GCM. Several thresholds were tested to optimize the algorithm,
317 with the goal of capturing genesis events with multiple days of lead time. Lower thresholds of
318 relative vorticity identified disproportionately more non-developing disturbances and converged to
319 a similar number of developing disturbances. Meanwhile, higher thresholds failed to capture many
320 genesis events with satisfactory lead time, or failed to identify some weak tropical storms at all.
321 TC genesis is defined as the first time that a disturbance achieves a maximum near-surface wind
322 speed of 18 m s^{-1} (tropical storm intensity), then persists for at least one day. We note that several
323 different definitions of genesis have been used in prior literature, which may influence results. To
324 test this possible sensitivity with a recent example, we also computed our genesis statistics with the
325 method employed by Chavas and Reed (2019), using local pressure minima with a closed contour
326 of at least 4 hPa below the surrounding environment within a 550 km circle. Our results were not
327 significantly altered.


328 The tracking algorithm searches for one local maximum of relative vorticity (disturbance) within
329 a 550 km search radius (approximately 5°). There are two instances when a disturbance may be

dropped by the algorithm as a result: if its center is within 550 km of a meridional boundary, or if two disturbances are within 550 km of each other such that only the stronger of the two is retained. Disturbances initialized with wind speeds above 20 m s^{-1} are assumed to re-emerge from one of these conditions, and are removed from genesis analyses. Future work may revise the tracking algorithm to permit the study of Fujiwhara-type interactions in this model configuration. Across the five simulations, the number of “repeat” genesis events ranges from 7 to 42.

336 *a. Tropical Cyclone Statistics*

337 After filtering, the cumulative number of disturbances (distinct vorticity maxima meeting the
338 10^{-4} s^{-1} threshold) ranges from 42 (HALF15) to 132 (ENHD15) across the full 100 days of a given
339 simulation (Figure 4a). About 50% of these disturbances achieve the genesis definition to become
340 tropical storms, and about 40% of the total disturbances become hurricanes with wind speeds
341 exceeding 33 m s^{-1} , where the dashed lines in Figure 4a accumulate at the time a disturbance
342 first reaches hurricane intensity. ENHD15 develops the most hurricanes, followed by FULL45,
343 FULL15, FULL00, and HALF15. FULL45 and ENHD15 (the simulations capturing the highest
344 latitudes) develop disturbances the earliest, followed by FULL15 (maximum latitude of 60°), then
345 FULL00 (45°), then HALF15 (37.5°).

351 Figure 4b-c shows the latitudinal and temporal distribution of genesis events using our persistent
352 18 m s^{-1} near-surface wind speed threshold, and the genesis rate calculated using a 10-day centered
353 running mean. The genesis rate is maximized from day 15-25 as the initial spinup takes place
354 preferentially near the boundaries (Figure 4c). This is most amplified in ENHD15 and FULL45,
355 suggesting that the upper limits of f in the domain most strongly control the frequency of initial
356 genesis events. Equatorward of 35° (near the latitudinal extent of HALF15), there is little systematic
357 variation in genesis rate with β (not shown). Therefore, the amplified genesis rate in ENHD15 and
358 FULL45 is due to a combination of stronger maximum f (as in Chavas and Reed (2019) and CW20),
359 and a larger area with high f . This is magnified further by the Cartesian domain geometry, which
360 provides a larger surface area for high-latitude TCs relative to spherical geometry. The genesis
361 rate is lowest from days 30-60 (Figure 4c), and there are no genesis events beyond 40° from days
362 38-60, even for ENHD15 and FULL45 (Figure 4b). This abrupt shift in genesis behavior signals
363 the start of the transition period between the spinup and equilibrium stages, which also corresponds

346 FIG. 4. (a) Accumulated disturbance and hurricane counts; (b) times and latitudes of individual genesis events;
 347 (c) genesis rate using a 10 day running mean; (d-f) latitudinal distribution of hurricane track density, TC genesis,
 348 and lifetime maximum intensity per (100 km^2) in 5° bins; (g) distribution of LMI wind speeds in 3 m s^{-1} bins;
 349 (h) intensity distribution of all TC snapshots organized by latitude. (d-h) only use TCs over the final 40 days of
 350 each simulation. Dashed lines in (b) and (d-f) represent the upper latitude bounds in each simulation.

364 to a damping of low-latitude wave activity to be discussed in the next section. ENHD15 generally
365 produces the highest average genesis rate from day 40-85 - about one new tropical storm daily.

366 To compare latitudinal genesis, track, and intensity distributions of simulations with different
367 magnitudes of β , the counts at each latitude are normalized by area before being placed into 5°-wide
368 latitude bins. This accounts for HALF15 having a larger area between effective latitudes than the
369 other simulations, for instance. For the ensuing analyses shown in Figure 4d-h, only TCs (tropical
370 storms and hurricanes) after day 60 are considered to better reflect the equilibrium state of the
371 simulations. As suggested by Figure 4b, the equilibrium genesis distribution mostly peaks in the
372 subtropical latitudes. While this peak is subtle and genesis occurs at a wide range of latitudes in
373 each simulation, each has its peak between 25-40° except for ENHD15. This includes FULL15 and
374 FULL45, which have substantial surface area at higher latitudes to accommodate genesis events.

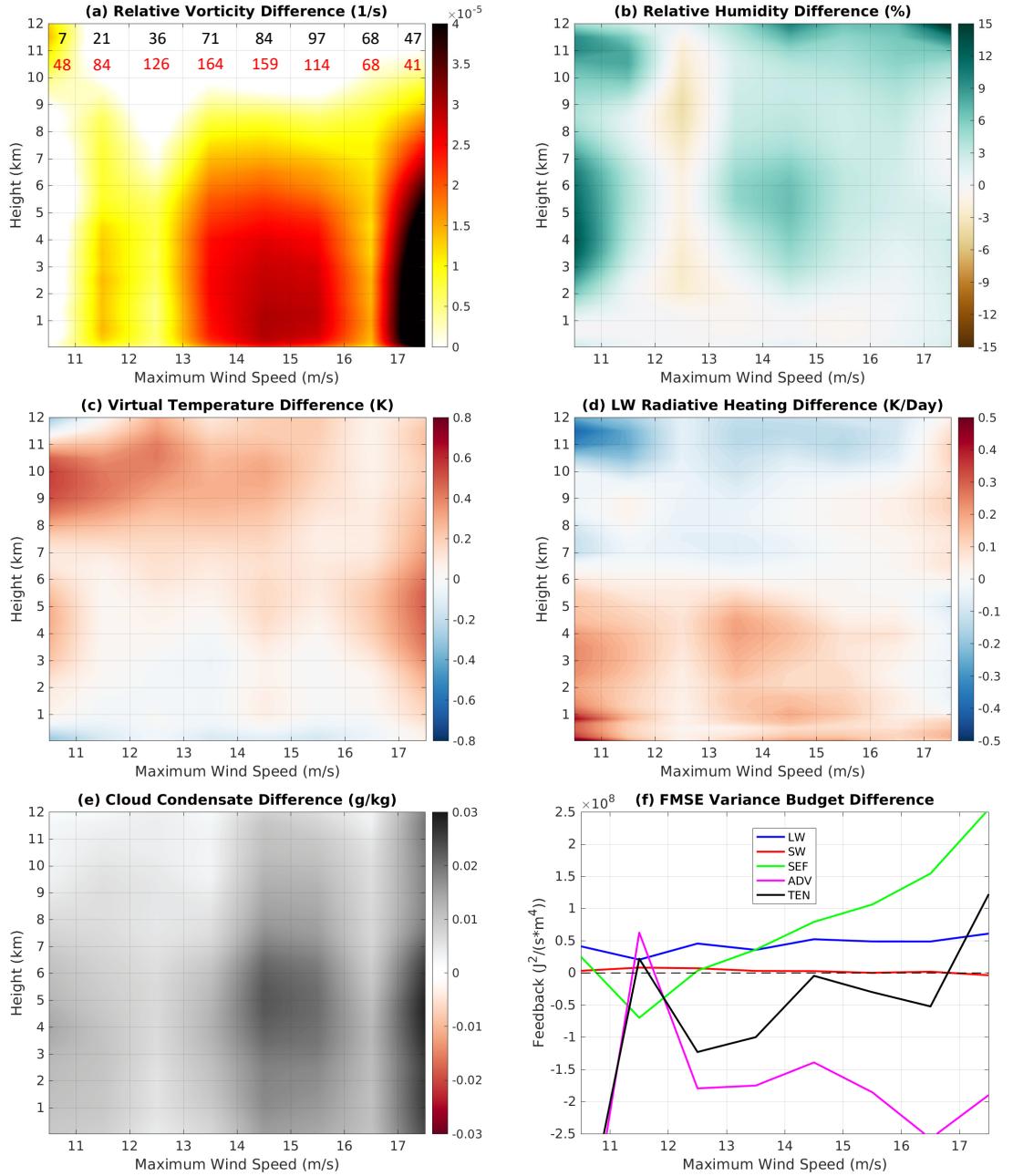
375 At equilibrium, hurricanes (wind speeds $\geq 33 \text{ m s}^{-1}$) tend to co-exist at high latitudes, including
376 those that originate at lower latitudes and propagate via the β -drift mechanism (Holland 1983).
377 Accordingly, hurricane track density is found to generally increase with latitude (Figure 4e). There
378 is a robust peak at the highest latitudes in each simulation (Figure 4e). The minimum latitude that
379 a hurricane (tropical storm) is identified at in HALF15 is 11.66° (9°). ENHD15 has no hurricanes
380 equatorward of 24.63°, suggesting that the value of β affects the latitudinal reach of the equatorial
381 wave regime. With the exception of HALF15, the minimum latitudes of hurricanes and tropical
382 storms are 19.66° and 12.60°, respectively. In other words, the “low- f ” (effective latitudes $< 8^\circ$)
383 TC genesis in the f -plane simulations of CW20 and CW22 does not occur here.

384 Figure 4f displays the latitudinal distribution of the lifetime maximum intensity (LMI) for all
385 tropical storms and hurricanes. The most prevalent feature is again a modest peak between 20-40°,
386 which again occurs in all simulations except for ENHD15. LMI also often occurs at higher latitudes
387 in each simulation. Combined with the hurricane density statistics in Figure 4e, this implies that
388 TCs can reach peak intensities at high latitudes, but the optimal environment for maximizing
389 intensity is farther equatorward with less surrounding TCs to destructively interact with.

390 The distribution of LMI itself is shown for all tropical storms and hurricanes in Figure 4g. This
391 is a bimodal distribution showing a cluster of weak tropical storms with winds near 20 m s^{-1} , and a
392 primary peak of $60\text{-}75 \text{ m s}^{-1}$ major hurricanes. The latter is expected given the extremely favorable
393 environment, which provides numerous cases of rapid intensification that can be examined in future

394 work. The subset of weak tropical storms and non-developing vorticity maxima is useful to identify
395 predictors for genesis and intensification using a composite approach, which will be performed in
396 the next subsection.

397 The overall intensity including all disturbances also follows a bimodal distribution (Figure 4h),
398 with peaks near 15 m s^{-1} (below tropical storm strength) and 50 m s^{-1} (Category 3 hurricanes).
399 Systems which do develop tend to intensify quickly, limiting the sample of strong tropical storms
400 and marginal hurricanes. The peak TC intensity across all simulations is near 75 m s^{-1} . This
401 is near the theoretical potential intensity (Emanuel 1986), which lies between $70\text{-}80 \text{ m s}^{-1}$ when
402 computed from the domain-mean sounding at each hour. Thinner lines on Figure 4h decompose
403 the TC intensity distribution into 10° latitudinal bins. From $10\text{-}20^\circ$ (yellow line), the distribution is
404 skewed toward the weakest intensities as disturbances rarely intensify into hurricanes equatorward
405 of 20° . As the effective latitude increases, the proportion of weak TCs decreases while that of
406 hurricanes increases. At higher latitudes, the peak intensity shifts towards lower intensities. This
407 reflects the growing impact of multi-TC interactions, given the increased density of TCs at high
408 latitudes in this model configuration (Figure 4e). Like the LMI latitudinal distribution, this implies
409 that TCs are usually strongest at intermediate latitudes when there is more separation between
410 them.


411 *b. Genesis Processes*

412 Developing and non-developing disturbances are next composited across all simulations to high-
413 light important contributors to TC genesis (Figure 5). Figure 4g revealed a bimodal distribution of
414 lifetime maximum intensities, indicating that the vast majority of disturbances which successfully
415 strengthened beyond minimal tropical storm intensity would subsequently intensify further into
416 major hurricanes. To clearly demarcate these two groups in this analysis, we identify developing
417 disturbances as those first identified with wind speeds under 18 m s^{-1} that later intensify into
418 hurricanes ($\geq 33 \text{ m s}^{-1}$), while those which do not achieve the 18 m s^{-1} wind speed threshold for at
419 least one full day consecutively are considered non-developing. This comparison is limited to the
420 TC belt, defined for each simulation in Table 2, which excludes some non-developing disturbances
421 that are identified farther equatorward. Moreover, only disturbances after day 60 are considered
422 to reflect the equilibrium state of the simulations. Vertical profiles considered include cyclonic

423 relative vorticity, relative humidity, anomalies of virtual temperature and longwave heating rate
424 (from the mean of an 1100 km TC-centered box), and cloud condensate, plotted as the difference
425 between the developing and non-developing composites. These quantities are averaged at each
426 vertical level from 0-12 km in a 300 km box centered on the disturbance, and composited by the
427 maximum wind speed of the disturbance up to 18 m s^{-1} . With the exception of the $10\text{-}11 \text{ m s}^{-1}$
428 bin for developing disturbances, each composite includes no less than 20 snapshots (Figure 5a).

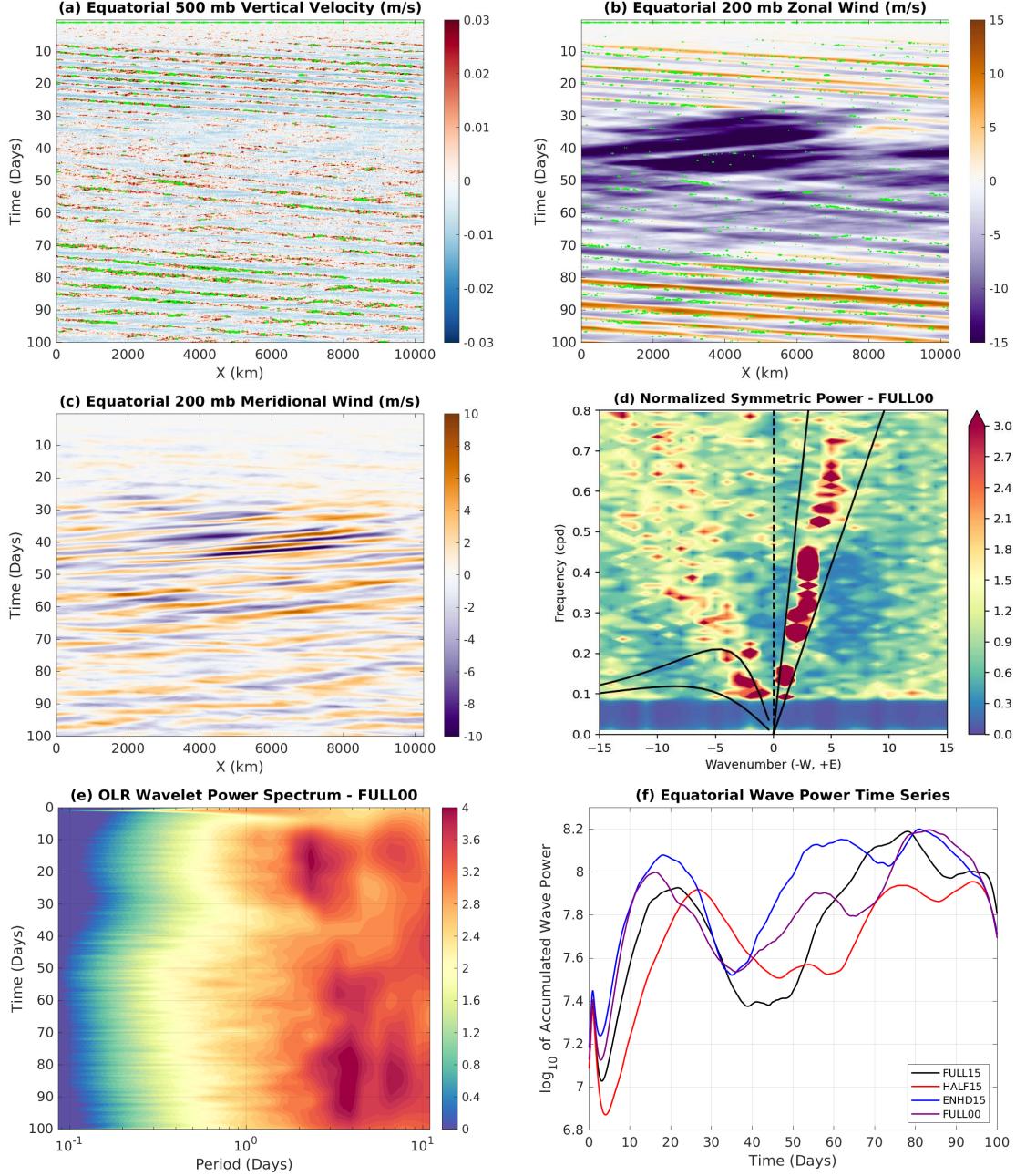
429 Developing TCs have higher initial relative vorticity throughout the lower and middle troposphere
430 than non-developing cases (Figure 5a). The radial and vertical distributions of relative vorticity
431 vary widely across developing cases, with no clear systematic dependence on latitude within the
432 broader TC belt prescribed in Table 2. The altitude of the initial vorticity maximum preceding
433 TC genesis ranges from 1.5-6 km, a wider range than in the f-plane simulations in CW20, but still
434 consistent with the top-down “high- f ” genesis pathway described in CW20. Recall that no TCs
435 form equatorward of 9° in these simulations. Accordingly, there is no evidence of “bottom-up”
436 TC development throughout the individual cases. The importance of amplified mid-tropospheric
437 vorticity in the developmental stages is clear from Figure 5a, as large differences between the
438 developing and non-developing composites extend well into the mid-troposphere.

445 Moisture profiles also serve as a useful predictor for TC development in these simulations
446 (Figure 5b). There is little difference in the boundary layer relative humidity (RH), which typically
447 exceeds 80%. However, developing cases have a moister free troposphere, with RH values about
448 10-15% higher from 3-7 km in developing disturbances at low wind speeds (i.e. the earliest stages
449 of development). This is in alignment with observations, where the mid-tropospheric relative
450 humidity is considered a useful indicator of genesis potential (Emanuel and Nolan 2004; Hopsch
451 et al. 2010). This is because moist mid-levels prevent dry air entrainment and favor more persistent
452 convection with weaker downdrafts, limiting import of low-entropy air into the boundary layer
453 (Tang and Emanuel 2012). While the difference in RH between developers and non-developers
454 reduces as winds approach 18 m s^{-1} , developing cases are still about 5% moister in mid-levels at
455 the tropical storm wind threshold. Consistent with the amplified moisture, developing TCs also
456 exhibit more amplified virtual temperature anomalies aloft (Figure 5c). The difference between
457 developing and non-developing cases is greatest in the middle and upper troposphere, resembling
458 the characteristic warm core TC structure aloft.

439 **FIG. 5.** Differences between developing and non-developing TCs, composited across all simulations by the
 440 maximum wind speed of the disturbance. Developing TCs are those which intensify into hurricanes, while
 441 non-developing disturbances fail to maintain 18 m s^{-1} wind for at least one day. (a-e) show vertical profiles of
 442 (a) relative vorticity; (b) relative humidity; (c) virtual temperature anomaly; (d) longwave heating rate anomaly;
 443 (e) cloud condensate. (f) displays the FMSE variance budget feedbacks. Sample sizes for each wind speed bin
 444 are shown in (a) for the developing (black) and non-developing (red) groups.

459 Examination of cloud profiles reveals that developing cases, as expected, feature more deep
460 convection that contributes to the anomalous warmth aloft via latent heat release and enhanced
461 radiative heating (Figure 5d-e). Longwave heating is enhanced below 7 km in the earliest stages
462 of development, and as the wind speed increases above 15 m^{-1} , the column of stronger longwave
463 heating shifts upward (Figure 5d). This suggests that enhanced deep convective cloud coverage
464 feeds back positively on TC development (Ruppert et al. 2020). Indeed, developing TCs have
465 higher cloud condensate throughout the column, with the difference between developing and non-
466 developing cases growing with wind speed (Figure 5e). The difference extends above the freezing
467 level (about 5 km), suggesting that ice processes and high clouds are influential in the development
468 stage (Wing 2022). Figure 5f confirms that the longwave radiative feedback on FMSE variance
469 is larger in developing systems than non-developers, and this difference grows with wind speed.
470 This is accompanied by an even larger difference in the strength of the surface flux feedback in
471 developers, which eventually compensates for a more strongly negative advective feedback. The
472 difference in the longwave and surface flux feedbacks between the developing and non-developing
473 composites is on the order of 50% of the equilibrium average value of the feedbacks in the broader
474 TC belt.

475 5. Equatorial Waves

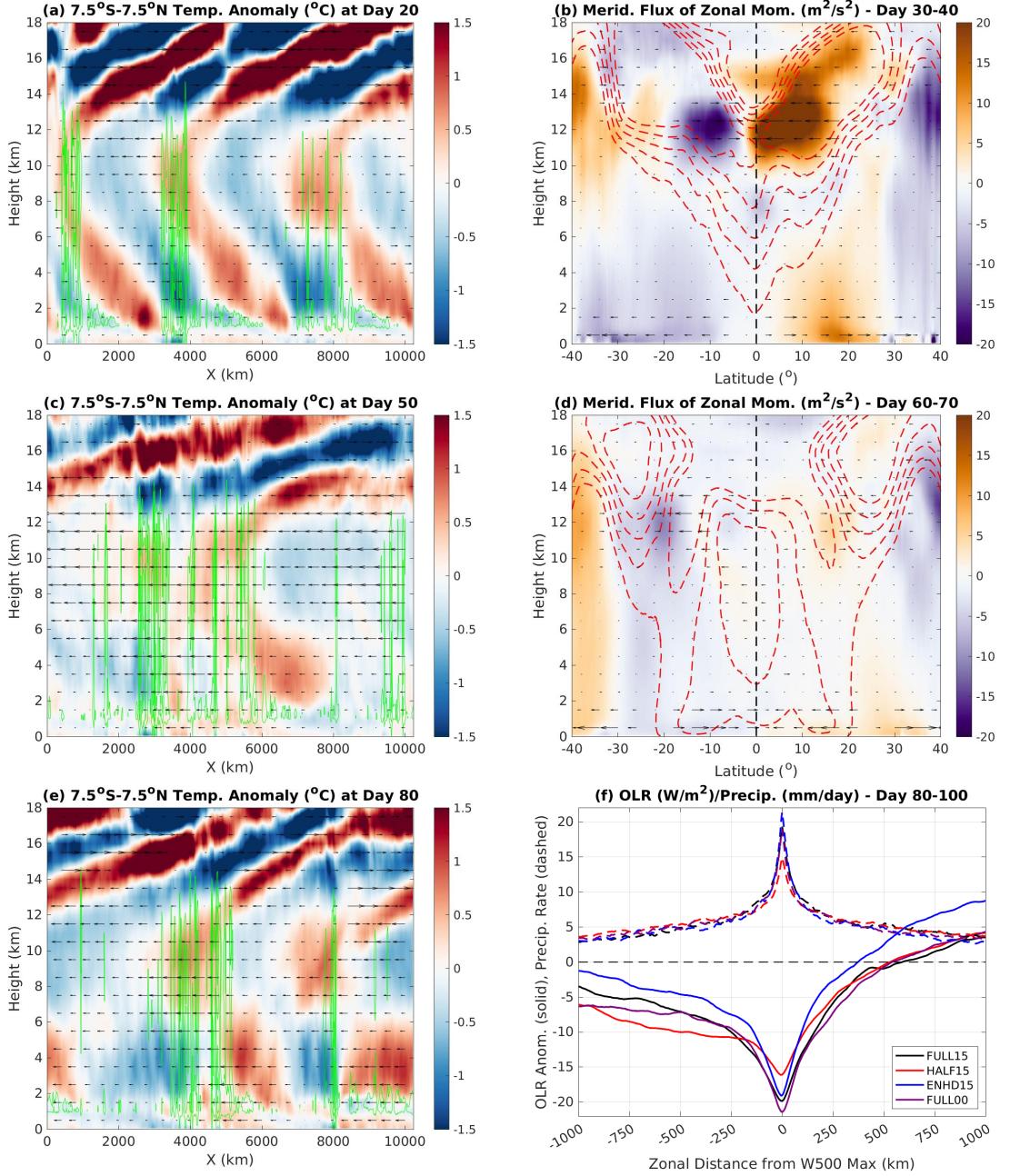

476 Analysis of convectively-coupled equatorial wave (CCEW) activity primarily considers the
477 FULL00 simulation, centered on the equator. Simulations behave qualitatively similarly, with
478 the exception of the time scales of wave growth and damping to be discussed via Figure 6f. Fig-
479 ure 6a-b reveals the development and zonal propagation of CCEWs, identified by fields of 500
480 hPa vertical velocity and 200 hPa zonal wind with precipitation rate overlaid. At each zonal grid
481 point, these quantities are averaged six-hourly from 7.5°S - 7.5°N to avoid influences from TCs, as
482 no strong TCs exist equatorward of 10° . After a short initialization period over the first 5 days,
483 eastward-propagating oscillations become readily apparent corresponding to convectively active
484 and suppressed wave phases. Ascent, upper-level zonal divergence, and amplified precipitation are
485 in phase with one another (red shading and green contours in Figure 6a, transition from orange to
486 purple shading in Figure 6b). The phase speed of these eastward-propagating waves is estimated
487 to be near 15 m s^{-1} during both the first 30 days and the final 30 days, within the range of observed

488 Kelvin wave phase speeds (Baranowski et al. 2016). There are typically three convectively active
489 wave phases at a given time, implying an average separation distance of 3000-4000 km.

496 The pattern dominated by these disturbances exists through the spinup period of each simulation,
497 with the only difference being that waves emerge more quickly when β is amplified. Some
498 evidence of westward-propagating disturbances is also apparent in Figure 6a-b, though these are
499 less pronounced and less influential on the overall convective distribution. After day 30, however,
500 the equatorial regime transitions to one dominated by easterly winds (Figure 6b). During this time,
501 enhanced variability in meridional winds implies that there is more interaction between the TC and
502 EQ belts (Figure 6c), given that TCs have developed and matured by this point. In the second half
503 of the simulation, waves appear prominently again in Figure 6a-b, and the upper-level meridional
504 winds relax somewhat. The EQ belt ultimately undergoes three phases: one where wave activity
505 is dominant and unaffected by the TCs at higher latitudes, one where TCs seem to affect equatorial
506 dynamics, then one where the TC and EQ belts co-exist in equilibrium.

507 For an objective diagnosis of CCEWs, a wavenumber-frequency power spectrum analysis is
508 developed from the OLR field based on the methodology of Wheeler and Kiladis (1999). The
509 symmetric spectrum shows Kelvin wave modes of wavenumber 2-5 as the dominant wave type
510 (Figure 6d). In addition, a westward-propagating equatorial Rossby wave signal is apparent with
511 equivalent depths between 10-100 m. The asymmetric spectrum features weaker, but widespread
512 high-frequency variability with a westward low-frequency signal that is comparable to the equatorial
513 Rossby waves (not shown). The time-varying wave structure is then analyzed using wavelet
514 decomposition (Torrence and Compo 1998) with a Morlet mother wavelet chosen for the 7.5°S-
515 7.5°N OLR field. Consistent with Figure 6a-d, Figure 6e shows that wave modes with a period
516 between 2-10 days emerge quickly, and are prominent throughout the simulation. However,
517 wave power appears to be somewhat reduced from day 30-40. Indeed, this feature exists across
518 all simulations, marked by a relative minimum in total wave power in the intermediate stages
519 (Figure 6f), which coincides with the strengthening easterly wind shown in Figure 6b. Notably,
520 Figure 6f shows that the time scales of wave development and suppression are dependent on β , as
521 the maxima and minima of wave power are lagged in HALF15 relative to ENHD15.

522 The vertical structure of the EQ belt in FULL00 is shown in the left panels of Figure 7 in x-z
523 space. Temperature anomaly, zonal wind, and cloud condensate are averaged from 7.5°S-7.5°N.



490 FIG. 6. (a-c) Hovmöller diagrams of 500 hPa vertical velocity, 200 hPa zonal wind, and 200 hPa meridional
491 wind respectively, averaged latitudinally from 7.5°S-7.5°N in FULL00. The 20 mm day⁻¹ precipitation rate
492 contour is overlaid on (a-b) in green. (d) Symmetric wavenumber-frequency power spectra of OLR in FULL00,
493 where dispersion curves are plotted at 10 m and 100 m equivalent depth. (e) Time-varying wave power in
494 FULL00, developed from a wavelet analysis of OLR. (f) Accumulated equatorial wave power from the wavelet
495 technique used in (e) for all simulations except FULL45.

524 At day 20 (Figure 7a), alternating areas of zonal wind convergence and divergence slope westward
525 with height. Low-level convergence and upper-level divergence are in phase with deep, thick
526 clouds. The zonal wind pattern reverses above 12 km, instead sloping eastward with height. This
527 strongly resembles the classic Kelvin wave structure even though no filtering has been applied, again
528 suggesting that Kelvin waves are the dominant mode of self-aggregated convection equatorward
529 of 10° . The convectively active phase is led by anomalous mid-level warmth (Figure 7a) to the
530 east, with relatively cool, moist air trailing to the west in the mid-levels due to rain evaporation
531 (not shown). A long belt of shallow clouds leads the active phase, emerging due to large-scale
532 subsidence in the suppressed phase. This is analogous to the subsiding branch of the overturning
533 circulation associated with SA in non-rotating and weakly rotating f-plane simulations (Muller and
534 Held 2012; Carstens and Wing 2022).

542 At day 50, easterly winds are dominant throughout the troposphere (Figure 7c), and the distribu-
543 tion of convection is less coherent. Recall from Section 4 that TCs spun up and reached maturity
544 throughout the high-latitude belt of the domain after day 20. During this intermediate time, TCs
545 influence the EQ belt through equatorward transport of easterly momentum from their outflow,
546 visualized as a meridional flux of zonal momentum (Figure 7b). This feature is most pronounced
547 aloft, with convergent upper-tropospheric meridional flow near the equator and mean divergence
548 near the surface, the opposite of a traditional Hadley circulation. This corresponds to greater mean
549 subsidence and less precipitation observed in the EQ belt from days 30-50 (Figure 6a). Shi and
550 Bretherton (2014) note a weak eddy-driven Hadley-type circulation in their GCM configuration,
551 with similar amplification of easterly flow and momentum flux in the first 30 days. As TC activity
552 retreats poleward after day 50 here, the equatorward flux of easterly momentum relaxes (Figure 7d),
553 equatorial waves take control once again, and the structure of the EQ belt again resembles Figure 7a
554 (Figure 7e). It is unclear why lower-latitude TCs become less common in later stages, though it
555 may be related to the stronger background flow relative to the first 30 days. Like other analyses,
556 there is little difference between simulations with differing β , other than the precise timing.

557 In Figure 7d, the zonal OLR and precipitation structure of the Kelvin wave environment is
558 composited each hour from day 10-30. This composite is centered on the convectively active
559 wave phases, defined as the zonal grid point with the maximum 500 mb vertical velocity averaged
560 from 7.5°S - 7.5°N in each third of the domain (assuming a wavenumber-3 structure, which is

535 FIG. 7. Left: Cross sections in x-z space of the equatorial belt in FULL00 at (a) day 20, (c) day 50, and
 536 (e) day 80, averaged from 7.5°S - 7.5°N . Temperature anomaly is shaded, with zonal wind vectors and the 0.04
 537 g kg^{-1} cloud condensate contour overlaid in green. (b) and (d) show the latitudinal and vertical profile of
 538 the zonally-averaged meridional flux of zonal momentum in FULL00, time-averaged from day 30-40 and day
 539 60-70, respectively. There, vectors represent the average meridional wind during those times, while red contours
 540 represent easterly zonal wind in 2 m s^{-1} increments. (f) shows a zonal cross section of OLR anomaly and
 541 precipitation rate through the center of the convectively active wave phase.

561 most common). The zonal cross section extends 1000 km to the west and east of this point to
562 capture characteristics of the larger-scale environment. The OLR field exhibits zonal asymmetry,
563 with a positive anomaly beyond 300-500 km to the east, despite zonal symmetry in the vertical
564 motion and precipitation fields (Figure 7d). The low clouds leading the convectively active phase
565 enhance radiative cooling while upper-level convergence suppresses deep convection (Figure 7a).
566 The relative symmetry of the precipitation suggests that differences in OLR are driven by shallow,
567 rather than deep convection. Reduced OLR west of the wave maximum is caused by the residual
568 moisture left behind after its passage, and therefore increased absorptivity relative to the east side.
569 Similar meridional profiles reveal that both lower-level and upper-level winds tend to be stronger
570 at the outermost radii (not shown), suggesting that the transition from the EQ to TC regimes is
571 marked by stronger mean flow throughout the troposphere.

572 6. Discussion

573 These β -plane simulations were initially motivated by the regime change in convective self-
574 aggregation as a function of f in the f -plane simulations of CW20 and CW22. Essentially, as f
575 increased, the advective feedback in the FMSE variance budget (Equation 2) became more negative,
576 reflecting stronger lateral export of moist static energy from moist convective patches. Beyond a
577 threshold value of f (analogous to about 6° effective latitude in that setting), convection failed to
578 fully consolidate into one coherent cluster. As f continued to increase to a sufficient value, tropical
579 cyclogenesis occurred and served as a driver of further aggregation in the model domain, owing to
580 the TC's strong surface flux and radiative feedbacks.

581 We see a similar regime transition of SA in these simulations, regardless of the magnitude of
582 β or the domain's central latitude. This is summarized briefly by Figure 3e. Equatorward of
583 10° , surface flux and shortwave radiative feedbacks successfully counteract a weakly negative
584 advective feedback, and aggregated convection quickly develops in the form of convectively-
585 coupled Kelvin waves. The resulting mode of aggregated convection differs from the f -plane
586 environment, simply due to the fundamental role of β in driving equatorial wave activity. The
587 rapid spontaneous development of CCKWs suggests a mechanistic link between idealized SA and
588 observed synoptic and planetary-scale equatorial convective modes, particularly the strong role of
589 shortwave radiative feedbacks in the maintenance of CCKWs. From $10\text{--}15^\circ$, the positive surface

flux and shortwave feedbacks reduce while the negative advective feedback strengthens. While Figure 3e is a composite mean of all simulations, and there is variation in the minimum latitude of TC genesis with changes in β , a transition from wave-dominated to cyclone-dominated regimes occurs. At progressively higher latitudes, the increased TC density causes increases to the surface flux and longwave radiative feedbacks, and strengthening of the negative advective feedback.

The separation of SA into distinct latitude-dependent regimes is largely consistent with the 1) equatorial no-TC, 2) equatorial sparse-TC, and 3) high-latitude dense-TC regimes found by Chavas and Reed (2019) in aquaplanet GCM simulations with uniform thermal forcing. A numerical comparison is presented in Table 3. In their model, the size distribution of convective entities in the low-latitudes was set by the equatorial Rhines scale ($L_\beta = \frac{\pi}{2} \sqrt{\frac{U_\beta}{\beta}}$), incorporating β under spherical geometry. The high-latitude regime was set by an inverse- f scaling, the ratio of the theoretical TC potential intensity (Emanuel 1986) to f ($L_f = \frac{U_f}{f}$). Under variations in planetary rotation rate or radius, Chavas and Reed (2019) found that the peak genesis (separating regimes 2 and 3) occurred at a value of f that scales with a critical latitude where the Rhines and inverse- f scales met. Using approximate velocity scales of 10 m s^{-1} at low latitudes (typical flow speed in an equatorial wave or pre-TC disturbance) and 80 m s^{-1} at high latitudes (maximum TC intensity) under constant β , the critical latitudes in our simulations are estimated to be 21° (HALF15), 25° (FULL15, FULL45, FULL00), and 34° (ENHD15). These latitudes are higher than the boundaries we defined between our EQ and TC regimes. However, our EQ-TC transition is more closely related to the transition from regimes 1 to 2 in Chavas and Reed (2019), as the minimum latitude of tropical storm occurrence in our simulations marks the transition to a “sparse-TC” regime. Chavas and Reed (2019) predicted that the minimum TC distance from the equator should decrease as β increases, via the Rhines scale equation above. This holds true in our simulations when considering hurricanes (33 m s^{-1}), as while the minimum latitude of hurricane occurrence increases with β , the corresponding Cartesian distance decreases. A crude metric to identify the transition between sparse-TC and dense-TC regimes is presented in Figure S2 of the Supporting Information, where Figure S2f represents the final column of Table 3. Briefly, the sparse-TC regime emerges as a latitudinal local maximum in zonal-mean surface pressure, separated from the more persistent organized convective modes at lower and higher latitudes. The eventual decrease in surface pressure with further increasing latitude in Figure S2f denotes increasing TC density, and can be considered

620 the starting point of a transition to a dense-TC regime. This metric scales with β in the same
 621 direction as the Chavas and Reed (2019) critical latitude.

622 TABLE 3. Summary of comparison between our β -plane simulations and the GCM aquaplanet simulations of
 623 Chavas and Reed (2019, CR19). Simulations are listed in order of β as given by the second column. The third
 624 column lists the equatorial Rhines scale calculated from β and a 10 m s^{-1} velocity scale for equatorial waves.
 625 The fourth column lists the CR19 theoretical critical latitude separating “sparse-TC” and “dense-TC” regimes
 626 derived from the aforementioned Rhines scale, and an inverse-f scale using an 80 m s^{-1} velocity scale for TCs.
 627 Then, the minimum latitudes of tropical storm (18 m s^{-1} wind) and hurricane (33 m s^{-1}) occurrence are listed.
 628 Finally, these are followed by an approximate latitude denoting the transition to a TC-dense regime, based on
 629 latitudinal variability in zonal-mean equilibrium surface pressure and shown in Figure S2.

Simulation	β	Rhines Scale	CR19 Critical Latitude	Minimum TS Lat.	Minimum Hurricane Lat.	$\text{dp/d}\phi < 0$
HALF15	1.05×10^{-11}	1533 km	21°	9.00°	11.66°	15°
FULL15	1.43×10^{-11}	1314 km	25°	13.99°	20.07°	19°
FULL45	1.43×10^{-11}	1314 km	25°	17.46°	21.87°	24°
FULL00	1.43×10^{-11}	1314 km	25°	17.09°	19.66°	21°
ENHD15	2.55×10^{-11}	984 km	34°	12.60°	24.63°	29°

630 The equilibrium genesis and track distributions in Figure 4 are useful to compare with aquaplanet
 631 and climate model simulations. When normalized to mimic realistic surface area variation with
 632 latitude, a preference for genesis in the subtropics appears. Genesis rates are generally smaller
 633 than the coarser simulations of Merlis et al. (2016) and Chavas and Reed (2019), though we only
 634 consider a 40-day sample in each simulation and use a different genesis definition. While we
 635 remove genesis cases within 5° of the meridional boundaries, it is possible that some high-latitude
 636 genesis events still stem from pre-existing vorticity maxima which transiently weakened below
 637 the 18 m s^{-1} threshold, either through vortex binary interaction or strong vertical wind shear
 638 along the boundaries. In this case, purely spontaneous genesis events would have a more robust
 639 peak frequency in the subtropics as seen in the prior GCM aquaplanet studies. Nonetheless, TC
 640 tracks behave consistently, following a β drift-induced path toward the meridional boundaries
 641 (Shi and Bretherton 2014), with number density consistently increasing as a function of latitude.
 642 The fraction of seed disturbances that develop into TCs is 40-50% regardless of β . This is
 643 similar to the development fraction found by Hsieh et al. (2020) in a GCM with realistic boundary
 644 conditions, who suggest that TC behavior follows seed behavior. They find a slightly higher seed

development rate in experiments where the meridional SST temperature gradient is reduced (more similar to our simulations), attributing this to changes in the ventilation index. This slight offset is likely influenced by our lower vorticity threshold to determine a disturbance ($1 \times 10^{-4} \text{ s}^{-1}$ here, compared to $4 \times 10^{-4} \text{ s}^{-1}$ there). Hsieh et al. (2020) also find an increase in seed generation with increased planetary rotation rate (simultaneous increases to both f and β), while increasing only β by lowering the planetary radius causes reduced low-latitude seed generation. Both of their findings are in agreement with our ENHD15 simulation, which has the lowest rates of TC genesis equatorward of 25° , and the highest beyond 30° . Chavas and Reed (2019) find an increase in genesis rate as the planetary rotation rate increases and the planetary radius decreases. This aligns with our Figure 4c, where the genesis rate is typically lowest in the HALF15 simulation (lowest β) and highest in ENHD15 and FULL45 (highest β and f). Chavas and Reed (2019) find a more robust quasi-linear dependence of genesis rate on f across their suite of simulations compared to ours, increasing up to subtropical latitudes and decreasing farther poleward. We attribute this difference to a combination of more limited sampling, potential genesis events from pre-existing vortices as discussed above, and greater surface area to accommodate high-latitude TCs in Cartesian geometry. With no near-equatorial genesis events in our simulations, the dynamics of genesis resemble the “high- f ” pathway described in CW20 and references therein, and genesis is favored in disturbances that are more humid aloft (Hopsch et al. 2010) and feature stronger radiative heating and surface flux effects (Ruppert et al. 2020; Zhang et al. 2021; Wing 2022).

We simulate higher TC intensities than idealized GCM simulations, which is expected given the much finer resolution. While the bimodal distribution in the lifetime maximum intensity (Figure 4g) is skewed more heavily toward high intensities than in observations (Lee et al. 2016), owing to the idealized environment with no imposed vertical wind shear, a bimodal distribution is captured with peaks at both hurricane and minimal tropical storm intensities. The overall peak TC intensities in the $70\text{-}75 \text{ m s}^{-1}$ range are comparable with the strongest TCs captured by Fedorov et al. (2018), who demonstrate the potential for downscaling a high-resolution GCM to scales more readily able to resolve eyewall processes. Notably, Fedorov et al. (2018) also find an increasing focus for genesis events in the subtropics and mid-latitudes when their equator-to-pole SST gradient is reduced. A dependence of TC peak intensity on latitude emerges in our simulations, where the most intense TCs at a given latitude are generally weaker as f increases. While many of our

675 TCs are limited by multi-vortex interactions, Stansfield and Reed (2021) find a thermodynamic
676 basis for such a decrease in their aquaplanet simulations with uniform thermal forcing. There,
677 the potential intensity steadily decreases from 20-50° latitude, in large part due to increases in
678 static stability and ventilation index with latitude. Broadly, our findings reflect favorably on
679 the ability of both parameterized and downscaled GCMs to capture the fundamental dynamics
680 governing large-scale TC behavior. Moving forward, the improved ability for our simulations to
681 resolve strong inner-core winds and heating yields more realistic insight into mesoscale processes
682 in individual TCs compared to GCMs, including radiative and surface flux feedbacks. While we
683 have primarily focused on TC statistics in this study, our simulations cumulatively provide over 150
684 distinct hurricane tracks, from which an extensive process-oriented analysis of individual genesis
685 and intensity change events can be performed in future work.

686 7. Conclusions

687 β -plane simulations were developed to add a layer of complexity to the f -plane environment
688 studied by CW22, permitting the unified study of convective self-aggregation under both weak and
689 strong rotation. This model configuration can be viewed as a computationally expensive but more
690 realistic alternative to “TC World” (Khairoutdinov and Emanuel 2013) due to the inclusion of β
691 and the realistic range of Coriolis parameters. It is also a convection-permitting counterpart to
692 aquaplanet GCM simulations with uniform thermal forcing (Shi and Bretherton 2014; Merlis et al.
693 2016; Chavas and Reed 2019), though our Cartesian geometry means that all latitudes have an
694 identical surface area, influencing TC statistics. This manuscript focused on three key questions:
695 how do the mechanisms contributing to SA onset and maintenance change as a function of f , how
696 does equilibrium TC behavior vary with f and β , and what are the dominant modes of SA at low
697 latitudes when β is introduced?

698 Similar to the f -plane simulations studied by CW22, there are two distinct regimes of convective
699 organization here - an equatorial mode dominated by convectively coupled Kelvin waves, transitioning
700 around 10-15° to a high-latitude belt dominated by TCs. A minor difference from the f -plane
701 is the lack of TCs equatorward of 9°, though the TCs at higher effective latitudes on the β -plane
702 generally follow a top-down vortex development similar to the “high- f ” genesis regime in CW20.
703 As the magnitude of β changes between these simulations, the Coriolis parameter separating the

704 two regimes, along with the time scales of TC and wave development, vary somewhat. Otherwise,
705 there is notable and somewhat surprising consistency between the various β -plane simulations.
706 SA in the equatorial regime (waves) is largely maintained by shortwave radiative feedbacks, while
707 strong surface flux feedbacks primarily drive organization at high latitudes, particularly once TCs
708 develop. Drying takes place more quickly at low latitudes initially, then after a period of TC spinup
709 between days 10-20, substantial drying ensues between individual TCs due to longwave radiative
710 and surface flux feedbacks. The latitudes of the meridional boundaries have the heaviest influence
711 on the number and distribution of TCs.

712 The most fundamental difference between non-rotating and “low- f ” f -planes with our equatorial
713 belt is that waves are the primary mode of organized convection, rather than circular clusters or
714 non-rotating bands. This is a direct consequence of introducing β , but the same mechanisms driving
715 low- f SA are also relevant processes affecting the moisture variability in the equatorial waves on
716 the β -plane. In this way, radiative and surface flux feedbacks can be considered thermodynamic
717 mechanisms for CCEW maintenance and amplification. The simulations also yield important
718 tropical-extratropical interactions and features of large-scale circulation, despite uniform thermal
719 forcing. A relationship emerges between TC activity and deep-layer equatorial flow. These
720 features, along with our findings on the distribution of TCs and the transition between regimes of
721 organized convection, show noteworthy consistency with similarly-configured GCMs. The finer
722 resolution employed here permits a more detailed study of TCs and advective processes, which are
723 in line with findings on the smaller f -plane. This consistency across model frameworks provides
724 an encouraging outlook for the utility of rotating RCE.

725 Future work may use this framework to examine the role of the FMSE variance budget feedbacks
726 on wave development, amplification, and propagation through mechanism denial experiments and
727 changes to the thermal forcing. In addition, thorough assessments of TC size, separation distance,
728 intensification, and motion can be developed from the current simulation set. Rapid intensification
729 is an area of particular interest, given the challenges it presents for forecasting and communication.
730 Given the abundance of both CCEWs and TCs, their interactions may also be studied in detail,
731 as Kelvin waves are widely thought to modulate TC activity. Mechanism denial experiments
732 may reveal the importance of surface flux and radiative feedbacks in constraining TC frequency
733 in a controlled setting, an area of ongoing debate in tropical climate change. Performing these

734 simulations using different values of SST can provide a rotating analog to RCEMIP (Wing et al.
735 2018, 2020). Finally, while the regimes and dominant mechanisms of SA remained consistent
736 from constant to varying f , additional layers of complexity are appropriate to consider, such as
737 SST gradients or diurnally-varying radiation. Such experiments may also employ more complex
738 microphysics than the single-moment package used here, to test how radiative processes may be
739 affected by the choice of scheme. Ultimately, these simulations offer an exciting setting to study
740 numerous convective modes and their multiscale interactions, revealing fundamental processes
741 governing tropical weather and climate in a controlled setting.

742 *Acknowledgments.* We acknowledge computing support from Cheyenne (doi:
743 10.5065/D6RX99HX), provided by NCAR’s Computational and Information Systems Laboratory,
744 sponsored by the National Science Foundation. We also acknowledge Marat Khairoutdinov for
745 providing and maintaining the System for Atmospheric Modeling (SAM). JDC thanks Robert
746 Hart, Jeffrey Chagnon, Mark Bourassa, and James Elsner for their support while serving on
747 his doctoral committee, and Allison Brannan for her assistance in performing the wavelet
748 analysis. Wavelet software was provided by C. Torrence and G. Compo, and is available at
749 <http://atoc.colorado.edu/research/wavelets>. AAW acknowledges funding support from NSF grant
750 1830724. Finally, we thank Dan Chavas and two anonymous reviewers for their insightful,
751 constructive feedback and additional resources, which greatly improved the manuscript.

752 *Data availability statement.* Model input files used to run the simulations, along with post-
753 processed model output data and MATLAB code used to generate figures, are available publicly
754 at <https://github.com/jdcarstens17/BetaPlaneRCE>

755 **References**

756 Baranowski, D. B., M. K. Flatau, P. J. Flatau, and A. J. Matthews, 2016: Impact of atmospheric
757 convectively coupled equatorial Kelvin waves on upper ocean variability. *J. Geophys. Res.*
758 *Atmos.*, **121**, 2045–2059, <https://doi.org/10.1002/2015jd024150>.

759 Bercos-Hickey, E., and C. M. Patricola, 2021: Anthropogenic influences on the African east-
760 erly jet-African easterly wave system. *Clim. Dyn.*, **57**, 2779–2792, <https://doi.org/10.1007/s00382-021-05838-1>.

762 Boos, W. R., A. V. Fedorov, and L. Muir, 2016: Convective self-aggregation and tropical cy-
763 clogenesis under the hypohydrostatic rescaling. *J. Atmos. Sci.*, **73**, 525–544, <https://doi.org/10.1175/jas-d-15-0049.1>.

765 Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep
766 convective self-aggregation above uniform SST. *J. Atmos. Sci.*, **62**, 4237–4292, <https://doi.org/10.1175/JAS3614.1>.

768 Carstens, J. D., and A. A. Wing, 2020: Tropical cyclogenesis from self-aggregated convection in
769 numerical simulations of rotating radiative-convective equilibrium. *J. Adv. Model. Earth Syst.*,
770 **12**, <https://doi.org/10.1029/2019ms002020>.

771 Carstens, J. D., and A. A. Wing, 2022: A spectrum of convective self-aggregation based on
772 background rotation. *J. Adv. Model. Earth Syst.*, **14**, <https://doi.org/10.1029/2021ms002860>.

773 Chavas, D. R., and K. A. Reed, 2019: Dynamical aquaplanet experiments with uniform thermal
774 forcing: System dynamics and implications for tropical cyclone genesis and size. *J. Atmos. Sci.*,
775 **76**, 2257–2274, <https://doi.org/10.1175/jas-d-19-0001.1>.

776 Clough, S., M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and
777 P. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. *J.*
778 *Quant. Spectrosc. Radiat. Transfer*, **91**, 233–244, <https://doi.org/10.1016/j.jqsrt.2004.05.058>.

779 Coppin, D., and S. Bony, 2015: Physical mechanisms controlling the initiation of convective
780 self-aggregation in a general circulation model. *J. Adv. Model. Earth Syst.*, **7**, 2060–2078,
781 <https://doi.org/10.1002/2015ms000571>.

782 Craig, G. C., and J. M. Mack, 2013: A coarsening model for self-organization of tropical convection.
783 *J. Geophys. Res.*, **118**, 8761–8769, <https://doi.org/10.1002/jgrd.50674>.

784 Cronin, T. W., and D. R. Chavas, 2019: Dry and semidry tropical cyclones. *J. Atmos. Sci.*, **76**,
785 2193–2212, <https://doi.org/10.1175/jas-d-18-0357.1>.

786 Davis, C. A., 2015: The formation of moist vortices and tropical cyclones in idealized simulations.
787 *J. Atmos. Sci.*, **72**, 3499–3516, <https://doi.org/10.1175/jas-d-15-0027.1>.

788 Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part 1: Steady state
789 maintenance. *J. Atmos. Sci.*, **43**, 585–604, [https://doi.org/10.1175/1520-0469\(1986\)043<0585:aasitf>2.0.co;2](https://doi.org/10.1175/1520-0469(1986)043<0585:aasitf>2.0.co;2).

791 Emanuel, K. A., 2003: Tropical cyclones. *Ann. Rev. Earth Planet. Sci.*, **31**, 75–104.

792 Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system.
793 *26th Conference on Hurricanes and Tropical Meteorology*, 240–241.

794 Fang, J., and F. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. *Mon. Wea. Rev.*,
795 **140**, 3327–3346, <https://doi.org/10.1175/mwr-d-10-05021.1>.

796 Fedorov, A. V., L. Muir, W. R. Boos, and J. Studholme, 2018: Tropical cyclogenesis in warm
797 climates simulated by a cloud system resolving model. *Clim. Dyn.*, **52**, 107–127, <https://doi.org/10.1007/s00382-018-4134-2>.

798

799 Fu, D., P. Chang, C. M. Patricola, and R. Saravanan, 2019: High-resolution tropical channel
800 model simulations of tropical cyclone climatology and intraseasonal-to-interannual variability.
801 *J. Climate*, **32**, 7871–7895, <https://doi.org/10.1175/jcli-d-19-0130.1>.

802 Fu, D., P. Chang, C. M. Patricola, R. Saravanan, X. Liu, and H. E. Beck, 2021: Central American
803 mountains inhibit eastern North Pacific seasonal tropical cyclone activity. *Nature Comm.*, **12**,
804 1–11, <https://doi.org/10.1038/s41467-021-24657-w>.

805 Gill, A., 1982: *Atmosphere-ocean dynamics*. International Geophysics Series, Academic Press.

806 Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative-convective equilibrium with
807 explicit two-dimensional moist convection. *J. Atmos. Sci.*, **50**, 3909–3927, [https://doi.org/10.1175/1520-0469\(1993\)050<3909:rcewet>2.0.co;2](https://doi.org/10.1175/1520-0469(1993)050<3909:rcewet>2.0.co;2).

808

809 Held, I. M., and M. Zhao, 2008: Horizontally homogeneous rotating radiative-convective equilib-
810 rium at GCM resolution. *J. Atmos. Sci.*, **65**, 2003–2013, <https://doi.org/10.1175/2007jas2604.1>.

811 Hohenegger, C., and B. Stevens, 2016: Coupled radiative-convective equilibrium simulations with
812 explicit and parameterized convection. *J. Adv. Model. Earth Syst.*, **8**, 1468–1482, <https://doi.org/10.1002/2016ms000666>.

813

814 Holland, G. J., 1983: Tropical cyclone motion: Environmental motion plus a beta effect. *J. Atmos.*
815 *Sci.*, **40**, 328–342, [https://doi.org/10.1175/1520-0469\(1983\)040<0328:TCMEIP>2.0.CO;2](https://doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2).

816 Holloway, C. E., and S. J. Woolnough, 2016: The sensitivity of convective aggregation to diabatic
817 processes in idealized radiative-convective equilibrium simulations. *J. Adv. Model. Earth Syst.*,
818 **8**, 166–195, <https://doi.org/10.1002/2015ms000511>.

819 Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave
820 structures and their role in influencing tropical cyclogenesis. *Mon. Wea. Rev.*, **138**, 1399–1419,
821 <https://doi.org/10.1175/2009mwr2760.1>.

822 Houze, R. A., 2004: Mesoscale convective systems. *Rev. Geophys.*, **42**, RG4003, <https://doi.org/10.1029/2004rg000150>.

824 Hsieh, T. L., G. A. Vecchi, W. Yang, I. M. Held, and S. T. Garner, 2020: Large-scale control on the
825 frequency of tropical cyclones and seeds: A consistent relationship across a hierarchy of global
826 atmospheric models. *Clim. Dyn.*, **55**, 3177–3196, <https://doi.org/10.1007/s00382-020-05446-5>.

827 Iacono, M., J. Delamere, E. Mlawer, M. Shephard, S. Clough, and W. Collins, 2008: Radiative
828 forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. *J.*
829 *Geophys. Res.*, **113**, D13 103, <https://doi.org/10.1029/2008jd009944>.

830 Khairoutdinov, M. F., and K. A. Emanuel, 2010: Aggregation of convection and the regulation of
831 tropical climate. *29th Conference on Hurricanes and Tropical Meteorology*.

832 Khairoutdinov, M. F., and K. A. Emanuel, 2013: Rotating radiative-convective equilibrium sim-
833 ulated by a cloud-resolving model. *J. Adv. Model. Earth Sys.*, **5**, 816–825, <https://doi.org/10.1002/2013MS000253>.

835 Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer
836 1997 IOP: Model formulation, results, uncertainties, and sensitivities. *J. Atmos. Sci.*, **60**, 607–
837 625, [https://doi.org/10.1175/1520-0469\(2003\)060<0607:crmota>2.0.co;2](https://doi.org/10.1175/1520-0469(2003)060<0607:crmota>2.0.co;2).

838 Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively
839 coupled equatorial waves. *Rev. Geophys.*, **47**, <https://doi.org/10.1029/2008rg000266>.

840 Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2016: Rapid intensification and the
841 bimodal distribution of tropical cyclone intensity. *Nature Comm.*, **7**, 10 625, <https://doi.org/10.1038/ncomms10625>.

843 Lu, K. Y., and D. R. Chavas, 2022: Tropical cyclone size is strongly limited by the Rhines
844 scale: Experiments with a barotropic model. *J. Atmos. Sci.*, **79**, 2109–2124, <https://doi.org/10.1175/jas-d-21-0224.1>.

846 Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zontal wind in the
847 tropical Pacific. *J. Atmos. Sci.*, **28**, 702–708, [https://doi.org/10.1175/1520-0469\(1971\)028<0702:doadoi>2.0.co;2](https://doi.org/10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2).

849 Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective
850 adjustment. *J. Atmos. Sci.*, **21**, 361–385, [https://doi.org/10.1175/1520-0469\(1964\)021<0361:teotaw>2.0.co;2](https://doi.org/10.1175/1520-0469(1964)021<0361:teotaw>2.0.co;2).

852 Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. *J. Meteorol. Soc. Japan*, **44**,
853 25–43, https://doi.org/10.2151/jmsj1965.44.1_25.

854 Merlis, T. M., W. Zhou, I. M. Held, and M. Zhao, 2016: Surface temperature dependence of tropical
855 cyclone-permitting simulations in a spherical model with uniform thermal forcing. *Geophys. Res.
856 Lett.*, **43**, 2859–2865, <https://doi.org/10.1002/2016gl067730>.

857 Mlawer, E., S. Taubman, P. Brown, M. Iacono, and S. Clough, 1997: Radiative transfer for inho-
858 mogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. *J. Geophys.
859 Res.*, **102**, 16 663–16 682, <https://doi.org/10.1029/97jd00237>.

860 Muller, C. J., and I. M. Held, 2012: Detailed investigation of the self-aggregation of
861 convection in cloud-resolving simulations. *J. Atmos. Sci.*, **69**, 2551–2565, <https://doi.org/10.1175/jas-d-11-0257.1>.

863 Muller, C. J., and D. M. Romps, 2018: Acceleration of tropical cyclogenesis by self-aggregation
864 feedbacks. *Proc. Nat. Acad. Sci.*, **115**, 2930–2935, <https://doi.org/10.1073/pnas.1719967115>.

865 Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to
866 environmental parameters in radiative-convective equilibrium. *Q. J. R. Meteorol. Soc.*, **133**,
867 2085–2107, <https://doi.org/10.1002/qj.170>.

868 Patrizio, C. R., and D. A. Randall, 2019: Sensitivity of convective self-aggregation to domain size.
869 *J. Adv. Model. Earth Syst.*, **11**, 1995–2019, <https://doi.org/10.1029/2019ms001672>.

870 Ramirez Reyes, A., and D. Yang, 2021: Spontaneous cyclogenesis without radiative and surface
871 flux feedbacks. *J. Atmos. Sci.*, **78**, 4169–4184, <https://doi.org/10.1175/JAS-D-21-0098.1>.

872 Ramsay, H. A., M. S. Singh, and D. R. Chavas, 2020: Response of tropical cyclone formation and
873 intensification rates to climate warming in idealized simulations. *J. Adv. Model. Earth Syst.*, **12**,
874 <https://doi.org/10.1029/2020ms002086>.

875 Reed, K. A., and D. R. Chavas, 2015: Uniformly rotating global radiative-convective equilibrium
876 in the Community Atmosphere Model, version 5. *J. Adv. Model. Earth Syst.*, **7**, 1938–1955,
877 <https://doi.org/10.1002/2015MS000519>.

878 Ruppert, J. H., A. A. Wing, X. Tang, and E. L. Duran, 2020: The critical role of cloud-infrared
879 radiation feedback in tropical cyclone development. *Proc. Nat. Acad. Sci.*, **117**, 27 884–27 892,
880 <https://doi.org/10.1073/pnas.2013584117>.

881 Satoh, M., B. Stevens, F. Judt, M. Khairoutdinov, S.-J. Lin, W. M. Putman, and P. Duben,
882 2019: Global cloud-resolving models. *Curr. Clim. Change Rep.*, **5**, 172–184, <https://doi.org/10.1007/s40641-019-00131-0>.

884 Shi, X., and C. S. Bretherton, 2014: Large-scale character of an atmosphere in rotating
885 radiative-convective equilibrium. *J. Adv. Model. Earth Syst.*, **6**, 616–629, <https://doi.org/10.1002/2014ms000342>.

887 Stansfield, A. M., and K. A. Reed, 2021: Tropical cyclone precipitation response to surface
888 warming in aquaplanet simulations with uniform thermal forcing. *J. Geophys. Res. Atmos.*, **126**,
889 <https://doi.org/10.1029/2021jd035197>.

890 Tang, B. H., and K. A. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an
891 axisymmetric model. *J. Atmos. Sci.*, **69**, 2394–2413, <https://doi.org/10.1175/jas-d-11-0232.1>.

892 Tompkins, A., and G. Craig, 1998: Radiative-convective equilibrium in a three-dimensional cloud-
893 ensemble model. *Q. J. R. Meteorol. Soc.*, **124**, 2073–2097, <https://doi.org/10.1256/smsqj.55012>.

894 Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. *Bull. Amer. Met. Soc.*,
895 **79**, 61–78, [https://doi.org/10.1175/1520-0477\(1998\)079<0061:apgtwa>2.0.co;2](https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2).

896 Vu, T. A., C. Kieu, D. R. Chavas, and Q. Wang, 2021: A numerical study of the global formation
897 of tropical cyclones. *J. Adv. Model. Earth Syst.*, **13**, <https://doi.org/10.1029/2020ms002207>.

898 Wang, Y., C. A. Davis, and Y. Huang, 2019: Dynamics of lower-tropospheric vorticity in idealized
899 simulations of tropical cyclone formation. *J. Atmos. Sci.*, **76**, 707–727, <https://doi.org/10.1175/jas-d-18-0219.1>.

900

901 Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of
902 clouds and temperature in the wavenumber-frequency domain. *J. Atmos. Sci.*, **56**, 374–399,
903 [https://doi.org/10.1175/1520-0469\(1999\)056<374:ccewao>2.0.co;2](https://doi.org/10.1175/1520-0469(1999)056<374:ccewao>2.0.co;2).

904 Windmiller, J. M., and G. C. Craig, 2019: Universality in the spatial evolution of self-aggregation
905 of tropical convection. *J. Atmos. Sci.*, **76**, 1677–1696, <https://doi.org/10.1175/jas-d-18-0129.1>.

906 Wing, A. A., 2019: Self-aggregation of deep convection and its implications for climate. *Curr.*
907 *Clim. Change Rep.*, **5**, 1–11, <https://doi.org/10.1007/s40641-019-00120-3>.

908 Wing, A. A., 2022: Acceleration of tropical cyclone development by cloud-radiative feedbacks. *J.*
909 *Atmos. Sci.*, **79**, 2285–2305, <https://doi.org/10.1175/jas-d-21-0227.1>.

910 Wing, A. A., S. J. Camargo, and A. H. Sobel, 2016: Role of radiative-convective feedbacks
911 in spontaneous tropical cyclogenesis in idealized numerical simulations. *J. Atmos. Sci.*, **73**,
912 2633–2642, <https://doi.org/10.1175/JAS-D-15-0380.1>.

913 Wing, A. A., and T. W. Cronin, 2016: Self-aggregation of convection in long channel geometry.
914 *Q. J. R. Meteorol. Soc.*, **142**, 1–15, <https://doi.org/10.1002/qj.2628>.

915 Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of
916 convection in idealized numerical modeling simulations. *J. Adv. Model. Earth. Syst.*, **6**, 59–74,
917 <https://doi.org/10.1002/2013ms000269>.

918 Wing, A. A., K. A. Reed, M. Satoh, B. Stevens, S. Bony, and T. Ohno, 2018: Radiative-Convective
919 Equilibrium Model Intercomparison Project. *Geosci. Model Dev.*, **11**, 793–813, <https://doi.org/10.5194/gmd-11-793-2018>.

920

921 Wing, A. A., C. L. Stauffer, T. Becker, K. A. Reed, M. S. Ahn, and e. a. Arnold, N. P., 2020: Clouds
922 and convective self-aggregation in a multimodel ensemble of radiative-convective equilibrium
923 simulations. *J. Adv. Model. Earth. Syst.*, **12**, <https://doi.org/10.1029/2020ms002138>.

924 Yanase, T., S. Nishizawa, H. Miura, T. Takemi, and H. Tomita, 2020: New critical length for the
925 onset of self-aggregation of moist convection. *Geophys. Res. Lett.*, **47**, <https://doi.org/10.1029/2020gl088763>.

927 Yang, D., 2018a: Boundary layer diabatic processes, the virtual effect, and convective self-
928 aggregation. *J. Adv. Model. Earth Syst.*, **10**, 2163–2176, <https://doi.org/10.1029/2017ms001261>.

929 Yang, D., 2018b: Boundary layer height and buoyancy determine the horizontal scale of convective
930 self-aggregation. *J. Atmos. Sci.*, **75**, 469–478, <https://doi.org/10.1175/jas-d-17-0150.1>.

931 Zhang, B., B. J. Soden, G. A. Vecchi, and W. Yang, 2021: The role of radiative interactions in
932 tropical cyclone development under realistic boundary conditions. *J. Climate*, **34**, 2079–2091,
933 <https://doi.org/10.1175/jcli-d-20-0574.1>.

934 Zhou, W., I. M. Held, and S. T. Garner, 2014: Parameter study of tropical cyclones in rotating
935 radiative-convective equilibrium with column physics and resolution of a 25 km GCM. *J. Atmos.*
936 *Sci.*, **71**, 1058–1068, <https://doi.org/10.1175/jas-d-13-0190.1>.

937 Zhou, W., I. M. Held, and S. T. Garner, 2017: Tropical cyclones in rotating radiative-
938 convective equilibrium with coupled SST. *J. Atmos. Sci.*, **74**, 879–892, <https://doi.org/10.1175/jas-d-16-0195.1>.