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Abstract

Context Linear Temporal Logic (LTL) has been used widely in verification. Its importance and popularity have
only grown with the revival of temporal logic synthesis, and with new uses of LTL in robotics and planning
activities. All these uses demand that the user have a clear understanding of what an LTL specification means.

Inquiry Despite the growing use of LTL, no studies have investigated the misconceptions users actually have
in understanding LTL formulas. This paper addresses the gap with a first study of LTL misconceptions.

Approach We study researchers’ and learners’ understanding of LTL in four rounds (three written surveys,
one talk-aloud) spread across a two-year timeframe. Concretely, we decompose “understanding LTL” into
three questions. A person reading a spec needs to understand what it is saying, so we study the mapping
from LTL to English. A person writing a spec needs to go in the other direction, so we study English to
LTL. However, misconceptions could arise from two sources: a misunderstanding of LTL’s syntax or of its
underlying semantics. Therefore, we also study the relationship between formulas and specific traces.

Knowledge We find several misconceptions that have consequences for learners, tool builders, and designers
of new property languages. These findings are already resulting in changes to the Alloy modeling language.
We also find that the English to LTL direction was the most common source of errors; unfortunately, this is
the critical “authoring” direction in which a subtle mistake can lead to a faulty system. We contribute study
instruments that are useful for training learners (whether academic or industrial) who are getting acquainted
with rTL, and we provide a code book to assist in the analysis of responses to similar-style questions.

Grounding Our findings are grounded in the responses to our survey rounds. Round 1 used Quizius to identify
misconceptions among learners in a way that reduces the threat of expert blind spots. Rounds 2 and 3 confirm
that both additional learners and researchers (who work in formal methods, robotics, and related fields) make
similar errors. Round 4 adds deep support for our misconceptions via talk-aloud surveys.

Importance This work provides useful answers to two critical but unexplored questions: in what ways is LTL
tricky and what can be done about it? Our survey instruments can serve as a starting point for other studies.
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Little Tricky Logic: Misconceptions in the Understanding of LTL

EJ Introduction

Linear temporal logic (LTL) has long been a standard for writing property specifications

in computer-aided verification. The language can express a variety of real-world

phenomena while supporting good decision procedures [79]. It is also a small language,
thereby presumably making it easy to learn and understand.

In recent years, LTL has been increasingly used for much more than verification.
The old dream of temporal-logic synthesis [52, 65] has seen a revival [2, 3, 12]. LTL has
been adapted to enable property-based testing of interactive web applications [60].
Even more intriguingly, roboticists have found intimate connections between LTL and
robot planning [4, 28, 49], as a result of which numerous robotics systems now use
LTL, e.8., [5, 11, 35, 42, 47, 72, 85]. Indeed, it is sufficiently pervasive that there are
now even robotics classes that teach LTL to learners who have no prior experience
with formal methods [53].

All these efforts are predicated on a central belief: that users of the logic actually
understand it. The quality of verification, synthesis, or planning is only as good as the
property statement. If a user writes a property but misunderstands what it is saying,
there are no safeguards: the tool will blindly apply this property and check or generate
the requested behavior, whether or not it was the desired one. It is therefore critical
to know whether users accurately understand r.TL, which is the focus of this paper.

As a case in point, this project was born of a worrisome incident. Two authors
attended a research colloquium about using LTL in robot planning. The speaker, a
roboticist, began with a brief introduction to r.TL. However, this tutorial contained
a mistake, but neither the speaker nor the somewhat LTL-aware audience spotted
it. This prompted the authors to wonder whether this phenomenon is wider-spread,
even amongst people trained in formal methods.

Concretely, this paper focuses on three directions of LTL understanding:

LTL to English: Given an LTL formula, can a reader accurately translate it into English?
This is similar to what a person does when reading a specification, e.g., when
code-reviewing work or studying a paper.

English to LTL: Given an English statement, can a reader accurately express it in LTL?
This skill is essential for specification and verification.

Trace satisfaction: Given an LTL formula and a trace (sequence of states), can a reader
accurately label the trace as satisfying or violating? Such questions directly test
knowledge of LTL semantics.

We know of virtually no work that examines human factors in this setting (Section 12).

Outline This paper begins by explaining the long-term goals of our work and how
researchers in related areas have approached similar goals (Section 2). It then presents
the design of our multi-year study (Section 3), the formative component of the
study (Section 4), and our method for confirming formative findings (Section 5)
before shifting focus to the main results and their implications. The paper concludes
with related work (Section 12) and a discussion of next steps (Section 13).
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LTL Primer For a brief overview of the LTL syntax used in this paper, jump ahead to
Table 2 on page 5. For a proper introduction, refer to Appendix B.

Contributions Our work makes three main contributions:

= We find errors in all three question categories (Sections 6, 7, and 8).

= We provide a code book of misconceptions (Section 5).

= We provide three instruments to test for misconceptions (Appendix A).

These contributions have implications for four classes of LTL users: learners, educa-
tors, tool builders, and designers of new property languages. The code book and
instruments are of immediate value to learners and educators, whether in academic
settings or industrial ones (e.g., [82]). Knowledge about misconceptions can be used
by tool builders to create new learning tools or to issue alerts in existing ones. Lastly,
our work is of use to designers of logics and is resulting in a change to Alloy.

In short: it may be folk knowledge that LTL is tricky, but is it really, in what ways,
and what can we do about it? We believe this paper offers useful initial answers.

[EJ Background on Misconceptions

In educational psychology and other fields, there is an important difference between
a mistake and a misconception. A mistake is simply an error; it could have occurred
for any number of reasons. A misconception, in contrast, refers to having the wrong
idea about a topic.

Misconceptions usually reveal themselves through mistakes, but not every mistake
is a misconception. For instance, if subjects provide the wrong answer in response
to a question, there are many possible explanations: they may have a genuine mis-
conception; they may have misunderstood the question; they may have been tired;
their hand may have slipped while checking boxes; and so on. In general, we can only
discern a misconception by connecting to an intent.

In the education literature, seminal work by Hestenes [37, 38] introduced the idea
of a concept inventory (c1). A concept inventory is a multiple-choice questionnaire
where each question presents one correct answer and several wrong answers. The
wrong answers are not chosen arbitrarily, however, but rather are carefully designed
to (hopefully) be bijective with specific misconceptions. Thus, when a subject picks a
particular wrong answer, there is a very high likelihood they have the corresponding
misconception. For instance, if a study of children finds that they often misinterpret
the symbol x to mean addition, a wrong answer for 4 x 3 would be 7.

Because a c1 maps mistakes to misconceptions without requiring detailed responses,
it is lightweight to deploy and effective for recognizing misconceptions with minimal
effort. This paper takes concrete steps towards eventually creating a c1 for LTL.

Creating a Concept Inventory Unfortunately, creating a c1 is extremely labor and cost

intensive. It often requires several rounds of interviews with subjects using Delphi
processes and other resource-heavy methods [1, 23, 25, 33, 36, 75]. In response,
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H Table1 Survey rounds, questions, and paper outline

Round 1 Rounds 2, 3, and 4

Trace Sat. N/A Section 6
LTL>Eng  Section 4 Section 7
Eng>LTL  Section 4 Section 8

Saarinen et al. [70] created a system called Quizius in which the subjects themselves
generate questions and answer the questions that other subjects have generated. This
is a variant of crowdsourcing, known as classsourcing or learnersourcing [43, 44], in
which participants improve an educational instrument while learning from it. Quizius
can thereby uncover some class-wide misconceptions with little guidance from experts.

A central question for the Quizius system is how to decide which question to show at
any given moment. Questions that are already generating disagreement may produce
more of it, exposing more misconceptions; but new questions, on which there is not
yet enough data, may produce interesting responses as well. This generates a choice
between exploration of new questions and exploitation of existing ones. The choice
corresponds to a multi-armed bandit process [7], which is what Quizius uses to decide
which questions to present.

The Quizius paper [70] showed (in a different domain: introductory Java program-
ming) that Quizius produces results comparable to intensive expert work at vastly less
cost. An additional feature of Quizius is that it helps reduce expert blind spots [56,
57]. However, we do not use Quizius alone; rather, we combine it with judicious use of
expert effort to seed the system and to study responses and assemble the instruments
described in this paper (i.e., “experts on the outside, Quizius on the inside”).

)} Research Study Design

Our work spans two dimensions: three kinds of questions and four survey rounds
involving different populations. These are the rows and columns of Table 1. There are
thus several logical ways to report our findings in a linear order. One possibility is to
proceed column-by-column, following the surveys in chronological order. Another is
to proceed row-by-row, focusing on the questions.

We feel a hybrid presentation is best. First, we describe Round 1 in full (Section 4)
because it was formative for the later rounds. Thereafter we focus on the question
types (which are semantically coherent), presenting data from Rounds 2, 3, and 4
combined (Sections 6 to 8), rather than focusing on chronology. Between these two
major parts, Section 5 provides context for the latter rounds.

The rest of this section explains the questions, the survey rounds, and their context.
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B Table2 vLTL and Electrum syntax

LTL  Electrum English
G(x)  always(x) x always holds
F(x)  eventually(x) x holds at least once
X(x)  after(x) x holds in the next state
next_state(x)
xUy xuntily y eventually holds and x holds until that point

3.4 Study Questions

Our studies focus on two translation questions. These questions relate to practical
uses of LTL (syntax in Table 2), namely, the reading and writing of specifications:

1. LTL to English (abbreviated: LTL»>Eng) questions present a short formula and ask
for a paraphrase. For example, one question and an acceptable answer follow:

Q. Translate to English: not F(not x1)

A. “x1is always true”

2. English to LTL (abbreviated: Eng>LTL) questions present an English specification
and ask for an vTL formula. For example:

Q. Translate to LTL: “x1 holds after one or more steps”

A. X(F(x1))

As we explain in Section 5, we realized after Round 1 (hence the “N/A” in Table 1)
the need for a third question type that directly asks about LTL semantics. These
questions do not correspond to a task that an LTL user explicitly performs, though it
is implicit in translating to LTL:

3. Trace satisfaction (abbreviated: Trace Sat.) questions present two items: an LTL
formula and a trace. They ask whether the trace satisfies the formula. All of our
traces consist of a sequence of four states, ordered left-to-right from earliest in
time to latest, followed by a fifth “lasso” state that repeats forever. The following
example represents each state as a set of true variables:

Q. Is the formula X(x or y) satisfied by this trace?

{HxHD Doy O+

A. Yes, because x holds in the second state.

3.2 Survey Rounds

We collected anonymized data via four survey rounds spread across a two-year span:

= Round 1 took place in Spring 2020. It used 9o students enrolled in an upper-level,
tool-based, applied logic course taught by an author at a private US university.

= Round 2 took place in Spring 2021 with the same course, institution, and instructor.
The course had only 57 students. We attribute the low enrollment to covip-19.
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Q. Translate to LTL: If x1is ever true at Q. Translate to English: F(x1) -> G(x2)
some point, x2 must always be true.

A. LTL: ] \ A. English: ] \

Rationale: | \ Rationale: | |

B Figure1 Round 1 example questions

= Round 3 took place in Summer 2021 and used 29 anonymous researchers who had
prior exposure to LTL.

= Round 4 took place in Spring 2022 after a third iteration of the applied logic course
at the same institution and with the same instructor. We recruited 11 students.

Round 1 used Quizius with expert seed questions to generate preliminary instru-
ments for the LTL>Eng and Eng> LTL questions. Rounds 2 and 3 used Qualtrics and
assessed the Round 1 instruments. Round 4 used Qualtrics and Zoom to record par-
ticipants’ talk-aloud reasoning while they took a survey. More details follow, and the
artifact includes copies of the surveys.

3.241 Round 1 Details

We administered Round 1 as a required assignment. Prior to it, students received two
lectures that covered both rT1 and the SPIN model checker [39]. One lecture was
in-person; the second was remote. Students also modeled the dining philosophers
problem in SPIN during one lab session. Unfortunately, students did not do any
additional LTL assignments or exams because the first covip-19 pandemic shutdowns
occurred at this time.

Students completed two Quizius quizzes in Round 1, one for each of LTL>Eng and
Eng>LTL. They responded to up to ten examples already in the system and had to
submit one more question that they deemed interesting to the pool. The assignment
instructions promised full credit for all honest attempts, regardless of correctness.
Students received credit through an anonymous email address.

To make sure the first few students would have questions to answer, the instructor
seeded Quizius with L.TL>Eng and Eng> LTL questions. Each direction began with
only eight seeds to avoid biasing the question pool toward these expert-generated
questions. The seeds were created as pairs; each Eng> LTL seed is a valid translation
of one LTL>Eng seed and vice-versa. Figure 1 presents an example seed pair and
shows that both question types asked for a translation and a plain-text rationale.

Students did not receive questions as pairs in the manner suggested by Figure 1. If
a student happened to receive a matching pair of questions, these questions would
have appeared on separate web pages.

3.2.2 Round 2 Details

We administered Round 2 as a required assignment using the Qualtrics survey platform.
Prior to the survey, students received four remote lectures that covered LTL and the
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Q. Is the formula Red satisfied by this trace? (the final state loops)
{GB} {RGB} {RGB} {RGB} {RGB}+

A. Answer: Yes / No

What about the trace made you give that answer? ’

B Figure2 Round 2 example trace satisfaction question

Electrum language [51] as implemented in Forge [73]. (Electrum adds LTL to the Alloy
modeling tool [22, 41].) Among other topics, the lectures modeled locking algorithms.
Students additionally completed one Electrum lab and two Electrum assignments.

For Round 2, we curated the most interesting questions from Round 1 and designed
a survey to take no more than 9o minutes of students’ time, excluding breaks. (The
median completion time was ultimately 93 minutes including time when the browser
tab was idle.) The survey had 19 questions, divided as follows:

= 5 LTL>Eng questions,
» 5 Engp> LTL questions, and
= 9 trace satisfaction questions.

After each part, the survey gave students the opportunity to submit one new question
and then encouraged them to take a short break before moving on. As in Round 1, the
assignment instructions promised full credit for honest attempts and delivered this
credit via anonymous email addresses.

To keep student effort manageable, we made two simplifications. First, we did
not ask for rationales (which many students had spent a great deal of time writing
in Round 1). We instead asked for their confidence and, optionally, a near miss: an
incorrect response that another learner might submit. Second, we concretized all
questions to ask about a panel with three lights: Red, Green, and Blue.

The Eng> LTL section encouraged students to check the syntax (but not correctness)
of their formulas and gave students the option of saying that a specification was
inexpressible in LTL. The trace satisfaction questions presented a formula and a trace,
both represented as text (Figure 2). They asked for a yes/no judgment about whether
the trace satisfied the formula and for a plain-text explanation. The instructions for
these questions explained that a trace was encoded as a sequence of sets ordered left
to right from earliest in time to latest. In this notation, each set contains one letter
for each light that is on at that time: R for Red, G for Green, and B for Blue. The
instructions explained that final state was a “lasso” that repeated forever; however,
the trace syntax did not show the lasso (there was no + sign in the actual survey).

3.2.3 Round 3 Details

To see whether our results extended beyond the students, we posed similar questions
to a more experienced population. We requested research colleagues who work in
formal methods and robotics to share a survey amongst researchers in their group. To
avoid subjects feeling self-conscious, we did not collect email addresses, IP addresses,
or any other personal information (and said so up front). The subjects were not paid
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Q. Is the formula (eventually (always Q. Is the formula (eventually (always
Red)) satisfied by this trace? Engine)) satisfied by this trace?

Wh Ok W O TR

1 2 3 4 5+

A. Answer: Yes / No A. Answer: Yes / No

(a) Round 3 example (b) Round 4 example

M Figure3 Rounds 3 and 4 example trace satisfaction questions

)

for their time. All answers were nevertheless vetted by the authors for “seriousness,’
and none were excluded on these grounds.

To maximize participation, because we were using the uncompensated time of
experts, we wanted to minimize the effort we demanded of them. Therefore, each
subject was asked only nine questions from the Round 2 question pool (Qualtrics
sampled questions uniformly at random without replacement):

= 4 trace satisfaction questions,
= 3 LTL>Eng questions, and
= 2 Eng>LTL questions— in which we accepted any style of LTL syntax.

The number of questions in each category was inversely proportional to our sense
of how much effort each one takes. The final page of this Qualtrics survey collected
subjects’ research areas and prior exposure to LTL. Most respondents worked (at least
partly) in formal methods / verification (N=22, out of 29), almost half worked in Al
/ machine learning (N=14), three worked in robotics, one worked in programming
languages, and one worked in HCI. All respondents had some prior exposure to LTL.

The survey intentionally did not ask subjects to rate their LTL expertise. Doing so at
the beginning could have reduced their confidence. Doing so at the end may merely
reflect their impression of how they did. Also, respondents may not have shared a
frame of reference to answer such a question uniformly.

The Round 3 questions and prompts were the same as in Round 2 with minor changes:
we improved the formatting of the LTL>Eng questions, clarified the wording in a few
Engp> LTL questions, significantly improved the formatting of the trace satisfaction
questions, and removed the rationale for trace satisfaction— to reduce work and thus,
hopefully, increase participation. Figure 3a presents an example Round 3 trace. The
states are images rather than text, with colored halos around letters to represent lit
lights (uncolored = unlit / off), and the transitions are clearly labeled with arrows.
The red, green, and blue colors are from a colorblind-friendly palette [84].

3.2.4 Round 4 Details

Unlike the other rounds, we administered Round 4 as a talk-aloud study. Its main
purpose was to distinguish mistakes from misconceptions (Section 2) by having
subjects explain their reasoning. Its secondary purpose was to test our prior findings
in a different domain. We formulated questions in terms of a robotic locomotive with
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three features— a steam-powered engine, a door, and a headlight— rather than a
panel with three lights. Figure 3b presents an example locomotive question; refer to
the full survey (in the artifact) for further details about the notation.

We recruited subjects who were enrolled in the Spring 2022 offering of the logic
course mentioned above. The material covered in the course did not differ substantially
from the previous year (Section 3.2.2). For the study, subjects met with one author for
a 25 min Zoom session and received $50 compensation as either an electronic Amazon
gift card or a physical gift card to the university bookstore. Subjects completed a
Qualtrics survey with 19 questions: 9 trace satisfaction, 5 LTL>Eng, and 5 Eng> LTL.
During the study, the author asked subjects to explain their reasoning out loud and
provided minor clarifications throughout. For example, if a subject was unsure about
the semantics of an LTL operator, the author asked the subject to describe possible
semantics, choose one, and continue with that choice.

3.3 Additional Details

On the Use of Students As Kitchenham et al. [45] point out, the use of students as
subjects is not a major threat for studies interested in novice software engineers;
after all, “students are the next generation of software professionals.” Many of our
students had prior work experience and quite a few had job offers by the end of the
semester (internship or full-time), making them suitable candidates for our study. All
students had some classroom exposure to LTL. In Rounds 2 and 4, students had lab
and homework experience modeling systems in Electrum.

English Language Fluency Because two of our tasks involve English, the fluency of the
subjects matters. Rounds 1, 2, and 4 took place at a university that conducts all classes
in English and expects a high degree of fluency; therefore, the findings here may well
be a baseline. Round 3 participants were either leading researchers or members of
their research groups; that is, professionals who read and write papers that use LTL.
Again, we did not notice any significant English problems in their written output.
Either way, people who read and write formal specifications or scientific papers do so
with whatever English language skills they have. If they have a poor understanding of
English and this causes misconceptions, this is relevant to our work!

Two Syntaxes: Classic and Electrum Although Rounds 1, 2, and 4 took place in in-
stances of the same course, the courses employed different LTL tools and consequently
used different syntax for formulas. Table 2 summarizes the syntax involved. Round 1
used the classic LTL syntax with single-letter names for temporal operators: G, F, X,
and U. Round 2 switched to Electrum so that students could continue to use Alloy—
which was introduced earlier in the course— to work with LTL formulas. Electrum
uses English words for the LTI operators: always, eventually, after, and until.

During Round 2, we identified a vernacular misconception regarding Electrum’s
after operator (discussed in Section 9.1.1). Round 4 and the next iteration of the course
therefore used the name next_state for the X operator. Our data suggests that the
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B Table3 Datasets and analysis methods

Question  Round(s) Artifact N Method
Trace Sat. 2,3,4 Yes/No choices 728 auto

Trace Sat. 2 Eng text 513 manual
Trace Sat. 4 Eng speech 99 manual
LTL>Eng 2,3,4 Eng text 427 manual
LTL>Eng 4 Eng speech 55 manual
Eng>LTL 2,4 Electrum code 340 auto, manual
Eng> LTL 3 LTL text 58 manual
Eng>LTL 4 Eng speech 55 manual

change is an improvement. (Electrum cannot use the traditional name next [65] for X
because next is a reserved word in Alloy.)

Formative Data and Analysis

In Round 1, using Quizius, subjects generated 9o LTI »>Eng questions and 87 Eng> LTL
questions, which received go1 and 886 answers, respectively. (Not all subjects finished
all parts.) These answers were not equally spread across the questions because of the
multi-armed bandit process in Quizius: questions received a median of six answers,
but the highest-ranked questions received 30 or more answers each.

To analyze the data, one researcher studied the high-ranking questions and catego-
rized the incorrect answers. This use of a single “coder” is ameliorated because (a)
the coder was working in conjunction with the Quizius algorithm; (b) the results were
going to be tested in subsequent rounds; and, (c) for generating formal instruments,
we intended to and did use multiple coders with a proper inter-coder reliability
measure (Section 5). Thus, we felt this was a reasonable process for generating draft
instruments.

The data from Round 1 led us to conjecture 15 preliminary LTL misconceptions, listed
in the artifact. We intentionally do not present the list here because these preliminaries
were mere “stepping stones” that helped us obtain a robust set of misconceptions. For
example, one preliminary misconception that did not pan out was the idea that an
X-wrapped term spans multiple states. Outside of Round 1, very few subjects made
mistakes that supported this misconception. Another was about the meaning of the
English word “therefore”: does it include the current state or not? Rather than test
this ambiguity, we chose to avoid it by rewording questions in Round 2. Further details
on the preliminaries appear in chapter 7 of Saarinen’s dissertation [69].
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[} Confirming Formative Findings

Armed with preliminary misconceptions, our subsequent rounds set out to confirm
that they persist. To do this, we extracted the questions that seemed most productive
(in that they generated the most misconceptions), and curated them (e.g., cleaning up
their presentation for those that were authored by learners). We used these questions
for the subsequent rounds.

After reviewing the Round 1 data, we also realized that we were failing to check how
well subjects understood the basic semantics of LTL. This is a subtle, but vital, shift
in cognitive setting. Evaluating the truth of a formula on a trace and synthesizing a
formula given an English prompt are related, but not equivalent, skills. This motivates
adding trace satisfaction questions.

In fact, traces help in both directions. English answers to LTL>Eng questions may
be ambiguous or low-effort. Subjects might simply transliterate (Red U Green) into
“Red is on until Green is on,” which does not provide much insight. Adding a few
trace satisfaction questions therefore lets us check for low-level issues we might have
otherwise missed. One such example is the belief that (Red U Green) requires Red to
become false when Green becomes true (which we label “ExclusiveU”).

541 Dataset

Table 3 presents a high-level view of the data that we collected in later rounds. Trace
satisfaction questions received yes/no answers in all rounds, and additionally received
written explanations in Round 2 and spoken explanations in Round 4. LTL>Eng
questions received English translations in all rounds and spoken explanations in
Round 4. Eng>LTL questions received Electrum code in Rounds 2 and 4, free-form
LTL text in Round 3, and spoken explanations in Round 4.

The last column in Table 3 tells us what methods we can use for analyzing the data.
Some of these are amenable to automated analysis: e.g., checking the yes/no answers
and the correctness of the Electrum formulas (which we checked for semantic, not
syntactic, equality to the correct answer). The written and spoken English answers
require manual analysis. In Round 3, because we did not ask subjects to pre-check
their LTL answers (to reduce the time burden), it was simpler to manually classify
the responses.

The one remaining entry to explain is the manual analysis of Electrum answers
in Round 2. Automated checking lets us decide if a formula is semantically correct.
When it is wrong, however, we require human judgment to determine in what way it
went wrong. In particular, semantic equality can create bins of equivalence classes,
but answers in the same bin may correspond to different misconceptions. This kind of
overlap appeared in our dataset; the first “caution” in Section 8 presents an example.

5.2 A Code Book for Manual Evaluation

The manual aspects of our analysis use code books to ensure a reproducible mapping
from responses to misconceptions. Because we have three question types that require
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manual analysis (Table 3), we developed three code books. Our coding began with the
Engp LTL responses because we found these were the most difficult to comprehend.
Using the misconceptions from Round 1 as a starting point, two authors applied the
methods from grounded theory [32] to identify a core set of misconceptions and
develop a code book. The coders worked through eight rounds of categorization,
independently labeling formulas and then meeting to improve the code book. Each
round included at least five and at most 15 formulas. The code book received 18
significant revisions overall, all of which are included in the artifact. After the eight
development rounds, the two coders labeled 28 formulas each as a final test for
agreement. The Cohen Kappa score [18] on this final test was 0.91, indicating extremely
high agreement. In light of the high agreement, one coder labeled the remaining
formulas and the second coder merely spot-checked the results.

Next, the two coders scanned the LTL>Eng and trace satisfaction responses for
errors that were not covered by the Eng>1T1L codes. Although one additional code
arose from this scan (ExclusiveU), the coders found that most errors were of a similar
nature to the Engp LTL errors. They therefore adapted the Eng>1TL code book with
minor changes to label the LTL>Eng and trace satisfaction responses.

Figure 4 presents a generalized version of the code books. It consists of eleven tags,
each of which comes with a description of the erroneous responses to which it applies
and one or more examples showing an expected response and an incorrect response.
The descriptions use a high-level wording that may be specialized to LTL formulas
and English text, such as the formulas and texts in the examples.

The first three tags deal with high-level issues in a particular order: Precedence is
for LTL formulas (not English responses) that are correct up to missing parentheses,
ReasonableVariant is for LTL formulas that are correct for a slightly different reading
of the English question than intended, and Unlabeled is for complex or ambiguous
responses. All remaining tags can be studied for any response in any order.

For readers interested in using this code book (either on our instrument questions
or on related questions), we offer the following tips and experiences:

= The ImplicitG and ImplicitF responses were of two kinds: they either ignored or added
a quantifier. In the LTL>Eng direction, added quantifiers were more common than
ignored ones. In the Eng> LTL direction, ignored quantifiers were more common.

= The ExclusiveU tag did not apply to any Eng> LTL responses. Indeed, we recognized
the need for this tag only after labeling all LTL responses and moving on to the
English responses.

= Neither the BadProp nor the BadStateQuantification tags applied to any LTL>Eng
responses. We attribute this to our choice of questions; different questions would
likely show a need for both tags.

K3 Trace Satisfaction

Table 4 tabulates the evidence that we found for various misconceptions among
the trace satisfaction questions. The leftmost column lists misconceptions and the
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Abstract Code Book

The following tags describe semantic errors that a learner can make when responding to a survey
question. If an incorrect response matches a tag description, we say that the tag applies to the
response. For Eng> LTL responses, consider the first three tags in order and then consider the
remaining tags as a set. For LTL>Eng and trace satisfaction responses, start with the third tag
(Unlabeled); if it does not apply, then consider the rest as a set.

. Precedence (EngrLTL only): Applies to LTL formulas that are correct up to missing parentheses. For

other misparenthesized formulas, apply no labels (Unlabeled) instead of guessing about intent.
= Expected (x and y) => z but subject wrote x and y =>z

. ReasonableVariant (EngpLTL only): Applies to LTL formulas that are correct for an unintended

reading of the question. The example here is based on the phrase “Blue will turn on.” We intended
for Blue to be on now or later, but some subjects (quite reasonably!) specified a flip from off to on.
Rajhans et al. [67] call this a rising edge issue.

= Expected F(Blue) but subject wrote (not Blue) and F(Blue)

3. Unlabeled: If an answer is convoluted and/or ambiguous, then apply this tag and no others.

10.

1.

. BadProp: Applies to responses that mis-use a logical operator or an atomic symbol.

= Expected “if x then y” but subject wrote “both x and y hold”
= Expected G(x) but subject wrote G(y)

. BadStatelndex: Applies to responses that use a correct term at an incorrect state index. Does not

apply when a fan-out operator (F, G, U) is missing or included erroneously.
= Expected “x holds three states from now” but subject wrote “x holds now”
= Expected x U (y and F(z)) but subject wrote (x Uy) and F(z)

. BadStateQuantification: Applies to responses that mis-use or swap a fan-out operator (F, G, U).

= Expected “x eventually holds” but subject wrote “x always holds”
= Expected x U y but subject wrote G(x) Uy

. ExclusiveU: Applies to responses that assume an until is satisfied only when both the right subterm

and the negation of the left subterm hold.
= Expected x U ((not x) and y) but subject wrote x Uy

. ImplicitF: Applies to responses that either ignore or introduce an F quantifier.

= Expected “whenever x, then y in the next state” but subject wrote “x and y alternate forever”
= Expected F(x) but subject wrote x

. ImplicitG: Applies to responses that either ignore or introduce a G quantifier.

= Expected “x always holds” but subject wrote “x holds now”

= Expected G(x => G(y)) but subject wrote G(x =>y)
Otherimplicit: Applies to underconstrained responses that are not covered by the ImplicitF and
ImplicitG tags.

= Expected “whenever x holds then y also holds” but subject wrote “x holds now and y holds”

= Expected (not x) U x but subject wrote F(x)

= Expected x U G(not x) but subject wrote x and F(G(not x))

= Expected F(x) and G(x => X(G(not x))) but subject wrote F(x and X(G(not x)))

WeakU: Applies to responses that confuse the U operator with the weak variant W, which does not
guarantee that its second subterm eventually holds.

= Expected “x holds for a finite number of states” but subject wrote “x always holds”
= Expected x Uy but subject wrote F(y) and x Uy

B Figure 4 Abstract code book of semantic errors

7:13



Little Tricky Logic: Misconceptions in the Understanding of LTL

following columns count evidence from answers in Rounds 2, 3, and 4.! The first
six rows correspond to misconceptions that we intentionally tested with the trace
satisfaction questions. The seventh row shows that four responses gave (unanticipated)
evidence of ImplicitG, even though we did not explicitly test for it.
The responses support several misconceptions:
= WeakU (N=29 R2, N=2 R3, N=9 R4), ImplicitF (N=12 R2, N=2 R4), and Exclu-
siveU (N=9 R2, N=1 R3, N=1 R4) are especially problematic.
= Most of the ImplicitG errors (3 of 4) arose from formulas that constrain a single
state (e.g., X(Red)). The other error is from an until formula; it suggests an implicit
always on the right side.

= Every BadStatelndex error is due to a mixup about which single state an X-wrapped
term refers to.

= The OtherIimplicit errors express a desire for F to prevent flickering; specifically, for
F(G(Red)) to be satisfied only by traces in which the first Red state is the beginning
of an always-Red suffix.

There are far fewer errors among the Round 3 answers. Nevertheless, both WeakU
and ExclusiveU may be issues for even these experienced LTL users. Recall also that
Round 3 subjects received a random subset of the question pool (Section 3.2.3) rather
than every question.

Cautions The findings need to be interpreted in the following context:

= A trace satisfaction question pairs a formula with a specific trace. It is quite possible
that small changes to the trace may affect the responses.

= Round 2 presented traces using text rather than images; refer to Figure 2 for an
example. The notation led to identifiable confusion in thirteen responses (23 % R2),
but may have misled others in subtle ways.

= Some of the ImplicitF errors may in fact be due to confusion about the start state.
Subjects might have assumed that trace matching is allowed to skip a prefix of the
trace. However, none of the Round 4 talk alouds contain evidence of this confusion.

= The Round 3 question pool accidentally omitted a question that asked whether X
constrains two states, the current and next state, rather than the next alone. But
given that Rounds 2 and 4 subjects did well on this question (95% R2, 100 % R4
correct), it seems unlikely that it would have gathered any mistakes.

Key Takeaway Subjects had trouble with the basic semantics of F (OtherImplicit), U
(Weaku), and unqualified formulas (ImplicitF, ImplicitG).

" Note that one answer can increase the counts in multiple rows, provided the response
contains more than one mistake. There are no such trace satisfaction responses, but several
among Eng>LTL and LTL>Eng data.
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LTL to English

Table 5a shows evidence of misconceptions in translating LTL to English. Overall, 23 %
of the Round 2 responses, 15% of the Round 3 responses, and 24 % of the Round 4
responses were incorrect.

= Half of the Round 2 population and most (9 of 11) of the Round 4 population
exhibited the WeakU misconception. Even in Round 3, it caught two people.

= The BadStatelndex errors are of three types, with some overlap: applying the right
side of an implication to the next state (N=4 R2, N=1 R4), misinterpreting the
scope of an F (N=6 R2, N=1 R3), and misinterpreting the state that an X-wrapped
term refers to (N=12 R2, N=2 R3, N=2 R4).

= ImplicitG is common in all populations. In Rounds 3 and 4, an unqualified formula
prompted most (N=4 R3, N=4 R4) of the incorrect responses: R => X(X(X(R))). Eight
of the ImplicitG mistakes in Round 2 were for the same formula. The others were
from a missing G on the right of an until (N=2) and a missing top-level G (N=3).

» The eight OtherImplicit responses are due to one question: G(Red => X(not Red) and
X(X(Red))). These responses said that Red blinks forever, which is true only if Red
holds in the first or second state.

* One LTL>Eng question tested whether X(x) entails (not x) in the current state,
because several Round 1 responses had that mistake. None of the subjects in
Rounds 2, 3, and 4 made this error.

Cautions Our findings need some care in interpretation:

= Because the primary output here is English, which is not a formal language, our
two-coder method may have mislabeled some written responses. Though in general
we found a high level of articulation in the English, there are issues, e.g., some
of it was written by subjects who are not native speakers and some of it lacks
punctuation.

= The “blinker” errors (Otherimplicit) suggest a kind of confirmation bias among
subjects. If the questions had asked for one satisfying and one non-satisfying trace
in addition to a translation, subjects might not have made these errors.

Key Takeaway In general, subjects did well at this task. The most common error was
that subjects expressed a correct constraint at an incorrect time (BadStatelndex).

EJ English to LTL

Table 5b shows the evidence of misconceptions in translating English to LTL. This
corresponds to the direction of authoring LTL based on requirements. The error rates
are much higher than for the previous questions: 47 % of the Round 2 responses, 28 %
of the Round 3 responses, and 47 % of the Round 4 responses were incorrect. We note
that the mistakes are spread across most of the tags.
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B Table4 Trace satisfaction errors

Misconception R2 R3 R4

BadProp I - -
BadStatelndex 7 I
ImplicitF 12 - 2
ExclusiveU 9 I I
Otherlmplicit 3 - I
WeakU 29 2 9
ImplicitG 3 - 1
M Tables 1T1 to English and English to LTL errors
(a) LTL to English errors (b) English to LTL errors
Misconception R2 R3 R4 Misconception R2 R3 R4
BadProp - - - BadProp 9 6
BadStatelndex 18 3 3 BadStatelndex 11 3 3
BadStateQuantification - I - BadStateQuantification 22 I 2
ExclusiveU 15 I 5 ExclusiveU - - -
ImplicitF 5 - - ImplicitF 10 - 3
ImplicitG 13 5 4 ImplicitG 47 7 10
Otherimplicit 6 I - Otherimplicit 30 4 8
WeakU 26 2 6 WeakU 2 - -
Unlabeled 1 - - Unlabeled 3 I I
Precedence 2 - -
ReasonableVariant 18 I -

= ImplicitG is the most common error. In all rounds, every question received at least
one response that was missing either a toplevel G or one around a subterm.

= Otherimplicit arose in at least two forms. In Round 3, the OtherImplicit all assumed
an “eager” semantics for F. Section 9.2.1 discusses this point further. In Rounds 2
and 4, some responses assumed that variables did not change unless specified.
Almost all of these were misuses of the F operator. Because variables represented
two different things in these rounds— namely, lights on a panel in Round 2 and
features on a locomotive in Round 4— this may be a general issue.

= BadStateQuantification formulas typically contained an extra operator; they rarely
swapped one operator for another. A common extra-operator mistake was to write
the following formula, which is unsatisfiable: G(Red) U (not Red).

= As mentioned in Section 5, ReasonableVariant applied in cases where subjects used
a different interpretation of the question than what we had in mind. We reworded
questions between Round 2 and Round 3 in an effort to clarify, which may explain
the drop in the presence of this tag.
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= BadStatelndex often arose in connection with a binary logical operator. Subjects
assumed that the right sides of conjunctions (and) and implications (=>) applied to
the next state, rather than to the current one.

= Although there are few ExclusiveU and WeakU errors, the responses gave us lit-
tle confidence that subjects can properly use the U operator. There were many
misapplications that fell under the BadStateQuantification and BadStatelndex codes.

= LTL has limits on its expressive power [77]; not every property in English can
be translated into it. Subjects were aware of this fact, and in Round 1 we saw 4
instances of subjects responding to English sentences with the claim that they were
not expressible in LTL. All these responses were incorrect.

Because the boundaries of LTL expressiveness were not a focus of our study,
we presented only English sentences that were LTL-expressible. We did, however,
carry over two of the Round 1 questions that prompted “inexpressible” responses.
Three such responses arose in Round 2. None arose in Round 3 or Round 4.

Cautions Our results carry the following caveats:

= We focused on coding incorrect responses. However, there could be misconceptions
lurking in correct responses also. For instance, consider ((x until y) and F(y)) and
the same formula without the unnecessary term F(y). The two are semantically
equivalent, but the former suggests a WeakU misconception. Through spot-checks
we found some evidence for misconceptions lurking in correct answers, but we did
not conduct a systematic study.

= Round 2 subjects were accustomed to writing LTL in the context of Electrum, but
were asked to fill out the survey checking only for syntactic validity. Access to
Electrum’s semantic checks may have reduced errors. On the other hand, some
subjects may have used their preferred tooling despite the instructions (as we have
seen in other settings where we have deployed similar instruments).

Key Takeaway By contrast to the other question types, the Eng> LTL direction was
fraught with errors and provides evidence for a large number of misconceptions.
Unfortunately, this task is perhaps the most important of the three. A user has to write
correct LTL in order to apply the logic.

] Implications for Tool Builders and Language Designers

Our findings motivate two concrete suggestions for tool builders and two general
suggestions for the designers of LTL-based languages.

9.1 Implications For Tool Builders

Tool builders should be aware of the two user-facing issues reported below. The first
is about a vernacular misconceptions. The second is about significant whitespace.
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9.1 “Binary After” Misconception

Upon close inspection, some of the incorrect formulas in Round 2 used the unary after
operator (Electrum’s version of X) as a binary operator. One example follows, with
two red rules (=) to mark important whitespace:

Q. Translate to LTL: Whenever the Red light is on, it turns off in the next state and on
again in the state after that.

A. always (Red — after (not Red) and (not Red) — after Red )

This is a perfectly natural use of the English word “after,” which connects two clauses
in the same manner as “until” does; indeed, a unary “after” makes no sense in English.
But in Electrum, after behaves quite differently. Electrum reads this formula as having
three and connectives, two of which implicitly appear at the marked whitespace. Thus,
the formula is a syntactically-valid but semantically-incorrect answer.

A binary use of after should ideally be a syntax error. If such a change is not possible,
we recommend using a different keyword (such as next_state) to avoid the confusion
with English. This problem, known as a vernacular misconception [20], has also been
found in programming languages [62, 63].

9.1.2 “Implicit-And” Restriction

As the example above demonstrates, Electrum implicitly puts an and between terms
separated by whitespace. For the maintainers of large formulas, this shorthand is very
helpful. One useful and intentional use of implicit-and is the following predicate for
a fully-lit traffic light, which asks whether Red, Yellow, and Green are all in the set of
on colors:

pred allLightsAreOn
{
Red in Traffic.on
Yellow in Traffic.on
Green in Traffic.on

}

In other formulas, however, implicit-and leads to syntactically-valid formulas that are
incorrect in subtle ways.

We raised this issue with the Alloy Board and they agreed to make a change.
Henceforth, implicit-and will appear only at newline breaks, and not between space-
separated or tab-separated terms. With this change, the traffic light formula remains
valid and the formula from Section 9.1.1 raises a syntax error.

9.2 Implications For Logic Designers

Designers of temporal logics can directly address misconceptions by changing the
logic. Our findings suggest two avenues for improvement.
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9.2.1 More Control over Sequencing

Four of the LTL responses from experts in Round 3 had Otherimplicit errors. All four
suggest a desire for an F operator that eagerly applies to the first state that satisfies
part of its subterm. Here is one example:

Q. Translate to LTL: The Red light is on in exactly one state, but not necessarily the
first state.

A. eventually(Red and after(always(not Red)))

The answer is incorrect because it allows traces where Red turns on and off several
times before finally staying off. However, it would be correct for a variant of the
eventually operator that seeks out the first Red state and tests whether the light is off
in the future.

Authors of a new LTL language might consider adding such a variant to their
toolbox, or perhaps a Prolog-like cut operator [17] to “commit” at the first occurrence
of a Red state. Going further, a language might introduce shorthand for the many
applications of F that Menghi et al. [54] propose as core movement patterns; a strict
ordered visit would suffice here.

A recent robotics paper [5] has the same “eager-F” assumption, and we have also
seen it in colloquium talks in robotics. However, this assumption does not seem to
be limited to the robotics community: two formal methods researchers in Round 3,
twelve students in Round 2, and three students in the Round 4 made the same error.

9.2.2 Explicit State Index
The BadStatelndex errors in our data indicate significant confusion about when an
LTL term goes into effect. A language might address these errors by providing more
control over the state index, or perhaps an explicit representation of the index.

One common form of BadStatelndex error is the “and then” problem: writing (x and
y) instead of (x and X(y)). Subjects in both Round 2 (N=2) and Round 3 (N=2) had this
specific problem; others (N=9 R2, N=1 R3, N=3 R4) made a similar mistake with
implication. PSL includes a non-overlapping suffix-implication operator with exactly
this semantics [27]. Our work provides support for this operator and suggests the
need for a suffix-and as well.

A second kind of state index error involved the use of F to connect two toplevel
terms (N=4 R2):

Q. Translate to L.TL: The Red light is on in exactly one state, but not necessarily the
first state.

A. ((not Red) until Red) and
eventually(Red => after(always(not Red)))

The answer is on the right track with two useful subterms, but fails to connect them
properly. The until subterm requires a non-Red prefix (possibly empty) followed by
a Red state. The eventually subterm requires a non-Red suffix after some Red state.
The problem is that the two subterms can be satisfied by different Red states— with
anything in between.
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One could easily fix this particular formula by moving the after term into the right
conjunct of the until. But, keeping in mind Electrum’s line-based idiom for combining
formulas (Section 9.1.2), the human authors and maintainers of LTL specifications
might benefit from a more direct representation, perhaps using labels to bind and
refer to state indices.

E) Implications for Educators

Both our instruments (Appendix A) and our inventory of misconceptions (Figure 4)
are each independently of use. Educators may wish to apply these in a traditional
classroom setting or as part of a workplace training program. It is worth noting that
we cannot guarantee that incorrect answers are bijective with misconceptions, so
some further interpretation of wrong answers is necessary.

Once we have found misconceptions, how can they be addressed? A natural tendency
is to assume that learners can just be “taught right.” While that may work in some
cases— e.g., by incorporating these findings into how 1 TL is introduced — research
suggests that that may not suffice.

There is an extensive literature on understanding misconceptions. The US National
Research Council [20] refines them into five categories; some, like preconceived
notions, are very unlikely to apply here, while others seem especially relevant: ver-
nacular misconceptions are those caused by using words with other natural language
meanings, and conceptual misunderstandings are those that arise when instruction
permits learners to create faulty models.

Many techniques have been proposed to help learners overcome misconceptions.
Researchers have found success using concept maps [58]. The work of Posner et al. [66]
presents a theory of conceptual change, at the heart of which is the refutation text [83].
Studies show that these work in some cases or domains, but sometimes not in others.
In general, ideas from physical science education do not necessarily carry over directly
to LTL because learners form conceptual understandings of the physical world due
to their daily interaction with it (e.g., gravitation), which seems unlikely for most
dimensions of understanding LTL. In general, however, the literature makes clear [13,
50, 71] that direct instruction alone is unlikely to overcome misconceptions; activities
that are more learner-centric are much more likely to be effective.

KX} Threats to Validity

Internal Validity Coding inherently contains various biases. Our high inter-coder
reliability score only indicates that the coders have aligned their biases, not that they
have eliminated them. Nevertheless, we believe the codes we have arrived at are
reasonable. The artifact lets others review our coding.

Quizius has two threats that can cause it to overlook an interesting question:
ordering and timing. If the first few recipients of a difficult question happen to get
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it correct, then the question receives less attention going forward. And if a question
arrives late during the quiz period, it has few opportunities to gather answers.

External Validity Rounds 1, 2, and 4 are based on students at the same institution,
in the same course, and with the same instructor. Relaxing each of these factors
can cause different outcomes. For instance, the instructor’s level of comfort with the
natural language can be a factor. Even the amount of exposure could help: apparent
misconceptions in Round 1 that did not replicate in Rounds 2 and 3 may be because of
the limited prep time Round 1 subjects had due to covip-19. Although Round 3 sup-
ports a large number of misconceptions and suggests that our observations generalize
beyond the Round 1 population, repeating the process on a much broader population
would be valuable and may reveal new misconceptions.

Ecological Validity Our survey setting is quite distinct from practical modes of using
LTL. Subjects had to answer questions about abstract formulas, absent a concrete
use-case, without access to a solver. Studying subjects as they use a tool (perhaps
using talk-alouds), while much harder to run in a controlled fashion, would help us
identify how these misconceptions are handled in practice.

It is worth noting, however, that using LTL in context (with a tool) will not au-
tomatically catch mistakes. Both the system-under-test and the formula could be
incorrect in the same way, in which case no counter-example will help the user correct
their misconception. For that reason, studies of our kind are still useful and provide
concrete targets for more ecologically valid studies.

Construct Validity Our work suffers from some construct validity as well. Apparent
misconceptions could be artifacts of the specific wording or presentation in our
instruments (as we have already seen to some extent: Section 5), or could be evidence
of some other misconception that we had not identified, such as the confusion about
rising edges [67]. The main way to mitigate these concerns is both to perform further
validation steps and to tie our results to methods that improve ecological validity. One
other construct validity concern would be if our work was misinterpreted as claiming
to capture all misconceptions, but we make no such claim.

Conclusion Validity Our work is intentionally light on “conclusions,” for two reasons.
First, as the first work of its kind, it is inherently formative. Second, our main product
is instruments that others can use; it is those uses that might arrive at conclusions,
whose validity the users would have to justify. Our main conclusion here is that there
are misconceptions in the understanding of LTL, and that we have instruments that
can identify some of them with reasonable confidence. The former seems inherently
likely: it is hard to imagine, given all the misconceptions about other formal artifacts,
that LTL is a solitary exception. For the latter, we believe our multiple rounds and
forms of validation lend some credibility to our instruments.
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EFJ Related Work

Despite the long and distinguished history of literature on temporal logic (e.g., [16,
48, 52, 61, 64, 65, 80]), to our knowledge, there are no in-depth user studies on
patterns of misconception. The only exceptions we know are two recent studies: one
that compares LTL to two similar logics [21], and one that compares three temporal
specification languages [15]. Although these studies have some information about how
learners fare with temporal formulas, the focus is on comparison between languages,
not on why learners struggle with LTL specifically.

Of course, it is not news that properties might contain mistakes! Vacuity check-
ing [10, 14, 29, 46, 55], for instance, guards against one kind of error. Other works
have addressed other specific specification errors: e.g., [8, 40, 59]. However, all these
focus on particular mistakes; they do not imply a misunderstanding of the logic itself.
Furthermore, even a property that passes the above checks can be wrong due to a
misunderstanding of the logic. Our focus is thus on understanding, which in turn can
generate new checkers.

Several authors have created temporal logic formula templates by examining fam-
ilies of examples. Dwyer et al. [26] identify a taxonomy of specification patterns
based on industrial and academic examples. Menghi et al. [54] introduce patterns for
robotics missions drawn from hundreds of natural-language specifications. Rajhans et
al. [67] identify several template formulas, developed through conversations with
industry partners, presented through a graphical tool. Our work is different in its
focus on providing fundamental insights into users’ misconceptions (often expressed
through mistakes), rather than patterns of normal use.

There is a longstanding debate on the relative merits of linear-time (e.g., LTL)
versus branching-time (e.g., cTL [16]) logics. This debate is emphatically not the topic
of this paper; we do not claim to address what is most “intuitive” [78]. If we had
begun this process with a different logic, such as cTL, we might well have surfaced
other errors not seen here. We stress that it would not suffice to reuse our prompts in
a different setting: vital features of the logic might not be exercised and much insight
would be missed.

The linear vs. branching debate led to new logics in the early 2000s. IBM introduced
Sugar [9], which mixes linear- and branching-time semantics and later grew into
PSA [27]. Likewise, Intel released the language ForSpec [6]. Both languages are
motivated by the desire to improve the user experience, and both also make central
claims about usability: e.g., Sugar claims that hardware engineers can “easily and
intuitively specify their designs”. However, these claims are asserted without rigorous
justification, and neither is accompanied by any catalog of remaining difficulties of
the form that we have found.?

2 From personal communication with Moshe Vardi, we learned that many design choices in
ForSpec, such as using English words instead of mathematical symbols, were indeed based
on extensive (but informal) discussions with different types of users.
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In terms of designing new logics, there is a broad literature on misconceptions and
design methods in programming languages, such as classic works by Pea [63], Pane
and Myers [62], and others. The methods, if not the findings, of these works would
be useful to the designers of new logics.

The Wason Selection Task [81] has been used to argue that humans may not reason
using the rules of logic (though others have argued the result is contextual [19, 74]).
In contrast, our work does not study reasoning, only on understanding of the logic
itself. However, some results on how context impacts semantics [74] may eventually
link the two efforts.

Finally, our English-to-LT1L exercises resemble those in Iltis [31], a tool for teaching
logic. It is possible that Iltis would provide a good framework for studies like ours,
although the tool itself focuses on pedagogy, rather than studies of misconceptions.

m Discussion

Other Question Types Our study and results suggest several more types of questions
that would yield additional insight. For instance, we did not ask subjects to explicitly
create traces corresponding to formulas; in particular, there would be value to asking
for both correct and (near-miss) incorrect traces, to probe their understanding of
the space described by a formula. One can similarly go from formulas to traces. We
could also test their understanding of the (in)equality of pairs of LTL formulas. Other
studies [21, 68, 76] contain instruments that would also be useful to adapt.

Other Logics Naturally, this style of work can be applied to other property languages
as well, such as cTL. Writing correct specifications for complex systems is difficult in
any formal language, especially because the requirements and the underlying system
may change over time (see discussions in [24, 30]). It is therefore critical to identify
specification errors and correct them. Our processes suggest a possible approach,
and (for similar logics) our instruments provide a starting guide. Comparing logics is
important as well (prior work: [15, 21]). One question, suggested by a Programming
reviewer, is whether the logic-to-English direction is in general less error-prone than
English-to-logic. While perhaps unsurprising if so, affirmative evidence would be very
useful to have.

Whatever the process used, we stress the importance of using mechanisms that miti-
gate expert blind spots such as Quizius. In fact, four questions in the final instruments
were generated by subjects in Round 1 (A.2.1, A.3.2, A.3.3,and A.3.5).

Conclusion With the use of LTL on the rise, it is important to understand its er-
gonomics well. Our studies constitute a first, formative step in this direction, and have
already had some language design impact. The errors that we found were consistent
across two syntaxes, two domains, and a variety of subjects, which suggests that the
misconceptions are robust. We also suggest some high-level consequences for the
design of new property languages. Given that relatively simple formulas generated
our findings, we suspect many other issues lurk in more complicated formulas.
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EN instrument
Aa Trace Satisfaction

Aaa
Is the formula Red satisfied by this trace?

&-8-8-'®
o-@

4

Answer: Yes / No

Aa.2
Is the formula after(after(after(Red))) satisfied by this trace?

(@
-~

Answer: Yes / No

Aa3
Is the formula always(Red => after(after(after(Red)))) satisfied by this trace?

O--&-0-®

Answer: Yes / No

Aty
Is the formula ((after Red) until (after Green)) satisfied by this trace?

3-8 %

Answer: Yes / No
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Aas
Is the formula ((eventually Red) and (eventually Green)) satisfied by this trace?

O-0-0-0-®

Answer: Yes / No

A1.6
Is the formula after(after(eventually(Red))) satisfied by this trace?

&-8-&-8-'®

4

Answer: Yes / No

Aa7
Is the formula (Red until Blue) satisfied by this trace?

%)-®-@-®

Answer: Yes / No

A1.8
Is the formula eventually(always(Red)) satisfied by this trace?

H-&-0-&-

Answer: Yes / No

Aa9
Is the formula always(Red => Green) satisfied by this trace?

® ® ® ® @
@E) @) T\ ©@E) T @) T \@E6)

Answer: Yes / No
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A.2 LTL to English

A.21
Translate to English: Red => after(after(after(Red)))

Answer:

A2.2
Translate to English: after(after(eventually(after(Red))))

Answer:

A23
Translate to English: ((eventually Red) => (always Blue))

Answer:

A.2.4
Translate to English: ((Red until Blue) and always(Red))

Answer:

A.25
Translate to English: always(Red => (after(not Red) and after(after(Red))))

Answer:
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A.3 English to LTL
A3a
Translate to LTL: Whenever the Red light is on, it is off in the next state and on again

in the state after that.

Answer:

A3.2
Translate to LTL: The Red light is on in exactly one state, but not necessarily the first
state.

Answer:

A33
Translate to LTL: The Red light cannot stay on for three states in a row.

Answer:

A3.4
Translate to LTL: Whenever the Red light is on, the Blue light will be on then or at
some point in the future.

Answer:

A35
Translate to LTL: The Red light is on for zero or more states, and then turns off and
remains off in the future.

Answer:
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IE} 1L Syntax and Semantics

Linear Temporal Logic (LTL) is a useful language for specifying the behavior of systems
that change over time. An LTL formula says what things should happen and when they
should happen. One run of the system satisfies a formula if and only if it does all the
right things at the right times. For example, a formula for an elevator system might
say that whenever the call button is pressed, the car eventually arrives at that floor.
To test whether a run of the elevator system matches the formula, a formula-checker
needs to inspect the sequence of elevator states and ensure that every call is followed
by a matching arrival.
The LTL syntax that we use in this paper extends propositional logic with four basic
temporal operators. First off, a propositional formula P is one of the following:
= an atom X,
= a conjunction P, and Py,
» a disjunction P, or Py,
= an implication P, => P;, or
= a negation not P,.
The atoms come from some finite set; typically, one that describes a dynamic system.
In this paper, the main set that we use consists of three atoms and describes an
instrument panel with colored lights: {Red, Green, Blue}.
An vt formula Q is one of the following:
= a propositional formula P;
= an “always” formula G(Q,);
= an “eventually” (or “finally”) formula F(Q,);
» a “next” formula X(Q,);
= an “until” formula Qy U Q;; or
= a conjunction, disjunction, implication, or negation of LTL formulas.
Semantically, an LTL formula describes a set of traces, each of which describes one
run of the system at hand. We model traces as infinite sequences of sets of atoms. For
example, the trace T = Ty, Ty, T, ... where T; = {Red} if i is even and T; = {Green} if
i is odd describes an execution in which the Red and Green lights alternate forever.
Let T >> k be the suffix of trace T obtained by dropping the first k elements. For
example, T>0=Tand T > 2=T,,Ts,... (dropping T, and T;). A formula Q is
satisfied by a trace T, written T F Q, under the following conditions:
= TEP if P holds when the atoms in T, are true and the rest are false;
= TEG(Q,) if T>kkEQforall keN;
» TEFQ,) if T> kkEQ, for some k € N;
s TEX(Qq) if T>1FQq;
s TEQyUQ,if T>kFQ, forsome keNand T > jFQ for all j < k; and
= likewise for conjunctions, disjunctions, implications, and negations.

This paper uses single-letter operator names and keywords interchangeably (Table 2).
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