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We propose a design paradigm for multistate machines where transitions from one
state to another are organized by bifurcations of multiple equilibria of the energy
landscape describing the collective interactions of the machine components. This
design paradigm is attractive since, near bifurcations, small variations in a few control
parameters can result in large changes to the system’s state providing an emergent
lever mechanism. Further, the topological configuration of transitions between states
near such bifurcations ensures robust operation, making the machine less sensitive to
fabrication errors and noise. To design such machines, we develop and implement a
new efficient algorithm that searches for interactions between the machine components
that give rise to energy landscapes with these bifurcation structures. We demonstrate
a proof of concept for this approach by designing magnetoelastic machines whose
motions are primarily guided by their magnetic energy landscapes and show that by
operating near bifurcations we can achieve multiple transition pathways between states.
This proof of concept demonstration illustrates the power of this approach, which could
be especially useful for soft robotics and at the microscale where typical macroscale
designs are difficult to implement.
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Systems composed of a large number of interacting elements such as meta-materials,
elastic membranes, and proteins can exhibit emergent behaviors that arise from the
collaborative interaction of the system components. Designing functionality in such
systems is a formidable task that requires searches in a high dimensional parameter
space of the system components and their interactions. Developing organizing principles
for effectively designing such systems remains an outstanding problem in the field
(1–6). Here, we propose that designing multistate machines around bifurcations of
multiple equilibria is a powerful paradigm that can be used to systematically organize
such searches.

Cusp bifurcations where a single equilibrium splits into three equilibria as a function of
a control parameter are a canonical dynamical systems structure (7) that has been used to
explain various natural phenomena ranging from phase transitions (8) to the operation of
simple machines. For example, it has been shown that Venus flytraps and hummingbird
beaks open smoothly and then snap shut by operating about a cusp bifurcation (9, 10).
Generalizations of cusp bifurcations have been proposed in René Thom’s catastrophe
theory to capture the essence of sharp state variations in multiple complex phenomena
(11). The first of these “catastrophes” (saddle-node, cusp, swallowtail, and butterfly) are
bifurcations of multiple equilibria where a single equilibrium splits into many equilibria
due to a change in the system’s parameters, as shown in Fig. 1C as well as in Salvador
Dali’s last painting depicting the swallowtail bifurcation of 4 equilibria (12).

Designing systems to operate near such bifurcations provides several advantages. Since
the splitting of the equilibria has a power law dependence on the control parameters
(13, 14), operating near bifurcations automatically provides a lever mechanism by which
small variations in the control parameters lead to large changes in the system state
(15, 16). In the case of the Venus fly trap, slight changes in hydrostatic pressure can
drive large motions of the trap. Similarly in hummingbirds, slight twisting of the jaw
bones enables rapid closing of a wide open beak. Further, as parameters are varied,
the behavior in a neighborhood of a bifurcation of multiple equilibria unfolds into a
geometrical arrangement of lower-order bifurcations, which are universally described by
an analytic change of variables to a “normal form”(17–19). The robustness of systems
operating through transitions between multiple states around a bifurcation of multiple
equilibria is ensured by the topological structure of these unfolded lower-order bifurcation
manifolds. As such, provided that the system trajectory encircles the cusp bifurcation
where the saddle-node manifolds meet, the system is guaranteed to exhibit a smooth
change in state followed by a snap. In the Venus fly trap and hummingbird examples,
this topological protection guarantees that the opening and snapping of the trap or beak is
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Fig. 1. Magnetoelastic machine capable of adopting multiple configurations due to operating near a cusp bifurcation. (A) System: Panels P1 and P2 are decorated
with identical magnets with orientations denoted by their colors. Panel P1 is actuated externally to translate in the x and y directions, in response Panel P2
rotates about a hinge. The dynamics are overdamped. (B) Magnetic potential energy landscapes: We plot the potential for dx = −0.09 and dy ∈ [0.28,0.17,0.02],
where dx and dy are deviations from the cusp’s position. Here, L and S denote two distinct states with relatively large and small � magnitudes, respectively.
Varying dy we cross two saddle-node bifurcations where the number of extrema of the magnetoelastic landscape changes. (C) Equilibriummanifold: The system’s
equilibria �(dx, dy) are plotted as a function of the deviation of the parameters, with color signifying the value of �. Brown curve marks saddle-node bifurcations
where the number of equilibria change, and the light red curve denotes the experimental trajectory. (D) Experimentally observed snap-through transition: The
system follows a parametric trajectory marked by a red curve and a tube whose color denotes the predicted state � around a cusp bifurcation. The colored
disks represent the experimental measurements. As expected, a single snap-through transition (denoted by ?) at a saddle-node bifurcation (curves colored
according to the bifurcating state �, which converges at the cusp) is observed.

robust against variations in the applied hydrostatic or muscle
forces driving the transitions in the system state. Here, we
propose that moving beyond cusp bifurcations to design systems
that operate near bifurcations of arbitrarily many equilibria
preserves the lever advantage and topological protection of cusp
bifurcations. Such systems can be driven by only a few control pa-
rameters to undergo snapping transitions between multiple states,
making the design of machines near such bifurcations a powerful
paradigm for organizing complex functions. However, current
software packages permit the design and analysis of systems

operating near bifurcations of three or fewer equilibria (20–24).
To develop and demonstrate this paradigm we introduce an
algorithm that allows the efficient design of machines operating
near bifurcations of multiple equilibria. We then experimentally
investigate increasingly sophisticated magnetoelastic machines
whose function is organized by such bifurcations.

We start by constructing a simple magnetoelastic machine
consisting of a control panel that can be translated in the x–y
plane and a second panel that is free to rotate about a hinge
connecting the two panels (Fig. 1A and experimental apparatus
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schematic SI Appendix, Fig. S1). The state of the system is given
by the angle � between the panels. By decorating the panels with
magnets, we are able to design a magnetoelastic landscape with
different numbers of minima as a function of the parameters x
and y (Fig. 1B). Transitions between these minima correspond
to changes in the state of the system. We denote the states
L (large) and S (small) corresponding to the magnitude of the
state variable. To understand the various pathways for making
such transitions, we construct the manifold defined by the local
equilibria as a function of the parameters x and y. For this
particular arrangement of magnets, we calculate (SI Appendix)
that the resulting manifold has a domain with multiple solutions
delineated by saddle-node bifurcation curves (Fig. 1C, brown).
These curves intersect and terminate at a cusp bifurcation beyond
which there is only a single equilibrium state. By translating
the control panel in the x–y plane, the system can undergo
either smooth or abrupt changes in �. For example, starting
the system at point (i) and moving through points (ii–v), the
hinge angle changes smoothly. A further slight decrease in the
control parameter y, however, leads to an abrupt transition from
a large to a small angle, corresponding to points (v) and (vi),
respectively. These predictions are born out by the experiments
(Fig. 1D), which also show a smooth change in � for a pathway
that encircles the cusp (i–v) and an abrupt transition in � when
crossing a saddle-node curve (v–vi). In this 2D representation
the system makes a transition when the color of the path
(yellow) matches the color denoting the state associated with
the saddle-node curve (yellow). This magnetoelastic mechanism
is reminiscent of the cocking and snapping of a Venus flytrap or
a hummingbird’s beak.

In addition to providing a mechanism for abrupt transitions,
operating near a cusp bifurcation creates a lever mechanism
where small variations in the control parameters lead to large
variations in the system state. This mechanism resolves the generic
problem that creating large variations in the system state often

requires unfeasibly large variations in the control parameters.
Lever mechanisms are generic near bifurcations of equilibria since
the magnitude of the transition in the system state is typically
proportional to the square root of the parameter distance from
the bifurcation (SI Appendix).

To characterize this lever mechanism in our experiment, we
map the snapping transition curves associated with the saddle-
node bifurcations. Specifically, for a given value of y (or x), we
toggle x (or y) so that the system snaps back and forth and records
the values of the control parameters x and y, and system state �
immediately after each transition (Fig. 2A).

To test the scaling relations, we first define parameters dx, dy
as displacements of x and y from the cusp. The normal form
parameters a1 and a2 are then given by rescaled rotations of dx
and dy (as shown in Fig. 2A). We then fit the predicted scaling
form �� ∝ √a2 and a1 ∝ a3/2

2 near a cusp to determine the
cusp’s position and the rotation of the normal form parameters
(Fig. 2B). The fitted model then predicts that �� ∝ a1/3

1 (see
SI Appendix and refs. 14 and 25 for derivations of these scaling
laws). Because the scaling exponents for �� are fractions of unity,
small variations of the parameters along a1 and a2 lead to large
variations of the system state. For example, in our experiments,
the range of actuation for panel P1’s position is approximately
1 cm and the range of angles accessible to panel P2 is 180◦ or
� radians. Near the bifurcation, a translation along a1 of 0.1%
of its range (∼10 µm) leads to a snap that changes � by ∼5%
of its range (∼0.1 rad), providing a lever advantage of ∼50
(Fig. 2B).

The complexity of the actions achieved by such magnetoelastic
mechanisms is dictated by the range and number of stable states
that the system can access. This complexity can be achieved
by designing the magnetoelastic potentials such that the system
operates near bifurcations between multiple states. For example,
working near a hypothetical symmetric butterfly bifurcation

A B

Fig. 2. Parametric levers. The change in the state of the system after a snap-through transition near a cusp bifurcation scales sublinearly with the normal
form parameters. This sublinear scaling leads to large variation of the state in response to small variations of the system parameters. (A) Measurements of
snap-through transitions near a cusp: The blue points mark the state of the magnetoelastic system of Fig. 1 after a snap-through transition. The dashed curve
is a fit of snap-through transitions near a cusp bifurcation to the data, derived from the normal form potential Ṽ = ��4 + a2��2 + a1��. The normal form
parameters a1 and a2 are locally given by re-scaled rotations of dx and dy , which are the deviations of the parameters away from the cusp. (B) Scaling laws near
a cusp: The predicted scaling laws are demonstrated by projecting the measurements and fit onto log–log plots. Near the cusp the system response to a1 acts
as a giant lever, ∂��/∂a1 ∼ 50.
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associated with the potential V = �6 + a4�4 + a2�2 + a1�
(with a3 = 0) should enable smooth and abrupt transitions
between three stable states in any order depending on the chosen
trajectory for the control parameters. In Fig. 3A, we show a
cut-through parameter space of the saddle-node surfaces near
this butterfly bifurcation. If the system starts in the S (Small)
state and moves along the depicted work cycle (black arrows),
it would first snap to the M (Medium) state when the system

crosses the purple saddle-node bifurcation and then the L (Large)
state when it crosses the green curve. For the return path,
however, the system would transition from the L minimum
directly to the S minimum when it crosses the yellow saddle-node
bifurcation curve. Moreover, by working near the bifurcation, the
lever mechanism should allow for transitioning between these
distinct states within an accessible range of experimental control
parameters.

A

B

Fig. 3. Bifurcations of multiple equilibria. (A) Work cycle near a butterfly: A system operating near a hypothetical symmetrized butterfly bifurcation can cycle
between three states. The bifurcation is associated with the potential V = �6 + a4�4 + a2�2 + a1� and three accessible states denoted by large (L), medium
(M) and small (S). As the system follows the trajectory denoted by black arrows, with colored background marking its state �, it cycles between the three states
snapping from S to M to L and back to S by changing a2 and a1 while a4 = 0.1. The snaps occur at saddle-node bifurcations (colored curves) whose color
signifies the state � of the minima that is annihilated at each boundary. (B) Gradient Continuation algorithm: The search algorithm finds bifurcations of multiple
equilibria by following a one-dimensional curve. Starting from a bifurcation of k equilibria, the algorithm searches for a bifurcation of k+1 equilibria by following
a curve in the augmented parameter space, tangent to the gradient of |Vk+1

| in the kth bifurcation manifold. We draw a search for a butterfly bifurcation
in its symmetric normal form potential. The entire volume denotes the equilibrium manifold. Starting from a fixed point, the algorithm finds a saddle-node
bifurcation (along the white curve). Parameters are then varied on the saddle-node surface (yellow), and cusp surface (thin black lines) to, respectively, find a
cusp bifurcation (along the gray curve) and a swallowtail bifurcation (along the black curve) near a butterfly bifurcation (black point).
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A B

C D

Fig. 4. 3-state cycle near butterfly bifurcation point. (A) Theoretical design space: The saddle-node surfaces of a magnetoelastic system with three active
control parameters, x, y, and z are plotted, their color denotes the angle � at which the snap occurs. The system’s magnetic pattern is designed using the
gradient continuation algorithm such that it operates near a butterfly bifurcation where multiple saddle-node surfaces coalesce, enabling multiple snap-through
transitions at the surfaces. A trajectory (colored tube with white arrows) is chosen such that the system snaps in cycles between three states Large (L), Medium
(M), and Small (S) angles. The system’s predicted state is denoted by the tube’s color. At intersections of the trajectory with a surface where their colors match
the system is predicted to snap to a new state. The inset shows the same surface and trajectory from a different viewpoint (rotated by approximately 60◦).
(B) Experimental control trajectory: The colored disks mark the experimental measurements at various points along the designed trajectory. We observe three
distinct transitions in the experiment (indicated by ?) as predicted. (C) Experimental time series: Dots mark the measured system state, and the line represents
the theoretically predicted system state as a function of the control parameters, which change according to the experimental control sequence. (D) Experimental
control sequence: Curves depict the variation of the control parameters, x, y and z as a function of time. Remark: Experiment and theory are also demonstrated
in supplemental Movie S1. Traversing the same trajectory in the opposite direction leads to cyclic snaps between the Large and Small states as depicted in
SI Appendix, Fig. S4 and Movie S2.

Search Algorithm for Bifurcations of Multiple
Equilibria

To design parametric configurations corresponding to bifurca-
tions of multiple equilibria, we develop a gradient continuation
search algorithm that takes advantage of their nested structure.
Bifurcations associated with k equilibria (minima plus maxima)
are degenerate singularities where the first k derivatives of the
potential vanish.* The first ones are the so-called saddle node,
cusp, swallowtail, and butterfly bifurcations, which involve 2, 3,
4, and 5 equilibria, respectively. These bifurcations can be found
iteratively by searching for singularities of the potential with
increasing order, solving for one constraint at a time. We find that
this method is especially efficient in finding experimentally real-
izable parametric configurations corresponding to bifurcations of
multiple equilibria. Moreover, this method naturally extends to
searching for bifurcations with desired properties by introducing
further constraints, for example, optimizing the robustness of the
bifurcation’s associated states to external noise.

Minimizing the third derivative within the saddle-node man-
ifold maintains the first two constraints and allows for finding a
cusp bifurcation associated with two stable equilibria. Successive
iterations allow for identifying bifurcations between an increasing
number of equilibria and eventually the butterfly bifurcation.
Our gradient continuation algorithm adapts standard algorithms
from the dynamical systems literature (17, 19) and retools
them to locally follow the gradient of the unsatisfied constraint

*In multidimensional systems, the vanishing of the derivatives is replaced by an equivalent
set of constraints, such as the vanishing of the gradient of the potential and an eigenvalue
of the Hessian at a saddle-node bifurcation (17). These bifurcations correspond to special
linear Lie algebras as shown in Arnold’s ADE classification of bifurcations (13).

(see SI Appendix for further details). This allows access to
bifurcations of arbitrarily many equilibria through a simultaneous
variation of an arbitrary number of parameters, while current
continuation packages give access to bifurcations of two and
three equilibria by varying a single parameter at a time (20–24).
We depict the resulting search path in Fig. 3B, which highlights
the fact that, independent of the number of parameters, the
search algorithm follows a 1D trajectory, which is organized
by the nested structure of the intermediate bifurcations. These
properties enable the algorithm to find realizable bifurcations for
systems with hundreds of parameters.

Three States and the Butterfly Bifurcation

As a proof of concept for our approach, we demonstrate the
construction and operation of a magnetoelastic machine with 3
stable states operating near a bifurcation of multiple equilibria.
The first bifurcation that organizes 3 stable states is a butterfly
bifurcation of 5 equilibria (3 minima and 2 maxima). The first
step in designing such a machine is to implement our gradient
continuation algorithm to design a magnetoelastic potential with
a butterfly bifurcation. To realize a system operating near such a
bifurcation where only three control parameters (x, y, z positions
of panel P1) are actively varied, we allowed the algorithm to
also determine the x, y positions of two of the nine magnets on
panel P1.† With these seven parameters and by sampling different
patterns of dipole orientations, the algorithm was able to identify

†Typically, a butterfly bifurcation requires four control parameters to navigate between
all of the stable states. Here, we have identified a nonlinear mapping of the three active
control parameters (x, y , z) onto the four-dimensional space, which enables transitions
between arbitrary minima.

PNAS 2023 Vol. 120 No. 34 e2300081120 https://doi.org/10.1073/pnas.2300081120 5 of 9
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multiple butterfly bifurcations that satisfied these criteria (see
SI Appendix for details).

Having found an appropriate butterfly bifurcation, we use
standard dynamical systems continuation algorithms (7, 17)
to compute and plot the saddle-node surfaces in the control
parameter space (x, y, z) near the bifurcation (Fig. 4). We find
multiple distinct surfaces where the color denotes the angle
� at which the saddle-node bifurcation occurs.‡ Instructed by
these surfaces, we design a cyclic path through the parameter
space such that the system snaps between the large, medium,
and small minima. The path color at each point denotes the
system state, �. As with the cusp and symmetrized butterfly
bifurcations depictions in Figs. 1D and 3A, transitions occur
at intersections of the path and saddle-node surfaces where their
colors match. We note that for the generic butterfly bifurcation,
the surface structure can be quite complicated as shown by the
two projections in Fig. 4A. Indeed, even a system operating near
the simple-looking symmetrized butterfly bifurcation generally
requires four control parameters to move only along the a1
direction. Here, we successfully use only three control parameters
x, y, and z, to design a pathway that cycles between the three
states.

Using the design parameters determined by our search algo-
rithm, we built a magnetoelastic machine similar to that depicted
in Fig. 1A, but with a different magnetic dipole pattern and with
two of the magnets in panel P1 displaced in the panel plane
(SI Appendix). By following the theoretically predicted path,
we found three snap-through transitions from small to large,
large to medium, and medium to small (Fig. 4 B and C and
Movie S1). Two of the transitions occurred at the predicted
locations, while the large to medium transition was displaced
by 0.4 cm from its predicted location. In addition, we found
excellent fidelity between the predicted and measured angles �
for the equilibrium states. We also demonstrated that by simply
reversing the direction of cycling, the system transitions between
two distinct states (see SI Appendix, Fig. S4 and Movie S2), which
shows the possibility of designing two distinct work cycles with
the same pathway thanks to the complex structure of the saddle-
node surfaces near the bifurcation point. Finally, when the system
was taken apart and reassembled (see SI Appendix for details), we
were able to reliably reproduce the transitions associated with the
designed trajectories.

Discussion

The experimental validation of this design paradigm with
a butterfly bifurcation of 5 equilibria strongly supports the
conjecture that this framework could be extended to design
systems performing increasingly sophisticated functions by oper-
ating near bifurcations with a growing number of equilibria.
For example, the control panel and snapping hinge near a
cusp exhibit nonreciprocal motions that allow unidirectional
swimming [i.e., a Purcell swimmer (26)]. The tristability near the
butterfly bifurcation could enable both turning and swimming,
with higher-order bifurcations giving access to multiple axes of
rotation. Potential energies with these increasingly rare bifurca-
tions can be found efficiently, because the gradient continuation
algorithm follows a one-dimensional search path. Moreover, the
associated lever mechanisms provide a design feature where the

‡There is further local data in the potential at a saddle-node surface that can instruct the
design of a trajectory. For example the sign of the third derivative of the potential signals
whether the state’s angle will increase or decrease as it bifurcates. Moreover, the merging
of saddle-node surfaces can also be delineated by plotting the cusp bifurcations. Here, we
do not include this additional information for ease of viewing.

operation of the machine will likely be confined to a small
parameter volume, enabling the execution of these actions by
realizable machines.

Microscopic magnetoelastic machines could prove to be a
useful instance of design instructed by bifurcations of multiple
equilibria. An important emerging strategy for manufacturing
microscopic and soft machines is fabricating them using two-
dimensional lithographic and printing techniques (27–31). Such
fabrication techniques, however, restrict the implementation of
compound mechanisms composed of springs, cogs, screws, etc.
that are used to achieve complex actions in traditional macroscale
machines. These lever mechanisms could be replaced with
magnetoelastic mechanisms with lever advantages induced by
bifurcations. Magnetic interactions are especially well suited for
this purpose since they are long-ranged and not easily screened.
This long range allows for global changes to the conformation in
response to local actuation of system components.

Importantly, since bifurcations of multiple equilibria are
notoriously sensitive to variations of parameters, there is a concern
that a machine operating near such bifurcations will be very
sensitive to environmental noise, such as thermal vibrations, as
well as to fabrication precision. Indeed, close to a bifurcation,
the sensitivity of the system to variations of certain combinations
of the system parameters grows exponentially as the number of
associated equilibria increases. Mathematically, this is captured
by mapping the potential to a canonical normal form via a
change of coordinates (14, 25, Section 36.6) (see SI Appendix
for derivation). Practically, however, this increased sensitivity
is often blunted outside of the infinitesimal environment of the
bifurcation. At a finite distance from the bifurcation, the mapping
to the normal form or its linearization will often cease to be valid
because of other singularities of the potential or the nonlinear fall-
off in the potential. This nonlinearity is especially pronounced
in keplerian potentials such as that of magnetic interactions.
Critically, the saddle-node manifolds coalescing at the bifurcation
are generically preserved outside this radius of convergence as
they are topologically protected and can only annihilate at a cusp
or a bifurcation of more equilibria. Thus, operating a machine
near a bifurcation of multiple equilibria, but at a finite distance
from it, allows the design of trajectories that take advantage of
the multiple saddle-node transitions associated with it, and their
lever advantages, while avoiding the local exponential sensitivity.
For example, our experimental system explores almost all of its
dynamical range, transitioning between states separated by ∼2
radians in response to variation of the control parameters smaller
than the system’s microscopic length scale, i.e., the separation
between the magnets on each panel.

Similarly, the sensitivity of a system designed near a bifurcation
of multiple equilibria to external noise grows exponentially with
the number of associated states. This growth in sensitivity arises
from the decrease in the potential barriers between adjacent
states. For example, in a potential with k equilibria where all
the potential barriers are of equal height, and the minima are
equally deep (such a potential is proportional to a Chebyshev
polynomial of the first kind of order k + 1), the barrier
heights decay as 2−k. This sensitivity seems prohibitive as we
imagine implementing this design principle to create systems
cycling between multiple states. Despite this increased sensitivity,
however, we estimate that the strength of magnetic interactions
assures that magnetoelastic systems are robust to thermal noise
at the microscale. Specifically, in magnetoelastic systems, the
potential is proportional to the dipole–dipole interaction strength
�0�2L6/R3 of two magnets with magnetic dipole densities �
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panel size L and typical distance between dipoles R. Thermal
noise is then comparable to the magnetoelastic potential barrier
height when the number of equilibria k ∼ log2

(
�0�2L3/(R/L)3

kbT

)
.

The magnetic dipole densities � are of order 106A/m at the
microscale (32). The smallest two-state door (equivalent to the
device in Fig. 1A) that is robust to thermal noise is then ∼ .1
µm in size, approaching the size limit of 30nm for fabricating
stable magnetic domains (33). Conversely, a 100-µm machine
will become sensitive to thermal noise near a bifurcation of∼ 40
equilibria, that is 20 distinct states compressed in a span of 100
degrees.

As we traverse a path in the vicinity of the butterfly bifurcation,
we store energy in the system via operating the control panel,
which is then dissipated by the response of the rotating panel.
The efficiency of this energy conversion depends on the details
of the control mechanism, but we can estimate the output work
done by the free panel. If the system is controlled adiabatically,
so that it is approximately at an equilibrium point at all times,
the force (perpendicular to the plane of the rotating panel) is
always zero, F�(�∗) = 0. This is true along the entire cycle
except at the saddle-node bifurcations where the system jumps
between states on the equilibrium manifold. Energy (injected
by the control mechanism) is stored during the adiabatic tuning
toward the saddle-node surfaces, then dissipated through the snap
to the new target state. The partitioning of the energy dissipation
between different snaps in tristable systems depends on the details
of the potential and control path but obeys similar scaling laws
to the equilibrium and saddle-node manifolds: W ∼ a(k+1)/2

k−1
for a bifurcation of k equilibira, where ak−1 is the leading normal
form coefficient, measuring the distance from the bifurcation
point (see SI Appendix for derivation). This law shows a trade-off
between work and system state lever advantage: For a given small
variation in control parameters, higher-order bifurcations allow
amplified responses but do less work.

Finally, the designs that we have implemented in this paper
assume operation in a low Reynolds number regime where inertia
can be neglected. In the macroscale implementation, this was
achieved by attaching a damping panel immersed in a solution
of glycerol. We expect our designs to work even better as these
machines are implemented at smaller scales since the importance
of inertia drops quadratically with the system size. Operation of
a 100-µm-scale machine in water, for example, would enable the
system to be in the low Re regime while operating at rates that
are 1,000-fold faster than those in the macroscale experiment.

Conclusions

We have shown that the operation of multiparameter machines
near bifurcations of multiple equilibria allows them to efficiently
and robustly cycle between multiple conformations. Moreover,
we developed a generic step-by-step framework to design and
implement systems that operate near such bifurcations. Specif-
ically, we 1) created a search algorithm that optimizes over
fabrication and other system parameters to enable operation
near such bifurcations; 2) mapped the manifold of saddle-node
bifurcations to determine a useful trajectory for the machine
operation; and 3) demonstrated the robustness of this approach
by constructing and operating a magnetoelastic machine that can
cycle and robustly snap between multiple distinct configurations
in response to small variations of a few control parameters.

Importantly, this design approach and step-by-step implemen-
tation are generic: Dynamical systems and bifurcation theory

focus on general mathematical structures that appear across
domains. The cusp and butterfly bifurcations we targeted for our
designs are part of the broad family of cuspoidal bifurcations
(11, 13, 14, 19, 25) that govern how all gradient systems
transition between different equilibria. The design of systems
near cuspoidal bifurcations can also organize the dynamics of
multidimensional and nongradient systems (see SI Appendix
for extension of our algorithm to such systems). Moreover,
nongradient systems also exhibit bifurcations that give rise to
sustained oscillations, quasiperiodicity, and chaos. It has been
proposed that these dynamic bifurcations also provide useful
targets for designing controllable complex behaviors (34–36),
although these applications are less thoroughly studied. The
generality of the dynamical systems framework allows the
application of our design approach to a wide range of systems
with multiple interacting components. Such systems range from
artificial proteins (3) and multistate transistors (37), where
the interactions are electrodynamic, to neural networks [both
biological (38, 39) and synthetic (40)] where the interactions
are governed by network topology. In principle, any system with
dynamics governed by differential equations could be tuned to
operate near a high-order bifurcation point, if we have access to
the correct design and control parameters.

Cycling between transitions in mechanical implementations
of such systems can generate work or locomotion. If the system is
overdamped, as is often the case in microscopic systems operating
in fluids, work and locomotion can be achieved by coupling the
system to mechanisms that break time reversal symmetry. These
mechanisms include ratchets or cilia-like flexible rods (41). In
the case of the magnetoelastic hinge described here, time reversal
symmetry is broken by combining the smooth translations of the
control panel with abrupt transitions in the state of the dynamic
panel. In systems where the control variable is not a mechanical
parameter, time reversal symmetry can be broken by using the
angle as an effective dynamical variable governing a system with
multiple degrees of freedom such as is often used to parameterize
robot locomotion.

More broadly, it is interesting to consider the extension of
our work to systems with a larger number of dynamical variables
(�1, �2, . . .). Here, we envision that by working near bifurcations
of multiple variables (e.g., elliptic umbilic bifurcations) one could
organize snaps between states separated along multiple variables.
Such designs require extending our search algorithm to multiple
variables while maintaining its low-dimensional search path.
Alternatively, one could design mechanisms based on multiple
local bifurcations that are weakly coupled across the machine.
For example, one bifurcation of n states could be used to control
�1 while a second bifurcation of m states organizes the dynamics
of the variable �2. By weakly coupling the panels, and hence
the variables �1 and �2, the machine can transform between
n × m states in a coordinated fashion. Indeed this approach is
already being implemented for bifurcations with two states, where
the multiple states are also used for computation and memory
formation (42–44). Increasing the number of states associated
with each variable would enable a similarly rich landscape for
machine design with far fewer mechanical elements or panels.

Finally, it is interesting to consider whether this design
paradigm can be used to understand natural systems beyond
the Venus fly trap and hummingbird beak. For example,
molecular machines such as proteins often transition between
different configurations. It is interesting to consider whether such
transitions can be thought of as snaps organized by bifurcations
of many states (3, 6). As another example, bifurcation theory has
been implemented to identify and explain epigenetic dynamics
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Fig. 5. Experimental setup. Sketch of the experimental system used for the
demonstration of cycles and angle measurements. Panel P1 is attached to
a set of translation stages which allows us to implement the spatial control
parameters in all experiments. Panel P2 is attached to an air bushing that is
fixed in space. An attachment submerged in glycerol is added to the base of
Panel P2 to introduce damping to the system.

of cell differentiation (45–47). These approaches often focus
on consecutive 2-state bifurcations. The results presented here,
however, suggest that a comparably simple evolutionary pathway
could entail development of multistate bifurcations. Such a
structure could allow the addition of new states while maintaining
the existing configuration through an evolutionary process,
similar to the path taken by the gradient continuation algorithm.

Materials and Methods
Construction of Experimental Hinge System. Panel P1 is constrained to a
set of linear translation stages that allow its position to be adjusted manually
to any x or y coordinates near the cusp. For experiments near the butterfly
bifurcation point, an extra translation stage is attached to Panel P1 to allow
adjustment of its z coordinate. Panel P2 is attached to an OAV frictionless thrust

air bushing with a 13-mm shaft. The air bushing is attached to a fixed metal
housing to limit Panel P2 to its rotational degree of freedom. A T-shaped paddle
is attached to the bottom of the shaft and immersed in glycerol to introduce
damping to the system. Additionally, we position a Basler Ace aca3088-57um
area scan camera above the center of the air bushing to take top-view images of
the air bushing which are then used to calculate the angle response of Panel P2
to high precision. Full experimental schematic shown in Fig. 5.

Panels for Experiments near Cusp Point. Each magnetic panel is constructed
using two 1/16 in thick laser-cut acrylic pieces and nine grade N48 neodymium
magnets of diameter 1/16 in and height 1/8 in. Magnets are arranged in a 3-by-3
square lattice with a lattice constant of 1.5 cm.

Panels for Experiments near Butterfly Point. Each magnetic panel is
constructed using two 1/16 in thick laser-cut acrylic pieces and nine grade
N48 neodymium magnets of diameter 1/8 in and height 1/8 in. Magnets are
arranged in a 3-by-3 square lattice with lattice constant of 2.5 cm. In panel P1,
the x, y position of two of the magnets is displaced according to the design
determined by the search algorithm. The two magnets whose position is offset
are the magnet in the bottom row on the right column, whose offsets are
dx1 = 1.418 cm, dy1 = −0.273 cm, and the magnet in the middle row on
the left column, with offsets dx2 = −0.826 cm, dy2 = −0.986 cm. A technical
drawing illustrating the panels used for the butterfly experiment is included in
SI Appendix.

AngleMeasurements. A marker is attached to the top of the air bushing, and a
camera records the location of the marker during the experiment. At each given
time, the measured angle is the determined by three points: current marker
location, location of the center of rotation, and marker location at � = 0. We
calibrate the system by recording the location of the pixel at � = 0 and several
other distinct angles. The pixel location corresponding to the center of rotation
is obtained using a fitted circle through the calibration data points. The resulting
angle is then deduced from the three measured points. This data collection
process is conducted in MATLAB.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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