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Abstract

Fast and effective image compression for multi-dimensional images has become

increasingly important for efficient storage and transfer of massive amounts

of high-resolution images and videos. In this paper, we present an efficient

in-situ method for multi-dimensional image and video compression called Com-

pression via Adaptive Recursive Partitioning (CARP). CARP uses an optimal

permutation of the image pixels inferred from a Bayesian probabilistic model on

recursive partitions of the image to reduce its effective dimensionality, achiev-

ing a parsimonious representation that preserves information. Furthermore, it

adopts a multi-layer Bayesian hierarchical model to achieve in-situ compression

along with self-tuning and regularization, with just one single parameter to be

specified by the user to achieve the desired compression rate. The properties

of our proposed method include high reconstruction quality at a wide range

of compression rates while preserving key local details, applicability to a vari-

ety of different image/video types and of different dimensions, computational

scalability, progressive transmission and ease of tuning. Extensive numerical ex-

periments using a variety of datasets including 2D still images, real-life YouTube

videos, and surveillance videos show that CARP compares favorably to—and

often uniformly outperforms—a wide range of popular image/video compression

approaches, including JPEG, JPEG2000, AVI, BPG, MPEG4, HEVC, AV1, and
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three neural network-based methods.

Keywords: Image compression, video compression, Bayesian probabilistic

model, in-situ compression

1. Introduction

Image compression is the key to efficient storage and transfer of the vast

amount of high-resolution images and videos that are routinely collected in

a variety of applications. Efficient compression relies on parsimonious repre-

sentations of images that preserve important spatial and contextual features.5

Standards such as JPEG [1] and JPEG2000 [2] utilize fixed, deterministic lin-

ear function transforms, such as wavelets followed by optimized encoding under

such transforms. BPG [3], short for Better Portable Graphics, is based on the

intra-frame encoding of the High Efficiency Video Coding (HEVC) video com-

pression standard and has also been widely used in image compression as an10

alternative to JPEG in some aspects. These approaches give excellent stabil-

ity and scalability in practical implementation, and require little training and

tuning. However, they lack adaptability to image-specific characteristics, conse-

quently resulting in a suboptimal level of compression efficiency. The more re-

cent convolutional neural network (CNN) based approaches [4, 5, 6] utilize much15

more flexible, nonlinear transformations of the original image. This additional

flexibility often leads to improved compression efficiency. On the other hand,

this also results in a considerably heightened demand for intensive training and

meticulous method refinement. Driven by the identified limitations of existing

methodologies, the primary objective of this paper is to devise a compression20

technique capable of alleviating the inherent constraints posed by deterministic

transforms. Our aim is to achieve cutting-edge performance without the neces-

sity for separate training procedures, thereby optimizing both computational

and compression efficiency.

The primary contribution of this paper lies in the introduction of a Bayesian25

probabilistic modeling approach. This approach incorporates adaptivity to im-
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age features within the framework of wavelet-based image processing while pre-

serving computational scalability and ease of tuning. Instead of employing fixed

wavelet transforms, we consider the transform as an unobservable element of in-

terest. We achieve this by imposing a Bayesian prior over the space of such trans-30

forms, generated through random recursive partitioning on the image. Conse-

quently, a compressed image can be generated based on the inferred transform,

tailored to the specific features of the image in question. Furthermore, this com-

putational process remains as efficient as traditional wavelet-based methods,

exhibiting linear scaling in relation to the image’s size. Aside from achieving35

excellent compression efficiency (to be demonstrated in our numerical experi-

ments), our method, called Compression via Adaptive Recursive Partitioning

(CARP), enables simultaneous transform learning and compression through ob-

taining the joint posterior distributions of the transform and intensities of the

images, allowing information borrowing between these two steps, which is in40

contrast to classical methods such as JPEG2000. CARP is model-based and

interpretable. Building on hierarchical Bayesian models, CARP outputs the

maximum a posteriori (MAP) partition tree-induced transform, which repre-

sents a learned map to vectorize the image.

CARP enjoys three additional advantages. First, CARP is a general-purpose45

compression method that compresses m-dimensional images in a unified fash-

ion for m = 2, 3, 4, etc., as opposed to specializing on one dimension (such as

2D or 3D) in most of the existing literature, making it readily applicable to a

variety of image/video types. Second, it does not require a separate training

stage on external data and involves minimal tuning. The Bayesian hierarchical50

modeling strategy uses hyperpriors on the parameters to allow automatic tun-

ing on those parameters, leaving only one free parameter for the user to specify,

which corresponds directly to the desired compression rate of the image. This

makes CARP very easy to use, without requiring expert knowledge of the un-

derlying method. Third, it allows progressive transmission to gradually improve55

the image quality as data bits are incrementally transmitted, which resembles

the progressive principle in JPEG2000 [7]. In particular, the wavelet coefficients
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can be transmitted from coarse to fine scales in the decoding and reconstruction

process to allow reconstruction of images at incremental resolutions. For exam-

ple, Figure 1 demonstrates that the reconstructed building image is gradually60

improved when more data bits are transmitted.

Figure 1: The reconstructed image is gradually improved from left to right when

more data bits are transmitted (left to right: 300, 3000, 30000, 40000, 50000

bits). The original image is in Figure 5.

This paper is an extended version of our previous work [8]; we have added

technical descriptions for our probability model and inference strategy in Sec-

tions 3.4 and 3.5, improved the method by allowing flexible encoding/decoding

algorithm options that adapt to the resolution of target images, elaborated on65

properties of CARP such as progressive transmission, substantially expanded

our numerical experiments by both including a new color image database and

several other competing approaches, including AVI, BPG, HEVC, AV1 and an-

other two deep learning-based methods in Section 4, and discussed a range of

practical issues and options to adapt CARP in Section 5. Of particular note70

is that the improved CARP exhibits noticeable performance gain over our ini-

tial implementation in [8] under the metric of peak signal-to-noise ratio for

low-resolution images/videos (see Figure S4 in the Supplementary Material).

The organization of the paper is as follows. Section 2 surveys related work

in image and video compression. In Section 3, we present the proposed CARP75

method, including probabilistic image representation using a hierarchical Bayesian

framework, posterior inference, and details in implementing the method. Sec-

tion 4 reports the results from extensive experiments on image and video com-

pression. Section 5 contains a discussion. The code for average performance and
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implementing CARP is available on GitHub: https://github.com/xylimeng/80

CARP. Supplementary Materials include additional visualization for experiments

in Section 4.

2. Related work

For 2D images, two of the most well-known compression algorithms are

JPEG [1] and its successor JPEG2000 [2]. The JPEG standard uses a dis-85

crete cosine transform (DCT) on each 8 by 8 small block of pixels. A quan-

tization table is applied, and Huffman encoding is used on DCT blocks for

compression. Compared to the JPEG standard, JPEG2000 uses a multi-scale

orthogonal wavelet decomposition with arithmetic coding. In particular, the dis-

crete wavelet transform (DWT) decomposes images into their resolution and fre-90

quency contents. The DWT can be performed with a non-reversible Daubechies

(9,7) taps filter, which provides higher, but lossy, compression. In addition to

DWT, another feature for JPEG2000 is quantization. JPEG2000 quantizer fol-

lows an embedded dead-zone scalar approach. The quantizer step size used to

scale the coefficients is independently selected for each wavelet sub-band.95

However, both JPEG and JPEG2000 are suboptimal for image compression

[9] in part due to the non-adaptive image transformation and a separate opti-

mization on codecs. BPG [3] is often advantageous over JPEG and JPEG2000

in achieving better compression ratios for the same reconstruction quality, and

it supports up to 14 bits per color channel instead of up to 8 bits as in JPEG.100

Besides JPEG, JPEG2000 and BPG, there is a growing literature on devel-

oping deep learning-based methods [4, 5, 10] for image compression. Among

these methods, end-to-end deep learning-based approaches are particularly ap-

pealing, which go directly from the input to the desired output with optimized

codecs [5]. For example, a pre-trained model over a database of training images105

was proposed in [5] with all the required components for end-to-end implemen-

tation, including a nonlinear analysis transformation, a uniform quantizer, and

a nonlinear synthesis transformation. On this basis, two pre-trained models are
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developed (Sadam and GDN) in the context of nonlinear transform coding with

artificial neural networks [10].110

Videos have a different structure than 2D images due to the extra temporal

dimension. Although a video can be compressed frame by frame by some ex-

isting 2D image compression methods (e.g., JPEG, JPEG2000, and BPG), the

critical temporal redundancy is undesirably ignored in this approach. A classical

video compression format is AVI (Audio Video Interleave), which was created115

by Microsoft in 1992 and becomes a commonly used video format. AVI is inter-

net compatible but generally suffers from low compression efficiency by current

standards. Most current video compression algorithms in Moving Picture Ex-

perts Group (MPEG) [11] exploit both spatial and temporal redundancy and

deal with the issue of heavy compression ratio. For example, MPEG-4 absorbs120

many features of different standards using both DCT and motion compensation

[12] techniques to achieve this goal. In addition, to reach a higher compression

ratio, MPEG-4 only stores and encodes the inter-frame changes instead of the

entire original frame. However, the redundancy detection strategy in MPEG-4

is localized to capturing the difference of adjacent frames, and thus might not125

be globally optimal, leading to less efficient compression. HEVC [13], standing

for High Efficiency Video Compression, is an extension of MPEG-4 designed

by an intra-frame coding strategy of applying intra-picture prediction and loop

filters to optimally use parallel processing and improve the quality of the recon-

struction frames. AV1 (AOMedia Video 1) is a more recent codec designed to130

compete with HEVC on the open platform.

The idea of transform-induced permutations of the pixels employed in CARP

has been exploited previously in the literature. In particular, [14] adopts peak

transform to obtain spatial permutation. [15] uses random recursive partition-

ing to induce a probability distribution on the permutations of image pixels,135

leading to an effective algorithm for image denoising using posterior Bayesian

model averaging. In this work we use random recursive partitioning to induce

a probability model on the wavelet transforms, but instead focus on learning a

data-adaptive transform to represent the image, thereby achieving efficient com-
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pression. The 1D vector returned by Bayesian multi-scale learning is passed to140

existing encoding methods to generate compressed representation, followed by

the corresponding decoder. The literature [16] provides a rich menu of possibil-

ities for encoding/decoding methods.

3. Method

3.1. CARP: The framework145

CARP is a framework for image compression via adaptive recursive parti-

tioning. It uses a data-adaptive permutation of the image pixels inferred from a

Bayesian probabilistic model to reduce the dimensionality of an m-dimensional

image, thereby achieving a parsimonious representation that effectively pre-

serves information. More specifically, CARP utilizes a prior distribution on150

the space of permutations induced by random recursive partitioning along a

bifurcating tree [15]. This random recursive partitioning incorporates latent

pruning variables to probabilistically terminate the partitioning within the par-

tition blocks where the pixel intensities are similar enough. The maximum a

posteriori (MAP) estimate, i.e., the posterior mode of the posterior distribution155

on the recursive partitioning, produces a representative permutation (or vector-

ization) of the image pixels that can be readily fed into encoding methods to

generate compressed representation, followed by the corresponding decoder to

reconstruct the compressed image.

Figure 2 presents the architecture of CARP, where the two black boxes160

pinpoint the key techniques used in CARP. In this work, we use the 1D discrete

wavelet transform (DWT) and either Arithmetic or Huffman encoding algorithm

as the encoder, and use the inverse DWI and corresponding decoding algorithm

as the decoder.

CARP takes an m-dimensional image y = {y(x) : x ∈ Ω} observed on an165

m-dimensional rectangular “pixel” space Ω of the form

Ω = [0, n1 − 1]× [0, n2 − 1]× · · · × [0, nm − 1],
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Figure 2: The workflow of CARP.

where the notation [a, b] is the set {a, a + 1, . . . , b} for two integers a and b

with a ≤ b. This means CARP can be readily applied to images of various

dimensions including but not limited to 2D still images and 3D videos. Without

loss of generality, we assume ni = 2Ji in the ith dimension for i = 1, 2, . . . ,m;170

an image of general size can be upsized to such dimensions through padding.

The total number of pixels is n = 2J , where J =
∑m

i=1 Ji.

The effectiveness of the compression highly depends on the representation

power of the transform in use, especially on its adaptivity to local and spatial

features in an image. In CARP, this is achieved by a Bayesian probabilistic175

modeling strategy, in which adaptivity to image features is incorporated into a

wavelet transform-based multi-scale image processing framework. In particular,

we use random recursive partitioning on Ω to induce models on wavelet trans-

forms that incorporate such adaptivity. In the following section, we describe

some basic concepts related to recursive dyadic partitioning, which will form180

the building blocks for the model used in CARP.

3.2. Recursive dyadic partitioning with pruning

While multi-scale wavelet transforms enjoy excellent scalability, a determin-

istic transform may fail to efficiently adapt to the rich spatial and local features

present in a multi-dimensional image. We enrich the representation power and185
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effectiveness of wavelets by a convolution between a classic 1D wavelet transform

and a class of permutation of the index space Ω of the pixels.

The space consisting of all permutations of pixels in Ω is massive. Consid-

ering all n! permutations of pixels in Ω is not only computationally prohibitive

but wasteful as well because the vast majority of permutations ignore the spatial190

features in the image. In CARP, we only consider the class of permutations in-

duced by a recursive dyadic partitioning (RDP) on Ω, which includes a rich class

of permutations for effective representation of the image while allowing scalable

learning of the optimal permutation among this class—with computational com-

plexity O(n). An RDP on Ω denoted by T as it is essentially a bifurcating tree,195

consists of a sequence of nested partitions on Ω, i.e., T = ∪J
j=0T j with the

partition T j being the set of all blocks at level j for j = 0, . . . , J . Specifically,

we start with A0,0 = Ω and T 0 = {A0,0}. For each j = 0, . . . , J − 1, T j+1 is

obtained by dividing each set in T j into two halves along a divisible dimen-

sion, i.e., Aj,k = Aj+1,2k ∪ Aj+1,2k+1 for k = 0, 1, . . . , 2j − 1. The last level T J
200

contains all the single elements in Ω, which are referred to as atomic nodes.

From now on we shall refer to the partition blocks as “nodes” in the partition

tree T . Two children nodes are formed by dividing a parent node into two halves

in one of its dimensions, and T J consists of the leaf nodes, each of which contains

a single element in Ω. Note that each RDP induces a unique permutation of Ω,205

with the order of the pixels given by the binary coding sequence tracking the

left/right children that each pixel belongs to along the corresponding branch in

the tree.

Parsimonious representation is crucial for image compression. We improve

upon RDPs in this regard by incorporating early stopping to prune the partition210

tree induced by an RDP. Indeed, a complete RDP T might not be necessary

to represent an image when there are homogeneous nodes with almost constant

intensities therein. In CARP, we prune T by an early stopping to help effectively

compress similar blocks in an image. Note that all descendants of a pruned node

are pruned by design, and the intensity of each pixel in the corresponding block215

will be set to the average value of this block.
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Each RDP turns the pixel space Ω into a vector of the same length as the

number of pixels, decoupling the image intensity to a 1D vector and spatial

structure described by a partition tree with pruning. We next describe genera-

tive models for RDPs and the image given RDPs.220

3.3. Generative modeling of RDPs

We use a hierarchical Bayesian model to adaptively learn a representative

RDP through finding the posterior mode. To this end, we adopt a generative

distribution called “random RDP” (RRDP) proposed in [15] as the prior on

the RDP. While RRDP has been successfully applied to various tasks such as225

testing of conditional association and image reconstruction, there is no work

to consider using RRDP for compression. For any node A in T , λ denotes a

mapping from A to a hyperparameter λ(A) that specifies the probability to

divide A in each of its divisible dimensions. RRDP specifies the probability

of partitioning A in its ith dimension for i = 1, . . . ,m using a vector-valued230

hyperparameter λ(A) = (λ1(A), . . . , λm(A)). By default, we set the value of λ

such that all divisible dimensions of each A have equal prior probability to be

divided.

3.4. Data generating model given RDPs: Markov-tree wavelet regression

To achieve a parsimonious image representation, the next component of our235

model aims at pruning the tree in nodes where the pixel intensities are similar

enough. To this end, we use wavelet shrinkage. In particular, given an RDP,

we adopt a wavelet regression model as the data generative mechanism for the

image. There is a rich literature on how to effectively carry out shrinkage on

the wavelet coefficients [17, 18], and we shall use a Bayesian wavelet regression240

model with a Markov tree prior on the wavelet coefficients to achieve adaptive

shrinkage [15]. An important benefit of adopting a Bayesian model for the image

given the RDP is that we can now combine it with our Bayesian model on the

RDPs to form a coherent hierarchical model, allowing inference to be carried out
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in a principled manner (through maximizing the posterior distribution) without245

ad hoc strategies to “stitching” together separate algorithmic pieces.

Specifically, conditional on an RDP tree T and following an application of

Haar wavelet transform to the vectorized image under T , the Bayesian wavelet

regression model is as follows

wj,k = zj,k + uj,k (1)

zj,k |Sj,k
ind∼

 δ0(·) if Sj,k = 0 or 2

Normal(0, τ2j σ
2) if Sj,k = 1

(2)

for j = 0, 1, . . . , J − 1 and k = 0, 1, . . . , 2j − 1. Here wj,k, zj,k, uj,k are the kth

wavelet coefficient, signal, and “noise” at the jth scale in the wavelet domain,

respectively. The ternary latent state variable Sj,k indicates whether zj,k is from

δ0(·) (a point mass at 0) if Sj,k = 0 or 2, or a normal distribution with mean 0250

and variance τ2j σ
2 if Sj,k = 1.

To achieve adaptive pruning, we model Sj,k jointly by a Markov tree model

[19] such that if Sj−1,⌊k/2⌋ = 2 then Sj,k = 2 with probability 1. Thus Sj,k = 2 is

an “absorbing state” representing the pruning of a branch of T . If Sj−1,⌊k/2⌋ ̸= 2

then Sj,k = (0, 1, 2) with probabilities (ρ(Aj,k){1−λ0(Aj,k)}, {1−ρ(Aj,k)}{1−255

λ0(Aj,k)}, λ0(Aj,k)), where ρ(A) is the so-called spike probability in Bayesian

spike-and-slab models, and λ0(A) is the probability of node A to be pruned. We

assume uj,k ∼ N(0, σ2) independently across j and k.

It is worth noting that in the context of compressing noiseless images, the

“noise” term uj,k quantifies the extent of local variations in pixel intensities to260

which one can ignore to produce a compressed image, and therefore its standard

deviation σ becomes a parameter for setting how aggressively (in terms of the

compression ratio) one wants to compress the image through pruning the tree.

This tuning parameter σ will be in a monotone relation to the final compression

rate of the image, and thus can be set by the user to achieve the desired rate of265

compression.
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3.5. Posterior inference and image representation

For image compression, we need to find a single representative RDP that

most effectively represents features in the image. One strategy is to draw a

random sample of T from its posterior distribution, and use the induced per-270

mutation for compression. However, a more appealing approach is to resort to

a particular non-random representative sample. To this end, we maximize the

posterior probability of T based on its marginal posterior distribution. In other

words, we aim to find the maximum a posteriori (MAP) estimate for T , which

we denote as T̂ .275

We first need to find the marginal posterior distribution for T . A remarkable

observation is that under the above model, the posterior of T is conjugate—it

is still an RRDP distribution with pruning, but with updated posterior selec-

tion probabilities λ̃ and updated pruning probabilities λ̃0, where we use tilde

to indicate the posterior updated values for the parameters λ and λ0. Such280

conjugacy can be obtained in a general Markov tree setting as long as the joint

distribution of (wj,k, zj,k) given Sj,k is independent for all j and k, which has

been studied in Theorem 2 of [15]. We next derive such conjugacy specifically

for our model in (1) and provide recipes for inference on T .

Let A be the set collecting the nodes generated by all possible RDPs. Let285

Ψ(A) be the marginal likelihood of node A for A ∈ A. Hereafter by the marginal

likelihood “of a node” we refer to the marginal likelihood from all data with

locations in A if the parent node of A is not pruned (i.e., integrating out those

T ’s that contain the node A with respect to their prior distribution). We start

with introducing a few quantities associated with each node A that will be290

used for describing the posterior. Let D(A) be the set collecting all divisible

dimensions of A, y(A) =
∑

x∈A y(x) the sum of observations with locations in

A, and SST(A) the corrected sum of squares of all data with locations in A, i.e.,

SST(A) =
∑

x∈A(y(x)−y(A)/|A|)2 with |A| being the number of locations in A.

For each d ∈ D(A) such that A is divided in its dth dimension, let (A
(d)
l , A

(d)
r ) be295

the pair of left and right children nodes, and wd(A) = {y(A(d)
l )−y(A

(d)
r )}/

√
|A|

be the Haar wavelet coefficient on A.
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The marginal likelihood Ψ(A) can be obtained in a recursive manner with

complexity O(n). To see this, first decompose Ψ(A) according to the |D(A)|+1

possible actions on A:300

Ψ(A) = λ0Ψ0(A) + (1− λ0)
∑

d∈D(A)

λdΨd(A), (3)

where Ψd(A) is the marginal likelihood of A if A is divided in its dth dimension

given A is not pruned, and Ψ0(A) is the marginal likelihood of A if A is pruned.

When d = 0, all wavelet coefficients in A and its descendants have mean 0, and

thus

Ψ0(A) = (2πσ2)−
|A|−1

2 exp

{
−SST(A)

2σ2

}
. (4)

When d ∈ D(A), Ψd(A) is independently decomposed into the marginal likeli-

hood of wd(A) that is spelled out in (1) and the marginal likelihoods of its two

children nodes, that is,

Ψd(A) ={ρ(A)N(wd(A); 0, (1 + τ2j )σ
2) + (1− ρ(A))

N(wd(A); 0, σ2)}Ψ(A
(d)
l )Ψ(A(d)

r ), (5)

where N(a; b, c2) is the density function of Normal(b, c2) evaluated at a. A305

bottom-up algorithm is then readily applicable to obtain all Ψ(A)’s by combin-

ing (3), (4), and (5) and letting Ψ(A) = 1 for all atomic nodes A.

Once Ψ(A) is calculated, a direct application of Bayes’ theorem gives λ̃0(A) =

λ0(A)Ψ0(A)/Ψ(A) and λ̃d(A) = λd(A)Ψd(A)/{
∑

d∈D(A) λd(A)Ψd(A)}, which

respectively are the posterior probability of pruning A and the posterior proba-310

bility for A to be divided in dimension d if A is not pruned. These two mappings

completely describe the marginal posterior distribution of T . We then compute

the MAP tree T̂ by standard bottom-up dynamic programming as follows, which

again incurs complexity O(n). Define a recursive mapping κ : A → [0, 1]:

κ(A) =

 1, if A is atomic,

max{λ̃0(A), λ̃max
−0 (A)}, otherwise,

where

λ̃max
−0 (A) = (1− λ̃0(A))max

d≥1
{λ̃d(A)κ(A

(d)
l )κ(A(d)

r )}.
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Once the mapping κ has been computed on all A ∈ A, T̂ can be generated in-315

ductively as follows. Note that T̂ consists of partition index sets {Âj,k : 0 ≤ k <

2j , 0 ≤ j ≤ J} and a pruning indicator vector associated with each Âj,k. For j =

0, Â0,0 = Ω. Suppose T̂ have been generated for all levels no more than j. For

each Âj,k that is not pruned, define d̂j,k = argmaxd≥1λ̃d(A)κ(A
(d)
l )κ(A

(d)
r ) with

A = Âj,k. Then, block Aj,k is pruned if λ̃0(A) > (1−λ̃0(A))λ̃d(A)κ(A
(d)
l )κ(A

(d)
r )320

with d = d̂j,k and A = Âj,k; otherwise, the partition sets in level j + 1

are Âj+1,2k = A
(d̂j,k)
l and Âj+1,2k+1 = A

(d̂j,k)
r . Recall that all descendants

of a pruned node are pruned by design; hence, for each Âj,k that is pruned,

we randomly select a direction d0 ∈ D(Âj,k) and set Âj+1,2k = A
(d0)
l and

Âj+1,2k+1 = A
(d0)
r . Note that the reconstructed image is invariant to this ran-325

dom choice as all pixels in the pruned block will be reconstructed as a common

constant.

3.6. Encoder/decoder and compressed structures

Given the permutation of the original image induced by T̂ , under which the

order of each pixel is given by binary coding of the branch under T to which330

each pixel belongs, we have a vectorization of the original image. Within a

pruned node, the ordering of the pixels is arbitrary. At this point, one has the

flexibility of choosing the favorite encoder and decoder for this vectorized image.

In addition, the encoding part in Figure 2 includes a symbol encoder, which is

used to reduce the coding redundancy. In particular, we implement two encod-335

ing/decoding algorithms in CARP depending on the image resolution to strike

a balance between compression efficiency and runtime. For target images with

high resolution, we adopt the Huffman encoding method based on the Huffman

table that is derived from the estimated probability or frequency of occurrence

for each possible value of the source symbol. The reduced symbols are stored as340

the compressed representation. This Huffman table is also used in the decoder

part to perform the inverse operation of the symbol encoder. Arithmetic en-

coding can be used to further optimize the compression performance but may

require longer execution time [20]. As such, we implement Huffman coding for
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images with resolution 512 × 512 or higher and arithmetic coding otherwise.345

We find this improves the performance of CARP for images/videos with low

resolution compared to our initial implementation in the conference version [8]

(see Figure S4 in the Supplementary Material). Our code allows users to choose

between these two encoding/decoding methods for images with any resolution.

In our following numerical experiments, we use the 1D Haar DWT and a350

symbol encoder as the encoder part while a symbol decoder and the inverse

DWT as the decoder part, respectively, due to their computational scalability.

3.7. Empirical Bayes for setting hyperparameters

We specify the two mappings ρ(·) and η(·) as well as parameters τj by repa-

rameterizing them using five hyperparameters (α, β, C, τ0, η0): ρ(A)= min(1, C355

2−βj) for any node A at the jth level, τj = 2−αjτ0, and η(A) = η0 for any

node A ∈ A. We use an empirical Bayes strategy to set the hyperparameters

by maximizing the marginal likelihood Ψ(Ω) over a grid.

We observe that specifying the hyperparameters at fixed values eliminates

the need for computing the maximum likelihood estimates without sacrificing360

compression efficiency much. As such, our software allows both options. Under

either option, a user just needs to specify a single parameter σ to obtain images

at desired compression ratios when applying CARP.

4. Experiments

In this section, we compare CARP with a wide range of popular compression365

methods using a variety of benchmark databases. In particular, we use a 2D still

image dataset from the 2020 CLIC workshop and challenge http://challenge.

compression.cc/tasks, a YouTube video dataset from [21], and a surveillance

video dataset from [22]; see the Supplementary Material (Figure S1) for selected

examples of all the datasets.370

CARP and its software implementation are readily applicable to all these

types of images, while the competitors may tailor to images of a particular di-

mension. We thus compare CARP with a different batch of methods depending
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on the image type. In this section, we opt for fixed hyperparameters for sim-

plicity. In particular, we use α = 0.5, β = 1, C = 0.05, τ0 = 1/σ, and η0 = 0.4.375

For RGB images or videos, we compress each RGB channel separately when

implementing CARP to account for unique channel-specific structures and also

in view of its simplicity for implementation.

4.1. Average performance

Figure 3 summarizes the average performance on three image/video types380

under the metric of peak signal-to-noise ratio (PSNR) and multi-scale structural

similarity (MS-SSIM), the latter being a widely used metric to assess perceived

image quality and measure the structural similarity between two images; in

all of our test data CARP compares favorably to a variety of competitors—

including JPEG, JPEG2000, AVI, End-to-End deep learning (E2E-DL), Sadam385

deep learning (Sadam-DL), GDN deep learning (GDN-DL), BPG, MPEG4,

HEVC, AV1 under both PSNR and MS-SSIM, and appears to give the lead-

ing performance on average in most cases. We note that in Figure 3(a) and

3(b), the averages of metrics are calculated over a subset of 70 images from the

image dataset on which the methods being compared are able to achieve a wide390

range of compression ratios. Also, we acknowledge that because we have used

three pre-trained deep learning models[5, 10], the performance of these methods

could be improved had the CNNs been trained on images that are particularly

suited for the 2D still image database. In any case, we note the robust perfor-

mance of CARP over all the tests and the fact that it does not require separate395

pre-training on additional images.

Next we present more detailed numerical results that compare the image-

specific performance of the methods, which show that CARP can outperform

the competitors in nearly all of the individual images in some datasets we have

examined.400

4.2. 2D still images

We compare CARP with JPEG, JPEG2000, BPG[3], and three pre-trained

deep learning methods including ‘E2E-DL’[5] and ‘Sadam-DL‘ and ‘GDN-DL‘
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(a) 2D still images (b) 2D still images

(c) YouTube video images (d) YouTube video images

(e) Surveillance video images (f) Surveillance video images

Figure 3: Performance summary of CARP and competitors in three databases

consisting of still images and videos at different resolutions. Each plot of the

first column presents the average of peak-signal-to-noise-ratio (PSNR) while

each plot of the second column presents the average of MS-SSIM at various

compression ratios.

[10]. Here we randomly select 100 images from the 2020 CLIC workshop and

challenge, which are resized to 512×512 to test each method. These 100 images405

are provided in the GitHub repository.

To assess each method, we use the peak signal-to-noise ratio (PSNR) and

the multi-scale structural similarity index (MS-SSIM) of reconstructed images
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at various compression ratios, which is further supplemented by visual compar-

ison. Specifically, at various compression ratios, each 2D image is compressed410

and reconstructed, then the PSNR and MS-SSIM are calculated using the re-

constructed image. Figure 3(a) shows CARP gives the best average PSNR

while Figure 3(b) shows CARP gives the best average MS-SSIM at all compres-

sion ratios. In Figure 4, the first row plots the PSNR (in (a)) and MS-SSIM

curves (in (b)) for CARP for all 100 images, while other rows present the PSNR415

and MS-SSIM ratio curve between each alternative method and CARP for all

100 individual images—with values under 1 indicating CARP outperforms the

competitor. The performances of all MS-SSIM ratio curves are consistent with

those in PSNR ratio curves. CARP appears to outperform the six competi-

tors for nearly all individual images and at all compression ratios up to 300420

at which we are able to apply the competitor, except on a handful of images

for JPEG2000 at very low compression ratios, Sadam-DL and GDN-DL at very

high compression ratios and a couple of images for BPG. For this database,

E2E-DL underperforms CARP substantially, but we acknowledge that part of

the substantial performance gap could be narrowed had the CNNs been trained425

on images that are particularly suited for the specific database. Like JPEG and

JPEG2000, CARP does not require external pre-training. In addition, the user

does not need to specify any tuning parameter other than σ, which is equivalent

to specifying the compression ratio.

The locally adaptive nature of CARP enhances its ability to preserve local430

details in the images. As an illustration, we visualize reconstructions with a

particular focus on detailed features in an image using three selected images in

Figure 5. The region of interest is marked in the original image, and we present

zoom-in views of the region with a yellow and red block in the reconstructed

images from various methods at one specific compression ratio. Overall, CARP,435

BPG, Sadam-DL, and GDN-DL clearly outperform the other three methods

(JPEG, JPEG2000, and E2E-DL). CARP tends to preserve substantially more

details in the reconstruction relative to other methods. We next take BGP as

an example, and similar observations can be made when compared to other
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methods. For the redbrick wall in the top of Figure 5, the reconstructed image440

by CARP appears sharper and warmer than BPG; for the building in the middle

of Figure 5, the stairs in the yellow and red block by CARP are much clearer

than BPG, and a further zoom-in into the stairs shows that CARP preserves

more details; for the landscape image in the bottom of Figure 5, there are

more recognizable details in the mountain in sub-figure (b) but more blurry in445

sub-figure (c).

These observations may be partially explained by the design of CARP. The

use of RDP in CARP cuts the image horizontally or vertically, which leads to

its superiority when the target image has repeated patterns along the horizontal

or vertical direction, e.g., the building in Img5 (the middle two rows of Figure450

5). The pruning option in CARP increases the efficiency of image compression,

which helps detect the blocks in an image with similar intensities and efficiently

convert the tiles into pixel vectors, e.g., patches of the large dark bottom region

in Img9 (the last two rows of Figure 5).

4.3. YouTube video dataset455

We use the YouTube dataset in [21], which consists of instructional videos

for five different tasks, including making a coffee, changing a car tire, perform-

ing cardiopulmonary resuscitation (CPR), jumping a car and re-potting a plant.

The dataset has 150 videos with an average length of about 4,000 frames (or 2

minutes). Here we randomly select 20 videos from each task totaling 100 videos.460

Selected frames of the sampled videos are displayed in the Supplementary Mate-

rial (Figure S1 and S2). Note that these YouTube videos have a low resolution of

256 by 256, which favor the MPEG-4 standard as MPEG-4 is optimized at low

bit-rate video communications [23], and CARP gives competitive performance

building on Arithmetic coding.465

Video image data is produced through the compilation of 2D static images,

which are the so-called “frames”, synchronized at a given frame rate. When

these frames are layered sequentially, the resulting video image transforms into a

3D representation, taking the time dimension into account. CARP is applicable
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for streaming data by taking the entire video as input, thus constituting a470

genuine video compression method like MPEG-4. In addition to popular video

compression standards, we also consider using JPEG and JPEG2000 through a

frame-by-frame implementation, while CARP is directly applicable to 3D images

with no modification. For HEVC, we use the settings of x265 and P-frame.

For AV1, the reconstructed images do not allow direct access to the raw pixel475

intensities without additional output conversion but it reports the corresponding

PSNR and SSIM (but not MS-SSIM) directly.
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(c) PSNR ratio: JPEG/CARP (d) MS-SSIM ratio: JPEG/CARP
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(e) PSNR ratio: JPEG2000/CARP (f) MS-SSIM ratio: JPEG2000/CARP
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(g) PSNR ratio: E2E-DL/CARP (h) MS-SSIM ratio: E2E-DL/CARP
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(i) PSNR ratio: BPG/CARP (j) MS-SSIM ratio: BPG/CARP
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(k) PSNR ratio: Sadam-DL/CARP (l) MS-SSIM ratio: Sadam-DL/CARP

0 50 100 150 200 250 300
Compression Ratio

0.2

0.4

0.6

0.8

1

1.2

1.4

PSN
R Ra

tio

0 50 100 150 200 250 300
Compression Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

MS-S
SIM 

Ratio

(m) PSNR ratio: GDN-DL/CARP (n) MS-SSIM ratio: GDN-DL/CARP

Figure 4: 2D still images: PSNRs of CARP for 100 individual images in (a) and

MS-SSIM of CARP for 100 individual images in (b); PSNR ratio curves and

MS-SSIM ratio curves for JPEG, JPEG2000, E2E-DL, BPG, Sadam-DL and

GDN-DL relative to CARP in (c)- (n), respectively.
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(a) Original (b) CARP (c) BPG (d) JPEG2000

(e) Sadam-DL (f) GDN-DL (g) E2E-DL (h) JPEG

(a) Original (b) CARP (c) BPG (d) JPEG2000

(e) Sadam-DL (f) GDN-DL (g) E2E-DL (h) JPEG

(a) Original (b) CARP (c) BPG (d) JPEG2000

(e) Sadam-DL (f) GDN-DL (g) E2E-DL (h) JPEG

Figure 5: Comparison of reconstructed images. The compression ratio is 45 for

Img1 (top), 66 for Img5 (middle), and 45 for Img9 (bottom).
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Figure 6 presents the PSNR and MS-SSIM ratio curves (alternative meth-

ods over CARP) at various compression ratios for all the 100 videos, as well

as the PSNR and MS-SSIM curves of CARP. CARP substantially outperforms480

JPEG, JPEG2000, AVI, and BPG for nearly all individual videos at all com-

pression ratios. CARP gives larger PNSR than MPEG-4; for compression ratios

below 150, MPEG-4 and CARP perform similarly at a subset of the videos in

MS-SSIM; for compression ratios above 150, CARP increasingly outperforms

MPEG-4 at all videos. We note again that all the videos are at a low resolution485

that substantially favors MPEG-4.

HEVC leads to larger PSNR than CARP on most videos when the compres-

sion ratio is larger than 10 as shown in Figure 6(k), while CARP outperforms

HEVC in MS-SSIM on almost all the individual videos as shown in Figure 6(l).

Overall, Figure 3 shows that CARP tends to be the leading approach on aver-490

age under the MS-SSIM metric, and is among the best methods in PSNR where

it underperforms HEVC by a small margin in a subset of samples. See the

Supplementary Material for the performance comparison between CARP with

Huffman and CARP with Arithmetic encoder/decoder (Figure S4).

For visual comparison, we select a video from the “replotting a plant” task495

and compare one frame of the reconstructed video to that of the original one

in Figure 7. The zoomed region shown in the bottom row shows that the

reconstructed frame via CARP captures most details in the original frame (e.g.,

the words on the label, particularly the letters in front of “V”, and the white

dots below the label). The reconstructed image by AV1 is clearer and smoother500

than other images, but it relatively deviates more from the original image.

4.4. Surveillance video dataset

We next investigate the performance of CARP on higher-resolution videos

through a surveillance video dataset [22], where each video has a resolution of

1024 by 1024. We randomly select one surveillance video for a parking lot.505
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(a) PSNR of CARP for 100 videos (b) MS-SSIM of CARP for 100 videos

(c) PSNR ratio: JPEG/CARP (d) MS-SSIM ratio: JPEG/CARP

(e) PSNR ratio: JPEG2000/CARP (f) MS-SSIM ratio: JPEG2000/CARP

(g) PSNR ratio: MPEG-4/CARP (h) MS-SSIM ratio: MPEG-4/CARP

(i) PSNR ratio: BPG/CARP (j) MS-SSIM ratio: BPG/CARP

(k) PSNR ratio: HEVC/CARP (l) MS-SSIM ratio: HEVC/CARP

(m) PSNR ratio: AVI/CARP (n) MS-SSIM ratio: AVI/CARP

Figure 6: YouTube videos: PSNR curves and MS-SSIM curves of CARP for

100 videos in (a) and (b); PSNR ratio curve and MS-SSIM ratio curves of

JPEG, JPEG200, MPEG-4, BPG, HEVC and AVI relative to CARP in (c)–(n),

respectively.
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Figure 7: Selected frame of reconstructed YouTube videos by CARP, HEVC,

AV1, MPEG-4, and BPG at compression ratio 30. See the Supplementary

Material for the reconstruction by JPEG2000, JPEG, and AVI (Figure S5), and

reconstructed continuous frames by CARP (Figure S3).

We divide the entire video into 180 segments of equal length to help assess

the longitudinal variability of compression performances of each method and

reduce the computational time of each method. Figure 8 plots the PSNR and

MS-SSIM ratio curves (alternative method over CARP) among all the 180 videos

as well as the PSNR and MS-SSIM curve for CARP at various compression510

ratios. We can see that CARP gives the best PSNRs and MS-SSIMs for almost

all videos at all compression ratios (up to 300), with only one exception in

Figure 8(k) where CARP gives slightly smaller PSNR than HEVC on one video

when the compression ratio is around 250-300. Overall, CARP gives better

average PSNR and MS-SSIM than all other methods at all compression ratios515

from 0 to 300, as shown in Figure 3(e) and Figure 3(f). Comparing the two video

datasets (second and third rows in Figure 3) suggests that although its excellent

performance is robust across datasets, CARP appears particularly well suited

for the surveillance video dataset, which is expected as the relatively similar

image patterns and backgrounds across frames are more compressible through520

partitions and pruning.

For visual comparison, we randomly select one video and compare one frame
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of reconstructed videos. Figure 9 shows the original frame and reconstructed

frames by CARP, AV1, HEVC, BPG, and MPEG-4, when the compression ratio

is set to 30. The zoomed region is the shadow area at the top-right corner in525

the original frame, shown in the bottom row. In comparison, the reconstructed

frame via CARP captures most details of the region in the original frame, while

the region reconstructed via MPEG-4 is more blurry (e.g., the edge of the yellow

arrow). The arrows and their background are smoother in HEVC, AV1, and

BPG than in CARP, but the reconstructed objects by CARP seem closer to the530

original pattern.

5. Discussion

CARP uses a principled Bayesian hierarchical model to learn a data-adaptive

permutation on the image space, which allows effective wavelet transforms on

the image/video, achieving in-situ compression along with self-tuning and pro-535

gressive transmission. We conduct extensive experiments and show that CARP

compares favorably to a wide range of popular image/video compression meth-

ods for a variety of image types.

CARP is computationally efficient in that it scales linearly with the number

of pixels of an image. Taking the 2D still image database as an example, the540

average encoding time under our implementation of CARP, without any paral-

lel computing, is around 3.17 second/image, compared to 0.82 second/image for

JPEG, 0.40 second/image for JPEG2000, and 88.75 second/image for E2E-DL;

the average decoding time for CARP is around 0.91 second/image, compared

to 2.30 second/image for JPEG, 0.03 second/image for JPEG2000, and 3.62545

second/image for E2E-DL, tested on a Macbook Pro with 2.2 GHz Intel Core i7

processor. The computing time of CARP can be further reduced with more opti-

mized implementation. In particular, one main computational task in CARP is

to compute the marginal likelihood of the wavelet regression model on each node

in the partition tree, which can be parallelized over the nodes in the partition550

tree.
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(c) PSNR ratio: JPEG/CARP (d) MS-SSIM ratio: JPEG/CARP
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(e) PSNR ratio: JPEG2000/CARP (f) MS-SSIM ratio: JPEG2000/CARP
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(g) PSNR ratio: MPEG-4/CARP (h) MS-SSIM ratio: MPEG-4/CARP

0 50 100 150 200 250 300
Compression Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

PSNR
 Ratio

0 50 100 150 200 250 300
Compression Ratio

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

MS-S
SIM R

atio

(i) PSNR ratio: BPG/CARP (j) MS-SSIM ratio: BPG/CARP

0 100 200 300
Compression Ratio

0.6

0.7

0.8

0.9

1

1.1

PSNR
 Ratio

0 50 100 150 200 250 300
Compression Ratio

0.92

0.94

0.96

0.98

1

MS-S
SIM 

Ratio

(k) PSNR ratio: HEVC/CARP (l) MS-SSIM ratio: HEVC/CARP
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Figure 8: Surveillance videos: PSNR curves and MS-SSIM curves of CARP

for 180 videos in (a) and (b); PSNR ratio curve and MS-SSIM ratio curves of

JPEG, JPEG200, MPEG-4, BPG, HEVC and AVI relative to CARP in (c)–(n),

respectively.
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Figure 9: Selected frame of reconstructed surveillance videos by five methods

when compression ratio is set to 30. Left to right: Original frame, CARP, AV1,

HEVC, BPG, MPEG-4. See the Supplementary Material (Figure S6) for the

reconstruction by JPEG2000, JPEG, and AVI.

There is a limitation associated with the implementation of our CARP ap-

proach. It imposes a very strict requirement on the input size, necessitating

image preprocessing by resizing each dimension to 2n if they do not already

meet this specification. There are also several other interesting future direc-555

tions building on our CARP approach. First, CARP complements a wide range

of encoding/decoding methods for 1D vectors. Instead of Huffman coding, we

can use other entropy encoding methods such as arithmetic coding or adap-

tive methods on 1D vectors to further improve the compression ratio. Second,

it is possible to adopt a different point estimate within the CARP framework560

for improved compression. In particular, one may consider another posterior

summary method that leads to reconstruction beyond MAP. Finally, for RGB

images, although CARP is able to treat the channels together as a 3D image,

there is room to further improve this strategy. For example, we can learn the

partition based on one channel and share it with other channels since the image565

patterns in the three channels may be similar to each other.

CARP provides a flexible framework to enable application-specific adap-

tation. One example is to achieve low latency in real-time streaming video
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compression. In particular, one may utilize progressive transmission enabled by

CARP to gradually improve the image quality as data bits are incrementally570

transmitted, or simply process videos by smaller segments, where the buffering

is reduced as little temporary storage will be taken by the uncompressed or com-

pressed video data. It is also interesting to develop an online version of CARP

to transmit the tree structure of each frame or each sub-video dynamically to

improve latency, but one needs to properly account for possible frame-to-frame575

inconsistency and error propagation.

Another example is visual enhancement in compressed images. The visual

comparison in Figure 5 shows sharp boundaries at high compression ratios as

the tree-based multi-scale representation in CARP uses a node for a sub-block

of the image, and blockwise shrinkage is adopted via pruning. While this fea-580

ture is key to preserving local details compared to other approaches, the most

desirable balance between contrast and smoothness may vary in different appli-

cations. If desired in certain applications, there are several strategies to mitigate

the blockiness. For example, one may vary the prior pruning probabilities to

achieve a different level of smoothing in the visualization. Alternatively, we can585

add post-processing modules via intensity smoothing to reduce the contrast of

adjacent pixels. In addition, the cycle spinning technique has been used to en-

hance visualization of multi-scale methods in image/video reconstruction, and

an adapted strategy may be considered for compression by focusing on finer

scales of the image/video to strike a balance between reconstruction quality590

and model parsimony.

References

[1] G. K. Wallace, The JPEG still picture compression standard, IEEE Trans-

actions on Consumer Electronics 38 (1) (1992) xviii–xxxiv.

[2] A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG 2000 still image595

compression standard, IEEE Signal Processing Magazine 18 (5) (2001) 36–

58.

29



[3] F. Bellard, BPG image format, http://bellard.org/bpg/ (accessed:

2018-04-21).

[4] H. Liu, T. Chen, Q. Shen, T. Yue, Z. Ma, Deep image compression via600

end-to-end learning, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, 2018, pp. 2575–2578.
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