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Abstract

Fast and effective image compression for multi-dimensional images has become
increasingly important for efficient storage and transfer of massive amounts
of high-resolution images and videos. In this paper, we present an efficient
in-situ method for multi-dimensional image and video compression called Com-
pression via Adaptive Recursive Partitioning (CARP). CARP uses an optimal
permutation of the image pixels inferred from a Bayesian probabilistic model on
recursive partitions of the image to reduce its effective dimensionality, achiev-
ing a parsimonious representation that preserves information. Furthermore, it
adopts a multi-layer Bayesian hierarchical model to achieve in-situ compression
along with self-tuning and regularization, with just one single parameter to be
specified by the user to achieve the desired compression rate. The properties
of our proposed method include high reconstruction quality at a wide range
of compression rates while preserving key local details, applicability to a vari-
ety of different image/video types and of different dimensions, computational
scalability, progressive transmission and ease of tuning. Extensive numerical ex-
periments using a variety of datasets including 2D still images, real-life YouTube
videos, and surveillance videos show that CARP compares favorably to—and
often uniformly outperforms—a wide range of popular image/video compression

approaches, including JPEG, JPEG2000, AVI, BPG, MPEG4, HEVC, AV1, and
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three neural network-based methods.
Keywords: Image compression, video compression, Bayesian probabilistic

model, in-situ compression

1. Introduction

Image compression is the key to efficient storage and transfer of the vast
amount of high-resolution images and videos that are routinely collected in
a variety of applications. Efficient compression relies on parsimonious repre-
sentations of images that preserve important spatial and contextual features.
Standards such as JPEG [1] and JPEG2000 [2] utilize fixed, deterministic lin-
ear function transforms, such as wavelets followed by optimized encoding under
such transforms. BPG [3], short for Better Portable Graphics, is based on the
intra-frame encoding of the High Efficiency Video Coding (HEVC) video com-
pression standard and has also been widely used in image compression as an
alternative to JPEG in some aspects. These approaches give excellent stabil-
ity and scalability in practical implementation, and require little training and
tuning. However, they lack adaptability to image-specific characteristics, conse-
quently resulting in a suboptimal level of compression efficiency. The more re-
cent convolutional neural network (CNN) based approaches [4, 5, 6] utilize much
more flexible, nonlinear transformations of the original image. This additional
flexibility often leads to improved compression efficiency. On the other hand,
this also results in a considerably heightened demand for intensive training and
meticulous method refinement. Driven by the identified limitations of existing
methodologies, the primary objective of this paper is to devise a compression
technique capable of alleviating the inherent constraints posed by deterministic
transforms. Our aim is to achieve cutting-edge performance without the neces-
sity for separate training procedures, thereby optimizing both computational
and compression efficiency.

The primary contribution of this paper lies in the introduction of a Bayesian

probabilistic modeling approach. This approach incorporates adaptivity to im-
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age features within the framework of wavelet-based image processing while pre-
serving computational scalability and ease of tuning. Instead of employing fixed
wavelet transforms, we consider the transform as an unobservable element of in-
terest. We achieve this by imposing a Bayesian prior over the space of such trans-
forms, generated through random recursive partitioning on the image. Conse-
quently, a compressed image can be generated based on the inferred transform,
tailored to the specific features of the image in question. Furthermore, this com-
putational process remains as efficient as traditional wavelet-based methods,
exhibiting linear scaling in relation to the image’s size. Aside from achieving
excellent compression efficiency (to be demonstrated in our numerical experi-
ments), our method, called Compression via Adaptive Recursive Partitioning
(CARP), enables simultaneous transform learning and compression through ob-
taining the joint posterior distributions of the transform and intensities of the
images, allowing information borrowing between these two steps, which is in
contrast to classical methods such as JPEG2000. CARP is model-based and
interpretable. Building on hierarchical Bayesian models, CARP outputs the
maximum a posteriori (MAP) partition tree-induced transform, which repre-
sents a learned map to vectorize the image.

CARP enjoys three additional advantages. First, CARP is a general-purpose
compression method that compresses m-dimensional images in a unified fash-
ion for m = 2,3,4, etc., as opposed to specializing on one dimension (such as
2D or 3D) in most of the existing literature, making it readily applicable to a
variety of image/video types. Second, it does not require a separate training
stage on external data and involves minimal tuning. The Bayesian hierarchical
modeling strategy uses hyperpriors on the parameters to allow automatic tun-
ing on those parameters, leaving only one free parameter for the user to specify,
which corresponds directly to the desired compression rate of the image. This
makes CARP very easy to use, without requiring expert knowledge of the un-
derlying method. Third, it allows progressive transmission to gradually improve
the image quality as data bits are incrementally transmitted, which resembles

the progressive principle in JPEG2000 [7]. In particular, the wavelet coefficients
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can be transmitted from coarse to fine scales in the decoding and reconstruction
process to allow reconstruction of images at incremental resolutions. For exam-
ple, Figure 1 demonstrates that the reconstructed building image is gradually

improved when more data bits are transmitted.

Figure 1: The reconstructed image is gradually improved from left to right when
more data bits are transmitted (left to right: 300, 3000, 30000, 40000, 50000

bits). The original image is in Figure 5.

This paper is an extended version of our previous work [8]; we have added
technical descriptions for our probability model and inference strategy in Sec-
tions 3.4 and 3.5, improved the method by allowing flexible encoding/decoding
algorithm options that adapt to the resolution of target images, elaborated on
properties of CARP such as progressive transmission, substantially expanded
our numerical experiments by both including a new color image database and
several other competing approaches, including AVI, BPG, HEVC, AV1 and an-
other two deep learning-based methods in Section 4, and discussed a range of
practical issues and options to adapt CARP in Section 5. Of particular note
is that the improved CARP exhibits noticeable performance gain over our ini-
tial implementation in [8] under the metric of peak signal-to-noise ratio for
low-resolution images/videos (see Figure S4 in the Supplementary Material).

The organization of the paper is as follows. Section 2 surveys related work
in image and video compression. In Section 3, we present the proposed CARP
method, including probabilistic image representation using a hierarchical Bayesian
framework, posterior inference, and details in implementing the method. Sec-
tion 4 reports the results from extensive experiments on image and video com-

pression. Section 5 contains a discussion. The code for average performance and
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implementing CARP is available on GitHub: https://github.com/xylimeng/
CARP. Supplementary Materials include additional visualization for experiments

in Section 4.

2. Related work

For 2D images, two of the most well-known compression algorithms are
JPEG [1] and its successor JPEG2000 [2]. The JPEG standard uses a dis-
crete cosine transform (DCT) on each 8 by 8 small block of pixels. A quan-
tization table is applied, and Huffman encoding is used on DCT blocks for
compression. Compared to the JPEG standard, JPEG2000 uses a multi-scale
orthogonal wavelet decomposition with arithmetic coding. In particular, the dis-
crete wavelet transform (DWT) decomposes images into their resolution and fre-
quency contents. The DWT can be performed with a non-reversible Daubechies
(9,7) taps filter, which provides higher, but lossy, compression. In addition to
DWT, another feature for JPEG2000 is quantization. JPEG2000 quantizer fol-
lows an embedded dead-zone scalar approach. The quantizer step size used to
scale the coefficients is independently selected for each wavelet sub-band.

However, both JPEG and JPEG2000 are suboptimal for image compression
[9] in part due to the non-adaptive image transformation and a separate opti-
mization on codecs. BPG [3] is often advantageous over JPEG and JPEG2000
in achieving better compression ratios for the same reconstruction quality, and
it supports up to 14 bits per color channel instead of up to 8 bits as in JPEG.

Besides JPEG, JPEG2000 and BPG, there is a growing literature on devel-
oping deep learning-based methods [4, 5, 10] for image compression. Among
these methods, end-to-end deep learning-based approaches are particularly ap-
pealing, which go directly from the input to the desired output with optimized
codecs [5]. For example, a pre-trained model over a database of training images
was proposed in [5] with all the required components for end-to-end implemen-
tation, including a nonlinear analysis transformation, a uniform quantizer, and

a nonlinear synthesis transformation. On this basis, two pre-trained models are
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developed (Sadam and GDN) in the context of nonlinear transform coding with
artificial neural networks [10].

Videos have a different structure than 2D images due to the extra temporal
dimension. Although a video can be compressed frame by frame by some ex-
isting 2D image compression methods (e.g., JPEG, JPEG2000, and BPG), the
critical temporal redundancy is undesirably ignored in this approach. A classical
video compression format is AVI (Audio Video Interleave), which was created
by Microsoft in 1992 and becomes a commonly used video format. AVI is inter-
net compatible but generally suffers from low compression efficiency by current
standards. Most current video compression algorithms in Moving Picture Ex-
perts Group (MPEG) [11] exploit both spatial and temporal redundancy and
deal with the issue of heavy compression ratio. For example, MPEG-4 absorbs
many features of different standards using both DCT and motion compensation
[12] techniques to achieve this goal. In addition, to reach a higher compression
ratio, MPEG-4 only stores and encodes the inter-frame changes instead of the
entire original frame. However, the redundancy detection strategy in MPEG-4
is localized to capturing the difference of adjacent frames, and thus might not
be globally optimal, leading to less efficient compression. HEVC [13], standing
for High Efficiency Video Compression, is an extension of MPEG-4 designed
by an intra-frame coding strategy of applying intra-picture prediction and loop
filters to optimally use parallel processing and improve the quality of the recon-
struction frames. AV1 (AOMedia Video 1) is a more recent codec designed to
compete with HEVC on the open platform.

The idea of transform-induced permutations of the pixels employed in CARP
has been exploited previously in the literature. In particular, [14] adopts peak
transform to obtain spatial permutation. [15] uses random recursive partition-
ing to induce a probability distribution on the permutations of image pixels,
leading to an effective algorithm for image denoising using posterior Bayesian
model averaging. In this work we use random recursive partitioning to induce
a probability model on the wavelet transforms, but instead focus on learning a

data-adaptive transform to represent the image, thereby achieving efficient com-
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pression. The 1D vector returned by Bayesian multi-scale learning is passed to
existing encoding methods to generate compressed representation, followed by
the corresponding decoder. The literature [16] provides a rich menu of possibil-

ities for encoding/decoding methods.

3. Method

8.1. CARP: The framework

CARP is a framework for image compression via adaptive recursive parti-
tioning. It uses a data-adaptive permutation of the image pixels inferred from a
Bayesian probabilistic model to reduce the dimensionality of an m-dimensional
image, thereby achieving a parsimonious representation that effectively pre-
serves information. More specifically, CARP utilizes a prior distribution on
the space of permutations induced by random recursive partitioning along a
bifurcating tree [15]. This random recursive partitioning incorporates latent
pruning variables to probabilistically terminate the partitioning within the par-
tition blocks where the pixel intensities are similar enough. The mazimum a
posteriori (MAP) estimate, i.e., the posterior mode of the posterior distribution
on the recursive partitioning, produces a representative permutation (or vector-
ization) of the image pixels that can be readily fed into encoding methods to
generate compressed representation, followed by the corresponding decoder to
reconstruct the compressed image.

Figure 2 presents the architecture of CARP, where the two black boxes
pinpoint the key techniques used in CARP. In this work, we use the 1D discrete
wavelet transform (DWT) and either Arithmetic or Huffman encoding algorithm
as the encoder, and use the inverse DWI and corresponding decoding algorithm
as the decoder.

CARP takes an m-dimensional image y = {y(x) : * € Q} observed on an

m-dimensional rectangular “pixel” space 2 of the form

Q=1[0,n1 —1] x [0,ng — 1] X -+ X [0, 7, — 1],
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Figure 2: The workflow of CARP.

where the notation [a,b] is the set {a,a + 1,...,b} for two integers a and b
with @ < b. This means CARP can be readily applied to images of various
dimensions including but not limited to 2D still images and 3D videos. Without
loss of generality, we assume n; = 2”7¢ in the ith dimension for i = 1,2,...,m;
an image of general size can be upsized to such dimensions through padding.
The total number of pixels is n = 27, where J = 31" | J,.

The effectiveness of the compression highly depends on the representation
power of the transform in use, especially on its adaptivity to local and spatial
features in an image. In CARP, this is achieved by a Bayesian probabilistic
modeling strategy, in which adaptivity to image features is incorporated into a
wavelet transform-based multi-scale image processing framework. In particular,
we use random recursive partitioning on 2 to induce models on wavelet trans-
forms that incorporate such adaptivity. In the following section, we describe
some basic concepts related to recursive dyadic partitioning, which will form

the building blocks for the model used in CARP.

3.2. Recursive dyadic partitioning with pruning
While multi-scale wavelet transforms enjoy excellent scalability, a determin-
istic transform may fail to efficiently adapt to the rich spatial and local features

present in a multi-dimensional image. We enrich the representation power and
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effectiveness of wavelets by a convolution between a classic 1D wavelet transform
and a class of permutation of the index space 2 of the pixels.

The space consisting of all permutations of pixels in €2 is massive. Consid-
ering all n! permutations of pixels in € is not only computationally prohibitive
but wasteful as well because the vast majority of permutations ignore the spatial
features in the image. In CARP, we only consider the class of permutations in-
duced by a recursive dyadic partitioning (RDP) on €2, which includes a rich class
of permutations for effective representation of the image while allowing scalable
learning of the optimal permutation among this class—with computational com-
plexity O(n). An RDP on Q denoted by T as it is essentially a bifurcating tree,
consists of a sequence of nested partitions on €2, i.e., T = U.{ZOTj with the
partition 77 being the set of all blocks at level j for j = 0,...,J. Specifically,
we start with Agg = Q and 7° = {Ago}. For each j =0,...,J — 1, T/ is
obtained by dividing each set in 77 into two halves along a divisible dimen-
sion, i.e., Ajr = Ajt1 08U Ajy1 0641 for k=0,1,..., 27 — 1. The last level T/
contains all the single elements in {2, which are referred to as atomic nodes.

From now on we shall refer to the partition blocks as “nodes” in the partition
tree 7. Two children nodes are formed by dividing a parent node into two halves
in one of its dimensions, and 7 consists of the leaf nodes, each of which contains
a single element in (2. Note that each RDP induces a unique permutation of €2,
with the order of the pixels given by the binary coding sequence tracking the
left /right children that each pixel belongs to along the corresponding branch in
the tree.

Parsimonious representation is crucial for image compression. We improve
upon RDPs in this regard by incorporating early stopping to prune the partition
tree induced by an RDP. Indeed, a complete RDP T might not be necessary
to represent an image when there are homogeneous nodes with almost constant
intensities therein. In CARP, we prune T by an early stopping to help effectively
compress similar blocks in an image. Note that all descendants of a pruned node
are pruned by design, and the intensity of each pixel in the corresponding block

will be set to the average value of this block.
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Each RDP turns the pixel space 2 into a vector of the same length as the
number of pixels, decoupling the image intensity to a 1D vector and spatial
structure described by a partition tree with pruning. We next describe genera-

tive models for RDPs and the image given RDPs.

3.83. Generative modeling of RDPs

We use a hierarchical Bayesian model to adaptively learn a representative
RDP through finding the posterior mode. To this end, we adopt a generative
distribution called “random RDP” (RRDP) proposed in [15] as the prior on
the RDP. While RRDP has been successfully applied to various tasks such as
testing of conditional association and image reconstruction, there is no work
to consider using RRDP for compression. For any node A in 7, A denotes a
mapping from A to a hyperparameter A(A) that specifies the probability to
divide A in each of its divisible dimensions. RRDP specifies the probability
of partitioning A in its ith dimension for i = 1,...,m using a vector-valued
hyperparameter A(A) = (A (A4),..., A\n(4)). By default, we set the value of A
such that all divisible dimensions of each A have equal prior probability to be

divided.

3.4. Data generating model given RDPs: Markov-tree wavelet regression

To achieve a parsimonious image representation, the next component of our
model aims at pruning the tree in nodes where the pixel intensities are similar
enough. To this end, we use wavelet shrinkage. In particular, given an RDP,
we adopt a wavelet regression model as the data generative mechanism for the
image. There is a rich literature on how to effectively carry out shrinkage on
the wavelet coeflicients [17, 18], and we shall use a Bayesian wavelet regression
model with a Markov tree prior on the wavelet coefficients to achieve adaptive
shrinkage [15]. An important benefit of adopting a Bayesian model for the image
given the RDP is that we can now combine it with our Bayesian model on the

RDPs to form a coherent hierarchical model, allowing inference to be carried out

10
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in a principled manner (through maximizing the posterior distribution) without

ad hoc strategies to “stitching” together separate algorithmic pieces.
Specifically, conditional on an RDP tree 7 and following an application of

Haar wavelet transform to the vectorized image under 7, the Bayesian wavelet

regression model is as follows

Wik = Zj kT Ujk (1)
ind (50() if Sj,k =0or?2

Zjg | Sjk ™~ ) o _
Normal(0, 75 0%) if Sjp=1

(2)

for j =0,1,...,J —land k=0,1,...,29 — 1. Here wjx, 2;k, ujx are the kth
wavelet coeflicient, signal, and “noise” at the jth scale in the wavelet domain,
respectively. The ternary latent state variable S; ;, indicates whether z; j, is from
do(+) (a point mass at 0) if Sj; = 0 or 2, or a normal distribution with mean 0
and variance 7']202 if S = 1.

To achieve adaptive pruning, we model S; j, jointly by a Markov tree model
[19] such that if S;_; |/2) = 2 then S, = 2 with probability 1. Thus S} = 2 is
an “absorbing state” representing the pruning of a branch of 7. If S;_; |1 /2) # 2
then S, = (0, 1,2) with probabilities (p(A;x){1—Ao(A; %)}, {1—p(A; ) H1—
Mo(Ajk)}, Mo(Ajk)), where p(A) is the so-called spike probability in Bayesian
spike-and-slab models, and Ag(A) is the probability of node A to be pruned. We
assume u; ~ N(0,0?) independently across j and k.

It is worth noting that in the context of compressing noiseless images, the
“noise” term wu; quantifies the extent of local variations in pixel intensities to
which one can ignore to produce a compressed image, and therefore its standard
deviation o becomes a parameter for setting how aggressively (in terms of the
compression ratio) one wants to compress the image through pruning the tree.
This tuning parameter o will be in a monotone relation to the final compression
rate of the image, and thus can be set by the user to achieve the desired rate of

compression.

11
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8.5. Posterior inference and image representation

For image compression, we need to find a single representative RDP that
most effectively represents features in the image. One strategy is to draw a
random sample of 7 from its posterior distribution, and use the induced per-
mutation for compression. However, a more appealing approach is to resort to
a particular non-random representative sample. To this end, we maximize the
posterior probability of 7 based on its marginal posterior distribution. In other
words, we aim to find the mazimum a posteriori (MAP) estimate for 7, which
we denote as 7.

We first need to find the marginal posterior distribution for 7. A remarkable
observation is that under the above model, the posterior of 7 is conjugate—it
is still an RRDP distribution with pruning, but with updated posterior selec-
tion probabilities A and updated pruning probabilities Ao, where we use tilde
to indicate the posterior updated values for the parameters A and \g. Such
conjugacy can be obtained in a general Markov tree setting as long as the joint
distribution of (w;x,2;%) given S;\ is independent for all j and k, which has
been studied in Theorem 2 of [15]. We next derive such conjugacy specifically
for our model in (1) and provide recipes for inference on 7.

Let A be the set collecting the nodes generated by all possible RDPs. Let
U(A) be the marginal likelihood of node A for A € A. Hereafter by the marginal
likelihood “of a node” we refer to the marginal likelihood from all data with
locations in A if the parent node of A is not pruned (i.e., integrating out those
T’s that contain the node A with respect to their prior distribution). We start
with introducing a few quantities associated with each node A that will be
used for describing the posterior. Let D(A) be the set collecting all divisible
dimensions of A, y(A) = > _ . 4 y(x) the sum of observations with locations in
A, and SST(A) the corrected sum of squares of all data with locations in A4, i.e.,
SST(A) = >, ca(y(x)—y(A)/|A])? with |A| being the number of locations in A.
For each d € D(A) such that A is divided in its dth dimension, let (Al(d)7 Agd)) be
the pair of left and right children nodes, and wgy(A) = {y(Al(d)) —y(Agd))}/\/m

be the Haar wavelet coefficient on A.

12
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The marginal likelihood ¥(A) can be obtained in a recursive manner with
complexity O(n). To see this, first decompose ¥(A) according to the |[D(A)|+1
possible actions on A:

U(A) = AWo(A) + (1 = Ao) Z AaVa(A), (3)

deD(A)
where U,;(A) is the marginal likelihood of A if A is divided in its dth dimension
given A is not pruned, and ¥y(A) is the marginal likelihood of A if A is pruned.

When d = 0, all wavelet coefficients in A and its descendants have mean 0, and

Wo(4) = (2m0%) "5 exp {‘ SSQTJ(zA) } ' (4)

When d € D(A), U4(A) is independently decomposed into the marginal likeli-

thus

hood of wy(A) that is spelled out in (1) and the marginal likelihoods of its two

children nodes, that is,

W4(A) ={p(A)N (wa(A); 0, (1 + 72)0%) + (1 — p(A))
N(wa(A); 0,02) (A )0 (AD), (5)

where N(a;b,c?) is the density function of Normal(b,c?) evaluated at a. A
bottom-up algorithm is then readily applicable to obtain all ¥(A)’s by combin-
ing (3), (4), and (5) and letting ¥(A) = 1 for all atomic nodes A.

Once U (A) is calculated, a direct application of Bayes’ theorem gives S\O(A) =
Ao(A)Wo(A)/W(A) and Ag(A) = Aa(A)Wa(A) /{3 4epa) Ma(A)Wa(A)}, which
respectively are the posterior probability of pruning A and the posterior proba-
bility for A to be divided in dimension d if A is not pruned. These two mappings
completely describe the marginal posterior distribution of 7. We then compute
the MAP tree T~ by standard bottom-up dynamic programming as follows, which

again incurs complexity O(n). Define a recursive mapping « : A — [0, 1]:

L,
r(A) = . -
max{Ag(A4), \m3*(A4)}, otherwise,

if A is atomic,

where

A5 (4) = (1= Ao(4)) max{Aa(A)r (A (AL}

13
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Once the mapping « has been computed on all A € A, 7 can be generated in-
ductively as follows. Note that 7 consists of partition index sets {A; : 0 < k <
27,0 < j < J} and a pruning indicator vector associated with each Ajk For j =
0, Ao,o = ). Suppose T have been generated for all levels no more than j. For
each /Alj,k that is not pruned, define cij’k = argmaxd215\d(A)m(Al(d))n(Agd)) with
A= Aj . Then, block Aj is pruned if Ag(A) > (1—Xg(A))Aa(A)k(AD)k(AM)
with d = djk and A = Ajyk; otherwise, the partition sets in level j + 1
are Aj+1’2k; = Al(dj’k) and AjJrl}QkJr] = Agj"“). Recall that all descendants
of a pruned node are pruned by design; hence, for each /Alj,k that is pruned,
we randomly select a direction dy € D(/Alj,k) and set /Alj+172k = Al(do) and
Aj+172k+1 = AidO). Note that the reconstructed image is invariant to this ran-
dom choice as all pixels in the pruned block will be reconstructed as a common

constant.

3.6. Encoder/decoder and compressed structures

Given the permutation of the original image induced by ’f', under which the
order of each pixel is given by binary coding of the branch under 7 to which
each pixel belongs, we have a vectorization of the original image. Within a
pruned node, the ordering of the pixels is arbitrary. At this point, one has the
flexibility of choosing the favorite encoder and decoder for this vectorized image.
In addition, the encoding part in Figure 2 includes a symbol encoder, which is
used to reduce the coding redundancy. In particular, we implement two encod-
ing/decoding algorithms in CARP depending on the image resolution to strike
a balance between compression efficiency and runtime. For target images with
high resolution, we adopt the Huffman encoding method based on the Huffman
table that is derived from the estimated probability or frequency of occurrence
for each possible value of the source symbol. The reduced symbols are stored as
the compressed representation. This Huffman table is also used in the decoder
part to perform the inverse operation of the symbol encoder. Arithmetic en-
coding can be used to further optimize the compression performance but may

require longer execution time [20]. As such, we implement Huffman coding for

14
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images with resolution 512 x 512 or higher and arithmetic coding otherwise.
We find this improves the performance of CARP for images/videos with low
resolution compared to our initial implementation in the conference version [8]
(see Figure S4 in the Supplementary Material). Our code allows users to choose
between these two encoding/decoding methods for images with any resolution.

In our following numerical experiments, we use the 1D Haar DWT and a
symbol encoder as the encoder part while a symbol decoder and the inverse

DWT as the decoder part, respectively, due to their computational scalability.

3.7. Empirical Bayes for setting hyperparameters

We specify the two mappings p(-) and 7(-) as well as parameters 7; by repa-
rameterizing them using five hyperparameters («, 3, C, 79, 10): p(A)= min(1, C
27P7) for any node A at the jth level, 7; = 27 %7y, and n(A) = no for any
node A € A. We use an empirical Bayes strategy to set the hyperparameters
by maximizing the marginal likelihood ¥(Q2) over a grid.

We observe that specifying the hyperparameters at fixed values eliminates
the need for computing the maximum likelihood estimates without sacrificing
compression efficiency much. As such, our software allows both options. Under
either option, a user just needs to specify a single parameter o to obtain images

at desired compression ratios when applying CARP.

4. Experiments

In this section, we compare CARP with a wide range of popular compression
methods using a variety of benchmark databases. In particular, we use a 2D still
image dataset from the 2020 CLIC workshop and challenge http://challenge.
compression.cc/tasks, a YouTube video dataset from [21], and a surveillance
video dataset from [22]; see the Supplementary Material (Figure S1) for selected
examples of all the datasets.

CARP and its software implementation are readily applicable to all these
types of images, while the competitors may tailor to images of a particular di-

mension. We thus compare CARP with a different batch of methods depending
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on the image type. In this section, we opt for fixed hyperparameters for sim-
plicity. In particular, we use a« = 0.5,8 = 1,C = 0.05,79 = 1/0, and 19 = 0.4.
For RGB images or videos, we compress each RGB channel separately when
implementing CARP to account for unique channel-specific structures and also

in view of its simplicity for implementation.

4.1. Average performance

Figure 3 summarizes the average performance on three image/video types
under the metric of peak signal-to-noise ratio (PSNR) and multi-scale structural
similarity (MS-SSIM), the latter being a widely used metric to assess perceived
image quality and measure the structural similarity between two images; in
all of our test data CARP compares favorably to a variety of competitors—
including JPEG, JPEG2000, AVI, End-to-End deep learning (E2E-DL), Sadam
deep learning (Sadam-DL), GDN deep learning (GDN-DL), BPG, MPEG4,
HEVC, AV1 under both PSNR and MS-SSIM, and appears to give the lead-
ing performance on average in most cases. We note that in Figure 3(a) and
3(b), the averages of metrics are calculated over a subset of 70 images from the
image dataset on which the methods being compared are able to achieve a wide
range of compression ratios. Also, we acknowledge that because we have used
three pre-trained deep learning models[5, 10], the performance of these methods
could be improved had the CNNs been trained on images that are particularly
suited for the 2D still image database. In any case, we note the robust perfor-
mance of CARP over all the tests and the fact that it does not require separate
pre-training on additional images.

Next we present more detailed numerical results that compare the image-
specific performance of the methods, which show that CARP can outperform
the competitors in nearly all of the individual images in some datasets we have

examined.

4.2. 2D still images
We compare CARP with JPEG, JPEG2000, BPG[3], and three pre-trained
deep learning methods including ‘E2E-DL’[5] and ‘Sadam-DL‘ and ‘GDN-DL!
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Figure 3: Performance summary of CARP and competitors in three databases

consisting of still images and videos at different resolutions. Each plot of the

first column presents the average of peak-signal-to-noise-ratio (PSNR) while

each plot of the second column presents the average of MS-SSIM at various

compression ratios.

[10]. Here we randomly select 100 images from the 2020 CLIC workshop and

challenge, which are resized to 512 x 512 to test each method. These 100 images

are provided in the GitHub repository.

To assess each method, we use the peak signal-to-noise ratio (PSNR) and

the multi-scale structural similarity index (MS-SSIM) of reconstructed images
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at various compression ratios, which is further supplemented by visual compar-
ison. Specifically, at various compression ratios, each 2D image is compressed
and reconstructed, then the PSNR and MS-SSIM are calculated using the re-
constructed image. Figure 3(a) shows CARP gives the best average PSNR
while Figure 3(b) shows CARP gives the best average MS-SSIM at all compres-
sion ratios. In Figure 4, the first row plots the PSNR (in (a)) and MS-SSIM
curves (in (b)) for CARP for all 100 images, while other rows present the PSNR
and MS-SSIM ratio curve between each alternative method and CARP for all
100 individual images—with values under 1 indicating CARP outperforms the
competitor. The performances of all MS-SSIM ratio curves are consistent with
those in PSNR ratio curves. CARP appears to outperform the six competi-
tors for nearly all individual images and at all compression ratios up to 300
at which we are able to apply the competitor, except on a handful of images
for JPEG2000 at very low compression ratios, Sadam-DL and GDN-DL at very
high compression ratios and a couple of images for BPG. For this database,
E2E-DL underperforms CARP substantially, but we acknowledge that part of
the substantial performance gap could be narrowed had the CNNs been trained
on images that are particularly suited for the specific database. Like JPEG and
JPEG2000, CARP does not require external pre-training. In addition, the user
does not need to specify any tuning parameter other than ¢, which is equivalent
to specifying the compression ratio.

The locally adaptive nature of CARP enhances its ability to preserve local
details in the images. As an illustration, we visualize reconstructions with a
particular focus on detailed features in an image using three selected images in
Figure 5. The region of interest is marked in the original image, and we present
zoom-in views of the region with a yellow and red block in the reconstructed
images from various methods at one specific compression ratio. Overall, CARP,
BPG, Sadam-DL, and GDN-DL clearly outperform the other three methods
(JPEG, JPEG2000, and E2E-DL). CARP tends to preserve substantially more
details in the reconstruction relative to other methods. We next take BGP as

an example, and similar observations can be made when compared to other
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methods. For the redbrick wall in the top of Figure 5, the reconstructed image
by CARP appears sharper and warmer than BPG; for the building in the middle
of Figure 5, the stairs in the yellow and red block by CARP are much clearer
than BPG, and a further zoom-in into the stairs shows that CARP preserves
more details; for the landscape image in the bottom of Figure 5, there are
more recognizable details in the mountain in sub-figure (b) but more blurry in
sub-figure (c).

These observations may be partially explained by the design of CARP. The
use of RDP in CARP cuts the image horizontally or vertically, which leads to
its superiority when the target image has repeated patterns along the horizontal
or vertical direction, e.g., the building in Img5 (the middle two rows of Figure
5). The pruning option in CARP increases the efficiency of image compression,
which helps detect the blocks in an image with similar intensities and efficiently
convert the tiles into pixel vectors, e.g., patches of the large dark bottom region

in Img9 (the last two rows of Figure 5).

4.8. YouTube video dataset

We use the YouTube dataset in [21], which consists of instructional videos
for five different tasks, including making a coffee, changing a car tire, perform-
ing cardiopulmonary resuscitation (CPR), jumping a car and re-potting a plant.
The dataset has 150 videos with an average length of about 4,000 frames (or 2
minutes). Here we randomly select 20 videos from each task totaling 100 videos.
Selected frames of the sampled videos are displayed in the Supplementary Mate-
rial (Figure S1 and S2). Note that these YouTube videos have a low resolution of
256 by 256, which favor the MPEG-4 standard as MPEG-4 is optimized at low
bit-rate video communications [23], and CARP gives competitive performance
building on Arithmetic coding.

Video image data is produced through the compilation of 2D static images,
which are the so-called “frames”, synchronized at a given frame rate. When
these frames are layered sequentially, the resulting video image transforms into a

3D representation, taking the time dimension into account. CARP is applicable
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for streaming data by taking the entire video as input, thus constituting a
genuine video compression method like MPEG-4. In addition to popular video
compression standards, we also consider using JPEG and JPEG2000 through a
frame-by-frame implementation, while CARP is directly applicable to 3D images
with no modification. For HEVC, we use the settings of x265 and P-frame.
For AV1, the reconstructed images do not allow direct access to the raw pixel
intensities without additional output conversion but it reports the corresponding

PSNR and SSIM (but not MS-SSIM) directly.
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Figure 4: 2D still images: PSNRs of CARP for 100 individual images in (a) and
MS-SSIM of CARP for 100 individual images in (b); PSNR ratio curves and
MS-SSIM ratio curves for JPEG, JPEG2000, E2E-DL, BPG, Sadam-DL and
GDN-DL relative to CARP in (c)- (n), respectively.
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Figure 5: Comparison of reconstructed images. The compression ratio is 45 for

Imgl (top), 66 for Img5 (middle), and 45 for Img9 (bottom).
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Figure 6 presents the PSNR and MS-SSIM ratio curves (alternative meth-
ods over CARP) at various compression ratios for all the 100 videos, as well
as the PSNR and MS-SSIM curves of CARP. CARP substantially outperforms
JPEG, JPEG2000, AVI, and BPG for nearly all individual videos at all com-
pression ratios. CARP gives larger PNSR than MPEG-4; for compression ratios
below 150, MPEG-4 and CARP perform similarly at a subset of the videos in
MS-SSIM; for compression ratios above 150, CARP increasingly outperforms
MPEG-4 at all videos. We note again that all the videos are at a low resolution
that substantially favors MPEG-4.

HEVC leads to larger PSNR than CARP on most videos when the compres-
sion ratio is larger than 10 as shown in Figure 6(k), while CARP outperforms
HEVC in MS-SSIM on almost all the individual videos as shown in Figure 6(1).
Overall, Figure 3 shows that CARP tends to be the leading approach on aver-
age under the MS-SSIM metric, and is among the best methods in PSNR where
it underperforms HEVC by a small margin in a subset of samples. See the
Supplementary Material for the performance comparison between CARP with
Huffman and CARP with Arithmetic encoder/decoder (Figure S4).

For visual comparison, we select a video from the “replotting a plant” task
and compare one frame of the reconstructed video to that of the original one
in Figure 7. The zoomed region shown in the bottom row shows that the
reconstructed frame via CARP captures most details in the original frame (e.g.,
the words on the label, particularly the letters in front of “V”, and the white
dots below the label). The reconstructed image by AV1 is clearer and smoother

than other images, but it relatively deviates more from the original image.

4.4. Surveillance video dataset

We next investigate the performance of CARP on higher-resolution videos
through a surveillance video dataset [22], where each video has a resolution of

1024 by 1024. We randomly select one surveillance video for a parking lot.
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(c) PSNR ratio: JPEG/CARP (d) MS-SSIM ratio: JPEG/CARP
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(i) PSNR ratio: BPG/CARP
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Figure 6: YouTube videos: PSNR curves and MS-SSIM curves of CARP for
100 videos in (a) and (b); PSNR ratio curve and MS-SSIM ratio curves of
JPEG, JPEG200, MPEG-4, BPG, HEVC and AVI relative to CARP in (c)—(n),

respectively.
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Figure 7: Selected frame of reconstructed YouTube videos by CARP, HEVC,
AV1, MPEG-4, and BPG at compression ratio 30. See the Supplementary
Material for the reconstruction by JPEG2000, JPEG, and AVI (Figure S5), and

reconstructed continuous frames by CARP (Figure S3).

We divide the entire video into 180 segments of equal length to help assess
the longitudinal variability of compression performances of each method and
reduce the computational time of each method. Figure 8 plots the PSNR and
MS-SSIM ratio curves (alternative method over CARP) among all the 180 videos
as well as the PSNR and MS-SSIM curve for CARP at various compression
ratios. We can see that CARP gives the best PSNRs and MS-SSIMs for almost
all videos at all compression ratios (up to 300), with only one exception in
Figure 8(k) where CARP gives slightly smaller PSNR than HEVC on one video
when the compression ratio is around 250-300. Overall, CARP gives better
average PSNR and MS-SSIM than all other methods at all compression ratios
from 0 to 300, as shown in Figure 3(e) and Figure 3(f). Comparing the two video
datasets (second and third rows in Figure 3) suggests that although its excellent
performance is robust across datasets, CARP appears particularly well suited
for the surveillance video dataset, which is expected as the relatively similar
image patterns and backgrounds across frames are more compressible through
partitions and pruning.

For visual comparison, we randomly select one video and compare one frame
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of reconstructed videos. Figure 9 shows the original frame and reconstructed
frames by CARP, AV1, HEVC, BPG, and MPEG-4, when the compression ratio
is set to 30. The zoomed region is the shadow area at the top-right corner in
the original frame, shown in the bottom row. In comparison, the reconstructed
frame via CARP captures most details of the region in the original frame, while
the region reconstructed via MPEG-4 is more blurry (e.g., the edge of the yellow
arrow). The arrows and their background are smoother in HEVC, AV1, and
BPG than in CARP, but the reconstructed objects by CARP seem closer to the

original pattern.

5. Discussion

CARP uses a principled Bayesian hierarchical model to learn a data-adaptive
permutation on the image space, which allows effective wavelet transforms on
the image/video, achieving in-situ compression along with self-tuning and pro-
gressive transmission. We conduct extensive experiments and show that CARP
compares favorably to a wide range of popular image/video compression meth-
ods for a variety of image types.

CARP is computationally efficient in that it scales linearly with the number
of pixels of an image. Taking the 2D still image database as an example, the
average encoding time under our implementation of CARP, without any paral-
lel computing, is around 3.17 second /image, compared to 0.82 second /image for
JPEG, 0.40 second/image for JPEG2000, and 88.75 second /image for E2E-DL;
the average decoding time for CARP is around 0.91 second/image, compared
to 2.30 second/image for JPEG, 0.03 second/image for JPEG2000, and 3.62
second/image for E2E-DL, tested on a Macbook Pro with 2.2 GHz Intel Core i7
processor. The computing time of CARP can be further reduced with more opti-
mized implementation. In particular, one main computational task in CARP is
to compute the marginal likelihood of the wavelet regression model on each node
in the partition tree, which can be parallelized over the nodes in the partition

tree.
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Figure 8: Surveillance videos: PSNR curves and MS-SSIM curves of CARP
for 180 videos in (a) and (b); PSNR ratio curve and MS-SSIM ratio curves of
JPEG, JPEG200, MPEG-4, BPG, HEVC and AVI relative to CARP in (c¢)—(n),

respectively.
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Figure 9: Selected frame of reconstructed surveillance videos by five methods
when compression ratio is set to 30. Left to right: Original frame, CARP, AV1,
HEVC, BPG, MPEG-4. See the Supplementary Material (Figure S6) for the
reconstruction by JPEG2000, JPEG, and AVI.

There is a limitation associated with the implementation of our CARP ap-
proach. It imposes a very strict requirement on the input size, necessitating
image preprocessing by resizing each dimension to 2" if they do not already
meet this specification. There are also several other interesting future direc-
tions building on our CARP approach. First, CARP complements a wide range
of encoding/decoding methods for 1D vectors. Instead of Huffman coding, we
can use other entropy encoding methods such as arithmetic coding or adap-
tive methods on 1D vectors to further improve the compression ratio. Second,
it is possible to adopt a different point estimate within the CARP framework
for improved compression. In particular, one may consider another posterior
summary method that leads to reconstruction beyond MAP. Finally, for RGB
images, although CARP is able to treat the channels together as a 3D image,
there is room to further improve this strategy. For example, we can learn the
partition based on one channel and share it with other channels since the image
patterns in the three channels may be similar to each other.

CARP provides a flexible framework to enable application-specific adap-

tation. One example is to achieve low latency in real-time streaming video
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compression. In particular, one may utilize progressive transmission enabled by
CARP to gradually improve the image quality as data bits are incrementally
transmitted, or simply process videos by smaller segments, where the buffering
is reduced as little temporary storage will be taken by the uncompressed or com-
pressed video data. It is also interesting to develop an online version of CARP
to transmit the tree structure of each frame or each sub-video dynamically to
improve latency, but one needs to properly account for possible frame-to-frame
inconsistency and error propagation.

Another example is visual enhancement in compressed images. The visual
comparison in Figure 5 shows sharp boundaries at high compression ratios as
the tree-based multi-scale representation in CARP uses a node for a sub-block
of the image, and blockwise shrinkage is adopted via pruning. While this fea-
ture is key to preserving local details compared to other approaches, the most
desirable balance between contrast and smoothness may vary in different appli-
cations. If desired in certain applications, there are several strategies to mitigate
the blockiness. For example, one may vary the prior pruning probabilities to
achieve a different level of smoothing in the visualization. Alternatively, we can
add post-processing modules via intensity smoothing to reduce the contrast of
adjacent pixels. In addition, the cycle spinning technique has been used to en-
hance visualization of multi-scale methods in image/video reconstruction, and
an adapted strategy may be considered for compression by focusing on finer
scales of the image/video to strike a balance between reconstruction quality

and model parsimony.
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