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Advanced Air Mobility (AAM) using electrical vertical take-o↵ and landing (eVTOL) aircraft is an emerging way of air transportation

within metropolitan areas. A key challenge for the success of AAM is how to manage large-scale flight operations with safety

guarantees in high-density, dynamic, and uncertain airspace environments in real time. To address these challenges, we introduce the

concept of a data-driven probabilistic geofence, which can guarantee that the probability of potential conflicts between eVTOL

aircraft is bounded under data-driven uncertainties. To evaluate the probabilistic geofences online, Kernel Density Estimation (KDE)

based on Fast Fourier Transform (FFT) is customized to model data-driven uncertainties. Based on the FFT-KDE values from

data-driven uncertainties, we introduce an optimization framework of Integer Linear Programming (ILP) to find a parallelogram box

to approximate the data-driven probabilistic geofence. To overcome the computational burden of ILP, an e�cient heuristic algorithm

is further developed. Numerical results demonstrate the feasibility and e�ciency of the proposed algorithms.
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1. Introduction

1.1. Motivation and Related Work

Due to the swift expansion of the unmanned aircraft sys-
tem (UAS) industry, a dependable and e↵ective system is
required to manage the tra�c of unmanned aerial vehicles
(UAVs) and emerging new aircraft in the airspace.1–4 The
Advanced Air Mobility (AAM) system is designed for this
mission, which includes Urban Air Mobility (UAM) and
UAS tra�c management (UTM). Around the world, vari-
ous entities including industry, government, and academia
have explored concepts in AAM. Airbus, Boeing, Bell, Joby,
Archer, Lilium, and Aurora Flight Sciences are vying against
each other to develop and test their recently designed elec-
trical vertical take-o↵ and landing (eVTOL) aircraft, as
stated in.5

AAM, or UAM in specific, is expected to cater to a
substantial portion of urban transportation demand by in-
troducing numerous eVTOL aircraft in the limited urban
airspace.6,7 The environment in this airspace is highly un-
certain due to the presence of tall buildings, resulting in
inaccurate localization with disturbances such as strong
Global Positioning System (GPS)8 noise and high wind
disturbance around these structures. Therefore, ensuring
operation safety in real-time in high-density, dynamic, and
uncertain airspace environments is a crucial obstacle that
needs to be overcome for the success of UAM. Also, with

the authorization of numerous eVTOL aircraft to enter the
airspace, the airspace will become congested and surpass the
capacity of the existing air tra�c control system. To resolve
this challenge, capable low-altitude tra�c management is
necessary to manage AAM. The existence of geofences is
a key component of the tra�c management system, which
reserves airspace volumes as a feasible alternative to strictly
route-based reservations.9 The issue of an aircraft’s location
uncertainty or error is critical in geofencing to ensure safety.

Dynamic airspace geofencing algorithms are a recent
addition to AAM and UTM. Geofencing designs have two
equally crucial but di↵erent perspectives, namely local
and global. The classical guidance, navigation, and control
(GNC) approach is vehicle-centered and generates geofence
layering solely for the individual eVTOL that has full knowl-
edge of its control system. The aim of this perspective is
to control the eVTOL and ensure that it does not breach
the geofence boundaries (given expected trajectory tracing
errors).10 In this approach, each eVTOL monitors its real-
time state vector concerning geofence boundaries to detect
and react to possible breaches in the face of uncertainties
due to sensor errors and wind disturbances.11 Although
vehicle-centered geofencing research is important, it does
not account for the properties of the operating area airspace
or the ground-based environment. Geofencing has also been
studied from an airspace system perspective, where UTM
manages geofences to organize the airspace structure and en-
hance Situational Awareness (SA). In this viewpoint, UTM
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will not model individual eVTOL capabilities and uncer-
tainties in detail. Still, it can conservatively track eVTOL
travel through an approved geofence to issue impending
breach warnings to the eVTOL and actual boundary viola-
tions to all tra�c. This paper introduces a concept called
data-driven probabilistic geofences which can guarantee
that the probability of potential conflicts is bounded under
data-driven uncertainties. We further develop algorithms to
e�ciently evaluate the data-driven probabilistic geofences
and to provide a parallelogram box to approximate the
geofence in an online fashion.

Geofencing’s design centers on determining a collision-
free geofence-based flight trajectory. We evaluated numerous
path planning algorithms in this regard. Ensuring collision-
free flight trajectories is crucial for safe and reliable fly-
ing. However, in real-world scenarios, uncertainties can be
present, which may make it di�cult to guarantee feasibility
using the current collision avoidance system. In such cases,
identifying trajectories that ensure the probability of con-
flict occurrence is within a specified limit is a more practical
approach.12 Therefore, taking uncertainty into account in
path planning is essential to ensure safety. Several meth-
ods have been proposed to address this issue. For example,
probabilistic maps can be constructed using a likelihood
function, and safe UAV paths can be generated by solving a
probability minimization problem.13 Although the sampling-
based Monte Carlo method is accurate enough to estimate
conflicts between aircraft stochastically, it is computation-
ally expensive, and it takes a lot of time to compute the
probability of conflict occurrence.14,15 To balance planning
conservatism and e�ciency, stochastic constraints can be
reformulated as tightened deterministic constraints through
chance constraint formulation.16,17 Chance-constrained pro-
gramming models have been proposed to consider various
uncertainties for conflict avoidance problems.18,19 However,
such formulations are computationally expensive and may
not scale well as the dimensions of configuration spaces in-
crease. Wu et al.11 proposed a chance-constrained algorithm
CCRRT that uses sampling-based methods to identify paths
for linear systems subject to uncertainty. Sampling-based
algorithms like CCRRT scale well because they perform
trajectory-wise constraint checking.20

The previous studies have assumed that the uncertainty
follows a Gaussian distribution, which may not align with
practical scenarios. Some researchers have attempted to ap-
proximate non-Gaussian distributions with Gaussian distri-
butions, even though this method may not be accurate and
could compromise the safety constraints regarding the colli-
sion probability along the generated path. For instance, in,21

researchers still use Gaussian distributions to approximate
non-Gaussian ones. To address this issue, some studies have
proposed non-Gaussian distribution-based methods.22,23

Recent work by Han et al.24 has shown that using Gaus-
sian approximations can lead to suboptimal solutions and
that considering non-Gaussian distributions is crucial for
ensuring safety in collision avoidance problems.

This paper is dedicated to approximating probabilistic
geofences using data obtained from experiments or simula-

tions. Existing works, such as Devonport et al.25 and Lew
et al.,26 employ di↵erent methods to estimate probabilis-
tic geofences given bounded uncertainties. However, these
methods may not be applicable for arbitrary probability
distributions, including unbounded ones. To address this,
the paper proposes a data-driven approach using Kernel
Density Estimation (KDE) to approximate the unknown
probability density function (PDF) of any arbitrary proba-
bility distribution. The level sets of the resulting PDF can
be taken as probabilistic geofences. This method can be
updated online through sensor measurements and can be
accelerated using Fast Fourier Transform (FFT) to make it
computationally e�cient for real-time implementation.

The aim of this paper is to approximate probabilistic
geofences using Kernel Density Estimation (KDE). However,
there are some limitations to using the level sets of KDE as
probabilistic geofences. Firstly, there is no closed-form ex-
pression for KDE and its level sets. Additionally, the shape
of the level set is often irregular or non-convex. Therefore,
this paper proposes a new approach to solving this prob-
lem. The authors provide a convex approximation of the
probabilistic geofence by formulating an Integer Linear Pro-
gramming (ILP) optimization problem using KDE values. A
heuristic algorithm is implemented to solve the optimization
problem e�ciently. This approach is more accurate than
using the convex hull or bounding box method, which can be
overly conservative. The resulting convex parallelogram box
is less conservative and more accurate, providing a larger
feasible planning space. Additionally, the number of sides of
the convex parallelogram box is constant, making it more
practical for real-world applications.

1.2. Contributions and Organization

The major contributions of this paper are highlighted as
follows:

1) To model data-driven distributions through online
data samplings, FFT is encoded into traditional KDE to
accelerate the computation greatly. Although most kernel
estimators can use KDE to approximate the probability
density function (PDF) of the data-driven distribution, the
direct approach to evaluate KDE can be computationally
expensive, especially when the number of data samplings
becomes very large.27 Instead, we present an alternative way
to replace performing kernel evaluation on data points with
that on grids. Further, FFT can be implemented to reduce
computational complexity owing to the structure of discrete
convolution of kernel evaluation. According to the results of
the KDE evaluation, we develop an algorithm to evaluate
the probabilistic geofence of data-driven uncertainties in
real-time.

2) We build an optimization framework of ILP to seek
a minimal parallelogram box approximation of the prob-
abilistic geofence of data-driven uncertainties. This ILP
formulation can help extend the traditional rectangle box
to a general parallelogram box, which can reduce the con-
servatism of geofencing.
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3) To solve the optimization framework online, we de-
velop a heuristic algorithm that can find a near-optimal
solution. This e�cient algorithm can help translate the
data-driven uncertainty into deterministic constraints for
the path planning of eVTOL aircraft in AAM applications
in an online fashion.

The content of the paper is organized as follows: in
Section II, we will formally set up the problem and define
the probabilistic geofences; in Section III, we will develop an
online computational algorithm to capture the probabilis-
tic geofences; in Section IV, we will build an optimization
framework as an ILP problem to find a box approximation
of the probabilistic geofence; In Section V, we develop a
heuristic algorithm to solve for it; in Section VI, we con-
duct a simulation study to demonstrate the feasibility and
e�ciency of our proposed algorithms; last but not least, we
will conclude this paper in Section VII.

2. Problem Formulation

For an eVTOL, its motion can be modeled by a general
discrete-time dynamic system of the form

xk+1 = f (xk,uk,✓k,wk) (1)

where state xk 2 Rn, control input uk 2 Uk, uncertain
model parameter ✓k 2 ⇥, uncertain disturbance wk 2 W,
and initial state x0 2 X0. The sets Uk ⇢ Rm

,⇥ ⇢ Rp
,W ⇢

Rq, and X0 ⇢ Rn are not limited to bounded sets but can
be unbounded ones. Also, the dynamics f(·) can be a gen-
eral function that needn’t be continuously di↵erentiable.
Given the uncertainties of xk,✓k,wk, then xk+1 is a ran-
dom vector which obeys an arbitrary unknown probability
distribution.

To operate safely in an uncertain, dynamic environment,
each eVTOL should try to avoid conflicts with other eV-
TOLs or environmental obstacles in the system. Hopefully,
the probability of collision between aircraft and obstacles
(or other aircraft) in the system at any time is less than a
certain threshold, namely,

Pr(collision)  1� ↵ (2)

where ↵ is a prescribed confidence level.
Therefore, we expect to find a bounded set such that

the probability of the state xk lying in the bounded set is
greater than the confidence level. In this paper, the dynamic
system Eq. (1) is assumed to be two-dimensional and the
state xk is the location of eVTOL at a particular time k.
Note that this formulation can be easily extended to higher
dimensions in future work. To this end, we can define a
probabilistic geofence X̃k as follows:

Definition 2.1 (Probabilistic Geofence). At time k, a
bounded set is defined to be a probabilistic geofence X̃k

for the location state xk of the dynamic system Eq. (1) at
confidence level ↵ if and only if

Pr(xk 2 X̃k) � ↵ (3)

The goal of this paper is twofold:
1) We develop a data-driven approach to model the

arbitrary unknown uncertainties and find a probabilistic
geofence X̃k for the state xk of dynamic system Eq. (1);

2) Motivated by the requirement of realizing safety-
critical real-time motion planning for uncertain systems,
we aim to e�ciently find an optimal parallelogram box to
approximate the probabilistic geofence X̃k without loss of
accuracy.

3. Online Evaluation of Probabilistic

Geofence

In this section, we are going to develop an online algorithm
to capture the probabilistic geofence defined in the last
section.

3.1. Traditional Kernel Density Estimator

A traditional method of KDE can be formulated by placing
a kernel function K(·) on every data point xi

f̂(x) =
1

Nds

NdsX

i=1

K(x� xi) (4)

where Nds represents the number of data samples.
Taking the bandwidth h of f̂(x) into consideration and

assigning di↵erent weights wi to di↵erent data points xi,
Eq. (4) can be rewritten as

f̂(x) =
1

h

NdsX

i=1

wiK

✓
x� xi

h

◆
(5)

where
NdsP
i=1

wi = 1.

The discretized form of traditional KDE can be ob-
tained by evaluating the values of KDE over a mesh com-
posed of N grid points g1, . . . , gN in each dimension

f̂j =
1

h

NdsX

i=1

wiK

✓
gj � xi

h

◆
, j = 1, . . . , N (6)

An extension of Eq. (5) to d-dimensional scenarios is
to write

f̂(x) = h
�1

NdsX

i=1

wiK
�
h
�1(x� xi)

�
(7)

where
NdsP
i=1

wi = 1, and K(·) is a d-variate kernel function.

Also, its discretized form can be derived as

f̂j = h
�1

NdsX

i=1

wiK
�
h
�1(gj � xi)

�
, j = 1, . . . , N (8)
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For simplicity, Eq. (7) and Eq. (8) can be denoted as
the following form

f̂(x) =
NdsX

i=1

wiKh (x� xi) (9)

f̂j =
NdsX

i=1

wiKh (gj � xi) , j = 1, . . . , N (10)

3.2. Online Identification of Probabilistic
Geofence

The computational intensity of traditional KDE is very high.
Instead of direct evaluation, we can go through Nds data
points and assign weights to N equidistant grid points.28 To
speed up the evaluation of traditional KDE, the kernel func-
tion K(·) performed on Nds data points xi can be replaced
by that on N grid points gl.

For bivariate kernel estimators, as shown in Fig. 1,
the mass associated with the data point X is distributed
among each of the four surrounding grid points according
to areas of the opposite sub-parallelograms induced by the
position of the data point. By doing so, we can obtain the
approximation of Eq. (8)

f̂j =
NX

l=1

Kh (gj � gl) cl, j = 1, . . . , N (11)

where cl, l = 1, . . . , N are the grid weights assigned to every
grid point gl, which is determined by the number of data
points xi in the neighborhood of gl. In this way, the num-
ber of kernel evaluations is only O(N), which greatly saves
running time, especially for large samples of data points.

Further, let L = N � 1 and then Eq. (11) can be
reformulated as

f̂j =
LX

l=�L

cj�lkl, j = 1, . . . , N (12)

where

kl = Kh (gj � gl) (13)

Note that cl = 0, l /2 {1, . . . , N}. By the symmetry of the
kernel function Kh(·), it’s only required to figure out kl for
l = 0, 1, . . . , L where L = N � 1. Therefore, it is clear that
no more than N kernel evaluations are required to obtain
kl. This is because there are only N distinct di↵erences
among di↵erent grid points. Indeed, Eq. (12) can be viewed
as the discrete convolution of cl and kl. This means the
approximation we use has a discrete convolution structure
that can be computed quickly using FFT. Let C and K

be the discrete Fourier transform of cl and kl respectively
using FFT, and let F be the element-wise product of C
and K. Then the values of KDE f̂j can be extracted from
the inverse FFT of F . By doing so, we can obtain KDE
which approximates the PDF function of the data-driven
distribution in real time.

There are two roles that grid points play in this process:
the KDE function is evaluated on grid points; grid weights
cl are assigned to every grid point.

After obtaining KDE values, we can identify probabilis-
tic geofence at any confidence level ↵ for the data-driven
distribution. Without violating the identified geofence, the
probability of potential conflicts between eVTOL aircraft is
within the bound 1� ↵.

Fig. 1: Assign weights to grid points27

Now we can present an algorithm to evaluate the prob-
abilistic geofence of data-driven uncertainties online using
FFT-based KDE in Algorithm 1. In the pseudo-code, Nds is
the number of sampled data points, N is the number of grid
points in each dimension, ↵ represents the confidence level
of the data-driven distribution, and ✏ represents the error
of the threshold. In Line 10, FFT is employed to speed up
the computation of discrete convolution to obtain KDE val-
ues. In Line 40, the probabilistic geofence at the confidence
level ↵ of the data-driven distribution can be returned if
successfully identified.

In summary, we develop an alternative way to replace
performing kernel evaluation on data points with that on
grids. Further, FFT can be implemented to reduce com-
putational complexity owing to the structure of discrete
convolution of kernel evaluation. Based on the results of the
KDE evaluation, we propose an algorithm of online data-
driven evaluation to capture probabilistic geofence. The
identification of probabilistic geofence can help translate
the data-driven uncertainty into deterministic constraints
for the path planning of eVTOL aircraft in AAM applica-
tions.
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Algorithm 1 Online Evaluation of Probabilistic Geofence

1: function GenDS(Nds)
2: generate Nds data samplings ds
3: return ds

4: function MeshGrid(ds, N)
5: get xmin, xmax, ymin, ymax from data samplings ds
6: x = linspace(xmin, xmax, N)
7: y = linspace(ymin, ymax, N)
8: g = Cartesian product of x and y

9: return g

10: function FFTKDE(ds, g)
11: obtain weights cl for all grids g according to ds

12: evaluate kernel functions kl on all grids g
13: C = FFT(cl)
14: K = FFT(kl)
15: F = element-wise product of C and K

16: z
kde = iFFT(F )

17: return g, zkde

18: function BisecSearch(zkde, ↵, ✏)
19: low = min(zkde)
20: up = max(zkde)
21: while low < up do

22: mid = (low + up)/2
23: z

bin = (zkde � mid) · 1
24: z

mix = element-wise product of zbin and z
kde

25: pr = sum(zmix)/ sum(zkde)
26: if abs(pr � ↵)  ✏ then

27: C
kde = mid

28: return z
bin, Ckde

29: else if pr < ↵ then

30: up = mid

31: else

32: low = mid

33: return Failure

34: function FindGeofence(Nds, N , ↵, ✏)
35: ds = GenDS(Nds)
36: g = MeshGrid(ds, N)
37: g, zkde = FFTKDE(ds, g)
38: z

bin, Ckde = BisecSearch(zkde, ↵, ✏)
39: return g, zkde, zbin, Ckde

40: FindGeofence(Nds, N , ↵, ✏)

4. Formulation of ILP Optimization

Framework

In this section, we are going to formulate an Integer Linear
Programming (ILP) problem whose solution is a parallelo-
gram box to approximate the probabilistic geofence of two-
dimensional data-driven uncertainties given a confidence
level ↵. The algorithms can be extended to any dimensional

uncertainties.
Let (xs, ys) be the 2D coordinate of data sample s

and Nds is the number of data samples. Also, we denote
(xi, yj), 8i, j 2 {1, . . . , N} as the 2D coordinates of the
grid points established in Algorithm 1. The grid points
can be viewed as a bijective map g : (i, j) ! (xi, yj).
Through the online evaluation of the geofence of a two-
dimensional data-driven uncertainty using Algorithm 1, we
can assign KDE values zkdeij = f̂(xi, yj) to N⇥N grid points
(i, j), i, j 2 {1, . . . , N}.

Let (xp1, yp1) and (xp2, yp2) be the unit vector of two
principal axes of the data samples, then the grid points
can be established aligning with these two principal axes
by performing a linear transformation, which is defined as
follows.

The fixed point of the linear transformation is x̄ :=

(x̄, ȳ) = 1
Nds

NdsP
s=1

(xs, ys). The transformation of grid points

is then represented as (x0
i, y

0
j) = A((xi, yj)� x̄) + x̄, where

(x0
i, y

0
j) is the coordinate of a grid point after transformation,

and A is determined by the principal axes as

A =


xp1 xp2

yp1 yp2

�
(14)

The KDE values f̂(x0
i, y

0
j) of every grid point (x0

i, y
0
j)

after transformation can be evaluated by

z
0kde
ij = f̂(x0

i, y
0
j) = f̂(xi, yj)|det(A)| (15)

The grid points after transformation can also be viewed
as a new bijective map h : (i, j) ! (x0

i, y
0
j), 8i, j 2

{1, . . . , N}. The KDE values z
0kde
ij after transformation can

be normalized as wij

wij :=
z

0kde
ij

NP
i=1

NP
j=1

z
0kde
ij

i, j 2 {1, . . . , N} (16)

to every grid point after transformation, such that

0  wij  1 (17)
NX

i=1

NX

j=1

wij = 1. (18)

The ILP optimization framework will be established
using these weights, and not with the original data samples.
This makes it more tractable because the number of grid
points is far less than the number of data samples, greatly
reducing the number of decision variables and constraints.

The goal of the optimization problem is to find a min-
imum parallelogram box to approximate the geofence, by
determining which weighted grid points should be covered
by the box. To this end, we introduce a binary variable
zij , i, j 2 {1, . . . , N}. If a grid point (i, j) is covered by the
box, zij = 1; otherwise, zij = 0.
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To get the box with minimal area, we can set the ob-

jective of the optimization as min
NP
i

NP
j
zij . The grid point

which owns the greatest KDE value should be covered by
the box, which means

zargmax
i,j

!ij = 1. (19)

To approximate the geofence given a confidence level ↵, we
need to make sure the sum of the normalized KDE values
of the grid points covered by the box is greater than the
confidence level, in other words,

NX

i=1

NX

j=1

!ijzij � ↵ (20)

In addition, to find a parallelogram box for geofence
approximation, we want to enforce that

(zij ^ zi0j0) =) zuv (21)

where grid points (i, j), (i0, j0) 2 {1, . . . , N} ⇥ {1, . . . , N}
and min(i, i0)  u  max(i, i0)^min(j, j0)  v  max(j, j0),
which means that if any two grid points (i, j) and (i0, j0)
are covered by the box, then the grid point (u, v) within
the parallelogram determined by (i, j) and (i0, j0) must also
be covered.

Rewriting Eq. (21) in conjunctive normal form yields

¬zij _ ¬zi0j0 _ zuv (22)

from which we obtain linear constraints

(1� zij) + (1� zi0j0) + zuv � 1 (23)

or equivalently,

zij + zi0j0 � zuv  1 (24)

for all (i, j), (i0, j0), and (u, v) such that (u, v) is in the
parallelogram determined by (i, j) and (i0, j0). That is,

min(i, i0)  u  max(i, i0) (25)

min(j, j0)  v  max(j, j0) (26)

For brevity, we can denote index sets as follows:

N = {1, . . . , N} (27)

I = {(i0, j0) : i < i
0 _ (i = i

0 ^ j < j
0)} (28)

J = {(u, v) : i  u  i
0
,min(j, j0)  v  max(j, j0)} (29)

Above all, we can formally formulate the optimization

framework as an ILP problem as follows:

min
NX

i=1

NX

j=1

zij

s.t. zij + zi0j0 � zuv  1 8i, j 2 N, 8(i0, j0) 2 I, 8(u, v) 2 J;

zargmax
i,j

!ij = 1;

NX

i=1

NX

j=1

wijzij � ↵;

zij 2 {0, 1} 8i, j 2 N.
(30)

5. Solution Method

In this section, we develop a heuristic algorithm to e�ciently
solve the optimization problem of ILP formulated in the
last section.

5.1. ILP Optimal Algorithm

Gurobi can be used to solve the formulated optimization
framework of ILP in Eq. (30). As shown in Fig. 2, the
Branch and Cut Algorithm built-in Gurobi explores the
whole search space and given enough time, it will finally
find a globally optimal solution. This paper applies the
standard Branch and Cut Algorithm, so the discussion for
the algorithm is omitted, please refer29 for details.

Resorting to Branch and Cut Algorithm built-in Gurobi,
we develop Algorithm 2 to solve the formulated optimization
framework Eq. (30). Through implementing Algorithm 2, we
can find an optimal binary solution of zij , i, j 2 {1, . . . , N}
to the ILP problem Eq. (30), which accounts for an optimal
parallelogram box to approximate the probabilistic geofence
computed by Algorithm 1.

Fig. 2: Branch and Cut Algorithm built-in Gurobi
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Algorithm 2 ILP Optimal Algorithm

1: function ILPSolver(↵, g, w)
2: ī, j̄ = argmax(w)
3: determine xī, yj̄ according to ī, j̄ and grid points g
4: formulate Eq. (30) for grid points g with weights w

given confidence level ↵
5: implement Branch and Cut algorithm

to solve Eq. (30)
6: return zij

7: function FindBox(g, w, ↵)
8: zij = ILPSolver(↵, g, w)
9: return zij

10: FindBox(g, w, ↵)

Algorithm 3 ILP Heuristic Algorithm

1: function BoxApprox(rmin, cmin, rmax, cmax,!ij)

2: !
0

ij = !ij .copy()
3: zij [1 : N ][1 : N ] = 0

4: rmin, cmin = argmax
i,j

!
0

ij

5: rmax = rmin, cmax = cmin

6: while

NP
i

NP
j
!ijzij < ↵ do

7: i, j = argmax
i,j

!
0

ij

8: !
0

ij [i][j] = 0.0
9: rmin = min(rmin, i), rmax = max(rmax, i)

10: cmin = min(cmin, j), cmax = max(cmax, j)
11: zij [rmin : rmax][cmin : cmax] = 1

12: return zij

13: BoxApprox(rmin,cmin,rmax,cmax)

5.2. ILP Heuristic Algorithm

However, the formulated optimization framework Eq. (30)
is an NP-hard problem, which makes the branch and cut
algorithm computationally expensive. To address the is-
sue, we propose a heuristic algorithm instead to solve the
formulated optimization framework.

The main procedure of the proposed heuristic algo-
rithm is summarized as follows: 1) First, the grid point
(i, j) which has the greatest KDE value is selected to be
covered by the box, namely, zij = 1; 2) Then, excluding
the aforementioned grid point (i, j), the grid point (i0, j0)
which owns the greatest KDE value in all the remaining grid
points is selected to be covered, in other words, zi0j0 = 1; 3)
Next, make all the grid points within the box determined by
(min(i, i0),min(j, j0)) and (max(i, i0),max(j, j0)) be selected

to be covered by the box; 4) Repeating the above steps
while the sum of the normalized KDE values of the selected
grid points not exceeding the confidence level ↵; 5) Last,
if the sum exceeds the confidence level, the selected grid
points form the parallelogram box that we want, which pro-
vides a near-optimal solution to the optimization framework
Eq. (30).

The details of the proposed heuristic algorithm to solve
the optimization framework Eq. (30) is given in Algorithm 3.

6. Main Results

In this section, comprehensive case studies are conducted
to show the performance of four algorithms: ILP Optimal,
ILP Heuristic, Gaussian Fit, and Bounding Box. They all
provide 2D boxes to approximate the probabilistic geofence
respectively. The tests were implemented in Python 3.9 and
on an Intel(R) Core(TM) i9-12900KF, 3187 Mhz, 16 Core(s),
24 Logical Processor(s) Desktop with 64GB RAM.

The procedure of case studies is decomposed into two
phases:

1) According to KDE values and the probabilistic ge-
ofence obtained from a collection of Nds data samples
through running Algorithm 1, we can formulate an ILP
problem. Then, ILP Optimal and ILP Heuristics are im-
plemented respectively to find box approximations of the
probabilistic geofence. As a comparison, the Bounding Box
algorithm and Gaussian Fit algorithm are also applied to
approximate the probabilistic geofence;

2) For the boxes obtained, we can generate another new
collection of � Nds data samples, and evaluate the ratio of
the number of data samples inside the box to the total num-
ber of data samples generated. As the size of the collection
increases, the ratio will converge to the true probability of
the system state lying in the box.

Fig. 3: Joint bimodal distribution generated by two marginal
histograms

In this section, we display a scatter plot of the possible
positions (data samples) (x, y)> of a vehicle on the plane
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at a time point, which is generated by the measurement
of marginal histograms for x and y respectively. Every it-
eration we measure the position of the vehicle once, and
then di↵erent iterations yield di↵erent positions serving as
di↵erent data samples. As shown in Fig. 3, the positions of
the vehicle at that time point obey a bimodal distribution
which is non-Gaussian.

The number of data samples is Nds = 1000. The set-
ting below is chosen as a baseline: the confidence level is
↵ = 90%, and the number of grid points is N

2 = 202. In
the following figures and tables, the baseline is marked by
*. The time given in Table 1 and Table 2 is the compu-
tational time of probabilistic geofence estimation together
with parallelogram box identification.

6.1. Di↵erent Numbers of Grid Points

In this part, we compare the performance of di↵erent al-
gorithms given di↵erent numbers of grid points: N ⇥N =
102, 202, 252. The other parameters are the same as the
baseline.

The results are given in Fig. 4 and Table 1. In Fig. 4,
the yellow contour is the probabilistic geofence obtained by
Algorithm 1; The yellow box that bounds the probabilis-
tic geofence is the result of the Bounding Box algorithm;
The blue box is the result of ILP Optimal, which is the
optimal solution to the ILP problem Eq. (30) using Algo-
rithm 2; The red box is the result of ILP Heuristic, which is
a near-optimal solution to the ILP problem Eq. (30) using
Algorithm 3; The green ellipse is the result of Gaussian Fit.

For ILP Optimal, as the number of grid points increases,
the performance of ratio and area improves but computa-
tional time also significantly increases. This is because as
the number of grid points increases, the number of decision
variables and constraints increases, which contributes to
the computational complexity. As shown in Table 1, the
computational time of ILP Optimal increases from 1.04 s
to 411 s. To achieve a balance, the number of grid points
can be taken as 202. When the number of grid points is
large enough, the gap between two boxes obtained by ILP
Optimal and ILP Heuristic is small enough to be acceptable.

When the number of grid points is fixed to be 202,
the area and ratio of ILP Optimal and ILP Heuristic are
smaller than Gaussian Fit or Bounding Box, which suggests
ILP Optimal and ILP Heuristic are less conservative and
more accurate than Gaussian Fit or Bounding Box in the
sense that they have smaller areas while ensuring small gaps
between their ratios and the confidence level ↵. Further, for
ILP Optimal and ILP Heuristic, their results of ratio and
area are almost the same but the computational time of
ILP Heuristic 0.02 s greatly outperforms ILP Optimal 103 s,
demonstrating the e�ciency of ILP Heuristic.

6.2. Di↵erent Confidence Levels

In this part, we compare the performance of implementing
di↵erent algorithms at three di↵erent confidence levels: ↵

= 90%, 95%, and 99%. The other parameters are the same
as the baseline.

As illustrated in Fig. 5, compared with the probabilistic
geofence based on irregular contour, every polygon obtained
by ILP Optimal, ILP Heuristic, or Bounding Box respec-
tively, is a conservative but convex approximation.

In Table 2, the area of the box obtained by ILP Heuris-
tic is 4173.3m2, which is less than 4399.9m2 of Bounding
Box or 5379.8m2 of Gaussian Fit. This means the box ob-
tained by ILP Optimal is far less conservative than Bounding
Box or Gaussian Fit. Also, That is, ILP Heuristic is much
more e�cient. Meanwhile, the area of the box obtained
by the ILP Heuristic is almost the same as ILP Optimal.
However, the computational time 0.02 s of implementing the
ILP Heuristic is much shorter than 103 s of ILP Optimal.
Hence, ILP Heuristic runs much faster than ILP Optimal
while ensuring accuracy.

6.3. Near-optimality of ILP Heuristic
Algorithm

From Table 1, we have observed that ILP Heuristic greatly
outperforms ILP Optimal in computational e�ciency at
the expense of sacrificing space e�ciency. Naturally, we are
concerned with the gap of space e�ciency between ILP
Optimal and ILP Heuristic.

The gap between the boxes of ILP Optimal and ILP
Heuristic can be quantified using Jaccard distance. It com-
pares members of two sets to see which members are shared
and which are distinct. It’s a measure of similarity between
the two sets of data, with a range from 0 to 1. Formally, for
any two sets A and B, Jaccard distance is defined as

d(A,B) = 1� |A \B|
|A [B| , (31)

where | · | is the cardinality of a set. A smaller Jaccard
distance means the two sets are more similar to each other.

Fig. 6: Near-optimality analysis of ILP Heuristic algorithm

We analyze the Jaccard distance between the boxes
obtained by ILP Heuristic and ILP Optimal with respect to
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the varying number of grid points. All the other parameters
are the same as the baseline. Given a fixed number of grid
points, the Jaccard distance may di↵er across di↵erent tests,
because the randomness of data samples in every test leads

to di↵erent boxes obtained by the algorithms.
Given a fixed number of grid points, we run ILP Op-

timal once to obtain an optimal box. Then we run ILP
Heuristic ten times to obtain ten near-optimal boxes which

(a) # grid points = 10
2

(b) # grid points = 20
2
*

(c) # grid points = 25
2

Fig. 4: Comparisons of di↵erent numbers of grid points

Table 1: Comparisons of di↵erent numbers of grid points

# grid points Algorithm Ratio Area (m2
) Time (s)

ILP Optimal 85.5% 3061.9 1.04
102 ILP Heuristic 85.9% 3067.6 0.01

Gaussian Fit 90.9% 4211.0 0.01
Bounding Box 93.7% 4789.2 0.22
ILP Optimal 90.5% 4173.3 103

202 * ILP Heuristic 90.5% 4173.3 0.02
Gaussian Fit 91.2% 4399.9 0.01
Bounding Box 95.3% 5379.8 0.19
ILP Optimal 90.1% 4096.2 411

252 ILP Heuristic 90.1% 4096.2 0.04
Gaussian Fit 90.8% 4205.7 0.01
Bounding Box 93.5% 4642.1 0.21
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(a) confidence level = 90% * (b) confidence level = 95%

(c) confidence level = 99%

Fig. 5: Comparisons of di↵erent confidence levels

Table 2: Comparisons of di↵erent confidence levels

Confidence level Algorithm Ratio Area (m2
) Time (s)

ILP Optimal 90.5% 4173.3 103
90% * ILP Heuristic 90.5% 4173.3 0.02

Gaussian Fit 91.2% 4399.9 0.01
Bounding Box 95.3% 5379.8 0.19
ILP Optimal 95.4% 5485.0 91

95% ILP Heuristic 95.4% 5485.0 0.04
Gaussian Fit 95.7% 5597.8 0.01
Bounding Box 96.1% 5717.9 0.22
ILP Optimal 99.1% 7714.4 64

99% ILP Heuristic 99.1% 7714.4 0.03
Gaussian Fit 99.8% 8960.8 0.01
Bounding Box 99.9% 9307.3 0.26

may di↵er every time. We evaluate the Jaccard distance be-
tween every near-optimal box and the optimal box and then
obtain ten distances eventually. We repeat the operation
above for 102, 152, 202, 252 grid points respectively.

As the number of grid points increases from 102 to 252,
the average Jaccard distance decreases from 0.34 to 0.04.
This means the box obtained by ILP Heuristic becomes
more near-optimal with respect to the increasing number
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of grid points. As suggested in Table 1, as the number of
grid points increases, the computational time increases from
0.01 s to 0.04 s. Therefore, the increase of grid points con-
tributes to the burden of computational e↵ort but reduces
the di↵erence between the boxes obtained by ILP Heuristic
and ILP Optimal.

Accordingly, the computational e�ciency of ILP Heuris-
tic may come at the cost of loss of optimality. Therefore, to
achieve a balance, we would like to select an appropriate
parameter for the number of grids used by the ILP Heuris-
tic. For example, it can be 202 which makes the box of
ILP Heuristic pretty enough for its promising applications
in real scenarios while enjoying accuracy, e�ciency, and
near-optimality.

7. Conclusions

How to ensure operation safety in high-density, dynamic,
and uncertain airspace environments in real-time is a key
challenge for the success of AAM. This paper introduces a
concept called probabilistic geofences which can guarantee
that the probability of potential conflicts is bounded in the
face of data-driven uncertainties. To e�ciently evaluate the
probabilistic geofences, Kernel Density Estimation (KDE)
combined with Fast Fourier Transform (FFT) is adopted
to model data-driven uncertainties. After obtaining KDE
values, we develop a heuristic algorithm based on the opti-
mization framework of Integer Linear Programming (ILP)
to find a parallelogram box to approximate the probabilis-
tic geofence. Numerical simulation demonstrates that the
heuristic algorithm can e�ciently identify a box approxi-
mation of the probabilistic geofence with an acceptable gap
between its near-optimal solution and the optimal solution
found by Gurobi Optimizer.

The box approximation found in this paper is conserva-
tive in the sense that it must be a parallelogram rather than
arbitrary convex polygons. In the future, we are going to
develop an e�cient optimization algorithm to provide a con-
vex approximation for the probabilistic geofence given data-
driven uncertainties, not limited to parallelogram boxes.
Also, this work is limited to a 2D system. Next, we will
extend our work to higher dimensions, and then apply it to
the applications of safety-critical real-time motion planning
for uncertain systems like robotics.
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