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Summary 12 

The integration of multiple ‘omics’ datasets is a promising avenue for answering many important 13 

and challenging questions in biology, particularly those relating to complex ecological systems. 14 

Whereas, multi-omics was developed using data from model organisms with significant prior 15 

knowledge and resources, its application to non-model organisms, such as coral holobionts, is 16 

less clear-cut. We explore, in the emerging rice coral model Montipora capitata, the intersection 17 

of holobiont transcriptomic, proteomic, metabolomic, and microbiome amplicon data and 18 

investigate how well they correlate under high temperature treatment. Using a typical thermal 19 

stress regime, we show that transcriptomic and proteomic data broadly capture the stress 20 

response of the coral, whereas the metabolome and microbiome datasets show patterns that likely 21 

reflect stochastic and homeostatic processes associated with each sample. These results provide a 22 

framework for interpreting multi-omics data generated from non-model systems, particularly 23 

those with complex biotic interactions among microbial partners. 24 

 25 

Introduction 26 

The devastating loss of coral reefs due to climate change has spurred ‘omics’ research to aid 27 

conservation of these valuable, biodiverse ecosystems1-4. Multi-omics relies on high-throughput 28 

approaches such as genomics, transcriptomics, proteomics, and metabolomics to interrogate 29 

organismal biology. These methods were developed using data from traditional model 30 

organisms, including Arabidopsis, yeast, and Escherichia coli, which often have chromosomal-31 

level genome assemblies and significant knowledge about gene and non-coding region functions, 32 

protein-protein interactions (PPI), and complete biochemical pathways based on genetic, 33 

bioinformatic, and biochemical data5. Studies of these organisms are also well supported by 34 
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omics databases and analysis tools, such as MetaboAnalyst6, STRING7, and KEGG8. These 35 

resources allow omics data relationships to be meaningfully interpreted. Whether multi-omics 36 

can be effectively applied to non-model organisms, such as the coral holobiont, whereby 37 

individual polyps comprise a cnidarian animal host, a diverse population of large genome (1.2-38 

2.0 Gbp in size)9 algal symbionts (Symbiodiniaceae), other eukaryotes such as fungi and protists, 39 

prokaryotes, and viruses, remains to be determined. 40 

 41 

Whereas the cnidarian host of the coral holobiont has a simple two-tissue body plan (epidermis 42 

and gastrodermis, connected by an acellular mesoglea), reefs exist in complex, species-rich, and 43 

dynamic marine environments that make coral biology a challenging area of research. A useful 44 

approach to understand biotic interactions within this system is through metabolomics, which is 45 

rapidly developing in the coral field. However, the ratio of known to unknown metabolites in 46 

corals is still very low when compared to traditional model organisms10. The same holds for 47 

genomic, transcriptomic, and proteomic data, with many of the genes and proteins identified in 48 

corals and their symbionts having unknown functions11, making the interpretation of these omics 49 

data highly challenging. 50 

 51 

In recent years, the sea anemone Exaiptasia pallida (also known as Aiptasia) has become a 52 

tractable model system for studying holobiont symbioses and stress responses12-15. Aiptasia is 53 

globally distributed, harbors endosymbiotic Symbiodiniaceae, can be maintained indefinitely in 54 

the symbiotic or aposymbiotic (Symbiodiniaceae-free) state, and has a sequenced genome12. 55 

Because Aiptasia can be propagated sexually and asexually in laboratory tanks, large clonal 56 

populations are available for use in high-replicate time-course experiments and genetic studies16. 57 
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These characteristics would potentially ameliorate many of the current obstacles in coral omics 58 

data analysis, such as the functional characterization of ‘dark’ (i.e., of unknown function) genes 59 

and metabolites, developing metabolic maps specific to cnidarians, and elucidating PPIs. Yet, 60 

regardless of the potential of Aiptasia as a Cnidarian model system, this species currently does 61 

not have the same resources, background information, or data analysis tools available for multi-62 

omics data analysis and integration as do traditional model organisms. Furthermore, insights 63 

from Aiptasia biology cannot always be applied to corals due to the absence of biomineralization 64 

in the former, the relatively shorter lifespan (coral colonies can persist for hundreds of years17), 65 

and a smaller genome size12. Thus, understanding the capacity and limitations of omics 66 

techniques applied to the coral holobiont, as well as the cases in which Aiptasia may or may not 67 

serve to improve omics data interpretation, will aid the progress and utility of coral multi-omics 68 

research. 69 

 70 

Here, novel proteomic and prokaryote microbiome 16S-rRNA amplicon data were analyzed, 71 

along with existing transcriptomic and metabolomic data from the stress-resistant Hawaiian coral 72 

Montipora capitata18. Whereas 16S-rRNA community profiling (e.g., in contrast to prokaryotic 73 

metagenomic data) is limited in terms of the questions it can address about changes in the 74 

functional ecology of a community, the information gained by this type of analysis provides a 75 

useful tool that, in combination with other omics data, can be used to generate hypotheses for 76 

follow-up studies. Profiling of the 16S-rRNA community (which we consider here to be an 77 

omics approach) is also widely used to study the bacterial component of the coral holobiont, 78 

therefore understanding how these data can be effectively integrated with other approaches is of 79 

high interest. Given these existing data, our goal was to ascertain how well different layers of 80 
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multi-omics data can be integrated in M. capitata samples derived from a single experiment. 81 

Using the available genome assembly for this coral species as a foundation19, multiple animal 82 

genotypes were subjected to a 5-week thermal stress regime. Control and treatment samples were 83 

collected at three time points, which coincide with initial thermal stress, the onset of bleaching, 84 

and four days after initial bleaching (Figure S1)18.  85 

 86 

We find that transcriptomic and proteomic data broadly capture the thermal stress response of M. 87 

capitata, albeit the specific genes identified are often not shared across datasets. We also find 88 

that whereas the overall magnitude of expression of these datasets is positively correlated, there 89 

is significant discordance vis-à-vis the extent of differential change when comparing control and 90 

treatment conditions, which is lessened under stress. In contrast, the metabolite and microbiome 91 

data show patterns that likely reflect the complex nature of the holobiont, with these data 92 

impacted by homeostatic processes and by fine-scale interactions between the holobiont and its 93 

proximate environment. These results provide insights into the different behaviors of multi-94 

omics data and their interpretation when studying complex ecological systems such as corals. 95 

 96 

Results 97 

Proteome and transcriptome data 98 

There were 4036 M. capitata proteins (3882 [96.18%] high confidence identifications) which 99 

had peptides identified in at least one of the proteomic samples (Dataset S1 100 

[10.5281/zenodo.6861688] and Table S1). Of these proteins, 2760 (68.38%) had KO numbers 101 

assigned, with 414 (15%) of these belonging to at least one of the major biochemical pathways 102 

presented in Table S2. In comparison, of the 63,227 predicted proteins in the M. capitata 103 
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genome, 18,684 (29.55%) have annotated KO numbers and 1925 (10.3%) belonged to at least 104 

one major biochemical pathway. 105 

 106 

The PCoA plots of the proteomic and transcriptomic data (Figure 1A and 1B, respectively) from 107 

a single M. capitata genotype (MC-289) demonstrate that samples group well by time point and 108 

treatment. The field samples tend to group closely with the ambient samples, because this was 109 

not a period of bleaching in Kāne‘ohe Bay, O‘ahu where the experiments were carried out. This 110 

result is supported by sPLS-DA (Figure S2A and S2B) and PCA (Figure S2D and S2E) plots, 111 

which also show the samples in each dataset grouping by time point and treatment. Generally, 112 

samples from the same group are positioned close together across the different analysis plots, 113 

particularly in the proteomic dataset, although, there are some outliers (i.e., MC-289_T5-114 

HiT_2998 and MC-289_T5-Amb_1721 in Figures 1A and 1B). Genotyping showed that all but 115 

two (MC-289_T5-HiT_2998 and MC-289_T5-Amb_1721) of the transcriptome samples have 116 

high (~98%) proportions of shared SNPs, suggesting that they are all from the same genotype (as 117 

expected). The two samples share < 90% of their SNPs with each other and with the other 118 

samples, suggesting that they are from different genotypes (Figure S3). This is potentially due to 119 

a mix-up in sample labeling. Inclusion of these samples in downstream analysis is unlikely to 120 

greatly affect our interpretations due to the statistical approaches used that take sample variance 121 

into account, and because we focus our discussion on the samples from TP1 and TP3, which are 122 

all confirmed to be from the same genotype. 123 

 124 

When these ordination methods (PCoA, PLS-DA, and PCA) were applied to only transcripts 125 

from genes with proteomic evidence (Figures 1C, S2C, and S2F, respectively), they all showed 126 
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that the samples group well by time point and treatment, and are roughly congruent with the 127 

relative positioning of the samples in the full proteomic and transcriptomic datasets (although the 128 

plots are more similar to the latter than the former). For example, in the proteome ordination 129 

plots (Figures 1A, S2A, and S2D), there is relatively little variation (excluding the mislabeled 130 

samples) along each axis between the replicates from each group compared to the variation 131 

between groups. In contrast, the transcriptome, and transcripts with proteomic evidence, 132 

ordination plots show greater relative variation between samples from the same group and lower 133 

variation between groups, with sample from the same condition (e.g., ambient) often overlapping 134 

on both axis (Figures 1B, 1C, S2B, S2C, S2E, and S2F). This suggests that whereas the same 135 

general stress response pattern is present in both datasets, evidenced by the same relative 136 

relationship between the replicates and groups, there are numerous differences. These results 137 

provide evidence that the dynamics of the stress response in each omics data layer differ, even 138 

for the same set of genes. The PERMANOVA results (Table S3) show that none of the factors 139 

assessed contribute significantly to the variance between groups, however, time point does tend 140 

to have the lowest significance across the datasets, which is congruent with the strong 141 

association between the field, ambient (all time points), and TP1 high temperature treated 142 

samples, and the more distant association between the TP3 and TP5 high temperature treated 143 

samples in the ordination results (Figure 1). 144 

 145 

Protein abundance-transcript expression level correlation 146 

For genes with proteomic evidence, the log2 fold change (FC) abundance differences between the 147 

protein and associated transcript, between the ambient and high temperature treated samples at 148 

each time point, were quantified (Figure 2). Each plot in Figure 2 is divided into four quadrants 149 
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(Q1-Q4), with genes in Q1 having positive protein and transcript FC values, Q2 having positive 150 

protein and negative transcript FC values, Q3 having negative protein and transcript FC values, 151 

and Q4 having negative protein and positive transcript FC values. A trend line fitted to the data 152 

from each time point shows that at TP1 there is little correlation (R2=0.01) between the gene, 153 

transcriptome, and proteome FC values. This correlation increases at TP3 (R2=0.11) and to a 154 

lesser extent TP5 (R2=0.04), with there being more variation in the magnitude of FC values at 155 

TP3 and TP5 compared to TP1. In addition, whereas the genes at TP1 form a roughly circular 156 

cloud centered around zero transcript and protein FC, there is a more pronounced spread at TP3, 157 

and to a lesser degree TP5, of genes through Q1 and Q3 (i.e., the quadrants where transcript and 158 

protein FC directionality correlate). Normalized protein and transcript expression levels of 159 

proteins identified in the proteomic data were plotted for each combination of time point and 160 

treatment (Figure S4). There was a positive, but weak correlation (R2=0.07–0.11) between the 161 

normalized protein and transcript expression levels of proteins identified in the proteomic data 162 

across all samples, regardless of treatment or time point. 163 

 164 

A list of 138 genes associated with thermal stress in corals was compiled and used to further 165 

assess the correlation between transcript and protein expression (Table S1)16,20-23. Whereas this 166 

gene list is enriched for thermal stress-response genes, many general stress-response genes are 167 

also included in the target set. Only 55 of the stress-response genes have significant changes in 168 

either transcript or protein expression between the ambient and high temperature treated samples 169 

at any of the time points. As expected, TP3 and TP5 had more stress-response genes that are 170 

differentially expressed in the transcriptome (TP1 = 5/138; TP3 = 20/138; TP5 = 16/138), 171 

because these time points showed a change in the color score of the coral nubbins (Figure S1). 172 
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That is, the high temperature samples showed signs of thermal stress at these time points. TP3 173 

also showed more stress-response genes that are differentially expressed in the proteome (TP1 = 174 

8/138; TP3 = 29/138; TP5 = 6/138). There are only nine stress-response genes that are both a 175 

DEG and DEP, all of them are at TP3, and all of them have the same FC directionality in the 176 

transcriptome and proteome. Further, in the total proteome dataset there were 50 genes that are 177 

DEPs and DEGs at TP3, and only three didn’t share the same FC directionality. We chose to 178 

focus on the expression profile of genes at TP3 because it was the time point at which the corals 179 

showed signs of bleaching both in terms of their physiological and transcriptomic responses20, 180 

and TP1 because it showed little signs of bleaching and represents are more stable homeostatic 181 

state. Additionally, the samples from TP1 and TP3 were confirmed to be from the same 182 

genotype, which is not the case for TP5, which likely explains the lack of DEPs at this time 183 

point. At TP1, the majority of stress-response genes (80/138 [58%]) had transcript and protein 184 

FC values that were in the same direction (i.e., both positive, or both negative). At TP3, even 185 

more of the stress-response genes (92/138 [66.7%]) had transcript and protein FC values that 186 

were in the same direction. In the total proteome dataset, at TP1 2013/4036 (49.88%) and at TP3 187 

2250/4036 (55.75%) genes had FC values that were in the same direction. 188 

 189 

Polar metabolomic data 190 

The polar metabolomic dataset generated using positive ionization contained 11,649 peak 191 

features after normalization and filtering. Both supervised (sPLS-DS; Figure 3B) and 192 

unsupervised (PCoA and PCA; Figures 3A and S5, respectively) methods, when applied to the 193 

filtered metabolite features for a single M. capitata genotype (MC-289) show that samples group 194 

by time point and treatment, but without the clear separation (driven by a given factor) between 195 
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groups observed in the proteomic and transcriptomic ordination plots (i.e., the groups largely 196 

overlap; Figures 1 and S2). Combining the metabolomic data from all four genotypes into a 197 

single analysis does not change this result (Figure S6), with no separation observed between 198 

samples from the different genotypes. The PERMANOVA results show that time point and 199 

treatment contributed significantly (p-value < 0.05) to the variation in the metabolomic data. 200 

Genotype is a significant factor when data from all four M. capitata genotypes are analyzed, 201 

however, none of the interaction terms involving genotype or time point were significant (Table 202 

S3). 203 

 204 

Microbiome 16S rRNA data 205 

A total of 12,432 ASVs were produced from microbiome 16S rRNA sequencing data (Dataset S5 206 

[10.5281/zenodo.6861688]). The Kruskal-Wallis rank sum tests and pairwise comparisons using 207 

Wilcoxon rank sum tests revealed only time point as having a significant impact on a-diversity 208 

metrics (p-values = 0.00242 and 0.005086 for Shannon and Simpson metrics, respectively). 209 

Similarly, when investigating b-diversity, time point was the only significant factor found in 210 

ANOSIM tests and the most significant factor in PERMANOVA tests conducted on Bray-Curtis 211 

distance matrices (p-value = 0.01 and 0.009, respectively; Table S4). PSL-DA, PCA, and PCoA 212 

further demonstrates that bacterial community compositions of the samples are quite dissimilar, 213 

even among replicate samples from the same treatment, time point, and genotype (Figures 4, S7, 214 

and S8). In addition, we find an increase in the a-diversity of the samples from each of the four 215 

genotypes over time until TP3 (Figure S9). This trend is also reflected in the pairwise Wilcoxon 216 

tests between the Field vs. TP3 and TP1 vs. TP3 time points, which have significant (p-value < 217 

0.05) associations for the Observed and Simpson's metrics. This increase in diversity metrics 218 
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between TP3 and earlier time points can also be observed in the abundances of bacterial phyla 219 

across the samples from the four genotypes (Figure S10; Table S5). 220 

 221 

Correlation between the microbiome and metabolome datasets 222 

At the phylum, class, and order levels, the only significant correlation (r = 0.70785488; p-value 223 

= 5.503 x 10-8, 1.276 x 10-7, 3.389 x 10-7, respectively) that was found is between 224 

Marinimicrobia (SAR406 clade) and compound 10951 (m/z = 456.11676, rt = 1.613358; Table 225 

1). At the family level significant correlations were found again between Marinimicrobia and 226 

compound 10951 (r = 0.70785488, p-value = 5.82 x 10-7). Weaker but significant correlations 227 

were also found between compound 9802 (m/z = 200.961411, rt = 5.271) and family LWQ8 228 

(Patescibacteria phylum; r = 0.567811104, p-value = 0.044185845), as well as between 229 

compound 11436 (m/z = 596.334717, rt = 6.351) and family Coleofasciculaceae (cyanobacteria; 230 

r = 0.565262299, p-value = 0.044185845). 231 

 232 

Discussion 233 

Discordance between coral animal transcript and protein abundance 234 

Analyses conducted using a single M. capitata genotype shows that the expression patterns of 235 

validated coral animal proteins and transcripts are strongly influenced by the time point and 236 

treatment at which the samples were collected (Figures 1 and S2). Whereas there are no factors 237 

that have significant effects on the proteomic and transcriptomic datasets (Table S3), time point 238 

did have the lowest significance values compared to treatment (also observed with the 16S 239 

microbiome and metabolome data). This is unsurprising given the strong association between the 240 

field, ambient (all time points), and TP1 high temperature treated samples in the ordination plots 241 
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(Figures 1 and S2). There is relatively little variation between samples from the same treatment 242 

group in the proteomic data compared to the transcriptomic data. This increased variation in gene 243 

expression at the transcript level could result from environmental and temporal (i.e., treatment) 244 

factors acting on the large number of genes detected in this dataset, as well as the dynamic 245 

feedback between transcripts and proteins (discussed in more detail in a later section) and 246 

inherent “noise” in the expression of genes in the genome24,25. In contrast, environmental factors 247 

have a less significant impact on the proteomic data. It is noteworthy that many of the proteins 248 

detected in this dataset are critical for cellular function (supported by their higher rate of KO 249 

number assignment) and large changes in their abundance would likely be harmful or potentially 250 

fatal to the organism. This suggests that transcriptome data capture the corals immediate 251 

response to stress, whereas proteome data capture the longer-term response of the animal and are 252 

less impacted by gene expression variation. 253 

 254 

Interestingly, when the same approaches (i.e., PCoA, PLS-DA, and PCA) are applied to the data 255 

from transcripts with proteomic evidence, the relative positioning of the different sample groups, 256 

and the level of variation between samples within each group, are highly similar to the full 257 

transcriptomic data set (Figures 1 and S2), though some clear differences are apparent (such as 258 

the positioning of the T1-Amb and Field samples in Figure S2C). This suggests that while the 259 

proteomic and transcriptomic datasets are both informative about the coral thermal stress 260 

response, they are differently impacted by external factors and have different expression 261 

dynamics that lead to a disconnect between the observed stress response of the same gene in both 262 

datasets (Figure 2; Table S1). Furthermore, despite the fact that transcripts and proteins from the 263 

same gene exhibit a weak but positive correlation, in terms of the magnitude of their 264 
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accumulation (Figure S4), which is consistent with previous observations26, the FC of their 265 

normalized expression levels between ambient and high temperature conditions for each time 266 

point differ significantly (Figure 2). The change in distribution of genes along both axes over the 267 

time points, specifically the spread of genes in Q1 and Q3 at TP3 compared to TP1, suggests that 268 

the link between protein and transcript FC may be stronger under stress, although there are still a 269 

significant number of genes with conflicting FC values (i.e., those in Q2 and Q4). That is, when 270 

the organism is not under thermal stress (i.e., TP1) the system is at homeostasis in both the 271 

ambient and high temperature samples, with stable rates of protein and transcript degradation and 272 

synthesis. Under these conditions the effects of micro-environmental (i.e., specific to each 273 

sample) and expression noise will have greater effects, leading to the weaker correlation between 274 

the FC of the two datasets. When the organism is under stress, protein degradation (observed in 275 

Aiptasia under thermal stress27) and differential regulation of stress-related genes moves the 276 

system out of homeostasis, increasing the differences between the ambient and high temperature 277 

treatment groups. The increased differential expression of proteins under these conditions has a 278 

corresponding effect in the transcriptome (e.g., transcript expression increases to accommodate 279 

increased protein syntheses, which is a result of increased protein degradation), which results in 280 

the increased correlation between the FC of the two datasets. This is apparent, given the 281 

differences between TP1 and TP3, specifically the number of DEPs and DEGs, the FC 282 

magnitudes, and the distribution of points in Q1 and Q3. Furthermore, the increase in the number 283 

of genes with FC values with shared directionality (i.e., both positive or both negative in the 284 

transcriptomic and proteomic datasets) does increase at TP3 (from 52.75% to 59.3%) across all 285 

genes with proteomic evidence, with this effect even more pronounced in just the selected stress-286 

response genes (from 58% to 67.4%).  287 
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 288 

These results demonstrate that, in M. capitata, protein presence and abundance do not 289 

necessarily correlate to transcript expression, even for genes shown to be related to thermal stress 290 

(Table S1). However, this effect may be highly dependent on treatment conditions, with stress 291 

likely to result in stronger correlations. There are many well described processes that can lead to 292 

discordance between the proteome and transcriptome. For example, the shorter half-life of 293 

mRNA when compared to the encoded protein, particularly if the mRNA is modified or 294 

translationally enhanced (this might explain the genes in Q2). Post-transcriptional regulation, 295 

(RNA silencing via miRNA, increased transcript turnover, or transcriptional regulators), 296 

increased protein turnover (protein degradation, either deliberate or caused by misfolding), and 297 

protein buffering could also explain this discordance (and could explain the genes in Q4)26,28. 298 

This discordance is not surprising and is well characterized in model organisms29-32. Our results 299 

therefore demonstrate the utility of these omics datasets but underline why both transcript and 300 

protein abundance data are needed to gain a more meaningful understanding of coral biology.  301 

 302 

Our experimental design does not allow for the exploration of the lag between changes in the 303 

expression of a transcript and the corresponding change in protein abundance because the 304 

timescale of this study was days to weeks, which is typical of coral stress experiments. To 305 

explore this issue, transcript and protein abundances samples would need to be collected multiple 306 

times per hour. Regardless, our results demonstrate that at any given time, transcript abundance 307 

cannot be assumed to serve as an accurate proxy for protein abundance. Gene expression patterns 308 

can of course be used as biomarkers if they show a strong correlation with stress, however, 309 

proteomics or protein-specific assays are required to ascertain the true abundance of proteins. 310 
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These omics data layers have well developed and extensive tools and resources available, further 311 

enhancing their usefulness when applied to non-model systems. 312 

 313 

Multiple experimental factors affect polar metabolite levels 314 

Although the polar metabolomic samples did group by time point and treatment in the supervised 315 

(PLS-DA) and unsupervised (PCoA and PCA) ordination plots, the groups often overlap in the 316 

single genotype (MC-289) data set (Figures 3 and S5), and even more so when combining 317 

samples from all four genotypes (Figure S6). These results suggest that total metabolomic data, 318 

which includes compounds produced by all members of the coral holobiont, rather than only 319 

reflecting the effects of the major factors (i.e., time point and treatment) on the coral host, is 320 

significantly influenced by multiple aspects of the holobiont environment, including the complex 321 

interactions between the holobiont, host genotype, and the external environment, as well as 322 

stochastic and homeostatic processes acting on the holobiont. For example, metabolites such as 323 

nucleic acids, organic acids, and organooxygen compounds change very little when corals are 324 

exposed to thermal stress33. This may be an outcome of metabolic homeostasis in the holobiont, 325 

driving the regulation of the levels of these important compounds. In other words, significant 326 

changes in the abundance of these metabolites are likely to be deleterious (or even fatal) to the 327 

coral, and even under severe stress, their levels may not change significantly. In contrast, 328 

previous studies of metabolite data have shown that the accumulation of specific dipeptides (and 329 

other metabolites) is significantly correlated with increasing exposure to thermal stress in M. 330 

capitata and Pocillopora acuta, regardless of animal genotype18. The role of amino acids in 331 

stress signaling is well known in animal systems34. 332 

 333 
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Our study focused on small polar molecules which change rapidly in response to metabolic 334 

activity and exchange between the organism and its environment35. However, other extraction 335 

and analysis protocols, which target primary metabolites, such as lipids and fatty acids, can also 336 

provide complementary information about the health of the holobiont (particularly given that the 337 

algal symbionts may use lipids to transfer energy from photosynthesis to the host36). It should be 338 

noted that coral metabolomic data are challenging to interpret for a number of reasons: 1) the 339 

presence of many “dark” metabolites limits the utility of untargeted data18,37 (i.e., only a few 340 

hundred coral metabolites out of tens of thousands, if not hundreds of thousands, that are 341 

detected can be identified using available databases10); 2) the widely differing metabolite 342 

turnover rates necessitates a large number of sample replicates from the same colony to gain 343 

statistical significance; and 3) the inability to determine which holobiont component produces 344 

each metabolite. Aiptasia may offer an important avenue for addressing some of these problems 345 

because it can be maintained in aposymbiotic and symbiotic forms, allowing for the holobiont 346 

manipulation required to explore the production and use of specific metabolites.  347 

 348 

What are the factors that drive shifts in the microbiome profile? 349 

The holobiont microbiome amplicon data show little association with treatment (Figures 4, S7, 350 

and S8), but do show a significant (p-value < 0.05) change in a- and b-diversity metrics over the 351 

course of the study (Table S4). This result is likely not explained by a prokaryotic composition 352 

that reflects vastly different habitats of origin because these M. capitata colonies were collected 353 

from the same reef and the difference in the composition of the genotypes was not statistically 354 

significant (Table S4). Therefore, it is likely that change in the microbiome composition of 355 

samples over the experiment reflects multiple factors, including, gradual acclimation of the 356 
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samples to the indoor tank environment that used water drawn from Kāne‘ohe Bay. In addition, 357 

the constant turnover (shedding) of the coral mucus layer every few hours and selection for 358 

holobiont fitness may have homogenized the microbiome community in different colonies. 359 

Despite significant variability in the composition of the prokaryotic microbiome between 360 

different coral species, between species across a broad geographic range, and even across a 361 

single coral colony38, these prokaryotes likely play an important role in coral biology and the 362 

holobiont response to stress39,40. 363 

 364 

The diversity of microbial species makes integration challenging 365 

The algal symbionts were not considered when analyzing both the transcriptomic and proteomic 366 

data due to the lack of reference genomes for these diverged taxa and because there are different 367 

combinations of species present in the samples (making it challenging to reconstruct the gene 368 

inventory from the available RNA-seq data)41. Similarly, microbial-associated proteomics data 369 

were not included due to the challenges associated with compiling a metaproteome from 370 

reference genomes generated from unrelated environments. Traditional LC-MS/MS approaches 371 

were established to measure single species with high quality databases, such as reference 372 

genomes42. We had attempted to create a database of microbial proteins, using algal transcripts 373 

constructed from the transcriptome data and reference genomes from species closely related to 374 

those present in the 16S-rRNA data, however, it was too large and highly redundant. Although, 375 

microbial and symbiont metaproteomic analysis is vital for elucidating holobiont physiological 376 

response and ability to adapt to stress, the variability in species composition across samples 377 

makes it difficult to develop robust markers of holobiont health. Therefore, we advocate for a 378 
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focus on data that can be unambiguously targeted from the coral to provide a more robust 379 

platform for assessing coral stress response and development of markers of coral health. 380 

 381 

Correlation analysis between the microbiome and metabolomic data returned very few candidate 382 

associations. This is not surprising, given the high variability observed in the microbiome and 383 

metabolome, but it does highlight the challenges associated with integrating these datasets in 384 

complex holobiont systems. It is also noteworthy that the identified associations were between 385 

metabolites with unknown structures and groups of bacteria that are poorly characterized with 386 

only very basic, general characteristic described: Coleofasciculaceae (cyanobacteria) are 387 

photosynthetic and may contribute to energy production in the coral holobiont, Patescibacteria 388 

form symbiotic associations with other organisms in the environment43, and Marinibacteria are 389 

thought to participate in sulfur cycling44 and syntrophic degradation of amino acids45. Without 390 

knowledge of metabolite structure and function, and the ecological role of each bacterial strain 391 

identified by this analysis, it is difficult to draw biologically meaningful conclusions from this 392 

analysis. This further highlights the challenges and areas where additional resources are required 393 

for coral multi-omics analysis. Additionally, given that metabolite levels are affected by the 394 

proteins encoded by the bacterial species, and not the species themselves, future studies should 395 

focus on studying shifts in the bacterial protein inventory between samples, rather than 396 

taxonomic profiles. 397 

 398 

Consideration with respect to experimental design 399 

Lastly, experimental design is integral to the successful utilization of multi-omics data; whereas 400 

large samples size is generally seen as a requirement, smaller sample sizes should not be viewed 401 
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as a weakness in all cases. Although the number of samples included in our analysis was small, 402 

we prioritized using nubbins from a controlled set of coral colonies (i.e., a limited set of coral 403 

genotypes) to mute the impact of genotype on multi-omics data46. Furthermore, the unintentional 404 

sequencing of two samples with different genotypes demonstrates the effect of genotype on 405 

omics data, particularly proteomic data. Samples from the same genotype show limited variation 406 

in the proteome data when compared to the single sample from a different genotype (also 407 

observed by Mayfield, et al. 47). In contrast, the samples from different genotypes in the 408 

transcriptomic data often (but not always) have higher than expected variation, but this is masked 409 

by the greater overall change in these datasets. These results are consistent with the idea that 410 

different omics datasets have very different dynamics, specifically, proteomic data are under 411 

homeostatic constraints and change very little, whereas transcriptomic data are far more 412 

impacted by local environmental shifts. Additionally, given that there are practical and 413 

regulatory restrictions on the size of samples that can be collected from coral colonies, there was 414 

a limit on the number of nubbins which could be generated from each colony, and therefore how 415 

many samples from which data could be generated. This is particularly true for multi-omics 416 

studies, which require all omics data to be derived from the same samples48, therefore nubbins 417 

must be large enough to allow for extraction of DNA, RNA, metabolites, and/or proteins. Small, 418 

highly controlled experiments, such as presented here with MC-289, allow for the same 419 

genotypes to be tracked across the treatments and time points, providing a useful platform to 420 

assess the different data types (i.e., free from any genotypic affects). 421 

 422 

Conclusion 423 
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In summary, transcriptomic and proteomic data are weakly positively correlated and provide 424 

useful (albeit, often conflicting) insights into coral biology49. Metabolomics data, which assesses 425 

intermediates and end products of cellular regulatory processes suffers from limited knowledge 426 

about the diversity of cnidarian metabolites and complex turnover processes (i.e., production vs. 427 

utilization). This aspect makes these results more challenging to interpret and integrate with 428 

other omics data, although stress markers which demonstrate consistent correlation with stress 429 

(e.g., dipeptides) have been identified. The usefulness of the M. capitata coral microbiome 430 

amplicon data is less obvious and will require coral specific databases and other types of omics 431 

analysis50 to provide the needed insights. Our study leads to three major conclusions about coral 432 

multi-omics data: 1) it is critical to constrain experiments with respect to genotype and treatment 433 

conditions to minimize genetic or stochastic variation in omics data. This applies particularly to 434 

the metabolomic and microbiome analyses, because these data show a more complex pattern of 435 

variation; 2) there is an urgent need for high-quality reference genomes for all members of the 436 

holobiont to facilitate analysis of meta-transcriptome and meta-genome data to elucidate biotic 437 

interactions; and 3) these experiments need to be done with multiple coral species, with 438 

dissimilarities expected in how informative the omics layers will be about fundamental processes 439 

due to differences in the underlying genetic structure, holobiont composition, and local 440 

adaptation of lineages. Accordingly, the M. capitata results do not capture the vast phylogenetic 441 

and metabolic diversity implicit in the term “corals”51. 442 

 443 

Limitations of the study 444 

The results of this study are based on analysis of one or four genotypes of a single coral species 445 

under controlled conditions. Additional analysis, using different species and conditions, is 446 
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needed to continue characterizing the connection between the different omics layers in corals. 447 

That is, to determine if the patterns that we observed in a single species hold across a driver 448 

range of corals and if the magnitude of the disconnect between the omics layers is the same 449 

across species or if it varies in a predictable manner. 450 
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Figures 676 

 677 

Figure 1. Relationship between proteomic and transcriptomic samples from one genotype (MC-678 

289) of M. capitata. PCoA plots generated using the (A) proteomic data, (B) transcriptomic data, 679 

and (C) transcripts with proteomic evidence, respectively. PCoA plots are based on Bray-Curtis 680 

distances between all samples in the corresponding dataset. The shape of each point corresponds 681 

to the treatment (ambient, high temperature, or field samples) and the color corresponds to the 682 
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treatment and time point at which each sample was collected; a legend with this information is 683 

shown in the bottom right corner of the image. Samples from the same condition are grouped 684 

with colored ellipses. The amount of variance explained by each axis in each plot is displayed in 685 

parentheses. Samples derived from mislabeled genotypes are annotated with their respective plug 686 

IDs (2998 for MC-289_T5-HiT_2998 and 1721 for MC-289_T5-Amb_1721).  687 
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 688 

Figure 2. Differences in protein and transcript expression FC for each gene identified in the MC-689 

289 proteomic data (n = 4036). Fold change of transcripts (x-axis) and protein (y-axis) 690 

expression values between high vs. ambient temperature samples for time points (A) TP1, (B) 691 

TP3, and (C) TP5. Each plot is divided into four quadrants (Q1-Q4), Q1 contains genes with 692 

positive protein and transcript FC values, Q2 contains genes with positive protein and negative 693 
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transcript FC values, Q3 contains genes with negative proteins and transcript FC values, and Q4 694 

contains genes with negative protein and positive transcript FC values. The fold change values 695 

for all genes across the three time points are presented in Table S1. A trend line (red) is fitted 696 

through the data with associated R2 value and line formula shown in the top left corner.  697 
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 698 
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Figure 3. Relationship between metabolomic samples from one genotype (MC-289) of M. 699 

capitata presented as (A) PCoA and (B) PLS-DA plots. The PCoA plot is based on the Bray-700 

Curtis distances between all samples in the data set. The shape of each point corresponds to the 701 

treatment (i.e., ambient, high temperature, or field) and the color corresponds to the treatment 702 

and time point at which each sample was collected; a legend with this information is shown on 703 

right of the image. Samples from the same condition are grouped with colored ellipses. The 704 

amount of variance explained by each axis in each plot is displayed in parentheses. Samples 705 

derived from mislabeled genotypes are annotated with their respective plug IDs (2998 for MC-706 

289_T5-HiT_2998 and 1721 for MC-289_T5-Amb_1721).  707 
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 708 

Figure 4. Relationship between 16S microbiome samples from one genotype (MC-289) of M. 709 

capitata presented as a PCoA plot based on Bray-Curtis distances. The color of each point 710 

corresponds to the treatment and time point at which each sample was collected; a legend with 711 

this information is shown on right of the image. Samples from the same condition are grouped 712 

with colored ellipses. The amount of variance explained by each axis in each plot is displayed in 713 

parentheses. Samples derived from mislabeled genotypes are annotated with their respective plug 714 

IDs (2998 for MC-289_T5-HiT_2998 and 1721 for MC-289_T5-Amb_1721).  715 
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Tables 716 

Family groupID 9802 groupID 10951 groupID 11436 

Coleofasciculaceae -0.074 -0.084 0.565 (0.044) 

LWQ8 0.568 (0.044) 0.137 -0.076 

Marinimicrobia (SAR406 clade) 0.008 0.708 (5.82 x 10-7) 0.193 

Table 1. Spearman correlation coefficients for those bacterial families for which significant 717 

correlations with metabolites were found.  718 

Adjusted p-values for significant correlations are provided in bold within parenthesis after the 719 

correlation coefficient.  720 
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STAR Methods 721 

Resource availability 722 

Lead contact 723 

Further information and requests for resources and reagents should be directed to and will be 724 

fulfilled by the lead contact, Timothy Stephens (ts942@sebs.rutgers.edu). 725 

 726 

Materials availability 727 

This study did not generate new unique reagents. 728 

 729 

Data accessibility 730 

• The metabolomic data used in this study were generated and preprocessed by Williams, 731 

et al. 18 and is available as Supplementary Data files associated with that publication. The 732 

RNA-seq read data used in this study were generated and preprocessed by Williams, et al. 733 

20 and are available under NCBI BioProject ID: PRJNA694677. The proteomic data 734 

generated by this study are available from MassIVE under the ID MSV000088443. The 735 

microbiome 16S rRNA sequencing data generated by this study are available under NCBI 736 

BioProject ID PRJNA783340. Processed transcript, protein, 16S rRNA, and metabolite 737 

abundances are available as supplemental datasets from Zenodo 738 

(https://doi.org/10.5281/zenodo.6861688). 739 

• All original code has been deposited at GitHub and is publicly available as of the date of 740 

publication. The link is listed in the key resources table. 741 

• Any additional information required to reanalyze the data reported in this paper is 742 

available from the lead contact upon request. 743 
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Method details 744 

Overview of experimental design 745 

The methods for M. capitata colony collection, cultivation, and the design of the heat stress 746 

experiment are described in Williams, et al. 18. Briefly, four colonies (genotypes) of M. capitata 747 

(designated genotypes MC-206, MC-248, MC-289, and MC-291) were collected from Kāne‘ohe 748 

Bay, HI, (under SAP 2019-60), and fragmented into 30 pieces before being fixed to labeled plugs 749 

using hot-glue. The 30 nubbins from each genotype were randomly distributed across tanks that 750 

were supplied with a steady flow of water directly from the bay. The temperature of the tanks 751 

was controlled by heaters and lights were used to simulate a 12-hour light/12-hour dark cycle. 752 

The nubbins were left to acclimate at ambient temperature (~27 °C) for 5 days before the high-753 

temperature treatment tanks were increased by ~0.4 °C every 2 days for a total of 9 days, until 754 

they were between 30.5-31.0 °C. The treatment (hereinafter, high temperature) tanks were held 755 

at ~30.5 °C and the control (hereinafter, ambient temperature) tanks at ~ 27.5 °C until the end of 756 

the experiment, which lasted an additional 16 days. The temperature of 30.5˚C was chosen for 757 

thermal stress because it is the expected range for natural warming events in Kāne‘ohe Bay52. 758 

Three nubbins per genotype (n=3 replicates) were collected at five time points (TP1-5) during 759 

the experiment, however, only samples from TP1 (after temperature ramp-up was complete), 760 

TP3 (at the onset of bleaching; 13 days after TP1), and TP5 (on last day of the experimental 761 

period; 17 days after TP1) were processed for multi-omics analysis. Bleaching progression was 762 

monitored using color scores53 generated for the ambient and stress treated nubbins at each of the 763 

five time points (Figure S1)18. The samples collected at each time point were flash-frozen in 764 

liquid N2 and stored at –80 °C; each frozen sample was divided into subsamples which were 765 

processed for a different multi-omics method. Three nubbins were also collected from the same 766 
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coral colonies in Kāne‘ohe Bay (hereinafter, field samples), flash frozen in liquid N2, and stored 767 

at –80 °C. These frozen field samples were processed for multi-omics using the same protocols 768 

applied to the time-point samples. Samples from all four colonies/genotypes were used for 769 

metabolomics (published in Williams, et al. 18) and 16S-rRNA microbiome (published in this 770 

study) analysis; samples from colony MC-289 were used for RNA sequencing (published in 771 

Williams, et al. 20) and proteomic analysis (published in this study). The choice to focus on just a 772 

single genotype for RNA sequencing and proteomic analysis was based on resource constraints 773 

associated with the project. 774 

 775 

Proteomic data 776 

Proteomic data were generated for MC-289 from two out of the three replicate nubbins per time 777 

point (TP1, TP3, and TP5) per condition (including field samples). The proteins were extracted 778 

using a protocol adapted from Stuhr, et al. 54. The lysis buffer comprised 50 mM Tris-HCl (pH 779 

7.8), 150 mM NaCl, 1% SDS, and cOmplete, Mini EDTA-free Tablets. One gram of each 780 

sample was ground in a mortar on ice with 100 μl of lysis buffer. The sample was then 781 

transferred to a 2mL Eppendorf tube, with an additional 50 μl of lysis buffer used to wash the 782 

mortar, for a total lysate volume of 150 μl. Each sample was vortexed for 1 min, stored on ice for 783 

30 min, and clarified by centrifugation at 10,000 rcf for 10 min (4 °C). Protein concentrations 784 

were measured using the Pierce 660-nm Protein Assay. Thereafter, 40 µg of each sample was run 785 

on an SDS-PAGE gel, with slices collected and incubated at 60 °C for 30 min in 10 mM 786 

Dithiothreitol (DTT). After cooling to room temperature, 20 mM iodoacetamide was added to 787 

the gel slices before they were kept in the dark for 1 hour to block free cysteine. The samples 788 

were digested using trypsin at a concentration of 1:50 (w:w, trypsin:sample) before being 789 
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incubated at 37 °C overnight. The digested peptides were dried under vacuum and washed with 790 

50% acetonitrile to pH neutral. The digested peptides were labeled with Thermo TMT6plex (Lot 791 

#: UF288619) following the manufacturer’s protocol, before being pooled together at a 1:1 ratio. 792 

The pooled samples were dried and desalted with SPEC Pt C18 (Agilent Technologies, A57203) 793 

before fractionation using an Agilent 1100 series machine. The samples were solubilized in 250 794 

µl of 20 mM ammonium (pH10), and injected onto an Xbridge column (Waters, C18 3.5 µm 795 

2.1X150 mm) using a linear gradient of 1% buffer B/min from 2-45% of buffer B (B: 20 mM 796 

ammonium in 90% acetonitrile, pH10). UV 214 was monitored while fractions were collected. 797 

Each fraction was desalted55 and analyzed by LC-MS/MS. 798 

 799 

Nano-LC-MSMS was performed using a Dionex rapid-separation liquid chromatography system 800 

interfaced with an Eclipse (Thermo Fisher Scientific). Selected desalted fractions 28-45 were 801 

loaded onto an Acclaim PepMap 100 trap column (75 µm x 2 cm, ThermoFisher) and washed 802 

with 0.1% trifluoroacetic acid for 5 min with a flow rate of 5 µl/min. The trap was brought in-803 

line with the nano analytical column (nanoEase, MZ peptide BEH C18, 130A, 1.7µm, 75µm x 804 

20cm, water) with a flow rate of 300 nL/min using a multistep gradient: 4% to 15% of 0.16% 805 

formic acid and 80% acetonitrile in 20 min, then 15%–25% of the same buffer in 40 min, 806 

followed by 25%–50% of the buffer in 30 min. The scan sequence began with an MS1 spectrum 807 

(Orbitrap analysis, resolution 120,000, scan range from 350–1600 Th, automatic gain control 808 

(AGC) target 1E6, maximum injection time 100 ms). For SPS3, MSMS analysis consisted of 809 

collision-induced dissociation (CID), quadrupole ion trap analysis, automatic gain control (AGC) 810 

2E4, NCE (normalized collision energy) 35, maximum injection time 55ms, and isolation 811 

window at 0.7. Following acquisition of each MS2 spectrum, we collected an MS3 spectrum in 812 
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which 10 MS2 fragment ions are captured in the MS3 precursor population using isolation 813 

waveforms with multiple frequency notches. MS3 precursors were fragmented by HCD and 814 

analyzed using the Orbitrap (NCE 55, AGC 1.5E5, maximum injection time 150 ms, resolution 815 

was 50,000 at 400 Th scan range 100-500). The whole cycle is repeated for 3 seconds before 816 

repeating from an MS1 spectrum. Dynamic exclusion of 1 repeat and duration of 60 sec was 817 

used to reduce the repeat sampling of peptides. LC-MSMS data were analyzed with Proteome 818 

Discoverer 2.4 (ThermoFisher) with the sequence search engine run against the protein 819 

sequences of the genes predicted in the published M. capitata genome19 and a database that 820 

consisted of common lab contaminants. The MS mass tolerance was set at ± 10 ppm, MSMS 821 

mass tolerance was set at ± 0.4 Da for the proteome. TMTpro on C and N-terminus of peptides 822 

and carbamiodomethyl on cysteine was set as static modification. Methionine oxidation, protein 823 

N-terminal acetylation, protein N-terminal methionine loss or protein N-terminal methionine loss 824 

plus acetylation were set as dynamic modifications for proteome data. Percolator was used for 825 

results validation. Concatenated reverse database was used for the target-decoy strategy. 826 

 827 

For reporter ion quantification, the reporter abundance was set to use the signal/noise ratio (S/N) 828 

only if all spectrum files had S/N values, otherwise, intensities were used instead of S/N values. 829 

The quant value was corrected for isotopic impurity of reporter ions. Co-isolation threshold was 830 

set at 50%. The average reporter S/N threshold was set to 10 and the SPS mass matches percent 831 

threshold was set to 65%. The protein abundance of each channel was calculated using summed 832 

S/N of all unique and razor peptides. Finally, the abundance was further normalized to a summed 833 

abundance value for each channel over all peptides identified within a file (Dataset S1 834 

[10.5281/zenodo.6861688]). Only peptide sequences from genes predicted in the M. capitata 835 
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genome were used in this study. Proteins with a false discovery rate (FDR) < 0.01 and were 836 

considered “high” confidence, and proteins with a FDR ≥ 0.01 but < 0.05 were considered 837 

“medium” confidence. Differentially expressed proteins (DEPs; p-value < 0.05) were identified 838 

between the ambient and high temperature treatments for each time point using the stats v4.1.2 839 

and mixOmics v6.18.156 R packages. Adjusted p-values were not used for this analysis due to the 840 

low number of replicates per condition. 841 

 842 

Polar metabolomic data 843 

Polar metabolite data were generated for each of the four genotypes across the three analyzed 844 

time points, two treatment conditions, and field colonies (n=3). The methods used for polar 845 

metabolite extraction and analysis are described in Williams, et al. 18. Briefly, metabolites were 846 

extracted from each sample with a 40:40:20 (MeOH: ACN: H2O + Formic Acid) extraction 847 

buffer and followed a protocol optimized for the extraction of water-soluble polar metabolites; 848 

the resulting metabolite extracts were separated into phases using hydrophilic interaction liquid 849 

chromatography (performed on a Vanquish Horizon UHPLC system). A Thermo Fisher 850 

Scientific Q Exactive Plus was used for the full-scan MS analysis and to generate the MS2 851 

spectra. The resulting metabolite data was analyzed using El Maven57. Peaks that had ion counts 852 

above 50,000 (before normalization) were retained. The metabolite profiles for all samples were 853 

aligned using OBI-Warp. The metabolite intensities were normalized using the frozen weights of 854 

each sample (Dataset S2 [10.5281/zenodo.6861688]). Metabolites in the resulting list were 855 

filtered, retaining only those with 48 good peaks and a maxQuality score of 0.8, and a total ion 856 

count of ≥ 1000 across all samples. These filtered and normalized peaks were used for 857 

downstream analysis and to generate total metabolite counts. 858 
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 859 

Transcriptomic data 860 

RNA-seq data was generated for MC-289 across the three analyzed time points, two treatment 861 

conditions, and field colony (n=3). The methods for cDNA library preparation, sequencing and 862 

data analysis are detailed in Williams, et al. 20. Briefly, a Qiagen AllPrep DNA/RNA/miRNA 863 

Universal Kit was used to extract RNA from the (crushed) frozen samples; a TruSeq RNA 864 

Sample Preparation Kit v2 was used to generate strand specific cDNA libraries that were 865 

sequenced on a NovaSeq (2x150 bp) machine. This protocol included a poly-A selection step, 866 

which enriched for transcripts from eukaryotic cells and depleted those from the prokaryotic 867 

microbiome. RNA-seq reads were trimmed for low quality bases and adapters using 868 

Trimmomatic v0.3858; read pairs where both mates survived trimming were used to quantify 869 

(using Salmon v1.1059) the expression levels of the genes predicted in the M. capitata genome19 870 

(Dataset S3 [10.5281/zenodo.6861688]). Differentially expressed genes (DEGs; adjusted p-value 871 

< 0.05) were identified between the ambient and high temperature treatments at each time point 872 

by the DESeq2 v1.34.060 R package using the aligned read counts produced by Salmon. The 873 

Transcripts Per Million (TPM) normalized expression values produced by Salmon were used for 874 

all downstream visualization and ordination analyses. Transcripts with a cumulative TPM > 100 875 

(i.e., > 100 TPM summed across all samples) were used for the ordination and statistical analysis 876 

described below. 877 

 878 

Microbiome data 879 

Microbiome V3-V4 hypervariable region 16S-rRNA sequencing data were generated for each of 880 

the four genotypes across the three analyzed time points, two treatment conditions, and for the 881 
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field colonies (n=3). The cells in each sample were lysed using liquid nitrogen and mechanical 882 

grinding. Total DNA was isolated using a Qiagen AllPrep DNA/RNA/miRNA Universal Kit, 883 

following the manufacturer’s instructions (Table S6). The 16S-rRNA amplicon sequencing 884 

libraries were prepared as per Illumina’s instructions61, using primers designed for the V3 and 885 

V4 hypervariable region (Forward Primer: 5'-886 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG; Reverse 887 

Primer: 5'-888 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC), 889 

the Nextera XT library preparation kit, and dual indexes (i7 and i5). The PCR mix and 890 

thermocycler conditions are listed in Illumina’s instructions61. A negative control was run along 891 

with the samples to ensure there was no contamination in the PCR mix. The libraries were 892 

pooled together and a 20% PhiX spike-in was added. Quality control was performed using a 893 

Qubit fluorometer and an Agilent Bioanalyzer, with the target library length being ~600 bp. 894 

Libraries were sequenced by Genewiz on an Illumina MiSeq (2x300 bp) machine (Table S7). 895 

Raw reads were trimmed for quality and removal of primer sequence using Cutadapt62. Quality 896 

trimming and filtering, denoising, merging and chimera removal, and amplicon sequence variant 897 

[ASV] feature table construction were carried out using the QIIME 2 2021.463 plug-in for 898 

DADA264. Taxonomic assignment was carried out with QIIME2 against the SILVA 16S-rRNA 899 

database (release 138)65. The initial ASV feature table derived from the trimmed reads (Dataset 900 

S4 [10.5281/zenodo.6861688]) was filtered, removing ASV that were: (1) too short (< 390 901 

bases); (2) did not have unambiguous taxonomic assignments to at least the phylum-level; (3) 902 

had taxonomic assignments of “Archaea”, “Chloroplast” or “Mitochondria”; and (4) had a 903 

frequency of < 20 reads across all 83 samples (Table S8; Dataset S5 [10.5281/zenodo.6861688]). 904 
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The < 20 reads cutoff was chosen based on similar filtering approaches deployed in other 905 

studies66. These studies, which often consisted of < 30 samples, used cutoffs of < 10 reads, 906 

therefore, to account for the larger number of samples in our analysis, a cutoff of 20 reads was 907 

chosen. Per-sample ASV counts were rarefied prior to a- and b-diversity analysis. Shapiro-Wilk 908 

tests of Shannon and Simpson α-diversity metrics show that the data are non-normal (p-value < 909 

0.01). Analyses of a- and b-diversity were carried out in R using the phyloseq67, stats, and 910 

vegan68 packages. To visualize b-diversity, samples were rarefied to 39,902 reads per sample 911 

(chosen by rarefaction analysis to minimize loss of data) using the rarefy_even_depth function in 912 

the phyloseq67 R package, after which the Bray-Curtis distances between samples were 913 

calculated using the distance function.  914 

 915 

The psych v2.2.369 R package was used to determine whether significant correlations exist 916 

between the 16S-rRNA amplicon and metabolite data. Amplicon count data were agglomerated 917 

by taxon at multiple taxonomic ranks—from phylum to genus—for testing using the tax_glom 918 

function within the phyloseq package. Pairwise correlations using the Spearman method, as well 919 

as adjustment of p-values using the Benjamini-Hochberg method, were performed on both raw 920 

and normalized (by relative abundance) quantifications using the corr.test function. Correlations 921 

were retained for further analysis if the associated adjusted p-value was less than 0.05. 922 

Furthermore, because Spearman rank correlation analyses are sensitive to low values, only taxa 923 

with greater than 200 observations across all samples were considered. Correlations were 924 

visualized with correlation plots and histograms, generated using the chart function in the 925 

PerformanceAnalytics v2.0.470 R package. 926 

 927 
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Gene functional annotation 928 

Functional assignment of the M. capitata proteins was done using eggNOG-mapper (v2.1.6; --929 

pfam_realign denovo; database release 2021-12-09)71,72 and a DIAMOND search (v2.0.15; 930 

blastp --ultra-sensitive --max-target-seqs 1000)73 against the NCBI nr database (release 931 

2022_07). eggNOG-mapper was also used to assign KEGG orthologous numbers (KO numbers). 932 

 933 

Proportion of shared SNPs between transcriptome samples 934 

The proportion of single nucleotide polymorphisms (SNPs) shared between each pairwise 935 

combination of transcriptome samples was used to confirm that they were all derived from the 936 

same colony (genotype). Each sample was aligned against the M. capitata reference genome19 937 

using STAR (v2.7.8a; --sjdbOverhang 149 --twopassMode Basic)74. Read-group information was 938 

extracted from the read names using rgsam (v0.1; https://github.com/djhshih/rgsam; --qnformat 939 

illumina-1.8) and added to the aligned reads using gatk FastqToSam and gatk 940 

MergeBamAlignment (--INCLUDE_SECONDARY_ALIGNMENTS false --941 

VALIDATION_STRINGENCY SILENT). Duplicate reads were removed using gatk 942 

MarkDuplicates (--VALIDATION_STRINGENCY SILENT) before reads that spanned intron-943 

exon boundaries were split using gatk SplitNCigarReads (default). Haplotypes were called using 944 

gatk HaplotypeCaller (-dont-use-soft-clipped-bases -ERC GVCF), with the resulting GVCF files 945 

(one per sample) combined using gatk CombineGVCFs before being jointly genotyped using 946 

gatk GenotypeGVCFs (-stand-call-conf 30)75. The resulting variant were filtered for indels, sites 947 

with low average reads coverage across all samples, and sites without called genotypes across all 948 

samples using vcftools (v0.1.17; --remove-indels --min-meanDP 10 --max-missing 1.0)76. The 949 

“vcf_clone_detect.py” script (from https://github.com/pimbongaerts/radseq; retrieved June 12th, 950 
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2021) was used with the filtered variants to compute the number of SNPs shared between each 951 

pair of samples. 952 

 953 

Correlation between gene expression and protein abundance 954 

The correlation between gene expression and protein abundance was assessed using the samples 955 

from MC-289. Only genes (n=4036) which were detected in the proteome data of at least one 956 

sample were used in this analysis (Table S1). The TPM-normalized gene expression and 957 

abundance-normalized protein counts were scaled using a log2 transformation (with an offset of 958 

1 to prevent infinite log values) before being plotted. The magnitude and directionality of the 959 

stress response of the genes detected in the proteome data was assessed using the log2 FC values 960 

computed during differential transcriptome and proteome expression analysis. 961 

 962 

PCA, PCoA, and PERMANOVA  963 

Principal component analysis (PCA), principal coordinate analysis (PCoA), and permutational 964 

multivariate ANOVA (PERMANOVA) were performed on the normalized metabolomic, 965 

transcriptomic (cumulative TPM > 100), proteomic, and 16S microbiome datasets. PCA was 966 

done using the prcomp function (center = FALSE, scale = FALSE) from the stats v4.1.2 R 967 

package. PERMANOVA tests were conducted on Bray-Curtis dissimilarity matrices using the 968 

adonis2 (permutations = 999, method = 'bray'; using replicate tank as the strata) and vegdist 969 

(method = 'bray') functions in the vegan v2.6-268 R package. Only 190 permutations were used 970 

for the proteomics PERMANOVA as this was the maximum value possible given the smaller 971 

number of samples in the dataset. When analyzing just the MC-289 samples, the PERMANOVA 972 

formula “TimePoint * Treatment” was used, when analyzing all genotypes, the formula 973 
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“TimePoint * Treatment * Genotype” was used. It should be noted that the most significant p-974 

value produced by this analysis is p = 0.001. PCoA was performed on the Bray-Curtis 975 

dissimilarity matrix using wcmdscale function (k = 2, eig = TRUE, add = "cailliez") from the 976 

vegan v2.6-568 R package. 977 

 978 

Sparse PLS-DA 979 

The machine-learning method, partial least squares-discriminant analysis (PLS-DA), was 980 

performed on the normalized metabolomic, transcriptomic (cumulative TPM > 100), and 981 

proteomic datasets using the splsda function (ncomp = 6, scale = FALSE, near.zero.var = TRUE) 982 

from the mixOmics v6.18.156 R package. For the 16S microbiome dataset, the perf function was 983 

used to evaluate the performance of PLS-DA using repeated k-fold cross-validation (validation = 984 

"Mfold", nrepeat = 50). The tune function was then applied to determine the number of variables 985 

(1-1000) to select on each component for sparse PLS-DA (dist = 'max.dist', measure = "BER", 986 

nrepeat = 50), before the splsda function was run with the tuned number of components and 987 

variables per component. 988 

 989 

Quantification and statistical analysis 990 

The association between experimental factors and the variance in each of the omics datasets were 991 

assessed using permutational multivariate ANOVA (PERMANOVA) analysis run using 999 992 

permutations (except for the proteomic dataset which used 190 permutations due to the small 993 

number of samples in the dataset). Three replicate samples were available per condition, per time 994 

point, per genotype for the transcriptome, metabolome, and microbiome datasets; two replicate 995 
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samples were available per condition, per time point, per genotype for the proteome dataset. The 996 

results from this analysis are presented in Table S3 and S4. 997 


