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This work presents IMplicit-EXplicit (IMEX) formulations for discontinuous Galerkin (DG) 
discretizations of the compressible Euler equations governing non-hydrostatic atmospheric 
flows. In particular, we show two different IMEX formulations that not only treat the 
stiffness due to the governing dynamics but also the domain discretization. We present 
these formulations for two different equation sets typically employed in atmospheric 
modeling. For both equation sets, efficient Schur complements are derived and the 
challenges and remedies for deriving them are discussed. The performance of these IMEX 
formulations of different orders are investigated on both 2D (box) and 3D (sphere) test 
problems and shown to achieve their theoretical rates of convergence and their efficiency 
with respect to both mesoscale and global applications are presented.

Published by Elsevier Inc.

1. Introduction

The discontinuous Galerkin (DG) method has been used successfully for developing compressible Euler and Navier-
Stokes models. However, one of the main drawbacks of the method is that it is not competitive with either low-order 
or continuous (CG) methods due to the smaller time-step required for stability. It is well-known that high-order methods 
impose a more stringent Courant-Friedrichs-Lewy (CFL) condition compared to low-order methods (see, e.g., [1]). It is less 
clearly understood that most DG methods in the literature impose a more stringent CFL condition than CG methods; the 
reason is twofold: (1) upwind-based numerical fluxes move the eigenvalues from the imaginary to the real axis (since they 
add dissipation), requiring the time-integration method to be stable for such eigenspectra (e.g., Runge-Kutta methods satisfy 
this condition but neutrally stable methods do not); (2) most Godunov methods in use today (e.g., FV and DG methods) 
rely on one-dimensional numerical fluxes - this means that if the flow moves diagonally across a gridpoint then it must 
cross two element edges. If the numerical method is not constructed in such a manner to handle this situation (as in the 
evolutionary DG method described in [2]) then smaller time-steps are required. However, our experience has shown that 
using standard (one-dimensional fluxes that require a smaller time-step) give faster time-to-solution than more complicated 
fluxes such as those used in [2].
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In order to circumvent the stringent CFL condition imposed by explicit methods, researchers have explored implicit-
explicit (IMEX) methods. The first two such works found in the literature are by [3] and [4] where the authors begin 
with standard double Butcher tableaux whereby the stiff portion is handled implicitly while the non-stiff part is handled 
explicitly. In both works they begin with nonlinear handling of the stiff implicit part but in [3], the authors linearize the 
problem relying on a specific numerical flux while those in [4] maintain the nonlinear structure and use Newton’s method 
to linearize the problem and make use of the Jacobian-free Newton-Krylov method [5]. The work that we describe here 
continues the work first proposed in [6,7] where we rely on the linearization of the implicit nonlinear problem using a 
reference solution, typical of semi-implicit methods [8,9] used in the atmospheric modeling community. This approach has 
been recently analyzed in the so-called RS-IMEX method (the RS denotes the reference solution linearization) in [10–14]. Our 
goal is to complete the work that we began in [7] where we sought a Schur complement to the construction of the DG 
IMEX method but were only able to do so for a specific class of boundary conditions (namely, periodic in all directions). In 
what follows, we generalize this approach to reflection boundary conditions, although other types of boundary conditions 
are also possible. Furthermore, we show that the eigenvalues of the resulting Helmholtz-like operator resulting from the 
Schur complement are all real and positive, indicating that the resulting operator is symmetric positive-definite, similar to 
its CG counterpart (see, e.g., [6,15]); to our knowledge this is a new result and one which has repercussions on the class 
of preconditioners that are now applicable to this formulation. We then construct Schur complements for the full 3D-IMEX 
problem (when the grid is isotropic and the stiffness is due to all directions) as well as for the 1D-IMEX problem (when 
the stiffness results from one direction, as occurs along the vertical direction in geophysical fluid dynamics applications of 
atmospheric models).

The remainder of the paper is organized as follows: in Sec. 2 we discuss the two equation sets used which, using the 
naming convention from [6,16], we refer to as sets 2C and 3C. In Sec. 3 we describe the implicit-explicit time-integration 
strategy which is the main point of this paper, and describe both the No-Schur and Schur forms, where the former is 
the approach used by all previous works on IMEX DG formulations and the latter is the main contribution of this paper. 
Section 4 discusses the discontinuous Galerkin spatial discretization and the role that its numerical fluxes play in the 
construction of the No-Schur and Schur forms of the IMEX formulation. In Secs. 5 and 6 we compare the accuracy, stability, 
and efficiency of both the No-Schur and Schur forms for four test cases: the first two tests are standard test cases used to 
verify nonhydrostatic atmospheric models at the Large-Eddy-Simulation (LES) scale (O(100 m) grid resolutions), the third is 
used to verify models at the cloud-resolving scale (O(1 km) grid resolutions) and the fourth has been used previously for 
verification at global scales (O(100 km) grid resolutions). We summarize the paper in Sec. 7 and offer directions for future 
work.

2. Governing equations

This work presents semi-implicit formulations2 for two different equation sets often used in non-hydrostatic atmospheric 
modeling. We limit our discussions and formulations to equations sets in conservation form. The nomenclature that we use 
below was first defined in [16] where various forms of the Euler equations were defined, discretized, and compared. We only 
choose to discuss the equations in conservation form since these are the only practical options for using the discontinuous 
Galerkin method. We consider balance laws written in the form

∂q

∂t
+ ∇ · F = S (2.1)

where q, F, and S are vectors of prognostic, conserved variables and their total fluxes and sources, respectively. These vectors 
are defined in the subsequent sections.

2.1. Equation Set2C

This equation set is used in its conservation form in [17,18] and in non-conservation form in [15]. This equation set 
features the standard formulations for the continuity and momentum equations but utilizes the thermodynamic equation 
in terms of potential temperature. This can be advantageous in atmospheric modeling as this quantity is unaffected by the 
rising and sinking motion of the fluid over obstacles (such as mountains) or in large-scale atmospheric turbulence; the 
potential temperature is also a useful measure of the static stability of the atmosphere [19, Ch. 8]. One drawback of this 
equation set is that its derivation (from the first law of thermodynamics) assumes a constant composition atmosphere (i.e., 
gas constants remain constant); therefore, this equation set is not a good choice for atmospheric simulations reaching into 
the thermosphere. Another drawback (shown in [16]) is that the equation for computing pressure is expensive due to the 
required exponentials. This equation set is written as Eq. (2.1) with

2 We use the term semi-implicit to the refer to the construction of IMEX methods whereby we construct an explicit solution followed by an implicit 
correction.
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q2C =

⎛⎜⎜⎝
ρ

U

�

⎞⎟⎟⎠ , F2C =

⎛⎜⎜⎜⎜⎜⎜⎝

U

U⊗U

ρ
+ P I(

�

ρ

)
U

⎞⎟⎟⎟⎟⎟⎟⎠ , S2C =

⎛⎜⎜⎝
0

− (ρ∇φ + 2� ×U)

0

⎞⎟⎟⎠ , (2.2)

where the conserved, prognostic variables are (ρ,U,�), U = ρu = (ρu,ρv,ρw)T , � = ρθ is the potential temperature 
density, φ = gr is the geopotential height with g representing the gravitational constant and r representing the height 
coordinate (in flow-in-a-box, it is the Cartesian z-component and on the sphere it represents the radial coordinate), I is a 
rank-3 identity tensor, ⊗ is the tensor-product operator, and T is the transpose operator. The pressure P is given as

P = P A

(
R�

P A

)γ

(2.3)

where P A is the reference pressure at the surface (P A = 1 × 105 Pa), R = cp − cv is the specific gas constant, cp and cv
are the specific heats at constant pressure and volume, respectively, and γ = cp/cv is the ratio of specific heats. Introducing 
splitting about some reference field for density, ρ (x, t) = ρ0 (r) +ρ ′ (x, t), pressure, P (x, t) = P0 (r) + P ′ (x, t), and potential 
temperature, � (x, t) = �0 (r)+�′ (x, t) where the reference values (ρ0, P0,�0) are in hydrostatic balance (∇ P0 = −ρ0∇φ), 
Eq. (2.2) can be written in perturbation form as Eq. (2.1) with q := q′

2C , F := F′
2C and, S := S′

2C defined as

q′
2C =

⎛⎜⎜⎝
ρ ′

U

� ′

⎞⎟⎟⎠ , F′
2C =

⎛⎜⎜⎜⎜⎜⎜⎝

U

U⊗U

ρ
+ P ′I(

�

ρ

)
U

⎞⎟⎟⎟⎟⎟⎟⎠ , S′
2C =

⎛⎜⎜⎝
0

− (
ρ ′∇φ + 2� ×U

)
0

⎞⎟⎟⎠ . (2.4)

2.2. Equation Set3C

This equation set is the most common form of the Euler equations in CFD [20] and has been used in two recent dy-
namical cores related to the CliMa model [21,22]. This equation set shares the continuity and momentum equations with 
Set2C but differs in the thermodynamic equation and the equation of state. One of the advantages of this equation set is 
that it allows for conservation of not only mass and momentum, but also total energy. Moreover, since it is the equation 
of choice in CFD, it has been used in many recent works that rigorously prove the stability of this equation set using DG 
methods even at high-order (see [22,23]). Yet another advantage of this equation set is that its derivation does not assume 
anything about the composition of the atmosphere and therefore applicable to high-altitude simulations. A disadvantage of 
this equation set, at least in the context of atmospheric modeling, is that much of the physical parameterizations require 
either potential temperature or temperature as inputs and so one would need to extract this variable from total energy. One 
other likely disadvantage (based on our experience) is that this equation set requires more care to stabilize since it is com-
pletely conservative (i.e., non-dissipative) and so the numerical method has to be designed carefully to maintain stability. 
Set3C is written as Eq. (2.1) with

q3C =

⎛⎜⎜⎝
ρ

U

E

⎞⎟⎟⎠ , F3C =

⎛⎜⎜⎜⎜⎜⎜⎝

U

U⊗U

ρ
+ P I

(E + P )

ρ
U

⎞⎟⎟⎟⎟⎟⎟⎠ , S3C =

⎛⎜⎜⎝
0

− (ρ∇φ + 2� ×U)

0

⎞⎟⎟⎠ (2.5)

where the conserved, prognostic variables are (ρ,U, E), E is the total energy given by E = ρcv T + U ·U
2ρ

+ρφ which denote 

the internal, kinetic, and potential energies, respectively. The pressure P is given as

P = ρRT ≡ (γ − 1)

(
E − U ·U

2ρ
− ρφ

)
. (2.6)

Note that Eq. (2.6) contains no exponentials, as does Set2C, and is therefore less expensive to compute. Since this equa-
tion uses the total energy as the thermodynamic variable and is written in conservation form, we can conserve energy; this 
is not guaranteed for Set2C.
3
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Splitting the density and pressure as done for Set2C and total energy as E (x, t) = E0 (r) + E ′ (x, t), and assuming the 
reference field is in hydrostatic balance, Set3C can be written in perturbation form as Eq. (2.1) with q := q′

3C , F := F′
3C and, 

S := S′
3C defined as

q′
3C =

⎛⎜⎜⎝
ρ ′

U

E ′

⎞⎟⎟⎠ , F′
3C =

⎛⎜⎜⎜⎜⎜⎜⎝

U

U⊗U

ρ
+ P ′I

(E + P )

ρ
U

⎞⎟⎟⎟⎟⎟⎟⎠ , S′
3C =

⎛⎜⎜⎝
0

− (
ρ ′∇φ + 2� ×U

)
0

⎞⎟⎟⎠ . (2.7)

3. IMplicit-EXplicit formulations

3.1. Semi-implicit time integration

The governing equations for both Set2C and Set3C can be written in vector form as

∂q

∂t
= S (q) = {E (q)} + [I (q)]

= {S (q) − L (q)} + [L (q)]
(3.1)

where for Set2C and Set3C, q2C := (ρ,U,�) and q3C := (ρ,U, E), respectively, S (q) contains all spatial terms, E (q) contains 
the operators to be treated explicitly, I (q) contains the operators to be treated implicitly, and L (q) is a linear operator to 
be defined in the following sections. The semi-implicit formulation allows the full problem (S (q)) to be decomposed into 
subsets that can be treated differently. In Eq. (3.1), the terms in the curly brackets {·} contain the slow moving advection 
terms and are treated explicitly, whereas the terms in the square brackets [·] contain the fast moving acoustic and gravity 
terms and are treated implicitly. This implicit treatment of the restrictive dynamics removes the CFL constraint due to the 
fast propagating acoustic and gravity waves and allows for larger time steps that are dictated only by the slow dynamics. The 
implicit treatment of linear operators requires the solution of a linear system whereas the treatment of nonlinear operators 
requires a nonlinear system to be solved.

Consider a single-step multistage method with s stages written as

Q(i) = qn + 	t

⎡⎣ i−1∑
j=1

aij
(
S
(
Q( j)

)
− L

(
Q( j)

))⎤⎦+ 	t

⎡⎣ i−1∑
j=1

ãi j
(
L
(
Q( j)

))⎤⎦+ 	t̃aii L
(
Q(i)

)
(3.2)

where Q(i) is the ith stage approximation, 	t is the time-step, aij , ̃aij , bi , and ̃bi are the coefficients in the Butcher tableaux 
for the explicit and implicit components, respectively. Following [15] we define

qtt = Q(i) +
i−1∑
j=1

ãi j − aij
ãii

Q( j) (3.3)

and ̂q as

q̂ = qn +
i−1∑
j=1

ãi j − aij
ãii

Q( j) + 	t
i−1∑
j=1

aij S
(
Q( j)

)
, (3.4)

where qn is the solution at time n	t . Eq. (3.2) can be written compactly as

qtt = q̂+ αL (qtt) (3.5)

where α = 	t ãii . The stage value Q(i) can be obtained from qtt using Eq. (3.3) and the solution update at tn+1 can be 
constructed as

qn+1 = qn + 	t
s∑

i=1

bi
[
S
(
Q(i)

)
− L

(
Q(i)

)]
+ 	t

s∑
i=1

b̃i L
(
Q(i)

)
. (3.6)

Assuming that the coefficients in the Butcher tableaux satisfy bi = b̃i needed for conservation (see [15]), we obtain

qn+1 = qn + 	t
s∑

bi S
(
Q(i)

)
. (3.7)
i=1

4
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In what follows, we derive the No-Schur and Schur forms for equation sets 2C and 3C, however, to simplify the expo-
sition, we perform the derivation using continuous differential operators. In the appendices, we substitute the continuous 
differential operators with their discrete forms to complete the discussion.

3.2. IMplicit-EXplicit formulation: Set2C

3.2.1. 3D-IMEX formulation
Let us now describe the IMEX formulation for Set2C. Following [24], the linear operator for Set2C is taken as

L2C (q) = −

⎛⎜⎜⎜⎜⎝
∇ ·U

∇ P ′
L + ρ ′∇φ

∇ ·
(

�0

ρ0
U
)

⎞⎟⎟⎟⎟⎠ (3.8)

with the linearized pressure as

P ′
L = γ P0

�0
�′ (3.9)

which is derived from a first order Taylor series approximation. It can be seen that the linear operator contains the fast 
moving acoustic (P ′

L ) and gravity wave (φ) terms. Applying the semi-implicit formulation (Eq. (3.5)) to Set2C and letting 

h2C = �0

ρ0
, yields the No-Schur form of the time-discretized equations

ρtt = ρ̂ − α∇ ·Utt (3.10a)

Utt = Û− α (∇ Ptt + ρtt∇φ) (3.10b)

�tt = �̂ − α∇ · (h2CUtt) (3.10c)

Ptt = γ P0

�0
�tt . (3.10d)

Since the linearization is performed about time-independent reference fields (ρ0 �= ρ0(t), �0 �= �0(t), E0 �= E0(t)), the 
Jacobian is constant in time and only needs to be constructed once. To derive the Schur complement of Eqs. (3.10), we begin 
by substituting Eq. (3.10c) into Eq. (3.10d) to obtain

Ptt = γ P0

�0

(
�̂ − α∇ · [h2CUtt]

)
. (3.11)

Multiplying Eq. (3.10a) by h2C and subtracting from Eq. (3.10c) yields

�tt − h2Cρtt = �̂ − h2C ρ̂ − α (∇ · (h2CUtt) − h2C∇ ·Utt)

�tt − h2Cρtt = �̂ − h2C ρ̂ − α (Utt · ∇h2C )
(3.12)

where we have made the assumption that the product rule is satisfied (although for element-based Galerkin methods this 
is not the case when using inexact integration - see, e.g., [1]); we will see in the results section that this assumption is 
reasonable. Substituting Eq. (3.10d) into Eq. (3.12) yields

ρtt = ρ̂ − �̂

h2C
+ �0Ptt

h2Cγ P0
+ α

h2C
(Utt · ∇h2C ) . (3.13)

Letting G2C = ∇φ

h2C
, substituting Eq. (3.13) into Eq. (3.10b), and solving for Utt yields

Utt = A−1
(
Û− α

[
∇ Ptt +

(
ρ̂∇φ − G2C �̂ + G2C

�0Ptt

γ P0

)])
(3.14)

where A = I + α2G2C ⊗ ∇h2C . Substituting Eq. (3.14) into Eq. (3.11) and rearranging yields the Schur complement for Set2C

Ptt − γ P0α
2

�0
∇ · (h2CL2C ) = γ P0

�0

(
�̂ − α∇ · [h2CR2C ]

)
(3.15)

where L2C = A−1
(

∇ Ptt + G2C
�0Ptt

γ P0

)
and R2C = A−1

(
Û− α

[
ρ̂∇φ − G2C �̂

])
.

This reduces the system of equations from five prognostic variables to a single (Helmholtz-like) equation for pressure.
Once the pressure is computed, the velocities can be extracted using Eq. (3.14), followed by the density Eq. (3.13), and 

then the potential temperature Eq. (3.12).
5
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3.2.2. 1D-IMEX formulation
The formulation in Eq. (3.15), which treats the acoustics terms in all directions, can be further reduced to implicitly 

treat only the vertical/radial direction. This uni-directional formulation will be referred to as 1D-IMEX and is obtained 

by replacing all three-dimensional (3D) differential operators ∇ =
(

∂

∂x
,

∂

∂ y
,

∂

∂z

)
with radial derivatives ∇r = ∂

∂r
that are 

one-dimensional (1D). Letting Ar = 1 + α2G2C
∂h2C
∂r

, the Schur complement of the 1D-IMEX formulation is given as

Ptt − γ P0α
2

�0
∇r · (h2CLr

2C

) = γ P0

�0

(
�̂ − α∇r · [h2CRr

2C

])
(3.16)

where Lr
2C = Ar

−1
(

∂ Ptt

∂r
+ G2C

�0Ptt

γ P0

)
, and Rr

2C = Ar
−1 (Ûr − α

[
ρ̂∇φ − G2C �̂

])
. It should be noted that the Schur com-

plement is valid when A is nonsingular, a condition that is satisfied for a stable stratified reference atmosphere used in this 
work (see [24]).

3.3. IMplicit-EXplicit formulation: Set3C

3.3.1. 3D-IMEX formulation
We now present the IMEX formulation for Set3C. Following [24], the linear operator for Set3C is taken as

L3C (q) = −

⎛⎜⎜⎜⎜⎝
∇ ·U

∇ P ′
L + ρ ′∇φ

∇ ·
(

(E0 + P0)

ρ0
U
)
⎞⎟⎟⎟⎟⎠ (3.17)

with linearized pressure

P ′
L = (γ − 1)

(
E ′ − ρ ′φ

)
. (3.18)

Then applying the semi-implicit formulation (Eq. (3.5)) to Set3C and letting h3C = (E0+P0)
ρ0

be the reference enthalpy, 
yields the No-Schur form of the time-discretized equations

ρtt = ρ̂ − α∇ ·Utt (3.19a)

Utt = Û− α (∇ Ptt + ρtt∇φ) (3.19b)

Ett = Ê − α∇ · (h3CUtt) (3.19c)

Ptt = (γ − 1) (Ett − ρttφ) . (3.19d)

To derive the Schur complement of Eqs. (3.19), we begin by substituting Eq. (3.19a) and Eq. (3.19c) into Eq. (3.19d), and 
letting F3C = h3C − φ to obtain

Ptt = (γ − 1)
(̂
E − φρ̂

)− α (γ − 1) (F3C∇ ·Utt + ∇h3C ·Utt) . (3.20)

Multiplying Eq. (3.19a) by h3C and subtracting from Eq. (3.19c) yields

Ett − h3Cρtt = Ê − h3C ρ̂ − α∇h3C ·Utt . (3.21)

Substituting Eq. (3.21) into Eq. (3.19d) yields

Ptt = (γ − 1)
(̂
E + h3Cρtt − h3C ρ̂ − α∇h3C ·Utt − ρttφ

)
(3.22)

which can be solved for density ρtt as

ρtt = 1

F3C

(
1

γ − 1
Ptt + α∇h3C ·Utt + h3C ρ̂ − Ê

)
. (3.23)

Letting G3C = ∇φ

F3C
, substituting Eq. (3.23) into Eq. (3.19b), and solving for Utt yields

Utt = A−1
(
Û− αG3C

(
h3C ρ̂ − Ê

)− α∇ Ptt − αG3C
Ptt

)
(3.24)
(γ − 1)

6
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where A = I + α2G3C ⊗ ∇h3C . Then, substituting Eq. (3.24) into Eq. (3.20) and rearranging yields the Schur complement for 
Set3C

Ptt − α2 (γ − 1) F3C∇ ·L3C − α2 (γ − 1)∇h3C ·L3C

= (γ − 1)
(̂
E − φρ̂

)− α (γ − 1) F3C∇ ·R3C − α (γ − 1)∇h3C ·R3C
(3.25)

where L3C = A−1
(

∇ Ptt + G3C

(γ − 1)
Ptt

)
and R3C = A−1

(
Û− αG3C

(
h3C ρ̂ − Ê

))
. The Schur complement can be written more 

compactly as follows

Ptt − α2 (γ − 1) (∇ · (h3CL3C ) − φ∇ ·L3C )

= (γ − 1)
(̂
E − φρ̂ − α (∇ · (h3CR3C ) − φ∇ ·R3C )

) (3.26)

and is the form that will be used for deriving the discrete forms.

3.3.2. 1D-IMEX formulation
As was done for Set2C (Eq. (3.16)), the 1D-IMEX formulation for Set3C can be obtained by substituting ∇ =(
∂

∂x
,

∂

∂ y
,

∂

∂z

)
in Eq. (3.26) with radial derivatives ∇r = ∂

∂r
. Letting Ar = 1 + α2G3C

∂h3C
∂r

, the Schur complement of the 

1D-IMEX formulation for Set3C is written as

Ptt − α2 (γ − 1)
(∇r · (h3CLr

3C

)− φ∇r ·Lr
3C

)
= (γ − 1)

(̂
E − φρ̂ − α

(∇r · (h3CRr
3C

)− φ∇r ·Rr
3C

)) (3.27)

where Lr
3C = Ar

−1
(

∂ Ptt

∂r
+ G3C

(γ − 1)
Ptt

)
, and Rr

3C = Ar
−1 (Ûr − αG3C

(
h3C ρ̂ − Ê

))
.

3.4. Complexity comparison between Schur and no-Schur forms

For both sets 2C and 3C, the Schur form, compared to the No-Schur form, reduces the size of the resulting matrix 
problem by a factor of (d + 2)2 where d denotes the number of spatial dimensions; d represents the number of momentum 
equations and the 2 refers to the two scalar equations for the density and thermodynamic variable. For example, in three-
dimensions the savings for the 3D-IMEX formulation is a factor of 52 since we go from 5 equations (ρ, U , V , W , E) to 
one equation for pressure. For the 1D-IMEX formulation, we let d = 1. There are some additional costs incurred by the 
Schur form in order to extract the d + 2 prognostic variables from the pressure variable but the cost is equivalent to one 
iteration of the No-Schur form; as long as more than one elliptic solver iteration is required, the Schur form will be faster. 
For the 1D-IMEX formulation, the cost comparison is more straightforward since we use direct (LU) solvers. For a standard 
LU decomposition, the LU decomposition costs O(N3) for N degrees of freedom while the back substitution costs O(N2). 
Therefore, if we use a constant reference solution for the linearization of the IMEX method, then the LU decomposition 
only occurs once at the beginning of the simulation whereas the back substitution occurs at each of the s-stages of each 
time-step. This results in savings of a factor of (d + 2)2 = 9 by using the Schur form over its No-Schur counterpart. For the 
3D-IMEX, there is additional savings for the Schur form due to the use of elliptic solvers. Since the Schur form results in a 
better conditioned matrix (shown in Sec. 6), this results in a faster time-to-solution compared to its No-Schur counterpart 
(since the cost of, e.g., GMRES, increases quadratically with iteration count).

4. Numerical implementation

4.1. Spatial discretization

We now turn to the description of the discontinuous Galerkin discretization ([1]) of the Schur forms for Set2C and Set3C. 
Multiplying Eq. (3.15) and Eq. (3.26) by a test function ψ and integrating over an element �e∫

�e

ψ Ptt d�e − α2
∫
�e

ψ
γ P0

�0
∇ · (h2CL2C ) d�e =

∫
�e

ψ
γ P0

�0
�̂ d�e − α

∫
�e

ψ
γ P0

�0
∇ · (h2CR2C ) d�e (4.1)

∫
�e

ψ Ptt d�e − α2 (γ − 1)
∫
�e

ψ (∇ · (h3CL3C ) − φ∇ ·L3C ) d�e = (γ − 1)
∫
�e

ψ
(̂
E − φρ̂

)
d�e

− α (γ − 1)
∫

ψ (∇ · (h3CR3C ) − φ∇ ·R3C ) d�e,

(4.2)
�e

7
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we obtain the variational forms of the Schur complements for Set2C and Set3C, respectively. Without loss of generality, the 
L and R operators for both equation sets can be written as

L = A−1 (∇ Ptt + aPtt)

R = A−1 (Û− α
(
bρ̂ − c T̂

)) (4.3)

where a = G2C
�0
γ P0

, b = ∇φ, c = G2C and the thermodynamic variable T̂ = �̂ for Set2C, and a = G3C
γ −1 , b = G3Ch3C , c = 1

and T̂ = Ê for Set3C.
It can be seen from Eq. (4.1) and Eq. (4.2) that the differential operators are similar, therefore, we will show the 

discretization for Set3C with F ∈ {L3C ,R3C }, hC = h3C and ξ = φ but discretizations can be obtained for Set2C with 
F ∈ {L2C ,R2C }, hC = h2C , and ξ = 0. Similarly, the 1D-IMEX discretization can be obtained by retaining only the radial 
differential operators. It can be seen that ∇ ·L results in both first and second order operators while ∇ ·R results in only 
first order operators. The second order operators are discretized using the local discontinuous Galerkin (LDG) method [25].

We begin by first discretizing the first-order operators in the Schur form∫
�e

ψ (ω∇ · (hCF) − ξ∇ ·F) d�e =
∫
�e

ψω∇ · (hCF) d�e −
∫
�e

ψξ∇ ·F d�e (4.4)

where ω = γ P0
�0

for Set2C, ω = 1 for Set3C and ψ are the multi-dimensional Lagrange polynomials defined as a tensor 
product of 1D Lagrange polynomials supported at Legendre-Gauss-Lobotto (LGL) points. The integrals are approximated by 
means of inexact integration using LGL quadrature (for more details see, e.g., [1]). Applying integration by parts to the first 
term on the right-hand side yields∫

�e

ψω∇ · (hCF) d�e =
∫
�e

∇ · (ψωhCF) d�e −
∫
�e

hCF · ∇(ψω) d�e

=
∫
�e

˜ψωhCF · n̂ d�e −
∫
�e

ωhC∇ψ ·F d�e −
∫
�e

ψhC∇ω ·F d�e

(4.5)

where ˜ψωhCF is some numerical flux to be defined. Due to the use of conforming elements and symmetry of the LGL 
nodes, this simplifies to ˜ψωhCF = ψ ˜ωhCF , i.e., the basis function satisfies ψ = ψ̃ . The second term on the right-hand side 
in Eq. (4.4) can be written as∫

�e

ψξ∇ ·F d�e =
∫
�e

∇ · (ψξF) d�e −
∫
�e

F · ∇(ψξ) d�e

=
∫
�e

ψξ̃F · n̂ d�e −
∫
�e

ξ∇ψ ·F d�e −
∫
�e

ψ∇ξ ·F d�e.

(4.6)

In flow-in-a-box mode, since for Set3C, ξ = φ = gz then ∇φ = ĝk where k̂ is the unit vector along the z direction. 
Substituting Eq. (4.5) and Eq. (4.6) into Eq. (4.4), and rearranging yields the weak form of the differential operator∫

�e

ψ (ω∇ · (hCF) − ξ∇ ·F) d�e =
∫
�e

ψ
(
˜ωhCF − ξ̃F

)
· n̂ d�e −

∫
�e

(ωhC − ξ)∇ψ ·F d�e

−
∫
�e

ψ (hC∇ω − ∇ξ) ·F d�e.

(4.7)

Applying integration by parts to the second term on the right-hand side of Eq. (4.7) yields∫
�e

(ωhC − ξ)∇ψ ·F d�e =
∫
�e

∇ · (ψ (ωhC − ξ)F) d�e −
∫
�e

ψ∇ · ((ωhC − ξ)F) d�e

=
∫

ψ
(
ωeheC − ξ e)Fe · n̂ d�e −

∫
ψ ((ωhC − ξ)∇ ·F + ∇(ωhC − ξ) ·F) d�e,

(4.8)
�e �e

8
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where we have added the superscript e to the surface integral only (first term on the right-hand side) to denote a local 
element-wise quantity. Substituting Eq. (4.8) into Eq. (4.7), we obtain the strong form∫

�e

ψ (∇ · (ωhCF) − ξ∇ ·F) d�e =
∫
�e

ψ
((

˜ωhCF − ξ̃F
)

− (
ωeheC − φe)Fe

)
· n̂ d�e

+
∫
�e

ψ (ωhC − ξ)∇ ·F d�e +
∫
�e

ψω∇hC ·F d�e

(4.9)

where it should be understood that terms with no designation (either a superscript e or tilde) strictly represent local 
element-wise quantities. If we assume the reference fields to be continuous then 

(
˜ωhCF − ξ̃F

)
= (ωhC − ξ) F̃ . Further-

more, if F =R then

R̃ = A−1
(˜̂U− α

(
b ˜̂ρ − c ˜̂T))

since A, a, b and c are also continuous (as they are dependent on the reference fields). The case where F = L results 
in both first and second order operators. Expanding L = A−1∇ Ptt + A−1aPtt , the second term on the right-hand side can 
be treated by letting F = A−1aPtt in Eq. (4.7) and Eq. (4.9) (and setting the coefficients appropriately), but the first term 
requires computation of the variational form of the gradient consistent with the DG scheme. This is done by multiplying 
∇ Ptt by a tensor test function � = ψI and invoking the divergence theorem resulting in the variational weak form of the 
gradient∫

�e

� · ∇ Ptt d�e =
∫
�e

∇ · (�Ptt) d�e −
∫
�e

Ptt∇ · � d�e

=
∫
�e

˜Ptt� · n̂ d�e −
∫
�e

Ptt∇ · � d�e

(4.10)

where ˜Ptt� = P̃tt�, since ψ̃ = ψ . Applying integration by parts to the second term on the right hand side of Eq. (4.10)
yields ∫

�e

Ptt∇ · � d�e =
∫
�e

∇ · (Ptt�) d�e −
∫
�e

∇ Ptt · � d�e

=
∫
�e

P e
tt� · n̂ d�e −

∫
�e

∇ Ptt · � d�e.

(4.11)

Substituting Eq. (4.11) into Eq. (4.10) yields the variational strong form for the gradient∫
�e

� · ∇ Ptt d�e =
∫
�e

∇ · (�Ptt) d�e −
∫
�e

Ptt∇ · � d�e

=
∫
�e

(
P̃tt − Pe

tt

)
� · n̂ d�e +

∫
�e

∇ Ptt · � d�e.

(4.12)

Then the weak and strong forms for L are

Lweak = A−1

⎡⎢⎣∫
�e

P̃tt� · n̂ d�e −
∫
�e

Ptt∇ · � d�e + aPtt

⎤⎥⎦
= A−1

[
C(e,k) − D̃

(e) + aI
]
Ptt

(4.13)

and
9
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Lstrong = A−1

⎡⎢⎣∫
�e

(
P̃tt − Pe

tt

)
� · n̂ d�e +

∫
�e

∇ Ptt · � d�e + aPtt

⎤⎥⎦
= A−1

[
�(e,k) + D(e) + aI

]
Ptt

(4.14)

respectively, where I is the identity matrix, C(e,k) and �(e,k) are the centered and difference matrices, and D(e) and D̃(e)
are 

the strong and weak form differentiation matrices, which are defined in Appendix C with more details found in [[1], Ch. 21]. 
The matrices with superscript (e, k) are global matrices that require communication between the element e and its neigh-
bor k, whereas the matrices with superscript (e) are local matrices that do not require communication with neighboring 
elements. Since the fully discrete representation of the Schur forms are unwieldy, they are presented in Appendix C. Unless 
explicitly stated the use of the strong form, the results and analysis of various test cases are obtained using the weak form.

4.2. Conditions on numerical flux for consistent IMEX splitting

Here we show the conditions required for the IMEX splitting to be consistent on the continuous and discrete levels. By 
consistent, we mean that the discrete form of the implicitly and explicitly treated operators appropriately represent their 
continuous forms (e.g., the wavespeeds in the discrete form are those for the continuous operator). We only show this for 
Set3C, but the same conditions apply for Set2C. Consider a balance law (Set3C) written in vector form defined by Eq. (2.1)
and Eq. (2.5), where, for clarity, we denote the total flux as FT = F with components (Fρ, FU, F E ) that represent the mass, 
momentum and total energy flux. The coloring and subscripts T , L, and NL denote total, linear (blue), and nonlinear (red) 
components, respectively.

Here onwards, for convenience, the source terms S due to gravity and Coriolis are neglected; thereby effectively replacing 
the original balance law with a conservation law with no loss in generality (because the stiffness in the equations is derived 
from the terms in the flux terms). Casting Eq. (2.1) into the variational weak form (and invoking the divergence theorem) 
yields ∫

�e

ψ
∂q

∂t
d�e +

∫
�e

˜ψFT · n̂ d�e −
∫
�e

∇ψ · FT d�e = 0 (4.15)

where Q̃ represents the numerical flux for the quantity Q . Due to the symmetry of the Legendre-Gauss-Lobotto (LGL) 
points, tensor product representation of the Lagrange polynomials, and conforming elements, ˜ψFT = ψ F̃T . Taking the nu-
merical flux Q̃ to be the Rusanov flux for some quantity Q with flux FQ as

Q̃ = {{
FQ

}}− λ

2
�Q �̂n, (4.16)

Eq. (4.15) then becomes∫
�e

ψ
∂q

∂t
d�e +

∫
�e

ψ

(
{{FT }} − λT

2
�q�̂n

)
· n̂ d�e −

∫
�e

∇ψ · FT d�e = 0 (4.17)

where {{·}} and �·� represent the average and jump operators, λT = (u + a)� is the maximum eigenvalue (wave speed) of the 
total flux Jacobian 

(
∂FT
∂q

)
, � denotes the maximum of the left and right states (i.e., A� = max(| AL |, | AR |)), and a =

√
γ P
ρ is 

the speed of sound.
The flux vector FT := F in Eq. (2.5) on the continuous level can be decomposed into its linear FL and nonlinear FNL =

FT − FL components as

FT =

⎛⎜⎜⎜⎝
0

U⊗U
ρ + P I(
E+P
ρ

)
U

⎞⎟⎟⎟⎠ , FL =

⎛⎜⎜⎝
U

PLI

h0U

⎞⎟⎟⎠ , FNL =

⎛⎜⎜⎜⎝
0

U⊗U
ρ + (P − PL)I(
E+P
ρ − h0

)
U

⎞⎟⎟⎟⎠ , (4.18)

where h0 = E0+P0
ρ0

is the reference enthalpy and PL = (γ −1) (E − ρφ) where FL is constructed via a first order Taylor series 
approximation of FT . Using such a decomposition and rearranging terms, Eq. (4.17) can also be decomposed into its linear 
(blue) and nonlinear components (red) on the discrete level as
10
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∫
�e

ψ
∂q

∂t
d�e +

∫
�e

ψ

(
{{FNL}} − λT

2
�q�̂n

)
· n̂d�e −

∫
�e

∇ψ · FNL d�e

︸ ︷︷ ︸∫
�e

ψ∇·FNL d�e

+
∫
�e

ψ {{FL}} · n̂d�e −
∫
�e

∇ψ · FL d�e

︸ ︷︷ ︸∫
�e

ψ∇·FL d�e

= 0

(4.19)

where the linear (blue) term represents the variational weak form of the linear flux terms using centered fluxes and the 
nonlinear (red) term represents the variational weak form of the nonlinear flux terms using the Rusanov flux.

Without loss of generality, we can write λT = λL +λNL to obtain a form where each component can be treated using the 
Rusanov flux using the appropriate wave speeds,∫

�e

ψ
∂q

∂t
d�e +

∫
�e

ψ

(
{{FNL}} − λNL

2
�q�̂n

)
· n̂d�e −

∫
�e

∇ψ · FNL d�e

︸ ︷︷ ︸∫
�e

ψ∇·FNL d�e

+
∫
�e

ψ

(
{{FL}} − λL

2
�q�̂n

)
· n̂d�e −

∫
�e

∇ψ · FL d�e

︸ ︷︷ ︸∫
�e

ψ∇·FL d�e

= 0

(4.20)

where λL and λNL are now the maximum eigenvalues of the Jacobians of the linear flux FL and nonlinear flux FNL , respec-
tively.

In one dimension, the linear and total flux terms are given as follows

FL =

⎛⎜⎜⎝
U

PL

h0U

⎞⎟⎟⎠ ≡

⎛⎜⎜⎜⎝
U

P0 + (γ − 1)
(
E ′ − ρ ′φ

)(
γ E0−(γ −1)ρ0φ

ρ0

)
U

⎞⎟⎟⎟⎠ , FT =

⎛⎜⎜⎜⎝
U

U2

ρ + P(
E+P
ρ

)
U

⎞⎟⎟⎟⎠ (4.21)

with the resulting nonlinear flux

FNL ≡ FT − FL =

⎛⎜⎜⎜⎝
0

U2

ρ + P − PL(
E+P
ρ

)
U − h0U

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0(

3−γ
2

)
U2

ρ

γ U
(

E
ρ − E0

ρ0

)
− (γ − 1) U3

2ρ2

⎞⎟⎟⎟⎠ (4.22)

where the buoyancy term in the momentum equation is omitted because it is considered a source. Computing the Jacobian 
of the linear flux yields

J L = ∂FL
∂q

=
⎛⎝ 0 1 0

−(γ − 1)φ 0 γ − 1
0 h0 0

⎞⎠ (4.23)

with eigenvalues λL = (−a0, 0, a0) where a0 =
√

γ P0
ρ0

. Computing the Jacobian of the total flux FT yields

J T = ∂FT
∂q

=

⎛⎜⎜⎝
0 1 0

(γ − 3) U2

2ρ2 − (γ − 1)φ (3− γ )U
ρ γ − 1

− U
ρ2

(
γ E − (γ − 1)U2

ρ

)
γ E
ρ − 3(γ −1)U2

2ρ2 − (γ − 1)φ γ U
ρ

⎞⎟⎟⎠ (4.24)

with eigenvalues λT = (u − a, u, u + a).
11
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Table 1
Flux combinations and wave speeds (magnitude of the jump term) in the Rusanov flux for the IMEX formulations.

Name Abbrv. λL λNL λT

Acoustic-Total Rusanov AT a0 u + a′ u + a
Acoustic-Linearized Rusanov AL a0 u u + a0
Centered-Total Rusanov CT 0 u + a u + a
Centered-Linearized Rusanov CL 0 u + a0 u + a0
Centered-Advective Rusanov CA 0 u u

The Jacobian (	 J = ∂FNL
∂q ) of the nonlinear flux FNL = FT − FL is the following lower triangular matrix

	 J ≡ ∂FNL

∂q
=

⎛⎜⎜⎝
0 0 0

(γ − 3) U2

2ρ2 (3− γ )U
ρ 0

− U
ρ2

(
γ E − (γ − 1)U2

ρ

)
γ
(

E
ρ − E0

ρ0

)
− 3(γ −1)U2

2ρ2 γ U
ρ

⎞⎟⎟⎠ (4.25)

with eigenvalues 	λ = λNL = (0, γ u, (3 − γ )u). The key point is that even though the operator FL has a linearized pressure 
term, the eigenvalues of 	 J only have velocity components and no acoustic ones.3

This one-dimensional analysis shows that for the splitting of the linear and nonlinear terms to be consistent on both 
the continuous and discrete levels, the wave speed for FT should be taken as λT = λL + λNL , where λL = 0 when the 
implicit term is treated with a centered flux and λL = a0 when the implicit term is treated with a linearized Rusanov flux; 
implications of various choices for the wavespeeds in the implicit and explicit components are presented in Appendix A. 
To keep the IMEX formulation for Runge-Kutta methods that we presented in [15] unchanged, we construct the nonlinear 
operator as FNL = FT − FL . Since the nonzero eigenvalues of FNL are all of relatively the same magnitude (i.e., O(u) =
O(γ u) =O((3 − γ )u)) we take λNL = u.

Table 1 presents the various flux combinations that can be used for the implicit and explicit dynamics. In the following 
sections, for all IMEX methods we call the AT flux that which uses the Acoustic Rusanov flux (λL = a0) for the linear 
implicit part (IM) combined with Total Rusanov flux with λT = u + a (and λNL = u + a′) accounting for both the advective 
and acoustic wave speeds for the nonlinear explicit (EX) part; in contrast, we call the CA flux that which uses the Centered 
flux for the linear implicit (IM) part (i.e., λL = 0) combined with only the Advective Rusanov flux (λT = λNL = u) for 
the nonlinear explicit (EX) part (see Case 1 in Appendix A). Insignificant differences are seen between the total Rusanov 
(AT Flux) and linearized Rusanov (AL Flux) when constructing the total flux FT , the reasons for which are presented in Case 
3 in Appendix A.

The No-Schur system can be solved using either the AT flux or the CA flux formulation, whereas the Schur system will 
only be solved using the CA flux approach. The Schur form can also be solved using the centered flux for the linear term 
(λL = 0) and a Rusanov flux for the total/nonlinear terms (e.g., λT = u + a0 as in the CL flux or λT = u + a as in the CT
flux); such a choice will subject the explicit time stepping to the CFL restriction due to the acoustic dynamics and negate 
the benefits of the IMEX methods (see Case 2 in Appendix A). In Appendix B, we show why it is challenging to construct a 
Schur form when the linear term is treated with the Rusanov flux or any flux containing a jump term (λL �= 0).

4.3. Numerical stabilization

It should be noted that the complete system discretized using the CA flux is less dissipative than the system discretized 
using the AT flux, particularly for cases where u 	 a (see Case 1 in Appendix A).

This lack of dissipation can lead to spurious oscillations that can drive the system unstable, leading to divergence (i.e., 
blow-up). It was previously shown that artificial viscosity and sub-grid-scale (SGS) models can be used to stabilize the 
continuous Galerkin (which is also inherently non-dissipative) [26] and discontinuous Galerkin formulations [27]. For this 
reason, for some test problems we introduce an artificial diffusion operator (Laplacian) with uniform viscosity or SGS vis-
cosity in the governing equations. The SGS viscosity used in this work is obtained using the Vreman model. It was shown in 
[26] that the Vreman model is able to stabilize the non-dissipative system while limiting the amount of artificial dissipation 
introduced. For brevity, the reader is referred to [28] for the complete description of the Vreman model. The second or-
der diffusion/Laplacian operator (∇ · (μ∇U)) is discretized using the weak-form local discontinuous Galerkin (LDG) method 
[25]. In the future, it will be interesting to explore entropy-stable methods in this context that do not require additional 
dissipation mechanisms (see, e.g., [22]).

4.4. Linear solvers

Before the linear solvers used to solve the resulting linear systems are discussed, the domain decomposition for multi-
core processing is briefly presented. As is often done in NWP or climate modeling (e.g., see [29]), the spherical manifold 

3 Although we only show the results for one dimension, the two- and three-dimensional results bring us to the same conclusion.
12



S. Reddy, M. Waruszewski, F.A.V. de Braganca Alves et al. Journal of Computational Physics 491 (2023) 112361
Fig. 1. The decomposition of the computational domain for multi-core processing. [35, Ch. 2].

is partitioned using either a cubed-sphere or icosahedral mesh and extruded along the radial direction (e.g., see [30]) such 
that each column of elements lies completely on a single processor (Fig. 1). This approach allows for the construction of all 
radial operators without requiring intra-processor communication, thereby, increasing scaling efficiency [30–33]. All graph 
partitioning and parallel mesh decomposition is performed using the p4est (for 3D-IMEX) and p6est (for 1D-IMEX) library 
[34].

The choice of the formulation (No-Schur or Schur) can directly influence the efficiency of the solver for the linear system. 
Since the vertical/radial degrees-of-freedom (DOF) Nz (i.e., DOF per mesh column) is much lower than the total DOF Ntot , 
and since the linear system in the 1D-IMEX formulation is independent of the adjacent columns, it is beneficial to use 
direct solvers. As stated previously, the Jacobian is constant in time and, therefore, can be factored once and stored for all 
subsequent linear solves. The linear system resulting from the 3D-IMEX discretization is often too large to store, too sparse 
to solve using direct methods, and requires intra-processor communication. For such systems, iterative Krylov methods such 
as GMRES, conjugate gradient (CG), or Bi-Conjugate Gradient-Stabilized (BiCGStab) are preferred. In this study we solve all 
3D-IMEX systems using GMRES with a relative tolerance of 10−4, and all 1D-IMEX systems, which have a banded form, 
using banded LU factorization from the LAPACK library. We show in the following sections that the Schur form of the IMEX 
formulations results in all real, positive eigenvalues, indicating a symmetric positive-definite (SPD) system. Therefore, the 
Schur systems can also be solved using conjugate gradient or Cholesky factorization. It should be mentioned that for the 
1D-IMEX systems, Cholesky decomposition offers negligible gains over LU factorization since the matrix is constructed and 
decomposed (either LU or Cholesky) only once and reused for each subsequent linear solve (i.e. the forward reduction is 
done once while the backward substitution is performed at each s-stage of each time-step).

5. Test problems

This section briefly presents the four test problems used to analyze the semi-implicit discretizations. These problems are 
common benchmarks for verifying atmospheric models. For a more in-depth description of the test problems, readers are 
referred to their corresponding literature.

5.1. Rising thermal bubble

The rising thermal bubble (RTB) problem features the evolution of a warm bubble in a constant temperature ambient 
environment. The rising bubble deforms due to the shear stress caused by the velocity gradients. The test problem conditions 
[16] are similar to those of Robert [36] and features an ambient environment initially at rest and in hydrostatic balance. A 
warm air bubble with a potential temperature perturbation θ ′ is placed in the ambient atmosphere with uniform potential 
temperature θ0. The potential temperature perturbation distribution is defined by

θ ′ =
⎧⎨⎩0, for r > rc

θc

2

(
1+ cos

(
πr

rc

))
, for r � rc

(5.1)

where θc = 0.5 K, r = √
(x− xc)2 + (z − zc)2 with the following constants: θ0 = 300 K, rc = 250 m, and (x, z) ∈ [0, 1000]2 m

with t ∈ [0, 650] s and (xc, zc) = (500, 350) m. The no-flux boundary condition is imposed on all four walls of the boundary.

5.2. Density current

This two-dimensional test case, introduced in [37], is a standard benchmark for the development and verification of 
atmospheric models. It consists of a bubble of cold air descending to the ground in a neutrally stratified atmosphere. 
Upon hitting the lower boundary (all four boundaries are set as no-flux), the bubble develops Kelvin-Helmholtz shear 
instability rotors as it spreads laterally. This case is often solved by assuming a constant and uniform diffusion coefficient 
μ = 75 m2s−1. The initial distribution of the potential temperature is given as
13
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θ ′ =
⎧⎨⎩0, for r > rc

θc

2

(
1+ cos

(
πr

rc

))
, for r � rc

(5.2)

where θc = −15 K, r =
√(

x− xc
xr

)2

+
(
z − zc
zr

)2

, and rc = 1. The domain is defined as (x, z) ∈ [0, 25600] × [0, 6400] m

with t ∈ [0, 900] s and the center of the bubble as (xc, zc) = (0, 3000) m with the size of the bubble taken to be (xr, zr) =
(4000, 2000) m.

5.3. Inertia gravity wave

The inertia gravity wave problem features the symmetric propagation of potential temperature perturbation in a periodic 
channel with a constant mean flow [38, Section 3]. The initial state of the atmosphere is taken to have a constant mean 
flow of ū = 20 m/s with the reference field defined as

T0 = 250 K , p0(z) = pse
−δz, ρ0(z) = ρse

−δz

where ps = 105 Pa, ρs = ps

RT0
, and δ = g

RT0
. The initial perturbation fields are given by

T ′(x, z) = e
δz
2 Tb(x, z), p′(x, z) = 0, ρ ′(x, z) = e− δz

2 ρb(x, z)

with

Tb(x, z) = 	T sin

(
π

z

hc

)
e
−
(

x−xc
ac

)2
, ρb(x, z) = −ρs

Tb(x, z)

T0
,

where 	T = 0.001 K, hc = 10 km, ac = 5 km, and xc = 100 km. The domain is defined as (x, z) ∈ [0, 300] × [0, 10] km with 
t ∈ [0, 2500] s. The left and right sides of the domain are taken to be periodic, while the top and bottom boundaries are 
treated as no-flux boundaries. This test problem (modified from [39]) admits an analytical solution (see [38, Section 2]).

5.4. Acoustic wave on a sphere

The acoustic wave propagation problem features an acoustic wave caused by a pressure disturbance traveling around the 
globe. This problem, proposed by Tomita and Satoh [40], is defined with a hydrostatically balanced state and an isothermal 
background potential temperature of θ0 = 300 K. The pressure perturbation is defined as P ′ = f (λ, φ)g(r), where

f (λ,φ) =
⎧⎨⎩0, for r > rc

	P

2

(
1+ cos

(
πr

rc

))
, for r � rc

g(r) = sin

(
nvπr

rT

)
,

(5.3)

where 	P = 100 Pa, nv = 1, rc = re/3 is one third of the radius of the earth re = 6371 km, and a model top of rT = 10 km. 
The geodesic distance r is calculated as

r = re cos
−1 (sinφ0 sinφ + cosφ0 cosφ cos (λ − λ0))

where (λ0, φ0) is the origin of the acoustic wave. The no-flux boundary condition is imposed at the top and bottom bound-
aries. The spatial discretization for this problem often features high aspect ratio cells where the characteristic length of the 
elements in the radial direction is much smaller than the length in the horizontal direction.

5.5. Metrics of performance

To evaluate the performance of various semi-implicit formulations, we consider metrics that evaluate discrete conserva-
tion, efficiency, and accuracy of the methods. The methods’ conservation properties can be quantified using relative mass 
and energy loss over simulation time t . The relative mass loss 	M and energy loss 	E are defined as

	M =
∣∣∣∣M(t) −M(0)

M(0)

∣∣∣∣ and 	E =
∣∣∣∣E(t) − E(0)

E(0)

∣∣∣∣
where M(t) = ∫

�
ρ(x, t)d� and E(t) = ∫

�
E(x, t)d�. The accuracy is quantified using the mean-absolute error (MAE) rela-

tive to an analytical or reference solution qref as
14
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MAE = 1

N

∥∥∥qref − q
∥∥∥
1

where N is the number of degrees-of-freedom (i.e., size of the mesh), q is the set of prognostic variables for the equation 
set. Due to the lack of known analytical solutions for realistic problems in atmospheric sciences, the accuracy of the method 
is quantified relative to the solution obtained using an explicit scheme with a very small time-step (the small time-step is 
used in order to isolate the spatial error). The reference solutions are generated with a third-order, five-stage Runge-Kutta 
(RK35) scheme [41] with a Courant number of CN ≈ 0.0002. We define the Courant number as

CN = max

(
c	t

	s

)
(5.4)

where c = |un + a| is the characteristic wave speed, un = u · n̂ is the velocity in the direction ̂n, a is the speed of sound and 
	s = √

	x2 + 	y2 + 	z2 is the characteristic length. Furthermore, a separate Courant number can be specified for each of 
the dynamics (acoustic and advection) by considering only the appropriate wave speeds in the expression for CN. Finally, 
the efficiency of the formulation is studied by analyzing the time-to-solution and number of iterations needed to converge 
to the solution. For each of the different IMEX formulations, we present the condition number κ(A) defined as

κ(A) = σmax

σmin
,

where σ are the singular values of an N × N matrix A.

6. Results

6.1. Case 1: rising thermal bubble

The rising thermal bubble problem is solved on a 30 × 30 mesh of fourth-order elements (	x = 	z = 8.3 m) and is 
evolved until t = 650 s. It should be mentioned that all spatial resolutions 	x, 	y and 	z are defined as the average 
distance between the LGL nodes. The smaller dissipation in the CA flux IMEX discretization drives the simulation unstable 
whereas the added dissipation of the AT flux IMEX formulation keeps the model stable for the duration of the simulation. 
For a consistent comparison between all formulations, the Vreman SGS model, with Cs = 0.21, is used to stabilize all 
simulations of the rising thermal bubble.

The distribution of the potential temperature at t = 650 s using the various formulations of the two equation sets 
is shown in Fig. 2. The two equation sets result in similar distributions of the potential temperature. The 3D-IMEX and 
1D-IMEX formulations, using the same flux scheme, also result in similar solutions. There is, however, a difference when 
comparing results obtained using the AT and CA flux formulations. The smaller magnitude of dissipation in the CA flux 
formulation leads to a warping (Rayleigh-Taylor instabilities) at the top of the bubble, whereas the solution obtained using 
the AT flux formulation shows a bubble that is relatively intact. A similar bubble breakdown behavior is seen when using a 
mixed-finite element, discontinuous Galerkin formulation (see [42]).

This difference can be due to the jump term in the Rusanov flux that is absent in the CA flux. The results of the Schur 
formulation show a similar distribution of the potential temperature as the No-Schur formulation for both equation sets and 
IMEX formulations (3D and 1D), indicating a correct derivation and implementation of the two forms. Based on the results 
in Fig. 2, we can conjecture that the CA flux is more appropriate in an IMEX setting since it is less dissipative (resulting in 
the Rayleigh-Taylor instabilities) while avoiding the production of unphysical grid imprinting (as exhibited in the AT flux).

Fig. 3 shows the eigenspectra of the flux formulations and semi-implicit discretizations. The linear system for the No-
Schur case with the CA flux formulation, for both the 3D and 1D IMEX methods, has its eigenvalues along the imaginary 
axis. Similar spectra are seen for the IMEX formulations discretized using the continuous Galerkin method [24,43]. This 
is so because the continuous Galerkin formulation is inherently a spatially non-dissipative scheme. The centered flux is 
also non-dissipative and, therefore, the eigenvalues of the IMEX formulation using continuous Galerkin and centered-flux 
discontinuous Galerkin methods have similar eigenspectra (e.g., see Chs. 6 and 7 in [1]).

In the case of the IMEX methods with the dissipative AT flux, the eigenvalues seep into the real part of the complex 
plane. A similar behavior was presented for discontinuous Galerkin formulations in [44] where the non-dissipative Bassi-
Rebay scheme [45] resulted in only imaginary eigenvalues while the dissipative Baumann-Oden scheme [46] resulted in 
eigenvalues spread across the complex plane.

The eigenvalues for both the 3D and 1D Schur formulations lie entirely along the real axis - as it should for an elliptic 
differential operator. Although not shown, the eigenspectra of Set2C are similar to those of Set3C for all formulations. The 
condition number as a function of Courant number for Set2C and Set3C are shown in Figs. 3e and 3f, respectively. The No-
Schur linear system for Set2C is much better conditioned than that of Set3C; this can be attributed to h2C 	 h3C in Eq. (3.8)
and Eq. (3.17), respectively.

Comparing the Schur and No-Schur formulations for Set2C, the Schur formulation results in a system with a smaller con-
dition number for lower Courant numbers, after which the condition number grows larger than that of the No-Schur system, 
particularly for the 1D-IMEX formulation. Comparing the Schur and No-Schur formulations for Set3C, the linear system for 
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Fig. 2. Rising Thermal Bubble. The distribution of potential temperature perturbation at t = 650 s using Set2C with: (a) No-Schur 3D-IMEX, (b) No-Schur 
1D-IMEX, and (c) Schur 3D vs. 1D IMEX; Set3C with: (d) No-Schur 3D-IMEX, (e) No-Schur 1D-IMEX, and (f) Schur 3D vs. 1D IMEX.

the Schur form is consistently better conditioned with condition numbers five orders of magnitude smaller than that of 
its No-Schur counterpart. This is expected to significantly decrease the number of iteration required to reach convergence, 
thereby reducing the time to solution. The condition number of the Schur forms for Set2C and Set3C are very similar; this 
is not surprising because, as we showed in [6] for the CG method, that regardless of which equation set is selected the 
resulting Schur form pressure equation should represent the same governing dynamics.

Table 2 shows the various performance metrics for the rising thermal bubble problem. It shows that the solution metrics 
(min., max., mass and energy loss) are all in good agreement for various formulations. The IMEX formulations using the 
AT flux are all in agreement with the solution obtained using the fully explicit third-order RK35 (also using the AT flux 
formulation). All equations sets and numerical formulations are able to conserve mass up to machine precision, whereas 
only Set3C is able to conserve energy up to machine precision. Set2C cannot conserve energy because the thermodynamic 
equation is written in terms of (density) potential temperature. Similar behaviors were observed when the two equation 
sets were analyzed using both the continuous Galerkin [24] and discontinuous Galerkin [16] methods. The minimum and 
maximum values of the thermodynamic variable are consistent across the different IMEX and flux formulations and the 
mean-absolute-error is low for all cases.

The results in Table 2 show that the 3D-IMEX No-Schur CA flux formulation is approximately 1.15 times faster than 
the AT flux formulation for both Set2C and Set3C. This is due to the better conditioning of the system from the CA flux 
formulation, thereby requiring fewer GMRES iteration to reach convergence. The Schur formulation is approximately 1.3 
times faster than the No-Schur AT flux formulation due to the better conditioning of the system and a smaller overall size 
of the system, requiring fewer overall FLOPs (floating point operations); this conclusion holds for both Set2C and Set3C. 
Negligible differences are seen in the computing times between the two No-Schur flux formulations for 1D-IMEX. This is 
because the size of the Jacobian matrices is the same and, therefore, requires the same number of FLOPs for a direct solve 
(forward reduction and back substitution) of the linear system (standard LU decomposition requires O

(
2
3N

3
)
operations for 

N gridpoints, see, e.g., [47]). However, the linear system for the Schur formulation is much smaller (five times smaller) and 
therefore, the Schur formulation is approximately 4.8 times faster than the 1D-IMEX No-Schur discretization with AT flux. 
The Schur form for 1D-IMEX is slightly less than 5 times faster than the No-Schur form due to the additional FLOPs that 
are needed to extract the prognostic variables (ρ, U, �, E) from the diagnostic variable (P ). All timings are for simulations 
performed using 30 MPI ranks. Note that for this isotropic grid resolution, the 1D-IMEX method is at a disadvantage, 
which is evident by the large time-to-solution. This is due to the smaller time-steps required for stability of the explicitly 
treated horizontal acoustic dynamics. The time-step for the 1D-IMEX and fully-explicit schemes are the same; the additional 
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Fig. 3. Rising Thermal Bubble. The eigenspectra for Set3C for various flux formulations with Courant number ≈ 1 for variational weak form for: (a) 3D-IMEX 
and (b) 1D-IMEX; variational strong form for: (c) 3D-IMEX and (d) 1D-IMEX; condition number as a function of Courant number for (e) Set2C and (f) Set3C. 
(Similar eigenspectra are obtained with Set2C).

overhead of the 1D-IMEX over the fully explicit scheme comes from the added cost of solving a linear system at each time-
step.

6.2. Case 2: density current

The density current test problem was solved on a 128 × 32 mesh of fourth-order elements (	x = 	z = 50 m) and is 
evolved until t = 900 s. As previously mentioned, a uniform diffusion coefficient of μ = 75 m2 s−1 is used to maintain 
stability.
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Table 2
Rising Thermal Bubble. Comparison of performance metrics for various formulations using Set2C and Set3C. The performance metrics include the mass 
(	M) and energy (	E) loss, mean absolute error (MAE) and time-to-solution (Sol. Time).

Explicit
3D-IMEX 1D-IMEX

No-Schur
Schur

No-Schur
Schur

(Rusanov) AT Flux CA Flux AT Flux CA Flux

Courant No. 0.1 1.5 0.1

Set2C

Min θ ′ -1.45E-1 -1.45E-1 -2.94E-2 -2.94E-2 -1.45E-1 -5.62E-2 -5.62E-2
Max θ ′ 5.30E-1 5.30E-1 5.54E-1 5.54E-1 5.30E-1 5.43E-1 5.43E-1

	M 0.0E0 0.0E0 0.0E0 0.0E0 2.09E-16 0.0E0 2.09E-16
	E 2.50E-8 2.49E-8 2.47E-8 2.47E-8 2.49E-8 2.26E-8 2.26E-8

MAE – 1.63E-5 2.37E-05 2.08E-05 9.91E-7 2.51E-4 2.68E-4

Sol. Time (s) 4384 319 275 250 15499 15580 3231

Set3C

Min θ ′ -5.29E-2 -5.29E-2 -3.45E-2 -3.45E-2 -5.29E-2 -2.74E-2 -2.67E-2
Max θ ′ 5.20E-1 5.20E-1 5.19E-1 5.19E-1 5.20E-1 5.08E-1 5.08E-1

	M 0.0E0 0.0E0 0.0E0 0.0E0 2.09E-16 2.09E-16 2.09E-16
	E 0.0E0 0.0E0 0.0E0 0.0E0 0.0E0 0.0E0 0.0E0

MAE – 1.60E-5 2.18E-05 1.90E-05 6.00E-7 3.00E-4 3.20E-4

Sol. Time (s) 4435 322 274 248 15484 15443 3187

Fig. 4. Density Current. The distribution of potential temperature perturbation at t = 900 s using Set3C with variational weak No-Schur form and: (a) 
3D-IMEX with AT flux, (b) 3D-IMEX with CA flux; and variational strong Schur form for: (c) 3D IMEX, (d) 1D-IMEX.

Fig. 4 shows the distribution of the potential temperature obtained using the two variational forms and different flux 
schemes for the 3D-IMEX and 1D-IMEX formulations. Comparing Fig. 4, it can be seen that the different flux formulations 
have little to no effect on the solution. This is because the dissipation introduced by the artificial viscous operator is 
significantly greater than the dissipation from the numerical fluxes. The potential temperature obtained using 3D-IMEX and 
1D-IMEX in both weak and strong forms are all similar.

Implicit time integration (whether treating the linear or nonlinear terms) introduces greater dissipation into the system 
than explicit methods [48]. Therefore, the accuracy of the IMEX formulations must be investigated. The accuracy is quantified 
using the mean absolute error (MAE) of the difference between the solution resulting from the IMEX discretization and some 
reference solution. The reference solution is computed using a third-order, five-stage, explicit Runge-Kutta method (RK35) 
using a very small time step (CN ≈ 0.0002) and the AT flux formulation, and is compared at t = 100 s. The IMEX schemes 
are solved using a two-stage, second-order ARK (ARK2) [15], a three-stage, third-order ARK (ARK3) and a four-stage, fourth-
order ARK (ARK4) [49] schemes. The different Courant numbers for the 3D-IMEX cases are obtained by modifying the time 
step appropriately. For the 1D-IMEX cases, the Courant numbers are modified by changing the resolution of the vertical 
discretization, so that the influence of only vertical/radial operators is affected. Since the grids for the 3D-IMEX and 1D-
IMEX cases are different (even for the same Courant number), the errors between the two cannot be compared fairly.

Fig. 5 shows the accuracy of the IMEX formulations for the No-Schur form of Set3C. The IMEX methods using the AT flux 
formulation exhibit the expected order of convergence relative to the reference solution obtained using RK35 with AT flux. 
For smaller Courant numbers, the IMEX methods using the CA flux formulation differ significantly from the reference solu-
tion but are in good agreement for larger Courant numbers. This is due to the difference in solution caused by the difference 
in the amount of dissipation from the numerical flux. For larger Courant numbers, the dissipation from the time integration 
offsets this difference in dissipation from the numerical fluxes, thereby leading to similar results as the total AT flux. In 
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Fig. 5. Density Current. The accuracy of the IMEX discretizations and ARK time integrators for Set3C relative to a reference solution qref computed using 
RK35 (with AT flux and Courant number ≈ 0.0002) for: (a) 3D-IMEX and (b) 1D-IMEX formulations; and relative to a reference solution qref computed 
using RK35 (with CA flux and Courant number ≈ 0.0002) for: (c) 3D-IMEX and (d) 1D-IMEX formulations. (Note: the results for 1D-IMEX with CA flux are 
similar for both ARK3 and ARK4).

addition, the IMEX methods using the CA flux also exhibit the expected order of convergence when the reference solution 
from the RK35 is obtained using the CA flux formulation (Figs. 5c and 5d).

6.3. Case 3: inertia gravity waves

The inertia gravity wave problem was solved on a 96 × 32 mesh of fourth-order elements (	x = 780 m, 	z = 78 m) and 
is evolved until t = 2500 s; at this final time, the initial perturbation will be exactly at the midpoint of the domain. The 
distribution of the potential temperature along the horizontal center line of the domain (at z = 5 km) obtained using various 
formulations of the strong form, 3D-IMEX discretization is shown in Fig. 6. No appreciable differences are seen between the 
distributions from the different discretizations and equation sets. To adhere to the analytical solution, the test case is solved 
without any artificial diffusion.

We now compare the efficiency of the various IMEX formulations. The average number of solver iterations per time step 
and the time-to-solution (wallclock time) for different Courant numbers are shown in Figs. 7a and 7b, respectively. To not 
be constrained by the CFL condition on the explicit treatment of the advective dynamics, the constant mean flow is set to 
ū = 0 m/s (see Sec. 5.3). All analyses were performed on 40 cores with ARK2. Therefore, the number of iterations reported 
per time step are for two ARK stages. The efficiency results presented are shown for both Set2C and Set3C.

For the No-Schur system, the CA flux formulation requires fewer iterations to reach convergence. This is due to the better 
conditioning of the system and is consistent with the results for the rising thermal bubble test (see Sec. 6.1). As expected, a 
larger number of iterations are required with increasing Courant numbers. The Schur system requires fewer iterations than 
the No-Schur system for the same Courant number, due to the better conditioning of the linear system. Although the linear 
solvers are not the focus of this study, it was previously demonstrated (Fig. 3) that the Schur form results in a symmetric 
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Fig. 6. Inertia Gravity Wave. The distribution of potential temperature perturbation at t = 2500 s using 3D-IMEX and: (a) Set2C in No-Schur form with 
AT flux and (b) distribution along the center line for each combination of equation set, numerical flux, and IMEX form (note the y-axis is in milli-Kelvin).

Fig. 7. Inertia Gravity Wave. Efficiency study of the different equation sets (top row is Set2C and bottom row is Set3C) showing: (a, d) The average number 
of iterations required to solve the linear system at each time step, (b, e) time required to compute 500 seconds and (c, f) convergence of the various IMEX 
time integrators with No-Schur form and AT flux formulation (reference solution was taken to be the analytical solution of Baldauf and Brdar [38]).

positive definite matrix and can be solved using conjugate gradient (CG). Fig. 7a shows that CG requires significantly more 
iterations than GMRES, particularly for larger Courant numbers. Although CG requires more iterations per time step, the 
number of FLOPs, storage requirements (no need to store Krylov vectors), and inter-processor communication per iteration 
is much lower than GMRES (when using modified Gram-Schmidt for the Arnoldi iteration). Hence, the CG solver is faster for 
smaller Courant numbers. Previous works have provided conditions for superlinear convergence of the CG [50] and GMRES 
[51] solvers based on the Ritz values, however, such analysis is beyond the scope of this study but of interest for future 
work. Both equation sets exhibit similar iteration counts.

Comparing the wallclock time required to reach the simulation time of 500 s, Figs. 7b and 7e show that there exists an 
optimal time step that yields the fastest time-to-solution, after which the efficiency degrades; this behavior can be delayed 
with preconditioners but we save this for future work (see Sec. 7). For smaller time steps where fewer iterations (one to 
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Fig. 8. Acoustic Wave on Sphere. Pressure perturbation at different times obtained using 1D-IMEX discretization of Set3C with the No-Schur AT flux 
formulation.

two) are needed to solve the linear system, the No-Schur formulations yield a faster time-to-solution; similar behavior was 
seen for continuous Galerkin IMEX formulations [24]. This is due to the computational cost of extracting the prognostic 
variables from the diagnostic variables being larger than the cost of performing few iterations of the linear solver. At the 
optimal time step (CN ≈ 3), the Schur formulation begins to yield faster time-to-solution than the No-Schur formulations. 
For Courant numbers smaller than this optimal value, the Schur form with the conjugate gradient solver provides a faster 
time-to-solution than the No-Schur forms. For smaller Courant numbers (i.e., for more number of time steps), Set3C yields a 
much faster time-to-solution than Set2C. This can be attributed to the increased computational cost of the equation of state 
for Set2C over that of Set3C. For larger Courant numbers (i.e., fewer time steps), the speed-up of Set3C over Set2C is smaller 
(but Set3C is still faster) due to fewer evaluations of the equation of state.

Figs. 7c and 7f show results of the convergence study for the IMEX formulation with the AT flux. The reference solution 
was taken to be the analytical solution of Baldauf and Brdar [38] at t = 2500 s. All methods exhibit the expected order of 
convergence. A similar breakdown in the order of convergence was seen in [38] and [22]. Fig. 7f shows the breakdown of 
ARK4 at Set3C at higher Courant numbers; this behavior is described in [22,38].

6.4. Case 4: acoustic wave on a sphere

The acoustic wave on a sphere (AWS) problem is solved on a cubed-sphere grid with a resolution of 	h = 200 km
and 	v = 400 m, in the horizontal and vertical directions, respectively. The simulation is evolved until t = 36000s with a 
time step of 	t = 25 s corresponding to a Courant number ≈ 37. The high aspect ratio of such resolutions (	h/	v = 500) 
increases the stiffness due to the vertical resolution and dynamics. This stiffness leads to a drastic increase in the number 
of iterations required for convergence of the 3D-IMEX system. Therefore, the 1D-IMEX discretization with direct solver is 
ideal for such applications. Fig. 8 shows snapshots at different times for the acoustic wave traveling around the sphere. The 
solutions are obtained using the 1D-IMEX discretization of Set3C with the AT flux formulation and ARK2 time integration. 
No significant differences are seen between the AT and CA flux formulations.

The efficiency of the 1D-IMEX over the 3D-IMEX for global problems (i.e., problems on the sphere) is investigated. 
The number of iterations and time-to-solution for different Courant numbers is investigated for all formulations presented. 
Since the linear system in the 1D-IMEX formulation is solved using a direct method (banded LU decomposition from the 
LAPACK library), studying its performance by simply changing the time steps to obtain the required Courant number is not 
appropriate (since the matrix size and FLOPs will remain the same and, therefore, the performance will increase linearly 
with the increase in time step).

For this reason, the Courant number in the efficiency study of the 1D-IMEX formulations is updated by modifying the 
vertical resolution. That is, higher resolutions yield larger Courant numbers and larger system matrices. For the 3D-IMEX 
case the grid resolution is kept constant; instead the required Courant number is attained by adapting the time step. 
This keeps the size of the linear system constant between different Courant numbers but with different stiffness, thereby 
requiring different number of iterations to reach convergence. All analyses are performed with Set3C and the ARK2 scheme 
using 10 MPI ranks.

Fig. 9 shows the results of the convergence study for 1D-IMEX (with AT flux), average number of iterations (for the 
3D-IMEX case) and the time required to evolve the system for 10 time steps. The Courant number presented is the Courant 
number of the acoustic term with vertical grid spacing (i.e., a =

√
γ P
ρ and 	s = 	v in Eq. (5.4)). Comparing Figs. 9a and 

9b shows that the 1D-IMEX methods are more than an order of magnitude faster than the 3D-IMEX methods for such high 
aspect ratio problems. This is because the 3D-IMEX methods are restricted by the stiffness due to the vertical discretization 
and dynamics. The Schur forms for both 3D-IMEX and 1D-IMEX are significantly faster than their No-Schur forms. In the 
case of 1D-IMEX, the timings of the two No-Schur forms coincide as expected, since the two linear systems are of the same 
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Fig. 9. Acoustic Wave on Sphere. The accuracy and efficiency of the IMEX discretizations with Set3C showing: the time required to compute 10 time steps 
as a function of Courant number using: (a) 3D-IMEX and (b) 1D-IMEX; (c) average number of iterations per time step for 3D-IMEX and (d) convergence of 
the 1D-IMEX scheme (reference solution was obtained using RK35 and CN ≈ 0.001).

size and, because we are using direct solvers, the condition number of the matrices play no role with respect to time-to-
solution. Although the 3D-IMEX formulations allow for a larger stable time step (since acoustic terms in all directions are 
handled implicitly), the larger computing/simulation times often render these methods unusable for such global models. 
Hence, the 1D-IMEX formulations are ideally suited for high aspect ratio meshes as they allow for much larger usable time 
steps while greatly reducing the time-to-solution.

Fig. 9c shows the average number of iterations per time step required to reach convergence. The Schur form of the 
3D-IMEX discretization requires significantly fewer iterations to reach convergence; this can be attributed to the better 
conditioning (smaller condition number) as well as the location of the eigenvalues of the Schur system (Krylov methods 
prefer the eigenvalues near the real axis). The No-Schur form with AT and CA fluxes require similar number of iterations 
for smaller Courant numbers (CN < 5). For larger Courant numbers the CA flux formulation requires fewer iterations than 
the AT flux, thereby yielding a much faster time-to-solution. Due to the computational cost of the 3D-IMEX formulations 
for such highly anisotropic grids, the convergence analysis is only performed for 1D-IMEX formulations. These 1D-IMEX 
schemes (Fig. 9d) are shown to follow the expected order of convergence.

7. Conclusion

We present and analyze Schur complement IMplicit-EXplicit formulations for discontinuous Galerkin discretizations of 
different forms of the Euler equations. Two different IMEX methods that resolve the stiffness due to the governing dynamics 
and geometric discretization are shown. The 3D-IMEX method, which treats the acoustical stiffness in all directions, allows 
for significantly larger time steps and yields a faster time-to-solution for problems with mesh aspect ratios closer to one. 
In the case of global models, where the aspect ratio is much larger, the 1D-IMEX method is more efficient and more 
than an order of magnitude faster than 3D-IMEX. For each IMEX formulation and governing equation set, efficient Schur 
complements are derived to reduce the size of the linear system from a system of five variables to a single equation for 
pressure. The derivation and consequences of the different numerical fluxes used in these Schur complements are discussed. 
The Schur formulations of these IMEX methods result in a smaller, better conditioned system, and, therefore, require few 
iterations to reach convergence. Moreover, the resulting linear system is shown to have purely real eigenvalues confirming 
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the ellipticity of the resulting discrete form of the Helmholtz-like differential operator; this last point is important because it 
now opens the door to developing preconditioners that will further improve the performance of this method (e.g., multigrid 
methods). The ARK methods of different orders also yield the expected theoretical rates of convergence for the test cases 
considered. These different formulations of the IMEX methods are shown to be efficient and accurate for both mesoscale 
(box) and global (sphere) models.
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Appendix A. Effects of wave speeds on flux formulations for IMEX discretizations

Here, we present conditions on the wave speed of the total flux, given the treatment of the linear flux so that we obtain 
the appropriate eigenvalue/wave speed for the nonlinear flux. Computing the nonlinear flux in Eq. (4.20) as FNL = FT − FL
and writing λNL = λT − λL , let us consider the following cases:

Case 1 Treating the implicit system with a centered flux (λL = 0), letting λNL = u, the nonlinear (explicit) operator in 
Eq. (4.20) can be written as∫

�

ψ∇ · FNL d� =
∫
�

ψ
(
{{FT }} − u

2
�q�̂n

)
· n̂d� −

∫
�

∇ψ · FT d�

−
∫
�

ψ {{FL}} · n̂d� +
∫
�

∇ψ · FL d�
(A.1)

where we obtain a form that treats the total flux (and the nonlinear flux) using Rusanov with the correct (advective) 
wave speed of the nonlinear flux Jacobian. This shows that when the implicit term is treated with centered fluxes, 
the total flux FT must be treated with a Rusanov flux with wave speed u. This analysis shows why the splitting used 
in [52,53] works in a semi-Lagrangian setting since the nonlinear (explicit) operator is treated in a semi-Lagrangian 
approach whereby only the advective speed is used in the method of characteristics and the remainder of the terms 
used centered fluxes, which is what we have analyzed here. Note that the centered flux ({{·}}) is non-dissipative. 
Hence, it is clear that this approach results in a complete system that is less dissipative when u 	 a.
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Case 2 Treating the total flux with a linearized Rusanov flux (λT = u + a0) with a0 =
√

γ P0
ρ0

, we get∫
�

ψ∇ · FNL d� =
∫
�

ψ

(
{{FT }} −

(
u + a0

2

)
�q�̂n

)
· n̂d� −

∫
�

∇ψ · FT d�

−
∫
�

ψ

(
{{FL}} − λL

2
�q�̂n

)
· n̂d� +

∫
�

∇ψ · FL d�
(A.2)

where λNL = u only when λL = a0. This shows that when the implicit term is treated with a linearized Rusanov flux 
with wave speed λL , the total flux FT should be treated with a linearized Rusanov flux with λT = u + λL . When 
λL = 0 (as it is in the Schur form), then λNL = u + a0 is the wave speed of the terms being treated explicitly. Hence, 
the explicit time integration is still subject to the CFL restrictions due to the acoustic dynamics which requires using 
a smaller time steps.

Case 3 Treating the total flux with the total nonlinear Rusanov flux (λT = u + a) we get∫
�

ψ∇ · FNL d� =
∫
�

ψ

(
{{F}} − u + a

2
�q�̂n

)
· n̂d� −

∫
�

∇ψ · Fd�

−
∫
�

ψ

(
{{FL}} − λL

2
�q�̂n

)
· n̂d� +

∫
�

∇ψ · FL d�.

(A.3)

This appears valid but the pressure P appears nonlinearly in a. When λL = 0 (i.e., implicit term is treated with a 
centered flux), then the wave speed of the nonlinear term is λNL = u + a � u which is not an eigenvalue of the 
nonlinear flux Jacobian and can lead to a large portion of the eigenspectra to lie outside the region of stability of 
the explicit time integrator thereby requiring a smaller time step that is dictated by the acoustic dynamics. When 
λL = a0 (i.e., implicit term is treated with a linearized Rusanov flux), then λNL = u + a − a0 = u + a′ is still not an 
eigenvalue of the nonlinear operator (as shown above) but yields eigenvalues nearer to it. Linearizing a about P0

and ρ0, we obtain an expression for a′ .

a ≈
√

γ P0

ρ0︸ ︷︷ ︸
a0

+ 1

2

(√
γ

P0ρ0
P ′ −

√
γ P0

ρ3
0

ρ ′
)

︸ ︷︷ ︸
a′

≈ a0 + a0
2

(
P ′

P0
− ρ ′

ρ0

)
where P ′ 	 P0 and ρ ′ 	 ρ0. We can then perform a scale analysis with O(γ ) = O(ρ0) = O(1), O(P0) = O(105). 
Fig. 8 shows that O(P ′) = O(10), and, numerically we can show that, O(ρ ′) < O(10−4). Therefore O(a′) <
O(10−1) <O(u), hence such a choice of the numerical flux is not problematic for low Mach number applications.

Appendix B. The necessity for special choices on the flux to construct the Schur complement

To understand the challenge of constructing the Schur complement for the DG method, let us consider the linearized 
shallow water equations

∂ϕ

∂t
+ ∇ ·U = 0

∂U

∂t
+ ∇ϕ = 0

(B.1)

where (ϕ, U) represent the geopotential height and momentum, respectively. Applying the element-based Galerkin method 
to Eq. (B.1) (multiplying by a test function and integrating) yields∫

�e

ψ
∂ϕN

∂t
d�e +

∫
�e

ψ∇ ·UN d�e = 0

∫
ψ

∂UN

∂t
d�e +

∫
ψ∇ϕN d�e = 0.

(B.2)
�e �e
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Next, note that the second terms for each equation can be written as follows∫
�e

ψ∇ ·UN d�e =
∫
�e

ψŨN · n̂d�e −
∫
�e

∇ψ ·U(e)
N d�e

∫
�e

ψ∇ϕN d�e =
∫
�e

ψ ˜(ϕId)N · n̂d�e −
∫
�e

∇ψ · (ϕId)
(e)
N d�e

(B.3)

where Id is the rank-d identity matrix, where d denotes the spatial dimension of the problem. With little loss in generality 
let us write the numerical flux or the first terms on the right-hand side of Eq. (B.3) in the following form

ŨN = {{UN}} − λ

2
�ϕN �̂n

˜(ϕId)N = {{ϕN Id}} − λ

2
�UN �̂n

(B.4)

where {{·}} and �·� represent the average and jump operators, n̂ is the outward pointing unit normal vector of the face �e , 
and λ is the eigenvalue of the flux Jacobian. With this in mind, we can rewrite Eq. (B.3) in the following matrix form (see, 
e.g., [1])∫

�e

ψ∇ ·UN d�e =
(
C(e,k)

)T
UN −J (e,k)ϕN −

(
D̃

(e)
)T

UN

∫
�e

ψ∇ϕN d�e = C(e,k)ϕN −J (e,k)UN − D̃
(e)

ϕN

(B.5)

where C(e,k) , J (e,k) , and D̃(e)
represent the centered, jump, and weak form differentiation matrices. Note that C(e,k) and 

D̃
(e)

are vector matrices whereas J (e,k) is a scalar matrix. Further note that the matrix superscript (e, k) denotes that 
the matrices of the element e also need the contribution of its neighbor k. Matrices with superscript (e) are purely local 
element-wise quantities.

Taking all of this into account and assuming a backward Euler time-integration, we can now write Eq. (B.2) as follows

M(e)ϕ + 	t

[(
C(e,k)

)T
U−J (e,k)ϕ −

(
D̃

(e)
)T

U
]

= Rϕ

M(e)U+ 	t
[
C(e,k)ϕ −J (e,k)U− D̃

(e)
ϕ
]

= RU

(B.6)

where terms on the left-hand side are defined at the new time level n + 1 and terms on the right are at the current time 
level n; we also have dropped the subscript N for convenience.

Letting

M̂ = M(e) − 	tJ (e,k)

D̂ = C(e,k) − D̃
(e) (B.7)

allows us to write Eq. (B.6) as follows

M̂ϕ + 	t D̂
T
U = Rϕ

M̂U+ 	t D̂ϕ = RU.
(B.8)

Finally, applying a block LU decomposition yields the Schur complement

M̂ϕ − 	t2 D̂
T
M̂−1 D̂ϕ = Rϕ − 	t D̂M̂−1RU. (B.9)

Looking at Eq. (B.7) and Eq. (B.9) we note that if J (e,k) is not empty, then M̂−1 is not block diagonal and thereby requires 
a global solution. However, if J (e,k) is empty, which it will be for the continuous Galerkin method and for the DG method 
using centered fluxes, then M̂−1 is block diagonal and trivial to invert - in fact, if we use inexact integration (as we do 
throughout this paper) it will be diagonal. Therefore, to make the Schur complement feasible requires using centered fluxes 
for the implicit linear operators. We say feasible because inverting M̂ will increase the cost of the Schur complement by a 
factor dependent on how often it appears in the Schur form. To give you a sense of what we mean, in Eq. (B.9), the inverse 
of M̂ appears once on the left and also on the right. Therefore, for non-block-diagonal M̂ , Eq. (B.9) would require three 
global linear solves.
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Appendix C. Discrete formulations of the Schur complement for the IMEX discretizations

We now replace the continuous spatial derivatives of the Schur form with their discrete representations. Defining the 
weak form differentiation matrix D̃(e)

as

D̃
(e)
i j =

∫
�e

∇ψiψ j d�e,

the strong form differentiation matrix as

D(e)
i j =

∫
�e

ψi∇ψ j d�e,

and the centered flux matrix C(e,k) as

C(e,k)
i j =

∫
�e

ψiψ jn̂
(e,k) d�e,

for element e with neighboring element k with an outward pointing normal vector n̂(e,k) from e to k. Then the weak 
variational form for ∇ · Q can be written as∫

�e

ψ∇ ·Q d�e =
∫
�e

ψQ · n̂ d�e −
∫
�e

∇ψ ·Q d�e = (C(e,k))T Q− (D̃
(e)

)T Q = D̂
T
Q

where D̂ =
(
C(e,k) − D̃

(e)
)
. Letting D̂ = M̂−1 D̂

T
, where

M̂e
i j = Me

ij − αJ (e,k)
i j

is the augmented mass matrix and J (e,k) is the jump term (that is zero for centered flux and continuous fields), M̂−1∇ ·Q =
D̂
T
Q and M̂−1∇Q = D̂Q, the discrete weak Schur form for Set2C (Eq. (3.15)) becomes

Ptt − α2 γ P0

�0
D̂
T
([

h2C

{
A−1

(
D̂ Ptt + D̂φ

h2C

�0Ptt

γ P0

)}])

= γ P0

�0
�̂ − α

γ P0

�0
D̂
T
([

h2C

{
A−1

(
Û− α

[
ρ̂ D̂φ − D̂φ

h2C
�̂

])}])
,

(C.1)

where α is the IMEX coefficient defined in Sec. 3.1. The discrete strong Schur form can be obtained by expanding the 
divergence operators in Eq. (3.15) using the product rule and substituting D̂ and D̂T

appropriately. Similarly, the discrete 
weak Schur form for Set3C (Eq. (3.26)) can be written as

Ptt − α2 (γ − 1)

(
D̂
T
[
h3C

{
A−1

(
D̂ Ptt + D̂φ

(γ − 1) (h3C − φ)
Ptt

)}])

− α2 (γ − 1)φ D̂
T
{
A−1

(
D̂ Ptt + D̂φ

(γ − 1) (h3C − φ)
Ptt

)}
= (γ − 1)

(̂
E − φρ̂

)
− α (γ − 1)

(
D̂
T
[
h3C

{
A−1

(
Û− α

D̂φ

(h3C − φ)

(
h3C ρ̂ − Ê

))}])

− α (γ − 1)φ D̂
T
{
A−1

(
Û− α

D̂φ

(h3C − φ)

(
h3C ρ̂ − Ê

))}
(C.2)

and the discrete strong Schur form can be obtained by substituting D̂ and D̂T
appropriately in Eq. (3.25). Note that the 

strong forms require two applications of integration by parts as described in [16,54].
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