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Abstract. Phase correlation (PC) is a well-known method for
estimating cloud motion vectors (CMVs) from infrared and
visible spectrum images. Commonly, phase shift is computed
in the small blocks of the images using the fast Fourier trans-
form. In this study, we investigate the performance and the
stability of the blockwise PC method by changing the block
size, the frame interval, and combinations of red, green, and
blue (RGB) channels from the total sky imager (TSI) at the
United States Atmospheric Radiation Measurement user fa-
cility’s Southern Great Plains site. We find that shorter frame
intervals, followed by larger block sizes, are responsible for
stable estimates of the CMV, as suggested by the higher au-
tocorrelations. The choice of RGB channels has a limited ef-
fect on the quality of CMVs, and the red and the grayscale
images are marginally more reliable than the other combina-
tions during rapidly evolving low-level clouds. The stability
of CMVs was tested at different image resolutions with an
implementation of the optimized algorithm on the Sage cy-
berinfrastructure test bed. We find that doubling the frame
rate outperforms quadrupling the image resolution in achiev-
ing CMV stability. The correlations of CMVs with the wind
data are significant in the range of 0.38-0.59 with a 95 %
confidence interval, despite the uncertainties and limitations
of both datasets. A comparison of the PC method with con-
structed data and the optical flow method suggests that the
post-processing of the vector field has a significant effect on
the quality of the CMV. The raindrop-contaminated images
can be identified by the rotation of the TSI mirror in the mo-

tion field. The results of this study are critical to optimizing
algorithms for edge-computing sensor systems.

1 Introduction

Converting cloud images captured by a ground-based sky-
facing camera into a time series of motion vectors has im-
plications for reporting local weather and short-term fore-
casting of solar irradiance (Jiang et al., 2020; Radovan et
al., 2021). Phase correlation (PC) estimates global transla-
tive shift between two similar images by detecting a peak in
their cross-correlation matrix which is used to estimate the
cloud motion vectors (CMVs) from the satellite and ground-
based sky camera images (Leese et al., 1971; Dissawa et
al., 2017, 2021; Zhen et al., 2019; Huang et al., 2011). On
the other hand, optical flow (OF) estimates the pixel-wise
motion assuming the conservation of brightness of the ob-
ject pixels in two frames (Apke et al., 2022; Mondragén et
al., 2020; Peng et al., 2016). However, OF is sensitive to
image noise and the variation in lighting. Both OF and PC
methods fail to detect textureless motion. Other object-based
cloud tracking methods used in radar and satellite meteorol-
ogy require cloud identification before the tracking stage.
The cloud identification approaches vary from threshold-
based to texture-based methods and machine learning meth-
ods (Steiner et al., 1995; Raut et al., 2008; Park et al., 2021).

The texture-based methods and the machine learning mod-
els add computational overheads, complicating their use in
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real-time applications. In infrared and microwave satellite
images and radar images, the threshold of brightness temper-
atures and reflectivity marks a physical distinction of the fea-
tures in the scene. However, for the cloud images in the visi-
ble spectrum, thresholds of RGB values may not be a mean-
ingful criterion to distinguish the properties of the clouds be-
cause they are affected by the lighting conditions and time
of the day. The texture-based techniques are also susceptible
to detection errors due to reflections and shadows caused by
solar zenith angles. While the optical flow (OF) method es-
timates dense motion field (Horn and Schunck, 1981; Chow
et al., 2015), it also suffers from the limitations in visible
camera images and may require segmentation or background
subtraction before the images are processed (Denman et al.,
2009; Wood-Bradley et al., 2012; El Jaouhari et al., 2015).

The Sage Project is designing and building a new kind
of reusable cyberinfrastructure composed of geographically
distributed sensor systems (Sage Waggle nodes shown in
Fig. 1a) that include cameras, microphones, and weather and
air quality sensors generating large volumes of data that are
efficiently analyzed by an embedded computer connected di-
rectly to the sensor at the network edge (Beckman et al.,
2016; https://sagecontinuum.org/, last access: 27 February
2023). An edge device rapidly analyzes the data in real time
at the location where they are collected, and continuously
sends and receives feedback from connected remote comput-
ing systems and other similar devices. In such networks in-
cluding Sage, the computational efficiency of the algorithm is
critical. The PC method can be implemented without prepro-
cessing images and is robust to noise and changes in illumi-
nation, as it works by only correlating the phase information
(Chalasinska-Macukow et al., 1993; Turon et al., 1997). This
eliminates the burden of separating the background from the
objects to be tracked. A straightforward implementation of
the PC method in the frequency domain using the fast Fourier
transform (FFT) is computationally efficient, and hence it is
a natural choice to detect the cloud motion vectors from the
hemispheric camera images at the edge.

The PC method is efficient for uniform rigid body motion,
i.e., when an object’s shape and size are preserved, and mul-
tiple objects in the scene are moving with the same veloc-
ity. There are a few limitations to the PC method that affect
its applicability in tracking cloud motions in a sky-facing
camera. First, the PC method is less efficient when multi-
ple peaks in the correlation matrix are observed. This occurs
when cloud features are moving with different velocities, as
each peak is associated with the motion of one or more inde-
pendent features in the images. This limitation is overcome
by dividing the image into sufficiently smaller subregions
or blocks and employing the PC separately for each block
(Leese et al., 1971). As the multi-layer clouds with different
cloud base heights move independently, Peng et al. (2016)
used adaptive blocks for each cloud type.

Second, the changing cloud texture and geometries may
cause incoherent motion vectors in some image blocks.
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Therefore, additional quality control measures are applied to
remove the spurious CMVs, usually assuming that a spuri-
ous CMYV substantially deviates from its surrounding CMVs
in the presumably smooth velocity field (Westerweel and
Scarano, 2005). For the assumption of the coherent veloc-
ity field, smaller block sizes are preferred. The optimal block
size is determined by the maximum expected displacement
during the frame interval.

Third, the ground-based cameras frequently encounter
contamination on the mirror dome or hemispherical lens,
obscuring the clouds during and after a precipitation event,
and automated identification and removal of precipitation-
contaminated images are critical (Heinle et al., 2010;
Kazantzidis et al., 2012; Gacal et al., 2018; Voronych et al.,
2019). The distortion of images caused by the presence of
raindrops and the edge detection methods are used to identify
raindrop contamination (Kazantzidis et al., 2012; Voronych
etal., 2019). In this paper, we propose the use of motion vec-
tors for detecting raindrop contamination on the rotating TSI
mirror.

Finally, while it is common for cameras to produce high-
resolution three-channel images, the PC method utilized only
a single channel. Hence, either the grayscale image or one of
the RGB channels is used. The dependence of CMV stability
on the choice of image channels is undocumented.

Investigating the sensitivity of the motion vectors to the
block sizes, the frame frequency, and its response to differ-
ent spectral channels will help in the effective implementa-
tion of the method. Therefore, in this paper, we evaluate the
performance of the blockwise PC with three visible chan-
nels, the grayscale, and the red to the blue ratio in two block
sizes and two frame rates. We also demonstrate the effect of
change in the image resolution and the change in frame rate
on the CMV quality. We validated the PC method with con-
structed data and compared it with the OF method. The wind
and ceilometer measurements are used for additional valida-
tion to show consistency with independent atmospheric mea-
surements. However, wind retrieval is not an objective of the
paper. The data, methodology, and algorithm are described
in Sect. 2. The results are shown in Sect. 3, and their impli-
cations for the Sage edge-computing platform are discussed
in Sect. 4.

2 Data and methods
2.1 Data

In this paper, we mainly used data from the Atmospheric Ra-
diation Measurement (ARM) user facility’s Southern Great
Plains (SGP) atmospheric observatory (36.7° N, 97.5° W); in
particular, at the supplemental S1 and central C1 facilities in
Lamont, OK, due to long-term data availability from colo-
cated instruments for wind and cloud base height measure-
ments. The Sage camera images are used in Sect. 3.3.2.
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Figure 1. (a) Sage node deployment at the Atmospheric Radiation Measurement (ARM) user facility in Lamont, OK., with a fisheye camera
for sky monitoring. (b) Downward-looking total sky imager (TSI) with rotating mirror sunband and setup.

2.1.1 Total sky imager

The total sky imager (TSI) is a mounted full-color digital
camera looking downward toward a rotating hemispherical
mirror (Fig. 1b). Daytime full-color hemispheric sky images
are obtained from TSIs operational at the ARM SGP atmo-
spheric observatory (Morris, 2005; Slater et al., 2001). The
images recorded over the S1 site every 30s (Morris, 2000)
during the day on 26 July 2016 are used to demonstrate the
sensitivity of the method described later on. The central sky
region of 400 x 400 pixels is used to compute the CMV dur-
ing the 06:36 to 20:35 CDT window. The data over the C1
site between 14 October 2017 and 14 August, 2019 are used
for comparison of CMVs with the wind data.

2.1.2 Sage camera

Hanwha Techwin America’s fish-eye camera (XNF-8010RV
X series), hosted atop a Sage node and pointed toward the sky
at the Argonne Testbed for Multi-scale Observational Studies
(ATMOS) (41.70° N, 87.99° W), has a six MP CMOS sensor
providing 2048 x 2048 pixels full-color images. Unlike the
TSI camera, the Sage fish-eye camera lacks a sunband and
a rotating mirror (Fig. 1). Images recorded from this camera
every 30s from 06:00 to 17:00 CDT on 13 and 14 February
2022 are used to demonstrate the effect of camera resolution
and frame rate on the sensitivity of the method.

2.1.3 Wind profiling radar and ceilometer

To validate the estimates of the CMV in our work, cloud base
height (CBH) and wind measurements are obtained from the

https://doi.org/10.5194/amt-16-1195-2023

colocated ceilometer and the wind profiling radar (WPR),
respectively (Muradyan and Coulter, 1998; Morris et al.,
1996). The ceilometer is an autonomous, ground-based ac-
tive remote sensing instrument that transmits near-infrared
pulses of light and detects multi-layer clouds from the signal
backscattered from cloud droplets that reflect a portion of
the energy back toward the ground. (Morris, 2016). The laser
ceilometer measurements extend up to 7.7km with 10m
vertical resolution. The wind profiles for comparison were
obtained from the 915 MHz WPR, which transmits elec-
tromagnetic pulses in vertical and multiple tilted directions
(three-beam configuration is used at SGP) to measure the
Doppler shift of the returned signal due to atmospheric tur-
bulence from all heights (Muradyan and Coulter, 2020). The
consensus-averaged winds are estimated at an hourly interval
and are available from 0.36 km to about 4 km at 60 m verti-
cal resolution. We used the CBH and wind estimates over the
SGP C1 site from 14 October 2017 to 14 August 2019.

2.2 Phase correlation using FFT

The phase correlation method for estimating motion in the
images is based on a property of the Fourier transform that
a translational shift in two images produces a linear phase
difference in the frequency domain of the Fourier transform
of the images (Leese et al., 1971). In other words, a signal
/> that is related to signal f; by a translation vector (d,,
dy), then their Fourier transforms denoted by F; and F> have
equal magnitudes, but with a phase shift related to the nor-

Atmos. Meas. Tech., 16, 1195-1209, 2023



1198 B. A. Raut et al.: Cloud motion with phase correlation and optical flow

malized cross power spectrum, as follows.

o= i2m(udy+vdy) _ Fi(u, v) F5 (1, v)
[F1 (e, v) Fa(u, v)|

where F; is the complex conjugate of F>. The phase shift
term e"aﬂwdﬁmﬂ is the Fourier transform of the shifted
Dirac delta function. Hence, we can calculate d; and d,
by computing the inverse Fourier transform of the cross-
power spectrum and finding the location of the peak (Leese
etal., 1971; Tong et al., 2019). Therefore, PC in small image
blocks, between the subsequent images, is rapidly computed
using FFT. Because the phase correlation is executed only for
a small image block, it is possible to employ parallel compu-
tation to further speed up the estimation of motion for a large
dataset.

The following procedure describes the steps in implement-
ing PC to estimate the shift in images /1 (x, y) at time #; and
I(x,y) at time f,. Let image I be spatially translated by
d = (dy, dy) with respect to the image /1:

ey

1. Obtain the FFT of the images /1 (x,y) and I>(x, y) as
Ii(w,v) and I (u,v).

2. Compute C(u,v) by multiplying the FFT of the first
image, and the complex conjugate of the second image.
C(u, v) is the cross-covariance matrix in Fourier space.

3. Obtain an inverse FFT of C(u,v)/|C(u,v)|. The real
part of the outcome gives a covariance matrix Cov(p, q)
in image space.

The above implementation of the PC algorithm is avail-
able in several programming languages, notably C++,
Python, and R in packages OpenCV (mulSpectrums),
Skimage (phase_cross_correlation), and ImageFX
(pcorr3d). For this study, we used a custom Python imple-
mentation, the same as Picel et al. (2018); Raut et al. (2021).
(See the “Code availability” section.)

If image I is a spatially translated version of the image
11, then the phase covariance matrix Cov(p, q) is zero every-
where except for a sharp peak at the location corresponding
to the displacement between the two images. The peak inten-
sity is a good measure of the quality of the motion vector.
Due to the reasons mentioned in Sect. 1, the actual peak in
the covariance matrix can be fuzzy, and it corresponds to the
best-fitting translational motion in the images. Sharp single-
pixel peaks can sometimes occur in the covariance matrix,
due to the high-frequency noise and artifacts in the images,
which are flattened using Gaussian smoothing on Cov(p, q)
with o = 3. An example of the procedure is given in Raut et
al. (2021).

For each image block, the peak covariance location is as-
signed as the local motion vector in image I with reference
image I1. As per the meteorological convention for winds,
the U component is positive for an eastward flow, and the V
component is positive for a northward flow. The location of
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the peak covariance from the center of the matrix gives the
shift in the image features during the image interval along the
X and Y dimensions of the image. We saved X and Y shifts
and computed the motion vectors per minute. The image top
is oriented towards the north, and therefore in the subsequent
sections, the motion in the X and Y directions are referred to
as U and V components, respectively.

2.3 Constructed data for validation

For studying the accuracy and quantitative error analysis of
the method, a dataset with the known displacement vectors is
needed. Synthetic or reconstructed image sequences are best
suited for this task, as managing the displacement is trivial
in such a dataset compared to the real dataset. However, the
constructed dataset should be made with care to avoid un-
real augmentations and artifacts while incorporating possi-
ble variations of the features from image to image. Such a
dataset, although possibly not a perfect representation of the
real data, can be used to study the properties of the algo-
rithms.

These images can then be translated by the desired amount
to achieve the cloud motion effect. We created image pairs by
reconstructing the 2060 samples of Sage camera images clas-
sified as cloudy by the algorithm described in Dematties et al.
(2023) in their clusters 3 and 8. The images were selected to
have cloudiness in the central 200 x 200 pixel region. The
pair of images were created and then subjected to the follow-
ing modifications using an edge filter A and a flat filter B.

0O -1 0
Kermel A=| -1 5 -1 2)
0O -1 0
1 1
KernelB=|1 1 1 3)
1 1

The first image was created with the following operations:
1. The original image was converted to grayscale.

2. Addition of Gaussian noise with mean zero and standard
deviation 1.

3. Convolution with Kernel A.

4. Two iterations of erosion followed by dilation by Ker-
nel B, i.e., morphological opening of the image.

5. Cropped the images to achieve the desired displace-
ment.

The second image of the pair was created by modifying a
few operations as follows:

https://doi.org/10.5194/amt-16-1195-2023
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1. Reverse the RGB colors in the original image before
converting it to grayscale. This reversing of operations,
also known as color augmentation, creates a spectrally
different image with the same structure.

2. Addition of Gaussian noise with mean zero and 1 stan-
dard deviation.

3. Convolution with Kernel A.
4. One iteration of morphological opening by Kernel B.

5. Translated and cropped the images for the desired dis-
placement.

We translated the images by 5, 10, and 20 pixels in both X
and Y directions for ease of comparison and interpretation of
the results (see Sect. 3.1).

2.4 Outliers in the CMYV field

When the image block belongs to the clear sky or the scene
has changed beyond recognition by the correlation, the peak
in the covariance matrix is usually near the boundaries of
the block; thus giving artificially large displacements. Such
vectors are easily identified using a maximum velocity limit
Vmax. For this analysis, we used Viax = M. If the
Vmax 18 smaller than the expected maximum speed, then a
larger block size is recommended.

Removing large magnitude vectors smooths the field;
however, some motion vectors of reasonable magnitude but
spurious directions remain. Such spurious vectors can be re-
moved by comparing them with the surrounding motion vec-
tors.

We compared each vector with the normalized me-
dian fluctuation of the neighboring blocks (Westerweel and
Scarano, 2005). Consider 3 x 3 data with uq as the displace-
ment vector at the center block, uy,us,...,ug as displace-
ment vectors of the neighbors, and u,, as the median of
neighbors, not including the central vector. Then the resid-
uals (r;) of all neighbors are computed as r; = |u; — u,| to
obtain the median residual (7, ). The normalized median fluc-
tuation rq is given by

_ e — Uy

ro
rm +€

4)
€ is the minimum normalization level that represents the ac-
ceptable fluctuation, usually 0.1-0.2. The CMV vectors with
normalized median fluctuation values over 6 are discarded as
outliers.

2.5 Identification of raindrop contamination

The CMV is not valid when rainwater present on the reflect-
ing mirror obscures the clouds. However, in such a scenario,
the rotation of the raindrop-contaminated mirror produces
a rotating vector field, as shown in Fig. 2a. We correlated
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the estimated CMV fields with the mean of manually iden-
tified contaminated CMYV fields and found that the correla-
tion coefficient, r > 0.4, is associated with the rotation of the
raindrop-contaminated mirror (Fig. 2b). Because of the sharp
edges of the raindrops, the rotational pattern is efficiently
captured with few raindrops contaminating the mirror. How-
ever, it struggles to detect contamination when the drops are
concentrated at the center of the dome. Therefore, after the
rotation is detected, the next 10 min of data are flagged as
contaminated even if no subsequent rotation is detected.

2.6 Setup for sensitivity analysis

To test the algorithm’s sensitivity to the block size, we di-
vided the 400 x 400 pixel sky area into a grid of 10 x 10 and
20 x 20 blocks, and we referred to these as block length 40
and 20 pixels, respectively, in Figs. 5-8. Note that the choices
for the number or size of blocks are restricted by the Viax
on one end and the neighborhood criteria on the other. For
example, if the expected Vpax is 7 pixels per min~!, then
the blocks should be at least 21 pixels wide (Sect. 2.4). On
the other hand, for the 10 x 10 grid (block width of 40 pix-
els) with a 1-pixel neighborhood, the correction applies to
the central region of 8 x 8 blocks only. Therefore, increasing
block sizes reduces the number of blocks in the sky region,
which reduces the scope of the neighborhood method in the
error correction stage. To test the sensitivity to the frame in-
terval, CM Vs are also computed at 30 and 60 s intervals. The
30s CMVs are accumulated over 1 min for comparison. As
the PC uses monochromatic images, the CMVs were com-
puted separately for the three RGB channels (abbreviated to
Bu, Gn, and Rd in figures), the red to the blue ratio (RB,
Slater et al., 2001), and the grayscale (Gy) images.

2.7 Optical flow algorithm for comparison

Let I (x, y,t) be the first image defining the pixel intensities
at the time 7. Therefore, the first and second images are re-
lated as

I(x,y,t)=1(x+x,y+8y,t+61). 5

In the computation of OF, we assume that the intensities of
the pixels that belong to the exact object change only due to
the displacement (Horn and Schunck, 1981). This assump-
tion allows for all changes detected in the x and y directions
of the image to be associated with the motion only. The first-
order approximation of the Taylor polynomial is

a1 al
—u+

al
v -
ax dy

5 =0. 6)

where u = ‘é—’t‘ and v = %. However, to find the dense mo-
tion vector field, we used Farnebick (2003) method from
OpenCV which approximates the neighborhood of both

frames by higher-order (quadratic) polynomials, 7(x) ~
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Figure 2. (a) An example of the circular motion field generated every 2—4 min by the rotation of the raindrop-contaminated mirror of TSI.
(b) The histogram of the correlation coefficient between the mean rotational vector field and CMYV fields on 2 January 2017 shows a robust

separation of raindrop-contaminated frames from the clean frames.

x” Ax + b” x4 c. This algorithm works with an image pyra-
mid with a lower resolution at each next level to track the
features at multiple resolutions. Faster motions are captured
with the increased levels of the pyramid. The algorithm pro-
vides a motion vector for each pixel of the input image. The
motion field can be smooth or detailed depending on the
given neighborhood size and the standard deviation used for
the polynomial expansion.

3 Results
3.1 Validation with constructed images

To show the validation of our implementation of the PC
method, we used the images reconstructed from the Sage
camera data, as described in Sect. 2.3. Finally, 2060 pairs of
cloudy images translated by 5, 10, and 20 pixels, in both the
X and Y directions, were used to estimate the displacement
using the PC method described in the Sect. 2.2. The distribu-
tions of the estimated motion are shown in Fig. 3, and their
comparison statistics are shown in Table 1. For a smaller dis-
placement of five pixels, the algorithm estimates the values
with 22.6 % root mean square percent error (RMSPE). With
the increasing displacement of 10 and 20 pixels, the RMSPE
increases to approximately 32 % and 49 %, respectively. This
is consistent with the increasing spread in the estimates with
increasing displacement as seen in Fig. 3. However, the algo-
rithm tends to produce a peak near the zero value, except for
very small displacements (D =5), and another peak at the
given displacement. These results are consistent with Zhen et
al. (2019). The proportion of vectors near the zero value in-
creases with the displacement; however, in most cases, they
are estimating the correct quadrant of the direction of the mo-
tion. However, these values need to be removed to get a good
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Table 1. Mean, standard deviation (SD), root mean square error
(RMSE), and root mean square percent error (RMSPE) of cloud
motion estimated from reconstructed images for constant displace-
ments of 5, 10, and 20 pixels (u is uncorrected, c is corrected with a
threshold).

Displacement (pixel) Mean SD RMSE RMSPE %
5 (u) 55 1.02 1.13 22.6
10 (u) 82 263 3.19 319
20 (u) 154 8.7 9.83 49.1
10 (¢) 9.2 1.4 1.7 114
20 (¢) 20.5 2.1 2.1 44

estimation of the speed of the motion. For demonstration pur-
poses, we used the threshold to remove the near-zero values
which significantly reduced the RMSE. However, in the real
images, the method described in Sect. 2.4 is effective when
the majority of the vectors are correct. For D = 20, approxi-
mately a quarter of the vectors were near-zero vectors.

3.2 Cloud motion and sensitivity results

Changing sky conditions captured by TSI on 26 July 2016
during the 06:36 to 20:35 CDT are shown in Fig. 4 at 100 min
intervals for reference. The sequence of images shows the
movement of stratiform clouds from the southwest for over
2h (~ 150 min), with the occasional presence of low-level
cumulus clouds. After about 3 h, the cumulus cloud devel-
opment covered the sky (see the 200 min snapshot) moving
predominantly from the east/northeast, as shown by the red
arrow. Rapidly moving low-level clouds had less coherent
motion at the block level than the altostratus. In addition, the
low-level clouds intermittently traveled in patches with the
altostratus aloft moving from the southwest. The time series

https://doi.org/10.5194/amt-16-1195-2023
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Figure 3. Distribution of the motion estimated by the PC method in reconstructed images for displacement values of 5, 10, and 20 pixels.
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Figure 4. Varying sky conditions on 26 July 2016, from 06:36 to
20:35CDT (11:36-01:35 the next day in UTC) at 100 min inter-
vals over Lamont, OK. A sky area of 400 x 400 pixels is cropped
and used for CMV computation. The top of the image points to
the north, and the red arrow shows the direction of motion for that
frame.

of U and V components of CMYV, shown in Figs. 5 and 6,
respectively, are smoothed using cubic splines for easily dis-
cernible visualizations. The raw U component is shown in
Fig. 12 for reference. The U and V plots suggest that the
PC method successfully captured the direction of the motion
and the reversal of the direction in all configurations. As de-
scribed above, the mid-level clouds moving from the west
and transitioning to low-level clouds moving from the east at
around 150 min are seen in Fig. 5.

The turbulent motion characterized the episodes of cumu-
lus growth from 150 to 450 min, as evidenced by the fluctua-
tions in the CMV during this phase in all channels, are how-
ever more pronounced in the RB channel. Between 500 and
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600 min, cumulus and altostratus cleared, and high-level cir-
rus clouds became visible, flowing from the west. Additional
late-afternoon cumulus movement (see the 700 min snap-
shot) and the clear sky with high-level cirrus or occasional
westward-moving low-level cloud patches were present until
sunset.

The frequency distribution of the CMV components
(Fig. 7) also shows two peaks of a positive eastward com-
ponent (U) distinguishing the rapidly moving mid-level and
slow high-level clouds from the camera viewpoint. The larger
blocks (40 pixels wide) and the shorter frame interval (30s)
have a wider range than the rest of the configuration, which
shows their efficiency at capturing the low-level cumulus mo-
tion. It is important to note that 26 July 2016 was accompa-
nied by a variety of cloud conditions and individual episodes
of low, medium, and high-level cloud motion, each lasting for
at least an hour. Thus, the short-term fluctuations of CMVs
are mainly caused by the algorithm’s instability. To assess the
stability of CM Vs for various configurations, we compare the
autocorrelation of the CMYV in the following subsection.

3.3 Stability of CMV

The stability of the CMV was tested by changing the block
size, the frame interval, the combinations of red, green, and
blue (RGB) channels from the total sky imager (TSI) and
by changing the image resolution and frame rate in the Sage
camera.

3.3.1 Block size, frame interval, and channel

The movement of clouds is usually smooth at the 1 min time
interval. Except for the change in direction during the alto-
stratus to cumulus transition, the movement of the clouds on
26 July 2016 should be more or less stable at the hourly inter-
vals for most of the day (Figs. 5 and 6). However, the CMV
fluctuates at a 1 min time interval, mainly due to the irregular
response of the algorithm caused by the issues mentioned in
Sect. 1. Therefore, the stability of motion vectors in time is
evaluated for the above configurations by checking the au-
tocorrelation of the CMV time series. The autocorrelation
function (ACF) of U and V components for different con-
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Figure 5. Smoothed time series of U component of domain-averaged CMV (pixel per min~!) on 26 July 2016 06:36 to 20:35 CDT (11:36—
01:35 next day in UTC) over Lamont, OK. Variations with block size (20 and 40 pixels) and frame intervals (30 and 60 s) are shown for
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Figure 6. Same as Fig. 5, but for the V component of the CMV.

figurations is shown in Fig. 8 (top panels). The linear ACF
suggests a long decorrelation length for all the combinations.
While RB has the lowest autocorrelations (more fluctuating
vectors) for all configurations, the rest of the color channels
have more or less equally stable vectors. The frame interval,
followed by block length, noticeably affects the stability of
the vectors.

Atmos. Meas. Tech., 16, 1195-1209, 2023

The lower panels in Fig. 8 are the same as the top pan-
els, but for the period between 150 and 450 min when the
rapidly developing low-level clouds were present. The small
cloud features were developing fast and had variable motion.
Therefore, during this period, the autocorrelation is lower
and the performance of the large block sizes and short frame
intervals is noticeably better for both U and V components.
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Figure 7. Frequency distributions of U and V components (pixel per min—1) shown in Figs. 5 and 6, respectively, for all 20 setup combina-
tions. The bimodal distribution of the U component is due to two cloud regimes discussed in Sect. 3.2.
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Figure 8. Autocorrelogram for U and V components showing the stability of the motion vectors shown in Figs. 5 and 6. Panels (a) and (b) for
all the data, and panels (c¢) and (d) for the selected period of rapid Cu cloud development between 09:06 to 14:56 LT (time steps: 150—

450 min).

The CMV from red and gray channels has slightly higher au-
tocorrelation for the dominant motion (i.e., zonal component,
U) during this period.
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3.3.2 Image resolution and frame interval

Our analysis shows that CMVs are more stable for larger
blocks and shorter frame intervals (see Sect. 3.3.1). There-
fore, the stability of motion vectors is evaluated for the same
blocks (i.e., the image divided into a 10 x 10 grid) and by
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Figure 9. The scheme for testing resolution sensitivity with the
Sage camera image obtained on 21 April at 14:06:38 over Lamont,
OK. A 10 x 10 block grid with four successively lower resolutions
is used for CMV computation to compare the effect of resolution
and time interval on the stability of CMV.

reducing their resolution in steps to block lengths of 200,
150, 100, and 50 pixels, as shown in Fig. 9, with frame inter-
vals of 30 and 60 s. The 13 February was dominated by mid-
level stratus cloud motion, and 14 February had periods of
low-level cumuliform development with fast movements and
rapid evolution of cloud features dominating the scene. In
addition, on both days, the cloud motion was mostly in east—
west (zonal) direction, with the U component approximately
4 times larger than the V component. Therefore, ACF of only
U components for four image resolutions and two frame in-
tervals are shown in Fig. 10. ACF is significantly lower for
longer frame intervals. For example, long intervals reduce
the autocorrelation at lag 1 from 0.75 at 30 s intervals to 0.5
at 60 s intervals (Fig. 10a). This effect is even more promi-
nent for the rapidly evolving cumuliform clouds (Fig. 10b),
where the autocorrelation at the lag 1 drops from 0.65 to 0.2.
On the other hand, a change in the resolution by a factor of
4 has minimal effect, and a change in lag 1 autocorrelation is
within 0.05.

3.4 Comparison with wind data

To compare the hourly mean CMV with winds of appro-
priate altitudes, we identified the hours with a stable CBH
for at least 20 min from the ceilometer measurements from
14 October 2017 to 14 August 2019. The hourly winds are
averaged for 1 km deep layers from the surface to 4 km al-
titude, and then the hourly mean CMVs are compared with
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the mean wind vectors in the vertical layer corresponding to
the median CBH (Fig. 11). Note that the range of values for
CMV and wind have an order of magnitude difference due
to the different units. From the 551 d of data during this pe-
riod, 876 daytime cloudy hours were identified, when simul-
taneous measurements from the WPR, the ceilometer, and
CMYV estimates were available. We only present CMVs for
one setting; the 40-pixel block length, and the 30 s frame in-
terval for the red channel. The rainy samples, identified using
the method described in Sect. 2.5, mostly fall close to a zero
value, as no mean motion is recorded. The sky-view camera
data routinely suffer from rain, snow, and other debris on the
lens that obstructs the view. The higher wind speeds near zero
CMV can mainly occur due to the snow obstructing the view
or smooth, flat cloud bases that are not successfully tracked.
In addition, the quality of the wind profiles from the WPR
is also adversely affected by rainfall (Muradyan and Coulter,
2020). Therefore, we removed instances with precipitating
events from consideration in our comparison. The correlation
coefficient (r) of the U component of the CMV and hourly
wind averages improved from 0.38 for all the data to 0.42 af-
ter removing rainy samples, with a 95 % confidence interval.
Likewise, for the V component, r increased from 0.56 for all
data to 0.59, with a 95 % confidence interval. The slope of the
linear fit for U components is between 2.4 and 3.4 for layers
0-3km, and it is 5.7 for the 3—4 km layer, suggesting that
the mid-level (i.e., 3—4 km) CMVs are noticeably underesti-
mated from the camera viewpoint. The slopes of the V com-
ponents are in the range of 3—4 for all layers. The WPR data
above 4 km are sparse; hence no samples with matching cri-
teria were available during the study period.

The comparison of the CMV either from a ground-based
camera or satellite sensors with that of atmospheric winds
has several sources of uncertainty. The estimation and com-
parison of CBH and winds from the ceilometer and the wind
profiler, respectively, show sampling uncertainty. In addition,
the cloud displacement from the camera viewpoint differs
with altitude, and deeper convective clouds do not always
move parallel to the low-level winds. Therefore, this com-
parison may not be interpreted as a quantitative validation of
the algorithm for wind retrievals; however, significant corre-
lations of the magnitudes indicate that the estimates of the
instantaneous CMVs from the camera images are stable over
a long period. Although a perfect correlation does not ex-
ist between wind and CMV from ground camera images due
to the above factors, more accurate identification of rain and
snow-contaminated images would improve the comparison.

3.5 Comparison with the optical flow method

The estimations of the mean motion vector from PC and the
OF algorithms for U components are shown in Fig. 12. The
issue of near-zero values seen in Fig. 3 is also present in
OF vectors, which is causing an underestimation of the mean
magnitude compared to the PC (Fig. 12, OptFlowAll). Fig-
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Figure 10. Autocorrelogram for U components for varying resolutions of the image with the same block region and the two frame intervals
on 13 and 14 February 2022 shows the effect of the changing resolution and time intervals on the stability of the motion vectors.
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Figure 11. Comparison of hourly mean U and V components of the CMV and mean wind in a 1 km deep layer where the stable cloud base
height was observed during the hour. The rainy hours extracted using the method in Sect. 2.5 are shown with the red color.

ure 13 shows a smoothed dense CMYV field using the OF
method. The near-zero values occur at the clear sky region
or where the lighting and scene change drastically. Due to
the dense motion field, these vectors are clustered in image
space, and therefore they can not be removed with the neigh-
borhood method of Westerweel and Scarano (2005). How-
ever, the regions with cloudiness are efficiently tracked by
the OF method. After removing near-zero magnitudes using
an arbitrary threshold of 1, the OF has higher magnitudes as
compared to the PC method and better captures the variabil-
ity than the PC method. The dense field of motion vectors
can be leveraged for more adaptable statistical corrections
than the arbitrary threshold used in this study for presenta-
tion purposes. The final CMV magnitudes could be highly

https://doi.org/10.5194/amt-16-1195-2023

dependent on the post-processing of the results for both PC
and OF methods. Although the mean magnitudes are sensi-
tive to post-processing corrections, the change in direction
and magnitude of the motion vectors from both methods are
comparable. The correlation between the OF and PC meth-
ods increases from 0.84 to 0.9 after removing the near-zero
values. The autocorrelation functions in Fig. 12b show that
the minute-by-minute fluctuations of the CMV are more sta-
ble for OF than for PC, due to the dense vector field of OF.

4 Discussion of the results

Prior studies have documented the effectiveness of the block-
wise PC and OF method for detecting cloud motion in IR

Atmos. Meas. Tech., 16, 1195-1209, 2023
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Figure 13. Two examples of the dense cloud motion field using the OF method, thinned by the factor of 20, show clustering of vectors in the
image space. The mean cloud motion in Fig. 12a is underestimated due to the near-zero values.

and visible spectrum images (Leese et al., 1971; Chow et
al., 2015; Dissawa et al., 2017; Zhen et al., 2019). We tested
the sensitivity of the PC method to changes in block length,
frame interval, and image resolution, as well as five combi-
nations of the visible channels from a sky-viewing camera.
These results are also applicable to satellite and radar-based
motion estimation. Additionally, we compared the derived
mean CMV from the PC method with the observed mean
wind field from a colocated remote sensing instrument and
the OF method. We also presented a method to detect rain-
drops on the rotating dome. However, the automated removal
of contaminated images due to rain, snow, and other obscuri-
ties needs a more complex approach using advanced machine
learning algorithms and labeled data.

The performance of different visible channels is compara-
ble except for the red-to-blue channel ratio (RB). Although
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the RB is effective in segmenting clouds from the blue sky
background (Dev et al., 2016), it smooths the cloud texture
during overcast conditions, reducing the performance of the
PC method. The red and grayscale performed slightly better
than the blue and green channels. We find that larger block
sizes provide a more stable estimation of cloud motion, and
the stability benefits largely from the shortened interval be-
tween frames even for coarse-resolution camera data. Con-
sidering that the temporal changes in cloud patterns reduce
the quality of the motion vectors, a shorter frame interval
helps in maintaining the structure from one image to the
next. However, a larger block size allows for a larger sample
for stable correlation matching, achieving more stable esti-
mates of the motion during disorganized cloud conditions
(Fig. 8c and d). Although averaging in time over the short
frame interval is a better way to achieve reliable estimates,
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a higher sampling rate may not always be feasible. In these
situations, the large block size that can capture homogeneous
motion is recommended for block-based PC implementation.
We also show that increasing the spatial resolution, i.e., in-
creasing the number of pixels without decreasing the number
of blocks, marginally affects the quality of the motion vec-
tors. At the same time, reducing the frame interval from 60
to 30 s outperforms quadrupling the resolution. Comparable
results were obtained by Wang et al. (2018) for cloud seg-
mentation using a ground-based camera.

Our analysis shows that doubling the frame rate outper-
forms quadrupling the resolution for PC. This non-intuitive
result is very interesting in the context of edge computing.
Because a shorter frame interval between the camera images
effectively improves the quality of the CMVs, the applica-
tion must have deterministic and low-latency access to sky
images. Edge computing solves this problem efficiently by
carefully placing and pairing computation with sensor data
sources. Without incurring large data transfers and delays
due to network outages, in an edge-computing platform like
Sage, image data can be acquired and processed right next
to the camera in the field. The high-level motion estimation
result which is much smaller and compresses efficiently can
be communicated and archived for further studies.

The validation with constructed data and the comparison
of PC and OF methods suggests that the quality of the motion
vectors is sensitive to the error corrections and removal of
the near-zero magnitudes in the post-processing. The dense
OF field can be corrected using spatial clustering methods
to produce valuable results. It is also possible to use the in-
puts from the cloud cover estimation plugin to correct the
raw OF field. The issue of multi-layer clouds mentioned in
Sect. 1 can be addressed using OF dense motion field using
adaptive clustering as post-processing as opposed to adap-
tive blocks used in Peng et al. (2016). Further sensitivity and
comparative studies with OF algorithm are needed to test this
technique.

The distortion of the sky images near the horizon, due to
the wide field of view (FOV) of the fisheye lens, affects the
accuracy of the mean cloud motion estimation. Therefore,
the mean is estimated using the center portion of the images.
The fisheye de-warping method can correct the regions near
the horizon, where features are not heavily compressed.

5 Conclusion and future scope

Wind data retrieval from cloud motion vectors is an active
area of research in satellite meteorology. Nevertheless, ob-
taining accurate wind retrievals from the ground-based opti-
cal camera images requires estimates of cloud-base heights,
which is challenging without the lidar-based methods. More-
over, despite assuming ideal CMV and cloud-base height es-
timates, the resulting winds may not align well with the ob-
served cloud motion due to the substantial vertical extent of
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cumulus clouds and the influence of vertical wind shear on
their motion. The growth and decay of clouds can also re-
sult in additional cloud motion components unrelated to the
wind. Thermal infrared cameras can potentially help deter-
mine cloud-base heights and also cloud motion vectors for
estimating winds in the future.

Current machine learning algorithms for automatic cloud
identification underperform in the presence of thin clouds
(Park et al., 2021). To this end, we are generating a dataset
of thin clouds identified by scanning mini micro-pulse lidar
(MiniMPL) and a colocated sky-viewing camera using an
edge-computing paradigm. One of the objectives is to use the
camera images to predict cloud boundaries and cloud motion
and utilize the knowledge to adapt MiniMPL scan strategies
in real time for optimal sampling in various environmental
conditions. Thus reducing the number of clear sky scans and
targeting required clouds for the increased density of scans.
Cloud locations predicted from CMYV estimates can also be
used in forecasting solar irradiance in near real time (Jiang
et al., 2020; Radovan et al., 2021). The results of this study
are helping to optimize image sampling and cloud motion
estimation with edge-enabled camera systems.
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