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Abstract—This article demonstrates the use of micro-
electromechanical systems (MEMS) to perform an efficient
classification problem. Classification using digital computers
is inefficient due to its power requirement and the sepa-
ration between memory and processing units. As a proof
of concept, the basic signal classification has been per-
formed using a network of only three mechanically coupled
devices. The classification has occurred at the hardware
level rather than using a digital computer. The classification
problem involves distinguishing between a ramp signal and
a step input signal. In this demonstration, a three-degree-
of-freedom model was built for the proposed network in
MATLAB. The detailed simulation results were extracted to
validate the network operation and sensitivity to operating
conditions. Next, the device network hardware was fabricated and tested to perform the required classification problem.
Good agreement between simulation and experiment is demonstrated.

Index Terms— Mechanical computing, mechanical coupling, micro-electromechanical systems (MEMS), neuromorphic
computing, parallel-plate actuators, pull-in, signal classification.

I. INTRODUCTION

DUE to the increasing demand for computational speed
and complexity for applications such as neural com-

puting and artificial intelligence, and the inevitable end of
Moore’s law eventually [1], a technology that compensates
for the no-longer-existing miniaturizing of transistors is highly
needed. The high power consumption and complicated thermal
management requirements of existing CMOS-based technolo-
gies have become additional bottlenecks. Recently, consid-
erable attention has been given to electrostatically actuated
micro- and nano-electromechanical systems (MEMS/NEMS)
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to expand their typical use as high-frequency switches [2],
sensors [3], radio frequency (RF) switches [4], mirrors [5], and
oscillators [6] to be the next memory [7] and logic gate devices
[8]. Their low power consumption [8], [9], near-zero leakage
power [8], and ability to survive a harsh operating environment
over CMOS are the main driving motivations behind this
interest [9]. However, while contact surface wearing [10] and
stiction [11], [12] issues have limited the use of MEMS/NEMS
switches as potential logic gates, the introduction of non-
contact MEMS resonators has received some attention [8].
In this scenario, the resonator’s high oscillation amplitude is
considered the logic value 1, and its low oscillation amplitude
is the logic value 0. Operating linearly, near nonlinear regimes,
such as parametric and secondary resonances [13] and thermal
modulation [8], are among the methods suggested to achieve
the Boolean electrostatic MEMS/NEMS resonator-based gate.
However, state-of-the-art electrostatically driven MEMS res-
onators have significant limitations in the range of deflection
due to the separation between electrodes, instability regions,
and high operating voltages [13], [14]. Moreover, most of the
above-proposed methods to realize logic MEMS-based gates
require strictly fixed frequencies and different output and input
frequencies. They suffer significant voltage attenuation while
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transferring energy from one logic gate to another [15]. Hence,
stability issues, high voltage activation, and poor cascading
compatibility are considered significant challenges limiting
the adoption of electrostatic MEMS into logic gate design.
In addition, due to the small size that transistors have reached,
building a complete digital logic gate from a single MEMS
structure requires the same or more space than the number of
transistors needed to perform the same logic.

On the other hand, alternative computing paradigms are
not based on logic gates, such as biologically inspired neu-
romorphic computing [16]. Neuromorphic computers utilize
physical hardware to perform computing rather than a digital
circuit. In this regard, electrostatic MEMS devices have shown
potential in performing at least two types of neuromorphic
computing approaches: the traditional neural network (NN)-
based [15], [17], [18], [19], [20] and reservoir computing
(RC) [21], [22], [23], [24] approaches. Compared to the
NN, MEMS development in RC is more mature in the lit-
erature. Several studies have reported experimental valida-
tion for MEMS-based RC solutions in many applications,
such as signal [21] and spoken language [22] classifications.
However, RC generally requires a postprocessing step that
may need some digital computing power. Moreover, the
MEMS RC approach reported in the literature is based on
the RC virtual node concept that requires serial processing,
which is often slower than the parallel computing approach
in NN.

In the NN neuromorphic MEMS approach, the equa-
tion governing electrostatic MEMS devices has been shown
recently to be very similar to the neuron equation of a
recurrent NN (RNN) [19]. Thus, an MEMS can naturally
capture neuron behavior in a single device. When coupled with
other MEMS devices, this forms a physical RNN network with
the promise of producing integrated neural circuits with brain-
like functionality [15], [21]. Such a network does not require
any postprocessing and performs computing in a fast parallel
fashion without needing a digital computer. The dynamic
complexity of coupled electrostatic MEMS devices, a key to
this computing approach, has received significant attention
in the literature. For example, an analytical framework for
analyzing large-scale arrays of coupled MEMS devices was
presented in [25].

Moreover, the connected MEMS-based Colpitts devices
were exploited in [26], and finally, the modal characteristics of
the dynamics of MEMS-coupled resonators were investigated
in [27]. However, most of the focus in the literature was
on utilizing such complexity to enhance the MEMS used as
a sensor, such as its bandwidth [28], selectivity [29], and
sensitivity [30]. One of the few works on using the complexity
of a network of coupled MEMS devices for computing pur-
poses is dated back to 2001 [17]. In this work, the authors
explored the potential of using a network of coupled MEMS
devices as an NN neuromorphic computer for the first time.
It was shown, using simulation, that a network of electrostatic
MEMS devices with specific oscillatory patterns and phase
relationships could produce some computing capabilities.
This work built on the author’s previous demonstration that

generally coupled resonators with complex dynamics is shown
to have associative memory when coupled appropriately [31].
However, it took more than 16 years for another group to
confirm such MEMS computing capabilities and demonstrate
them theoretically in a pattern recognition application [18].

Despite the computing potential of coupled MEMS devices
in realizing NN computers, most of the MEMS computing
works in the literature are based on simulation models. It needs
hardware demonstration of such computing capabilities [17],
[18]. Moreover, very generic models for the MEMS devices
were used in this simulation. Such models deal with electro-
static MEMS as a generic differential equation that does not
account for MEMS physical operation and design parameters
such as the excitation method and coupling characteristics.
This article overcomes these challenges by presenting: 1) the
first detailed model of a network of electrostatically actuated
microstructures designed for NN computing purposes and 2) a
hardware implementation guided by this model to perform
a real-time signal classification problem. This hardware has
great potential to overcome the current limitations of digital
computing in solving classification problems. Specifically, this
hardware comprises electrostatic MEMS devices that consume
power in the nanowatt range [15]. To solve a similar classifica-
tion problem using a digital computer that implements Python
code algorithms, at least 10 000 transistors must be switched
during a single floating operation [16] and consume power in
the milliwatt range [15].

II. WORKING PRINCIPLE

Classification is one of the most popular tasks in machine
learning literature. Using simulation, we have previously
shown a simple classification task as a test for the computa-
tional potential of a network of MEMS devices [20]. The task
involves the nontrivial problem in [32] to classify an input
waveform into either a “Step” signal or a “Ramp” signal.
In this classification task, input waveforms are supposed
to be applied as a voltage signal to the MEMS network.
For the MEMS network to perform the computational task
correctly, the size of the network and the bias voltages and
connection weights values between the MEMS devices need
to be optimized.

In this article, we demonstrate this classification problem
using a customized MEMS hardware design that eliminates
the need for any circuit to perform the task [33]. A schematic
of this hardware is shown in Fig. 1 and requires a minimum of
three MEMS devices forming a network that resembles an NN
of three neurons. The upper and lower masses are the input
devices that receive the input signal (I1 and I2 in the figure),
while the third MEMS device forms the output (O) layer,
which is also the middle mass, and its status decides the class
of the input signal. The MEMS neurons are coupled together
mechanically by springs. The spring stiffness values resemble
the weights of a typical NN. Each MEMS device has additional
parallel-plate electrodes to bias the device from its rest by
applying constant bias voltages. The bias voltage is used to
shift the MEMS mass toward the pull-in. If no bias voltages
were applied, the proof mass response would be almost linear
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Fig. 1. Sample MEMS architecture to perform the simple signal
classification problem.

when the input signal is applied. Thus, having no bias voltage
reduces the MEMS network computing capabilities. Finally,
each MEMS in the network is designed to have a different
bias voltage value. Thus, besides weights, the bias voltage is
another tuning parameter that can be adjusted to perform our
classification task or other classification tasks.

The expected operation for the hardware to distinguish
between two different signal shapes is: if a ramp input voltage
is applied, the output mass pulls in upward, while if a step
signal is applied, the output mass pulls in downward. There
are two requirements to achieve this behavior.

(R1): The coupling spring stiffness between the lower and
middle masses has to be greater than the upper to middle mass
coupling spring stiffness (i.e., the lower input mass has a more
significant impact on the middle output mass).

(R2): The bias voltage plus the input signal for the upper
mass is higher than the lower mass, so it pulls in at a lower
input voltage. In this manner, if a step input is applied, the
upper and lower masses will pull in almost simultaneously,
but the middle mass will follow the lower (stronger coupling)
mass and pull in downward.

On the other hand, if a ramp signal is applied, as the
voltage gradually increases, the upper mass will pull in first
due to its higher bias voltage, and the middle mass will
follow by pulling upward. Once in this state, even if the ramp
input keeps increasing and the lower mass eventually pulls
in, due to hysteresis in the parallel-plate actuator behavior
(memory), the resulting downward force is not enough to pull
the middle mass out of its upward pulled-in position. The
complete classification operation is shown in Fig. 2 with actual
design parameters to perform the required classification.

III. MODELING AND FABRICATION

The computing hardware comprises three MEMS neurons
coupled together mechanically to accomplish the classification
task. The system layout consists of an input layer with two

MEMS with big proof masses and an output layer with one
mass in the middle. The system can be modeled as a three-
free-degree-of-freedom model, as shown in Fig. 3(a). In this
model, each proof mass is surrounded by several fingers acting
as parallel-plate electrostatic actuators. When a bias voltage
is applied, the parallel-plate actuators labeled as “softening
electrodes” induce a negative electrostatic stiffness, lowering
the structure’s stiffness while making the force–displacement
characteristics of the moving elements highly nonlinear imi-
tating the nonlinear behavior of biological neurons [19]. The
input signal is applied through comb-drive electrostatic actua-
tors that can exert displacement-independent input forces to the
moving elements upon application of an input voltage. Once an
input voltage is applied, the input masses will be attracted and
move toward their comb-drive actuator; the upper mass moves
up and the lower mass moves down. As the voltage increases,
the attraction force and displacement increase, reducing the
gap between the softening electrodes. At some threshold
voltage, the softening electrodes attached to the mass reach
the point of instability where the mass moves abruptly toward
the stopper and collides with it (pull-in). This pull-in behavior
is a well-known characteristic of parallel-plate electrostatic
actuators. The stoppers positioned between the mass and
the comb drive prevent direct contact between the charged
electrodes upon pull-in. The displacement of the input proof
masses leads to displacement of the output proof mass (the
mass in the middle) due to the existing mechanical coupling
(springs) between the proof masses. The output proof mass
can pull-in in either direction, determining the classification
task’s result.

The following equations of motions that govern the system
dynamics in Fig. 3 were simulated in MATLAB:

M Ẍ + C Ẋ + K X = FC D + F P P (1)

where X is the relative displacement matrix of the three masses
and M , C , and K are the matrix form of the system’s masses,
damping constants, and stiffnesses, respectively, defined as

X =

 x1
x2
x3

 , M =

 m1 0 0
0 m2 0
0 0 m3


C =

 c1 0 0
0 c2 0
0 0 c3


K =

 k1 + k12 −k12 0
−k12 k2 + k12 + k32 −k32

0 −k32 k3 + k32

 . (2)

FC D is the attractive electrostatic force from the comb-
drives and F P P is the electrostatic force from the parallel
plates. The electrostatic force of a typical parallel-plate MEMS
is given by: Fe = (εAV 2/g), where A is the overlapping area
between the electrodes, V is the voltage difference between
them, and g is the gap distance between them. Using this
equation, one can develop the expressions for FC D and
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Fig. 2. Schematic views of the three coupled MEMS devices operating to perform the required signal classification task. (a) Devices are at
rest. (b) Bias voltages are applied to the softening electrodes bringing the three elements close to the pull-in/instability point. (c) Gradually
increasing (ramp) input voltage applied to comb drives; M2 pulled toward M1 upon M1 pull-in; eventually, M3 will pull in, but due to strong hysteresis
in the parallel-plate electrostatic force (memory), M2 will not release. (d) Abrupt voltage applied to comb drives, M1 and M3 pulling in simultaneously
and M2 moving toward M3 due to stiffer coupling element.

Fig. 3. (a) Three degrees of freedom coupled MEMS system. (b) Sys-
tem’s free body diagram.

F P P as follows [35]:

FC D =

 FCD1
0

−FCD3

 , F P P =

 FPP1
FPP2
FPP3

 (3)

where

FCD1 = NCD1εtV 2
CD1

(
1

gCD1
+

wCD1

(dCD1 − x1(t))2

)
(4)

FCD3 = NCD3εtV 2
CD3

(
1

gCD3
+

wCD3

(dCD3 + x3(t))2

)
(5)

FPPi =
1
2

NPPiεt LPPi V 2
PPi

×

(
1

(dPPUi − xi (t))2 −
1

(dPPLi + xi (t))2

)
i = 1, 2, 3 (6)

where the parameters in (1)–(6) and their values are presented
in Table I (Appendix).

A basic single-mask SOI micromachining process was used
to fabricate the devices on a p-type SOI substrate with a
50-µm-thick silicon device layer and a 2-µm-thick buffer
oxide layer (BOX). The device layer was first patterned via an
optical lithography step, and the structures were carved out of
the SOI device layer via deep reactive ion etching (DRIE) to
the BOX. The BOX layer was then removed underneath nar-
rower features by a timed hydrofluoric acid etch to suspend the
structures. The structure was then dried using the naphthalene
drying method explained in [34].

IV. RESULTS

A model for the system in Fig. 2 and presented in (2)–(6)
was simulated in MATLAB to validate the classification oper-
ation. The input signal that fed the lower mass was scaled
by a factor of RCD = VCD3/VCD1 = 0.82 to satisfy R2. The
parallel plates of the three masses were biased with voltages
near their instability region. As shown in Fig. 4(a), if a ramp
input voltage is applied, the upper mass pulls in first, and the
middle mass follows and pulls upward. Even when the ramp
signal reaches a point where the lower input mass pulls in,
the middle mass remains pulled upward. On the other hand,
as expected, the middle mass pulls in downward if a step input
voltage with a high voltage is applied [see Fig. 4(b)].

Next, the classification sensitivity against operation parame-
ters, such as the bias voltage for each MEMS (VPPi ), the input
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Fig. 4. MEMS computing unit performance under different input signals.
The deflection of the three MEMS when (a) ramp input and (b) step input
signal are applied.

Fig. 5. Three-dimensional plots for the MEMS network response when
(a) ramp and (b) step input signals are applied while varying the input
voltage VCD1 and the ratio RCD. The circle indicates the working range
for each input signal.

voltage on the comb drives of each (VCDi ), where i = 1, 2,
and 3 is an index representing each MEMS in the network,
and the voltage ratio RCD of the comb-drive voltage between
the upper and lower MEMS devices (RCD = VVCD3/VCD1), was
investigated. The 3-D plots in Fig. 5 show the effect of varying
the amplitude of the two comb-drive voltages. Fig. 5(a) shows
the pull-in upward range of the middle mass for a ramp input
and Fig. 5(b) for a step input. Fig. 5(b) shows that the input
voltage must start with no less than 35 V (VCD1 > 60 V)

to perform the classification. Moreover, the working range of
RCD to classify a step input signal (i.e., middle mass pulling

Fig. 6. High-dimensional plot showing the operation voltages that result
in a working classification. Each point in the plot represents the case
when the middle mass pulls in upward if a ramp input is applied and
downward if a step input is applied. The y-axis is the bias voltage value
for a given MEMS.

Fig. 7. Extracted plots from Fig. 6 showing the working voltage ranges
to produce the correct classification when varying only: (a) MEMS
3 voltage, (b) MEMS 2 bias voltage, and (c) MEMS 1 bias voltage. The
black circled dots present working experimental data, while the red is
not working data.

down) ranging from RCD = 0.40 to 1. However, only RCD <

0.82 is the operating range to classify the ramp input signal
(i.e., middle mass pulling up). Thus, 0.40 < RCD < 0.82 is
the operating range to satisfy both classification conditions.
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Fig. 8. SEM view of the fabricated device and details of the device structure.

A further sensitivity investigation of the MEMS network
was done by varying the bias voltages VPP of each mass.
A higher dimension plot is presented in Fig. 6. To interpret
this plot better, its derivatives, varying only one MEMS
mass bias at a time, are shown in Fig. 7(a)–(c). In these
figures, to achieve the displayed higher plot dimensionality
than the traditional 3-D plot, we followed the following novel
approach: 1) only present the desired status of the (output)
middle mass; 2) use distinctive colors to represent the effect of
varying the bias voltage of each mass; and 3) when varying the
bias voltage of a mass, bias voltage of other masses was kept
the other masses bias voltage at a constant value close to the
mass pull-in voltage. Adopting this approach, each dot point
in these figures represents the corresponding input voltage,
input voltage ratio, and bias voltage for a given mass so that
the middle mass pulls in upward if a ramp input is applied
and downward if a step input is applied. Moreover, a red dot
represents the effect of only varying the bias voltage of the
upper mass (VPP1), a green dot represents the effect of only
varying the bias voltage of the middle mass (VPP2), and a blue
dot represents the effect of only varying the bias voltage of
the lower mass (VPP3).

The higher dimension plots provide easy visualization to
conclude the required operating voltages to achieve the desir-
able classification task. For example, one can notice that the
operation of the network is susceptible to the bias voltage
of the middle mass. Moreover, the lower mass has a wide
operation range for its bias voltage compared to the rest of
the masses to achieve the required classification. Finally, the
higher dimensional plots confirm that higher input voltage
values and ratios are desirable for performing the required
classification.

A neural computing unit comprised of three micromachined
components, similar to the one shown in Fig. 2, was fabri-
cated to validate the simulation results. A scanning electron

microscope (SEM) view of a fabricated network is shown
in Fig. 8. Each coupled element consists of one suspended,
“I” shaped proof mass supported by two or four meandering
tethers. Each mass has two arrays of electrodes extending
outward, forming parallel-plate electrostatic actuators with
adjacent arrays of fixed electrodes to form the softening
actuators. The coupling connection between masses 3 and 2 is
stiffer than masses 3 and 1 to create a downward pull-in in
element 2 in case of a step input but not stiff enough to pull
element 2 out of an upward pull-in in case of a ramp input.

A sample operation voltage condition, represented by black
circled dots in Fig. 7, was chosen to validate the simulation
model. The corresponding bias voltages values are VPP1 =

33 V, VPP2 = 34 V, and VPP3 = 38 V and the ratio between
the two comb drives was set to RCD = 0.82. RCD, which is
very close to the edge of the operation range to validate the
system sensitivity. Fig. 9(b) shows the system’s resting posi-
tion after applying the bias voltages to the softening parallel-
plate actuators. When a ramp input is applied, at VCD1 =

34.1 V, the upper mass pulls in and pulls the middle mass
upward along with it [see Fig. 9(c)]. When the voltage is
further increased and reached VCD1 = 71 V, the lower mass
also pulls in, trying to pull the middle mass downward [see
Fig. 9(d)]. However, this action is insufficient to release the
middle mass from its current upward pulled-in state (due
to the hysteresis). On the other hand, as expected from the
simulation, from the rest position, the middle mass pulls in
downward if a step input voltage of VCD1 = 72 V is suddenly
applied to the comb drives [see Fig. 9(e)]. The successful
operation of the network was also verified with other voltages
within the suggested operation range of the simulation. More
importantly, it was verified that choosing values outside (red
circled dots in Fig. 7) of the operation range suggested by
simulation resulted in false classification. For example, with
the same voltages implemented in Fig. 9 and by just increasing

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on November 06,2023 at 19:05:53 UTC from IEEE Xplore.  Restrictions apply. 



NIKFARJAM et al.: THEORETICAL AND EXPERIMENTAL INVESTIGATION OF USING MULTIDEGREE OF FREEDOM 12055

Fig. 9. Schematic views of the three coupled MEMS devices operating to perform the required signal classification task. (a) Devices are at
rest. (b) Bias voltages are applied to the softening electrodes bringing the three elements close to the pull-in/instability point. (c) Gradually
increasing (ramp) input voltage applied to comb drives; M2 pulled toward M1 upon M1 pull-in. (d) Ramp signal continued: eventually, M3 will
pull in, but due to strong hysteresis in the parallel-plate electrostatic force (memory), M2 will not release. (e) Abruptly increasing the input voltage
applied to the comb drives: both M1 and M2 are pulled-in simultaneously and M3 is pulled toward the element with which it has a stiffer coupling
(down toward M1).

TABLE I
MATHEMATICAL MODEL’S PARAMETERS

the input ratio RCD to 0.9, the network output is the same for
the two different signals.

It is worth mentioning that while the bias voltages for
operation are relatively high, the MEMS parameter design can
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TABLE II
POWER CALCULATION ESTIMATION

be optimized to reduce them. An intricate system governs the
voltages needed for each element to operate in the desired
fashion. As seen in (4)–(6), many factors could alter VPP
and VCD. For the comb-drive actuators, for example, if the
number of fingers increased or the gaps between the fingers
decreased, the actuator would exert more force by applying
the same voltage or it can run at lower voltages and still
provide the desired force necessary for the device operation.
The same is true for the parallel-plate electrodes. For instance,
the length and the number of electrodes could be increased,
so the device could operate at lower voltages. Lowering the
mechanical stiffness of the structure is another avenue toward
reaching lower operating voltage. For example, according to
(4), if the number of fingers on the comb-drive actuator were
to double, the actuator could exert the same force by applying
the same voltage divided by a square root of 2 (∼0.7 of the
initial voltage applied). More importantly, due to the capacitive
electrostatic actuation, the total energy consumed in each
classification cycle is insignificant. The only energy needed to
operate the described devices is the energy needed to charge
the capacitances associated with the electrostatic actuators.
When elements are in a pull-in stance, all the electrodes and
actuators store energy based on their capacitance and the
applied voltage. As an example, Table II (Appendix) shows
the energy consumption of each element and the total energy
consumed when all elements are in pull-in. The capacitance
was calculated based on the geometry of the design, and
the applied voltage is the actual operating voltage used
in Fig. 9.

V. CONCLUSION AND FUTURE WORK

A three-neuron mechanically coupled MEMS network was
designed to perform a classification task to distinguish between
step and ramp input signals. A mathematical model to simu-
late the system’s behavior was implemented. Following the
simulation results, mechanically coupled MEMS hardware
was fabricated and experimentally tested for some of the
operation conditions reported in the simulation. The hardware
successfully performed the classification task without needing
any digital computing unit. The fact that only dc bias volt-
ages are needed to operate this electrostatically driven device
performing neural computing opens the door wide for more
sophisticated ultralow-power computing units.

Future work includes adding more neurons to the microme-
chanical network to increase its complexity and applying
machine learning training algorithms, such as the gradient-
based method, to train larger MEMS hardware to solve

more complex classification problems. Finally, direct sensing
capabilities can be integrated within such computing units as
acceleration measurements.

APPENDIX

See Tables I and II.

REFERENCES

[1] M. P. Frank, “Approaching the physical limits of computing,” in Proc.
35th Int. Symp. Multiple-Valued Log. (ISMVL), 2005, pp. 168–185.

[2] V. Intaraprasonk and S. Fan, “Nonvolatile bistable all-optical switch
from mechanical buckling,” Appl. Phys. Lett., vol. 98, no. 24, Jun. 2011,
Art. no. 241104.

[3] B. Ilic, Y. Yang, K. Aubin, R. Reichenbach, S. Krylov, and H. Craighead,
“Enumeration of DNA molecules bound to a nanomechanical oscillator,”
Nano Lett., vol. 5, no. 5, pp. 925–929, 2005.

[4] G. Rebeiz, RF MEMS: Theory Design and Technology. Hoboken, NJ,
USA: Wiley, 2003.

[5] S. Ilyas, A. Ramini, A. Arevalo, and M. I. Younis, “An experimental
and theoretical investigation of a micromirror under mixed-frequency
excitation,” J. Microelectromech. Syst., vol. 24, no. 4, pp. 1124–1131,
Aug. 2015.

[6] D. Antonio, D. H. Zanette, and D. López, “Frequency stabilization in
nonlinear micromechanical oscillators,” Nature Commun., vol. 3, no. 1,
p. 806, May 2012.

[7] B. Halg, “On a micro-electro-mechanical nonvolatile memory cell,”
IEEE Trans. Electron Devices, vol. 37, no. 10, pp. 2230–2236,
Oct. 1990.

[8] M. A. A. Hafiz, L. Kosuru, and M. I. Younis, “Microelectromechanical
reprogrammable logic device,” Nature Commun., vol. 7, no. 1, p. 11137,
Mar. 2016.

[9] G. M. Rebeiz and J. B. Muldavin, “RF MEMS switches and switch
circuits,” IEEE Microw. Mag., vol. 2, no. 4, pp. 59–71, Dec. 2001.

[10] E. E. Flater, A. D. Corwin, M. P. de Boer, and R. W. Carpick, “In situ
wear studies of surface micromachined interfaces subject to controlled
loading,” Wear, vol. 260, no. 6, pp. 580–593, Mar. 2006.

[11] Z. Yapu, “Stiction and anti-stiction in MEMS and NEMS,” Acta Mechan-
ica Sinica, vol. 19, no. 1, pp. 1–10, Feb. 2003.

[12] W. M. V. Spengen, R. Puers, and I. D. Wolf, “A physical model to
predict stiction in MEMS,” J. Micromech. Microeng., vol. 12, no. 5,
pp. 702–713, Sep. 2002.

[13] I. M. M. Mahboob, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi,
“A multimode electromechanical parametric resonator array,” Sci. Rep.,
vol. 4, no. 1, p. 4448, 2014.

[14] F. Alsaleem, M. Younis, and R. Laura, “An experimental and theoretical
investigation of dynamic pull-in in MEMS resonators actuated electro-
statically,” J. Microelectromech. Syst., vol. 19, no. 4, pp. 794–806, 2010.

[15] M. Emad-Ud-Din, M. H. Hasan, R. Jafari, S. Pourkamali, and
F. Alsaleem, “Simulation for a mems-based CTRNN ultra-low power
implementation of human activity recognition,” Frontiers Digit. Health,
vol. 3, Sep. 2021, Art. no. 731076.

[16] C. Mead, “Neuromorphic electronic systems,” Proc. IEEE, vol. 78,
no. 10, pp. 1629–1636, Oct. 1990.

[17] F. C. Hoppensteadt and E. M. Izhikevich, “Synchronization of MEMS
resonators and mechanical neurocomputing,” IEEE Trans. Circuits Syst.
I, Fundam. Theory Appl., vol. 48, no. 2, pp. 133–138, Feb. 2001.

[18] A. Kumar and P. Mohanty, “Autoassociative memory and pattern recog-
nition in micromechanical oscillator network,” Sci. Rep., vol. 7, no. 1,
pp. 1–9, Mar. 2017.

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on November 06,2023 at 19:05:53 UTC from IEEE Xplore.  Restrictions apply. 



NIKFARJAM et al.: THEORETICAL AND EXPERIMENTAL INVESTIGATION OF USING MULTIDEGREE OF FREEDOM 12057

[19] F. M. Alsaleem, M. H. H. Hasan, and M. K. Tesfay, “A MEMS
nonlinear dynamic approach for neural computing,” J. Microelec-
tromech. Syst., vol. 27, no. 5, pp. 780–789, Oct. 2018, doi:
10.1109/JMEMS.2018.2864175.

[20] M. H. Hasan et al., “Exploiting pull-in/pull-out hysteresis in electro-
static MEMS sensor networks to realize a novel sensing continuous-
time recurrent neural network,” Micromachines, vol. 12, no. 3, p. 268,
Mar. 2021.

[21] M. Rafaie, M. H. Hasan, and F. M. Alsaleem, “Neuromorphic MEMS
sensor network,” Appl. Phys. Lett., vol. 114, no. 16, Apr. 2019,
Art. no. 163501.

[22] M. H. Hasan, A. Al-Ramini, E. Abdel-Rahman, R. Jafari, and
F. Alsaleem, “Colocalized sensing and intelligent computing in
micro-sensors,” Sensors, vol. 20, no. 21, p. 6346, Nov. 2020, doi:
10.3390/s20216346.

[23] B. Barazani, G. Dion, J.-F. Morissette, L. Beaudoin, and J. Sylvestre,
“Microfabricated neuroaccelerometer: Integrating sensing and reservoir
computing in MEMS,” J. Microelectromech. Syst., vol. 29, no. 3,
pp. 338–347, Jun. 2020, doi: 10.1109/JMEMS.2020.2978467.

[24] K. Nakada, S. Suzuki, E. Suzuki, Y. Terasaki, T. Asai, and T. Sasaki,
“An information theoretic parameter tuning for MEMS-based reservoir
computing,” Nonlinear Theory Appl., IEICE, vol. 13, no. 2, pp. 459–464,
2022.

[25] C. Borra, C. S. Pyles, B. A. Wetherton, D. D. Quinn, and J. F. Rhoads,
“The dynamics of large-scale arrays of coupled resonators,” J. Sound
Vibrat., vol. 392, pp. 232–239, Mar. 2017.

[26] S. T. Habermehl, N. Bajaj, S. Y. Shah, D. D. Quinn, D. Weinstein, and
J. F. Rhoads, “Synchronization in a network of coupled MEMS-Colpitts
oscillators,” Nonlinear Dyn., vol. 98, no. 4, pp. 3037–3050, Dec. 2019.

[27] B. Peng, K.-M. Hu, X.-Y. Fang, X.-Y. Li, and W.-M. Zhang, “Modal
characteristics of coupled MEMS resonator array under the effect
of residual stress,” Sens. Actuators A, Phys., vol. 333, Jan. 2022,
Art. no. 113236.

[28] F. Xue et al., “Piezoelectric-piezoresistive coupling MEMS sensors
for measurement of electric fields of broad bandwidth and large
dynamic range,” IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 551–559,
Jan. 2020.

[29] M. Ghommem, V. Puzyrev, R. Sabouni, and F. Najar, “Deep learning
for gas sensing using MOFs coated weakly-coupled microbeams,” Appl.
Math. Model., vol. 105, pp. 711–728, May 2022.

[30] M. Lyu et al., “Exploiting nonlinearity to enhance the sensitivity
of mode-localized mass sensor based on electrostatically coupled
MEMS resonators,” Int. J. Non-Linear Mech., vol. 121, May 2020,
Art. no. 103455.

[31] F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural
Networks, vol. 126. Berlin, Germany: Springer, 1997.

[32] K. Vandoorne et al., “Toward optical signal processing using photonic
reservoir computing,” Opt. Exp., vol. 16, pp. 11182–11192, Jul. 2008.

[33] H. Nikfarjam et al., “Signal classification using a mechanically coupled
MEMS neural network,” in Proc. IEEE Sensors, Oct. 2021, pp. 1–4,
doi: 10.1109/SENSORS47087.2021.9639616.

[34] H. Nikfarjam, S. Sheikhlari, and S. Pourkamali, “Stiction reduction
in MEMS fabrication via naphthalene sublimation,” in Proc. IEEE
Sensors, Dallas, TX, USA, Oct. 2022, pp. 1–4, doi: 10.1109/SEN-
SORS52175.2022.9967274.

[35] M. Younis, MEMS Linear and Nonlinear Statics and Dynamics, vol. 20.
Springer, 2011.

Hamed Nikfarjam (Member, IEEE) received the
B.S. degree in mechanical engineering from
the University of Tehran, Tehran, Iran, in 2014.
He is pursuing the Ph.D. degree with the Depart-
ment of Electrical Engineering, The University of
Texas at Dallas, Richardson, TX, USA.

He is also a Researcher with the MicroneX
Laboratory, The University of Texas at Dal-
las. His research interests include integrated
silicon-based micro-electromechanical systems
(MEMS) and microsystems, micro/nano fabrica-

tion technologies, accelerometers, and machine learning using MEMS.
Mr. Nikfarjam was recognized for his outstanding research contribu-

tions and was awarded the prestigious Jan Van der Ziel Fellowship for
the 2023–2024 academic year at The University of Texas at Dallas.

Mohammad Megdadi received the bachelor’s
degree in mechanical engineering from the
Jordan University of Science and Technology
(JUST), Ar-Ramtha, Jordan, in 2020. He is
pursuing the Ph.D. degree in mechanical
engineering with the University of Nebraska–
Lincoln (UNL), Lincoln, NE, USA.

His main research fields are micro-
electromechanical systems (MEMS), neuro-
morphic computing, machine learning,
modeling, and 3-D design.

Mohammad Okour received the B.Sc. and mas-
ter’s degrees in mechanical engineering from the
Jordan University of Science and Technology,
Ar-Ramtha, Jordan, in 2018 and 2021, respec-
tively. He is pursuing the Ph.D. degree with
the University of Nebraska–Lincoln, Lincoln, NE,
USA.

His areas of interest include control sys-
tems applications, artificial intelligence, machine
learning, system dynamics, vibration analysis,
and micro-electromechanical systems (MEMS).

Siavash Pourkamali (Senior Member, IEEE)
received the B.S. degree in electrical engineer-
ing from the Sharif University of Technology,
Tehran, Iran, in 2001, and the M.S. and Ph.D.
degrees in electrical engineering from the Geor-
gia Institute of Technology, Atlanta, GA, USA, in
2004 and 2006, respectively.

He is a Professor with the Department of
Electrical Engineering and Computer Sciences,
The University of Texas at Dallas (UT-Dallas),
Richardson, TX, USA. Prior to joining UT-Dallas

in 2012, he was an Assistant Professor with the University of Denver,
Denver, CO, USA. Prof. Pourkamali’s current research interests are in
the area of integrated silicon-based micromachined transducers and
microsystems.

Prof. Pourkamali was a recipient of the 2011 National Science Founda-
tion CAREER Award, the 2008 University of Denver Best Junior Scholar
Award, and the 2006 Georgia Tech Electrical and Computer Engineering
Research Excellence Award.

Fadi Alsaleem received the M.S. and Ph.D.
degrees from the Department of Mechanical
Engineering, State University of New York at
Binghamton, Binghamton, NY, USA, in 2007 and
2009, respectively.

He is an Associate Professor with the
Department of Architectural Engineering at the
University of Nebraska-Lincoln, Lincoln, NE.
Previously, he worked as an Assistant Professor
at the Wichita State University, Wichita, KS, from
2015 to 2016. Before these assignments, Dr.

Alsaleem worked for four years as a Senior Lead Algorithm Engineer
with Emerson Climate Technology, Sidney, OH, a business of Emerson,
the world’s leading provider of heating, air conditioning, and refriger-
ation solutions for residential, industrial, and commercial applications.
He joined MicrostaQ Inc., Austin, TX, USA, for two years as a Micro-
Electro-Mechanical Systems (MEMS) Control Engineer. He has been an
Active Researcher in the area of nonlinear dynamics of MEMS, smart
MEMS, the Internet of Things (IoT), smart building, online monitoring
and diagnostics, and big data analysis.

Dr. Alsaleem has received more multimillion in research grants from
many diverse sources of funding, including the National Science Foun-
dation (NSF) collaborative grant (Lead P.I.), the Department of Energy
(DOE), the Intelligence Advanced Research Projects Activity (IARPA)
Grant, and industry grants. He also received the UNL College of Engi-
neering Faculty Research and Creative Activity Award in 2022.

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on November 06,2023 at 19:05:53 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/JMEMS.2018.2864175
http://dx.doi.org/10.3390/s20216346
http://dx.doi.org/10.1109/JMEMS.2020.2978467
http://dx.doi.org/10.1109/SENSORS47087.2021.9639616
http://dx.doi.org/10.1109/SENSORS52175.2022.9967274
http://dx.doi.org/10.1109/SENSORS52175.2022.9967274
http://dx.doi.org/10.1109/SENSORS52175.2022.9967274

