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ABSTRACT: This paper presents a novel application of convolutional neural network (CNN) models for filtering the
intraseasonal variability of the tropical atmosphere. In this deep learning filter, two convolutional layers are applied se-
quentially in a supervised machine learning framework to extract the intraseasonal signal from the total daily anomalies.
The CNN-based filter can be tailored for each field similarly to fast Fourier transform filtering methods. When applied to
two different fields (zonal wind stress and outgoing longwave radiation), the index of agreement between the filtered signal
obtained using the CNN-based filter and a conventional weight-based filter is between 95% and 99%. The advantage of
the CNN-based filter over the conventional filters is its applicability to time series with the length comparable to the period
of the signal being extracted.

SIGNIFICANCE STATEMENT: This study proposes a new method for discovering hidden connections in data rep-
resentative of tropical atmosphere variability. The method makes use of an artificial intelligence (AI) algorithm that
combines a mathematical operation known as convolution with a mathematical model built to reflect the behavior of
the human brain known as artificial neural network. Our results show that the filtered data produced by the AI-based
method are consistent with the results obtained using conventional mathematical algorithms. The advantage of the
AI-based method is that it can be applied to cases for which the conventional methods have limitations, such as forecast
(hindcast) data or real-time monitoring of tropical variability in the 20–100-day range.
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1. Introduction

Variability of the Earth climate system can be decomposed
into a broad spectrum with a continuous distribution
(Hasselmann 1976). Separation of signals within a spectral
band is the first step in the process of understanding physical
mechanisms driving the variability associated with that signal.
Numerical methods routinely used in signal analysis (e.g.,
spectral and weight-based filters) are sensitive to the sample
size. These methods work well when applied to time series of
observations and climate model simulations but have limita-
tions when applied to model forecast data or real-time moni-
toring based on observations. One particular example of such
limitations is the intraseasonal variability (ISV) of the tropics
(20–100 days), which is the target of subseasonal-to-seasonal
(S2S) prediction and operational forecast systems. Due to the
theoretical limit of predictability of ISV, the length of the S2S
forecasts is between 35 and 45 days, which creates challenges
for removal of low-frequency variability (.100 days). When
analyzing forecast data, using a conventional method for ex-
tracting the ISV from total anomaly fields requires blending
of forecast with observation to extend the length of the fore-
cast time series and allow for removal low-frequency variabil-
ity associated with El Niño–Southern Oscillation (ENSO).
The padding with observations varies from 90 days (e.g.,
Gottschalck et al. 2010) to 2 years (Janiga et al. 2018) prior to
initialization of the forecast. This step introduces artificial or

spurious features that affect the forecast skill. The limited
ability to properly diagnose the ISV in the forecast models
restricts our ability to understand modeling capabilities for
predicting variability of these time scales and narrows the op-
portunities for improving forecasting systems. Evaluation of
ISV in the forecast is important not only for tropical predic-
tions but also for the prediction of atmospheric teleconnec-
tions between the tropics and extratropics, which vary from
high-impact weather events to large-scale barotropic struc-
tures (Stan et al. 2017). While forecast data need to be ex-
tended prior to the initialization of the forecast, real-time
monitoring based on observations requires extrapolation of
data into the future in order to extract the ISV signal present
at the current state.

Machine learning and artificial intelligence (ML/AI) ap-
proaches have the potential to perform signal processing that
overcomes the limitations of conventional statistical ap-
proaches. Artificial neural networks (ANN; Rumelhart et al.
1986) have been already used in geosciences for identification
and classification of patterns and signals of climate variability
(Li et al. 2016; Liu et al. 2016; Barnes et al. 2019; Toms et al.
2020; Yoo et al. 2020; Toms et al. 2021; Labe and Barnes
2021; Mayer and Barnes 2021), improving the signal-to-noise
ratio of seismological datasets (Chen et al. 2019), and detec-
tion of errors in model generated datasets (Moghim and Bras
2017; Dutta and Bhattacharjya 2022). As ML/AI is based on
identifying hidden regularities embedded in the data (Flach
2012), they have potential to succeed in extracting the ISV of
tropical atmosphere because a substantial portion of this vari-
ability is explained by regularities in the form of large-scaleCorresponding author: Cristiana Stan, cstan@gmu.edu
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waves (;10 000 km) and modes that manifest in basic-state
variables (e.g., pressure, wind, temperature) as well as in
physical phenomena (e.g., rainfall, cloudiness) aggregated
across multiple scales by organizing mechanisms. The equato-
rial waves are known as convectively coupled equatorial
waves (e.g., Rossby waves, inertia–gravity waves, mixed-
Rossby gravity waves, and Kelvin waves). The dominant
modes include the Madden–Julian oscillation (MJO; Madden
and Julian 1971, 1972), the boreal summer intraseasonal oscil-
lation (BSISO; Lau and Chan 1986), and the 30–90-day mode
(Jiang and Waliser 2009). The review of Serra et al. (2014) of-
fers a detailed description of tropical variability.

Convolutional neural networks (CNNs or ConvNets) repre-
sent a class of deep learning ANN. It has been demonstrated
that CNNs can be used to approximate any continuous func-
tion to certain accuracy, which depends on the depth of the
network (Zhou 2020). Methods in this class attempt to extract
information using stacked layers of nonlinear information
processing algorithms distributed in a hierarchical architec-
ture (LeCun et al. 2015). The literature describes many var-
iants of the CNN architectures (Gu et al. 2018); however, they
share similar basic components such as an input layer, a hid-
den layer, and an output layer. The convolutional layer is one
of the hidden layers and is the layer learning feature proper-
ties during the training. The feature maps are computed by
the convolutional kernels. In this study a one-dimensional
(1D) CNN model is used, which is suitable for time series
analysis (Wibawa et al. 2022). In 1D CNN models the kernel
is a vector. The 1D CNNmodel is applied to construct a band-
pass filter for tropical ISV. To demonstrate the accuracy of
the method, the CNN-based filter is first compared to a con-
ventional Lanczos digital filter (Duchon 1979) and then it is
applied to problems for which conventional filters have chal-
lenges due to the limited sample size and instead surrogate
methods are adopted.

This paper is organized as follows: In section 2, we intro-
duce data and methods used in this study along with the de-
scription of the 1D CCN-based filter. In section 3, we present
the results of applying the CNN filter to extract the intrasea-
sonal variability (30–90 days) from fields relevant to tropical
variability such as zonal wind stress (a basic-state variable)
and outgoing longwave radiation at the top of the atmosphere
(a good indicator of tropical deep convection and associated
rainfall). In section 4 we present the downstream impact of
the CNN-based filter on calculating the MJO components
of the zonal wind stress and outgoing longwave radiation
(OLR). We summarize the main findings and discuss perspec-
tives in section 5.

2. Data and methods

a. Data

For wind stress we use a combination of the high-resolution
(0.258 latitude–longitude) Blended Sea Winds stress product
(Zhang et al. 2006; Peng et al. 2013) and Advanced Scatter-
ometer (Bentamy and Fillon 2012) for the period 1988–2016.
Daily means of NOAA interpolated OLR with a horizontal

resolution of 2.58 latitude–longitude (Liebmann and Smith
1996) are used for the period 1980–2022. These satellite de-
rived datasets are selected instead of reanalysis because the
latter is more likely to be affected by models’ ability to simu-
late the ISV of the tropics. Daily anomalies for these variables
are calculated by removing the climatological mean, defined as
the daily average over all years in each dataset. For the CNN
model described in the next section, the data are partitioned
into a training period (1 January 1988–31 December 2012), a val-
idation period (1 January 2013–31 December 2014), and a test-
ing period (1 January 2015–31 December 2016). To maintain
independence of training data from testing/validation data, the
climatology is computed only using the training period.

b. 1D CNN

The basic mathematical operation of the 1D CNN model is
the convolutional operation, which is defined as the sliding
dot product of the signal and weight of the kernel (or a filter):

ŷi 5 ∑
p

k52p
xj2kwk,

{xj, j 5 1, … , N} is the input time series (e.g., OLR or zonal
wind stress at grid point) and {wk, |k| # p, p , N} represent
the weights of the convolutional kernel; ŷi is the output signal
at grid point i.

The weights of the convolutional kernel (wk) at each grid
point are estimated by training the 1D CNN model. The ker-
nel size p needs to be set before the training process starts
and remains fixed. In the CNN model used here, the assump-
tion is that the convolution operation of a daily signal with a
kernel of length p will retain signals with a period greater
than p days.

The architecture of the CNN model consists of an input
layer, a subtract layer separating two convolutional layers,
and an output layer. The schematic of the model is shown in
Fig. 1. In the input layer, the time series of daily anomaly
maps with dimension (latitude, longitude) are parsed into
time series at each grid point. In this layer, the dimension of
the input dataset is reshaped into (time, grid), where grid 5

latitude 3 longitude. Data scaling (e.g., standardization and
normalization) sometimes recommended as a preprocessing
step in using neural network models (Wang et al. 2006) is not
performed because the model uses only one input variable
and the output variable has the same units as the input vari-
able. In the first convolutional layer, each time series of daily
anomalies is passed through a convolutional layer with the
kernel size p5 90. The size of the kernel is determined by the
intention to design a filter applicable to operational seasonal
forecasts, which have a typical length of 90 days (e.g., NCEP
CFSv2; Saha et al. 2014). This convolution operation retains
signals with variability greater than 90 days. Next, the output
of the linear operation such as convolution is passed through
the subtraction layer. In this layer, the output of the first con-
volutional layer is subtracted from the input. There are no
learnable parameters in this layer. After subtraction, the re-
maining signal retains variability of less than 90 days. Then
this 90-day high-pass-filtered signal is passed to the second
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convolutional layer with the kernel size p 5 30, and the con-
volution operation will retain variability between 30 and 90
days. Trials using different lengths for the second kernel indi-
cate a small influence of this kernel size on the accuracy of the
model; the length of the first kernel has the largest impact
(not shown). The convolutional layers do not change the di-
mension of the output, and the padding is set to zero. In the
output layer, the filtered time series at each grid point are
mapped into times series of daily filtered maps with dimen-
sion (latitude, longitude). Finally, the output time series at
each grid point are compared to the 30–90-day Lanczos-
filtered time series at the same grid point. In this algorithm,
the filtering is done independently for each grid point, that is,
no spatial pattern information is used in the training.

The CNN filter is configured to iteratively train for 500
epochs to minimize the loss function with the option to stop
the training earlier if the error on the validation data does not
improve for 10 consecutive epochs. For clarification, an epoch
is referred to as one pass of the entire training dataset through
the CNN. At the end of the forward pass, the error is esti-
mated and in the backward pass the error is used to adjust the
weights to reduce the resultant error for that respective train-
ing batch and done iteratively for each batch in each epoch.
The optimization of the CNN parameters is based on the
mean-squared error (MSE) loss function:

MSE 5
1
M

∑
M

i5 1
(yi 2 ŷi)2,

where ŷi is the output from the network and yi is the desired
output from the network, which in this case represents the
30–90-day filtered signal obtained by applying a Lanczos digi-
tal filter to daily anomalies. The parameter M represents the
length of the time series used for training. The Adam

optimization algorithm (Kingma and Ba 2014) is used to mini-
mize the loss function and update the CNN parameters. The
default hyperparameters for the Adam optimization algo-
rithm are learning rate, a 5 0.001; exponential decay rate for
the first and second moment estimates, b1 5 0.9, b2 5 0.999;
and the very small number to prevent any division by zero in
the implementation, e 5 1028. The CNN training is stopped
when the MSE on the training data does not improve for 10
consecutive epochs for a threshold value of 0.001 squared
units of the filtered variable. When designing a CNN model, a
common challenge is model overfitting. An overfit model dis-
plays high accuracy when predicting the training data while
failing to generalize to the new unseen samples. One way to
detect model tendency to overfit is to compare loss curves
during the training and validation or testing periods (Giante
et al. 2019). Our inspection of loss curves at random grid
points indicates a small gap between the error of the model
output based on training data and validation data. An exam-
ple for the OLR data is shown in Fig. 2.

The CNN model is trained independently for each grid point
and dataset. For both datasets, the training period is 1 January
1988–31 December 2012, the validation period is 1 January 2013–
31 December 2014, and the testing period is 1 January 2015–31
December 2016. The training period provides 9132 samples or
days (time dimension in Fig. 1) at each grid point (grid dimension
in Fig. 1). Because ISV is present year-round, all days are suitable
for being used in the training. The impact of sample size on the
training error of deep ANNs is an open question and is problem
dependent (Chattopadhyay et al. 2020).

c. Evaluation metrics

The performance of the CNN model during the testing pe-
riod is evaluated using three metrics: 1) the root-mean-squared
error (RMSE), 2) the index of agreement (IOA), and 3) the

FIG. 1. The architecture of the CNN-based filter. All layers have the same size, which is the
sample size. The dashed–dotted line denotes the kernel size. In the first convolutional layer,
the kernel size p 5 90 and in the second convolutional layer p 5 30. Grid 5 lon 3 lat. Time
represents the number of samples (days). In each layer, a rectangle represents one grid point.
The horizontal arrows show the workflow of the algorithm excluding the hidden layers in the
convolutional layers. The gray line connecting the input layer and the subtraction layer denotes
that input data can be passed to the subtract layer from the input layer.
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coefficient of determination (R2). The IOA, developed
(Willmott 1981) as a standardized measure of the degree of
model prediction error, varies between 0 and 1. A value of 1 in-
dicates a perfect match, and 0 indicates no agreement at all be-
tween the predicted and observed data. The IOA represents
the ratio of the mean-squared error and the potential error and
is calculated as

IOA 5 1 2

∑
n

i51
(x̂i 2 xi)2

∑
n

i51
x̂i 2 x
∣∣ ∣∣ 1 xi 2 x

∣∣ ∣∣( )2 ,

where xi is the expected value or the truth, x̂i is the value esti-
mated by the CNNmodel, and x is the mean of expected values.
The parameter n represents the length of the time series pro-
duced by the CNN model during the testing period. Unlike the
RMSE, IOA is a bounded and nondimensional measure. The di-
mensionless facilitates the comparison of agreement among dif-
ferent pairs of datasets with different units (Duveiller et al.
2016). The RMSE gives estimates of the average errors in the
model whereas IOA provides information about the relative
size of the average difference (Willmott 1982). A model per-
forms well when the RMSE approaches zero and IOA is close
to 1 or 100%. The R2 measures the proportion of the total vari-
ability explained by the prediction model and is interpreted as a
measure of the correspondence in phase between the predicted
variable and verification (Murphy 1995).

3. Results

Intraseasonal variability of the tropics

The CNN-based filter, was applied to extract the ISV in the
30–90-day range from the daily anomalies of the zonal

component of the wind stress vector and OLR. The results for
the wind stress anomalies and OLR are shown in Fig. 3 during
the first year of the testing period, that is, 1 January 2015–31
December 2015. For a complete description of each field, the
total daily anomalies are also included. The signal filtered us-
ing the conventional Lanczos filtering serves as the truth. The
Lanczos filtering is applied to the whole year of data, which
requires additional data before the first and last date of the
analyzed period. For example, to obtain a filtered time series
that begins on 1 January 2015 the time series on which Lanc-
zos filter is applied begins 90 days prior, that is, 2 October
2014. If the end date of the filtered time series is 31 December
2015, the end date of the unfiltered time series is 31 March
2016. For the zonal wind stress, the filtered signal based on
the CNN method is shown in Fig. 3c along with the 30–90-day
bandpass-filtered signal (Fig. 3b) obtained using the conven-
tional Lanczos filtering method.

The direct comparison (Figs. 3b,c) and the difference be-
tween the filtered signals obtained using the conventional and
ML/AI methods (Fig. 3d) show a good agreement between the
patterns in the ISV signal with small differences in the ampli-
tudes. The amplitudes of zonal wind stress anomalies obtained
using the CNN filter are 37% larger (smaller) than the ampli-
tudes of filtered zonal wind anomalies obtained using the Lanc-
zos method. This number is calculated by dividing the absolute
value of maximum difference between filtered amplitudes us-
ing the two methods by the absolute value of maximum (mini-
mum) amplitude of Lanczos-filtered anomalies. Results for the
OLR anomalies are shown in Figs. 3e–h for the same period
(1 January 2015–31 December 2015) as for the zonal wind
stress. The OLR based results also suggest a good agreement
between the two methods. The difference in the amplitude of
the filtered OLR produced by the two methods is in the same
ballpark (31.5%) as for the zonal wind stress.

A cross-validation analysis (k fold; Geisser 1975) for the
OLR was conducted by resampling the years of training, vali-
dation and testing as shown in Table 1. In our method, the
training data is separated into subsets of the same size. The
validation and testing period are independent and of each
other and also swapped. The mean average error and stan-
dard deviation for the testing period over all k 5 6 trials are
shown in Fig. 4. The mean error (ME) and standard deviation
(s) are defined as

ME 5
1
N
∑
N

i51
(yi 2 ŷi); and

s 5

���������������������������������
1
N
∑
N

i51
[(yi 2 ŷi) 2 ME]2

√
,

where ŷi is the CNN-filtered signal, yi is the Lanczos-filtered
signal, and N denotes the number of trials.

As in Fig. 3h, the mean error (Fig. 4a) and standard devi-
ation (Fig. 4b) also emphasize the model’s limitations at
the ends of the time series. The errors manifest in the first
30 days, after which the CNN models become equivalent to
each other.

FIG. 2. Training and validation loss for the OLR data at a grid point
located at 1608E on the equator.

AR T I F I C I AL I N TELL IGENCE FOR THE EARTH SY S TEMS VOLUME 24

Brought to you by GEORGE MASON UNIVERSITY | Unauthenticated | Downloaded 11/06/23 09:55 PM UTC



To further evaluate the ability of the CNN-based filter to
isolate the ISV in the 30–90-day range, Figs. 5 and 6 show ad-
ditional metrics constructed using results based on the zonal
wind stress (Fig. 5) and OLR (Fig. 6) for the testing period.

Based on the maximum variance of the 30–90-day filtered
anomalies, two regions are selected: 1258–1608E, 7.58S–7.58N
for the zonal wind stress and 1608–1908E, 7.58S–7.58N for the
OLR. The comparison between the zonal wind stress (Fig. 5a)
and OLR (Fig. 6a) filtered time series using the conventional
and CNN-based filtering methods reveals a notable difference
at the beginning of the time series.

There are other cases where the end of the time series also
shows differences between the two filtering methods. This dif-
ference is related to the constraint in the convolutional layer
to maintain the length of the time series. The power spectra
(Figs. 5b and 6b) of the two time series show that the CNN fil-
tering method captures very well the spectral peak centered
around 35 days and slightly overestimates the amplitude of

FIG. 3. Hovmöller diagrams averaged over 7.58S–7.58N for the testing period 1 Jan 2015–31 Dec 2015. (top) Zonal wind stress (N m22)
and (bottom) OLR (Wm22). (a),(e) The total daily anomaly of the fields. (b),(f) The 30–90-day filtered anomalies using the Lanczos filter.
(c),(g) The 30–90-day filtered anomalies using the CNN-based filter. (d),(h) The Lanczos filtered anomalies minus the CNN-based filtered
anomalies.

TABLE 1. Subsets of years used for k-fold cross validation.

Trial No. Training Validation Testing

1 1988–2012 2013–14 2015–16
2 1988–2012 2015–16 2013–14
3 1990–2014 1988–89 2015–16
4 1990–2014 2015–16 1988–89
5 1992–2016 1988–89 1990–91
6 1992–2016 1990–91 1988–89
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the spectral peak located close to 60 days. The CNN method
also shows an adequate removal of the spectral power existing
in data outside of the intended spectral window. The RMSE
(Figs. 5c and 6c) and IOA (Figs. 5d and 6d) between the time
series constructed using the two methods also reveal a good
spatial agreement at all longitudes in a tropical channel be-
tween 7.58S and 7.58N. RMSE is used as an indicator of the
outliers and IOA is a measure of the degree to which the
model’s predictions are free of errors (Willmott 1981).

Consistent with the IOA, R2 for the zonal wind stress
(Fig. 7a) is lower than for the OLR (Fig. 7b). One can specu-
late the better fit for the OLR is due to a stronger MJO signal
in this field compared to the wind (e.g., Waliser et al. 2009)
and/or a better satellite product for the OLR than surface
wind stress.

4. Applications of the CNN-based filter

The intraseasonal anomalies are used for model evalua-
tions, to construct metrics and diagnostics for studying the
properties of climate system on S2S time scale, and to charac-
terize the tropical oscillations such as the MJO and BSISO,
the two dominant modes of tropical ISV. Lybarger et al.
(2020) introduced a metric designed to characterize the inter-
action between the MJO component of the wind stress and a

low-frequency (;48 months) oscillation of the tropical Pacific,
ENSO. The metric is used to evaluate the ENSO forecast skill
of a seasonal forecast system. The key element of the metric
is the MJO component of the wind stress. The first step in cal-
culating the MJO component in the forecast anomalies of the
wind stress is to extract the ISV variability from the forecast
anomalies and then project the observed patterns of MJO
[the first four empirical orthogonal functions (EOFs)] onto
the ISV anomalies. Because the length of the seasonal fore-
casts is 90 days, conventional filtering methods for extracting
ISV cannot be applied. For example, a Lanczos filter requires
181 days, and a frequency of (90 days)21 cannot be extracted
by a Fourier analysis. Thus, proxy methods have been devel-
oped based on the total (unfiltered) daily anomalies of the
wind stress. We used the CNN-based filtered anomalies to
compute the MJO component of the zonal wind stress (tMJO

x )
in the tropics and compare the results with the case when
tMJO
x is extracted from unfiltered daily anomalies as in
Lybarger et al. (2020). Figure 8a shows the IOA between
tMJO
x computed using daily anomalies filtered using a 30–90-day
Lanczos filter (Fig. 3b) and tMJO

x computed using unfiltered
daily wind stress anomalies (Fig. 3a). In both cases, tMJO

x is
computed following the method of Lybarger et al. (2020). Ex-
cept for 1995 and 2010, the IOA is above 0.55. For comparison,
Fig. 8b shows the IOA between tMJO

x computed using daily

FIG. 4. Hovmöller diagrams of the effectiveness of the CNN-based filtering model measured by (a) ME and
(b) standard deviation (s) obtained by resampling the training, validation, and testing periods into six folds. The
domain is an average over 7.58S–7.58N.
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anomalies of zonal wind stress filtered using a 30–90-day
Lanczos filter (Fig. 3b) and tMJO

x computed using daily anoma-
lies filtered using the CNN-based filter (Fig. 3c). To evaluate
the impact of the CNN-based filtering method, Fig. 8c shows
the difference between the two IOAs. In this comparison, tMJO

x

computed using the Lanczos-filtered data is the truth. The posi-
tive values in the difference plot indicate that CNN-filtered data
result in a better estimate of tMJO

x than the proxy method used
by Lybarger et al. (2020). The small range of values in Fig. 8b

indicates a consistent ability of the CCN-based filter to repro-
duce the features of the Lanczos filter.

In all years, the IOA based on the CNN filter is larger than
the IOA when using unfiltered anomalies. In the western and
central Pacific, the IOA of the CNN-based method is much
larger than the IOA of unfiltered anomalies. In the eastern
Pacific, the difference between the IOAs is slightly smaller
than in the other regions. This smaller difference in the east-
ern Pacific could be explained by the fact that MJO is more

FIG. 6. As in Fig. 5, but for OLR anomalies averaged over 1608–1908E, 7.58S–7.58N.

FIG. 5. (a) Time series of 30–90-day filtered anomalies using the Lanczos filter (red solid curve) and the CNN-based
filter (blue dashed line) averaged over 1258–1608E; 7.58S–7.58N for the testing period 1 Jan 2015–31 Dec 2016 along
with their correlation coefficient (r). (b) The power spectrum density times frequency of filtered anomalies shown in
(a). (c) IOA and (d) RMSE between the 7.58S and 7.58N averaged filtered anomalies using the Lanczos and CNN-
based filters during the testing period 1 Jan 2015–31 Dec 2016.

S T AN AND MAN TR I P RAGADA 7OCTOBER 2023

Brought to you by GEORGE MASON UNIVERSITY | Unauthenticated | Downloaded 11/06/23 09:55 PM UTC



active in the western Pacific than in the east, where low-
frequency variability (e.g., ENSO) is the dominant signal.

Another application that can benefit from using the
CNN-based filter is the real-time monitoring of the MJO (e.g.,
Gottschalck et al. 2010; Kikuchi et al. 2012; Kikuchi 2020). We
applied the method described by Kikuchi (2020) to extract the
MJO signal in the OLR anomalies using a proxy method for
computing the daily filtered anomalies and the CNN-based
filtering method. In the proxy method, first, anomalies are con-
structed by subtracting from each daily value the climatologi-
cal mean and three harmonics of the climatological annual
cycle. Second, these anomalies are filtered by subtracting the
mean of the previous 40 days from each daily anomaly. In
both methods, the MJO signal is then extracted from the ISV
by projecting the daily filtered anomalies onto the two ex-
tended EOFs (EEOFs) precomputed by Kikuchi (2020) and
then multiplying the resulting principal components (PCs)
time series with the EEOFs (OLRMJO 5 EEOF1 3 PC1 1

EEOF2 3 PC2). Results from the two methods are compared
in Fig. 9, which shows the OLR-filtered anomalies and the re-
constructed OLRMJO.

In the top part of the figures (above the gray dashed line),
anomalies are filtered using a 25–90-day bandpass Lanczos fil-
ter. In the bottom part of the figures (below the gray dashed
line), anomalies are filtered using the proxy method (Fig. 9a)
and the CNN-based method (Fig. 9b). It is easy to see that
CNN-based filtered anomalies and the MJO signal remain co-
herent with the existing structures and the amplitude of the
ISV (filtered anomalies) is not distorted as in the case of
proxy method. Relative to the period when the Lanczos filter
was applied, the amplitudes of the anomalies become stronger
for the period when the proxy filtering method is used. The
MJO is characterized by the amplitude and phase. The ampli-
tude is typically measured by the principal components���������������
PC2

1 1 PC2
2

√
normalized by their standard deviation. The

phase space can be analyzed using the Wheeler–Hendon dia-
gram (Wheeler and Hendon 2004). Figure 10 shows the PCs
of two MJO events that that occurred in winter 2018/19 along
with the phase space defined by the two PCs. Using the proxy
method developed by Kikuchi (2020), the amplitude of the
MJO activity is slightly underestimated in February and

FIG. 7. R2 of the filtered anomalies using the Lanczos and CNN-based filters during 1 Jan 2015–31 Dec 2016 for (a) zonal
wind stress and (b) OLR. Time series at each zonal grid point represent the average between 7.58S and 7.58N.

FIG. 8. Longitude–time plots of (a) IOA between tMJO
x based on Lanczos-filtered daily anomalies (t 30290(L)

x ) and tMJO
x based on unfil-

tered daily anomalies (t ′
x ). (b) IOA between tMJO

x based on Lanczos-filtered daily anomalies and tMJO
x based on CNN-filtered daily

anomalies (t 30290(CNN)
x ). (c) The difference between (b) and (a). See text for details.
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slightly overestimated in March, relative to the Lanczos
method, which represents the truth. The well-known 10–15 day
lagging between PC1 and PC2 becomes shorter in the proxy
method. The phase diagrams indicate that MJO phases 7–8 are
distorted by the proxy method. The CNN-based filtering pro-
duces results in better agreement with the Lanczos method
than the proxy method does.

A comparison of the power spectra of the filtered anoma-
lies and MJO signal (Fig. 11) illustrates the efficiency of the
CNN-based method at filtering the intended frequencies with
the right power spectral density and not introducing as many
spurious frequencies.

5. Conclusions

In this study we have demonstrated that CNN methods can
be applied to construct a bandpass filter for intraseasonal vari-
ability (30–90 days) of the tropical atmosphere. The CNN-
based filter contains two convolutional layers with 90 weights
in the first convolutional layer and 30 weights in the second
convolutional layer. Our results suggest that the CNN-based
filter is a robust new technique for signal processing of geo-
physical data. The CNN-based filter yields similar results to
the Lanczos filter and with no loss of data at the beginning
and end of the analyzed period. The Lanczos filter uses 181
weights (or points), therefore 90 points (days in this case) are

lost at the beginning and end of the time series. In fact, a
Lanczos filtering cannot be applied to time series with the
length of 90 days if the cutoff frequency is (90 days)21. The
CNN-based filter only shows a small reduction in accuracy at
the ends of time series The number of weights used by the
Lanczos filter are determined to ensure a reduction of the
Gibbs phenomena that occurs in the vicinity of a discontinuity
when the Fourier analysis is carried out (Duchon 1979). Since
the CNN-based filter does not use a Fourier analysis, genera-
tion of Gibbs waves is not possible.

The CNN-based filter works well when applied to basic-
state variables (wind stress) and phenomena-based variables
(OLR). For both variables, the relative difference from the
conventional Lanczos filtering method is in the ballpark of
30%–40%. The IOA for the state variable is also almost on
par with that for OLR. By further using the filtered data to
successfully construct the MJO signal we demonstrate that
the classification determined by the CNN-based filter is based
on physical principles as shown in the power spectrum infor-
mation and MJO phase diagram.

The CNN-based filter can be applied to extracting ISV
from the forecasts. Current extracting methodologies (e.g.,
Gottschalck et al. 2010; Janiga et al. 2018) have some disad-
vantages such as the contamination of the MJO signal from
the higher-frequency variability and low-frequency variability
associated with ENSO. The filter described in this study

FIG. 9. Hovmöller diagrams of daily OLR filtered anomalies (shading) and MJO signal (contours) averaged over
7.58S–7.58N for the period 1 Sep 2018–31 Mar 2019. Above the gray dashed line, anomalies are filtered using a
25–90-day Lanczos filter. Below the gray dashed line, anomalies are filtered using (a) the proxy method (see text for
details) and (b) the CNN-based method (right). The gray line denotes the last date for which data would be available
for the proxy method. In both cases the MJO is computed following Kikuchi (2020) method.
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works for seasonal forecasts. Further developments are
needed to make it applicable to S2S forecasts, which are
shorter, for example, 45 days (Vitart et al. 2017). The 90-day
requirement embedded in the CNN-filter presented in this
study prevents its application to shorter time series.
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a deep learning framework that wraps Tensorflow. The source

FIG. 10. (top) Comparison of MJO amplitude (PC1 and PC2) and (bottom) phase space for the period 1 Sep 2018–31 Mar 2019. The
black line denotes the Lanczos filter, and the calculation is done assuming availability of data in the future. The blue and red lines corre-
spond to the proxy and CNN calculations. The vertical line on 1 Jan 2019 denotes the date after which no data would be available for
applying the Lanczos filtering.
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code for the CNN-filter has been made publicly available
(https://github.com/cristianastan2/AIES-Deep-Learning-Filter).
QSCAT data are available at https://www.remss.com/missions/
qscat/. DASCAT data are deposited online (http://apdrc.soest.
hawaii.edu/datadoc/ascat.php). OLR data are deposited online
(https://climatedataguide.ucar.edu/climate-data/outgoing-longwave-
radiation-olr-avhrr). The EEOFs used for computing the MJO sig-
nal in the OLR are deposited online (http://iprc.soest.hawaii.edu/
users/kazuyosh/Bimodal_ISO.html).
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