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Heavy-tailed error distributions and predictors with anomalous values are ubiquitous 
in high-dimensional regression problems and can seriously jeopardize the validity of 
statistical analyses if not properly addressed. For more reliable variable selection and 
prediction under these adverse conditions, adaptive PENSE, a new robust regularized 
regression estimator, is proposed. Adaptive PENSE yields reliable variable selection and 
coefficient estimates even under aberrant contamination in the predictors or residuals. It is 
shown that the adaptive penalty leads to more robust and reliable variable selection than 
other penalties, particularly in the presence of gross outliers in the predictor space. It is 
further demonstrated that adaptive PENSE has strong variable selection properties and that 
it possesses the oracle property even under heavy-tailed errors and without the need to 
estimate the error scale. Numerical studies on simulated and real data sets highlight the 
superior finite-sample performance in a vast range of settings compared to other robust 
regularized estimators in the case of contaminated samples. An R package implementing 
a fast algorithm for computing the proposed method and additional simulation results are 
provided in the supplementary materials.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

This paper considers robust estimation, prediction and variable selection in the linear regression model

Y = μ0 +X ᵀβ0 + U, (1)

with random predictors X of fixed dimension p independent of the error term U and fixed parameters μ0 ∈ R, β0 ∈ Rp . 
Based on a sample of n independent realizations of Y and X , denoted as pairs (yi, xi), i = 1, . . . , n, the goal is to estimate 
the intercept μ0 ∈ R and slope β0 ∈ Rp . Emphasis is on prediction accuracy and identification of relevant predictors, i.e., 
those with non-zero entries in β0, when some realizations may be contaminated with aberrant outliers.

With the growing abundance of data, often combined from various sources, it becomes increasingly challenging to 
make assumptions on the distribution of the error term U or assume that the data, particularly the predictors, are free 
of anomalous values or gross outliers. In proteomics studies, for instance, undetected equipment failure, problems with 
sample preparation, or patients with rare phenotypic profiles, are just a few sources of contamination that can severely 
impede the accuracy of commonly used statistical methods. If potential contamination or heavy tailed errors are not prop-
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erly addressed, they can jeopardize the validity of statistical analyses and render the results unreliable. The main goal of 
this work is to develop a practical method for reliable identification of the relevant predictors and estimation of the corre-
sponding non-zero regression coefficients for accurate prediction in the linear model (1), if the errors are heavy-tailed and 
observations are potentially contaminated.

We formalize this estimation problem as the minimization of a regularized objective:

argmin
μ∈R,β∈Rp

O(y,μ + Xβ) + �(β;λ), (2)

where y ∈ Rn is the vector of response values and X ∈ Rn×p is the matrix of predictor values, O(y, μ + Xβ) is a regression 
loss (e.g., the sum of squared residuals) and �(β; λ) is a penalty function (e.g., the L1 norm). The hyper-parameter λ
governs the strength of the penalization. The LASSO (Tibshirani, 1996) and the elastic net (EN) estimator (Zou and Hastie, 
2005) are classical examples of regularized regression estimators based on the least-squares (LS) loss. The regularized LS-loss 
is extensively studied and well understood under numerous settings and penalty functions. Less has been done to ensure 
simultaneous robust and efficient variable selection and coefficient estimation for heavy-tailed error distributions and under 
the potential presence of contamination in both the predictors and the response.

The major contributions of this paper are two-fold. First, we introduce the adaptive PENSE estimator, a highly robust 
method for estimation and variable selection in the linear regression model. The high robustness arises from the particular 
combination of the S-loss function and the adaptive elastic net penalty. The ensuing estimator exhibits accurate prediction 
and variable selection as well as favorable asymptotic guarantees without requiring prior knowledge about the scale or 
distribution of the residuals, or the number of relevant predictors. The S-loss function proposed in Rousseeuw and Yohai 
(1984) robustly measures the scale of the fitted residuals, thereby circumventing the need for an auxiliary estimate of the 
residual scale. Second, we demonstrate that adaptive PENSE leads to substantially more robust variable selection than esti-
mators with non-adaptive penalties. We show in the following sections that the adaptive penalty loadings are a fundamental 
ingredient for robust variable selection in high-dimensions, which has not been established in the literature to our knowl-
edge. Adaptive PENSE therefore possesses superior empirical performance in the presence of aberrant contamination and 
heavy-tailed errors compared to other regularized estimators for the linear regression model.

We also develop a scalable and reliable algorithm to compute adaptive PENSE estimates. Computation is challenging due 
to the highly non-convex objective function and many hyper-parameters. Compared to the previous work in Cohen Freue et 
al. (2019), the algorithms developed here are computationally more tractable while at the same time expand the exploration 
of the parameter space. This leads to potentially more reliable estimates and makes a wider range of problems amenable to 
adaptive PENSE. To ensure practitioners can leverage these advances the optimized algorithms are made readily available as 
an R package in the supplementary materials and on the official R package repository CRAN.

In the supplementary materials we also prove that the adaptive PENSE estimator possesses the oracle property and 
asymptotic Normality without any moment conditions on the error distribution. Therefore, our theoretical results apply 
equally to light- and heavy-tailed distributions, including the Cauchy distribution and other symmetric stable distributions. 
These results stand out from the existing literature as we achieve these guarantees without the need for tuning the estimator 
to an unknown error distribution and without sacrificing finite-sample robustness towards unusual values in the response 
or the predictors.

1.1. Related work

The unregularized S-estimator is well-known to be robust towards heavy-tailed errors and arbitrary contamination in 
the predictors (Rousseeuw and Yohai, 1984). While some regularized S-estimators have been proposed (Maronna, 2011; 
Gijbels and Vrinssen, 2015; Cohen Freue et al., 2019) their variable selection performance is affected by contamination 
and the theory is not yet well established. For example, Cohen Freue et al. (2019) show that their PENSE estimator, the 
S-loss combined with the EN penalty, leads to consistent parameter estimation but it does not possess the oracle property. 
Following classical robust theory Smucler and Yohai (2017) proposes the adaptive MM-LASSO, a regularized M-estimator 
with bounded loss function, based on the robust M-scale of the residuals estimated by the S-Ridge (Maronna, 2011). The 
theory promises the same robustness as the S-Ridge but higher efficiency under the central model. Estimating the residual 
scale with small finite-sample bias, however, is a difficult task in high-dimensions, even in classical non-robust settings 
without contamination (Fan et al., 2012; Reid et al., 2016; Tibshirani and Rosset, 2019). Therefore, the performance of 
adaptive MM-LASSO is in practice often impeded by the finite-sample bias of the M-scale estimate.

Many other M-estimators for the high-dimensional linear regression model have been proposed in the past to shield 
against heavy-tailed errors, but without protection from contamination in the predictors (e.g., Wang et al., 2007; Zou and 
Yuan, 2008; Fan et al., 2014; Lambert-Lacroix and Zwald, 2011; Fan et al., 2018; Loh, 2021; Sun et al., 2019; Pan et al., 2021). 
These estimators replace the LS-loss with convex loss functions which grow slower than the LS-loss for large residuals, so-
called unbounded M-loss functions. The convexity of unbounded M-loss functions allows derivations of strong theoretical 
guarantees and high efficiency under the central model, but these estimators are vulnerable to the potentially devastating 
effects of contamination in the predictors. Commonly suggested remedies, e.g., down-weighting observations with unusual 
values in the predictors or univariate winsorizing (Loh, 2017; Sun et al., 2019), are not well-suited for high-dimensional 
2



D. Kepplinger Computational Statistics and Data Analysis 183 (2023) 107730
and sparse problems. Applying these ad-hoc remedies and down-weighting observations because of outlying values in irrel-
evant predictors, for example, sacrifices precious information. To add to the difficulty in practice, these M-estimators with 
unbounded loss function also require a robust estimate of the residual scale.

Another line of research deals with the mean-shift outlier model (MSOM), in which an additive fixed effect is introduced 
for each observation to quantify its outlyingness. In She and Owen (2011) the authors propose non-convex thresholding 
rules, for instance via an L0 constraint on the mean-shift effects, as a robust and fast way to identify outliers. She et al. 
(2022) continue in this line of work and develop a theoretical foundation for a broad class of robust estimators defined 
algorithmically, including the SparseLTS estimator (Alfons et al., 2013), establish minimax bounds for the estimation error 
under the MSOM, and propose an efficient algorithm for estimation. Similarly, Insolia et al. (2022) propose a mixed integer 
program (MIP) to constrain both the number of outliers and the number of relevant predictors using the L0 constraint. 
The authors develop guarantees for the algorithmic complexity and the estimation error for their MIP. For example, with 
normally distributed errors and when the true number of relevant predictors and the true number of outliers in the response 
are known, the MIP possess the oracle property under the MSOM. The MSOM framework and the proposed methods building 
upon the L0 constraint provide a promising avenue, particularly in regimes with high signal strength. For lower signal 
strengths, however, the L0 constraint for either variable selection or outlier detection tends to suffer from high variability 
(Hastie et al., 2020; Insolia et al., 2022). For computational tractability, it is also necessary to restrict the optimization to a 
tight neighborhood around the true parameters and to have good upper bounds for the number of relevant predictors and 
the number of outliers. Insolia et al. (2022) suggest to use an ensemble of other robust methods to obtain these bounds. 
The method we propose does not require prior knowledge of the number of relevant predictors and only a rough upper 
bound on the number of outliers and is thus a good candidate to initialize these methods for the MSOM.

1.2. Notation

The concatenated parameter vector of intercept and slope in the linear regression model (1) is denoted by θ = (μ, βᵀ)ᵀ . 
The non-zero elements of a slope parameter β are referenced as β I , while the zero elements are written as β II . Adaptive 
PENSE estimates are always denoted by a hat, θ̂ , and PENSE estimates are marked by a tilde, θ̃ . The subscript i ∈ {1, . . . , n}
is exclusively used to denote the i-th observation from the sample, while j ∈ {1, . . . , p} is reserved for indexing predictors. 
Without loss of generality, it is assumed that the true slope parameter equals the concatenated vector β 0 = (β0

I
ᵀ
,β0

II
ᵀ
)
ᵀ

where the first s elements, β0
I , are non-zero and the trailing p − s elements are zero, i.e., β0

II = 0p-s.

2. Adaptive PENSE

We propose estimating the sparse regression parameter θ 0 in the linear regression model (1) by penalizing the robust 
S-loss with an adaptive elastic net penalty. In the presence of outliers in the response and unusual values in the predictors, 
the S-loss is a better alternative to the LS-loss, and is given by

OS(y, ŷ) = σ̂ 2
M(y− ŷ) = inf

{
s2 : 1

n

n∑
i=1

ρ

(
yi − ŷi

|s|
)

≤ δ

}
. (3)

Here ρ is a bounded and hence non-convex function and δ ∈ (0, 0.5] is a fixed parameter governing robustness as will be 
shown later. To ease notation, we define the M-scale of the residuals of an estimate θ̂ by σ̂M(θ̂) = σ̂M(y− μ̂ − Xβ̂).

Instead of the sample variance of the residuals, the S-loss minimizes the robust M-scale of the fitted residuals, σ̂M(y− ŷ). 
The robustness of the M-scale depends on two components: (i) the choice of the ρ function and (ii) the fixed quantity δ. 
The ρ function measures the “size” of the standardized residuals. To get a robust estimate of the scale, ρ must be bounded 
(Yohai, 1987), i.e., assign the same size to all standardized residuals larger than a threshold. Since the objective is to get a 
robust estimate, we assume from here on that the ρ function satisfies the condition

[A1] ρ : R → [0, 1] is even and twice continuously differentiable, with ρ(0) = 0, is bounded, ρ(t) = 1 for all |t| ≥ c > 0, and 
non-decreasing in |t|.

The boundedness implies that the derivative of the ρ function is 0 for |t| ≥ c and hence residuals greater than c have no 
effect on the minimization of (3). As evident from the asymptotic theory presented in Section S1 in the supplementary 
material, the choice of the ρ function directly affects the variance of adaptive PENSE. In practice we use Tukey’s bisquare ρ
function

ρ(t; c) = min

(
1,1−

(
1− (t/c)2

)3
)

, (4)

as it is simple and the loss in efficiency compared to an optimized ρ function for Normal errors is negligible for the 
unregularized S-estimator (Hössjer, 1992). The cutoff c in [A1] and (4) does not affect the S-estimator of the regression 
parameters or the variance of the M-scale estimator; it is merely a multiplicative factor for the scale estimate. We are 
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therefore fixing c = 1 for the reminder of this paper when referring to the S-loss. If an M-scale estimate of the residuals is 
needed, we use a cutoff which leads to a consistent estimate under Normal errors; this cutoff will depend on δ.

The second component that determines the robustness of an S-estimator is the constant δ which must be in (0, 0.5] for 
ρ functions of the form [A1]. The M-scale estimate can tolerate up to �n min(δ, 1 − δ)� gross outliers without exploding 
to infinity or imploding to 0 (Maronna et al., 2019). Similarly, we show in Theorem 1 in the supplementary material that 
adaptive PENSE can also tolerate up to �n min(δ, 1 −δ)� adversely contaminated observations without giving aberrant results. 
For robustness considerations, an optimal choice is therefore δ = 0.5, which allows the estimator to tolerate gross outliers in 
the residuals of almost 50% of observations. On the other hand, the variance of the estimator increases with δ and adaptive 
PENSE with δ = 0.5 achieves only ∼ 30% efficiency under the Normal model while for δ = 0.25 the efficiency is close to 
80%. Therefore, a good sense of the expected proportion of contamination helps to get as much efficiency as possible.

The unregularized S-estimator cannot be computed if p > n(1 −δ) −1 and it cannot recover the set of relevant predictors. 
In Cohen Freue et al. (2019), the S-loss is combined with the elastic net penalty, a convex combination of the L1 and 
the squared L2 norm, given by �EN(β; ̃λ, α̃) = λ̃

∑p
j=1

1−α̃
2 β2

j + α̃
∣∣β j

∣∣. The hyper-parameter α̃ ∈ [0, 1] controls the balance 
between the L1 and the L2 penalty and λ̃ controls the overall strength of the penalization. With α̃ = 0, the EN penalty 
coincides with the Ridge penalty and for α̃ = 1 it recovers the LASSO. If α̃ < 1, the elastic net results in a more stable 
variable selection than the LASSO penalty when predictors are correlated (Zou and Hastie, 2005).

The elastic net penalty, just as the LASSO penalty, introduces non-negligible bias and thus cannot lead to a variable 
selection consistent estimator. We are therefore proposing to combine the robust S-loss with the adaptive EN penalty:

�AE(β;λ,α, ζ, β̃) = λ

p∑
j=1

∣∣∣β̃ j

∣∣∣−ζ
(
1− α

2
β2

j + α
∣∣β j

∣∣) , ζ ≥ 1. (5)

The adaptive EN penalty combines the advantages of the adaptive LASSO penalty (Zou, 2006) and the EN penalty (Zou 
and Zhang, 2009). Contrary to the original definition in Zou and Zhang (2009), (5) applies the penalty loadings |β̃ j |−ζ to 
both the L1 and L2 penalties. The adaptive EN penalty leverages information from a preliminary regression estimate, β̃ , to 
penalize predictors with initially small coefficient values more heavily than predictors with initially large coefficients. This 
has two advantages over the non-adaptive EN penalty: (i) the bias for large coefficients is reduced and (ii) variable selection 
is improved by reducing the false-positive rate.

The adaptive EN penalty improves the stability of the estimator in the presence of multicollinearity as compared to the 
adaptive LASSO (Zou and Zhang, 2009). In applications where there is no multicollinearity, adaptive EN gives the option of 
setting α = 1, i.e., computing an adaptive LASSO estimate. In the presence of multicollinearity, however, the contribution 
of the L2 penalty is important for improving the stability of the variable selection and the selection of an appropriate 
penalization level. The adaptive EN penalty therefore gives the necessary flexibility to cover a wide range of scenarios, 
particularly scenarios where the researcher has limited control over the predictor values.

Adaptive PENSE is a two-step procedure leveraging a PENSE estimate with α̃ = 0. In the first step, a PENSE-Ridge estimate 
is computed as

θ̃ = argmin
μ,β

OS (y,μ + Xβ) + �EN(β; λ̃,0), (6)

and in the second step, using the PENSE-Ridge θ̃ as the preliminary estimate, adaptive PENSE is computed by

θ̂ = argmin
μ,β

OS (y,μ + Xβ) + �AE(β;λ,α, ζ, β̃). (7)

Fixing the preliminary estimate to a PENSE-Ridge has two important advantages: (i) computation is fast because the Ridge 
penalty is smooth (hence amenable to more efficient algorithms) and because we do not need to choose from several α̃
values, and (ii) no predictors are discarded prematurely. In high-dimensional problems discarding some predictors in the 
preliminary stage may be beneficial for computation speed and variable selection performance. Empirical studies, however, 
suggest that the gains are usually small and only noticeable in very high-dimensional settings. In most other cases adaptive 
PENSE performs better and is faster if the preliminary stage does not screen out variables.

Even with the first-stage penalty fixed at α̃ = 0, computing adaptive PENSE estimates involves choosing four hyper-
parameters: (i) λ̃, the level of penalization for PENSE-Ridge, (ii) α, the balance of L1/L2 regularization for adaptive PENSE, 
(iii) λ, the level of penalization for adaptive PENSE, and (iv) ζ , the exponent governing the predictor-specific regularization. 
In general, the larger ζ the stricter the differentiation between small and large coefficient values. If ζ is large, all but a few 
predictors with largest coefficient values will be heavily penalized and thus likely not selected.

In addition to the large number of hyper-parameters that need to be selected, both optimization problems (6) and (7) are 
highly non-convex in μ and β . Finding global minima through numeric optimization is therefore contingent on a starting 
value that is close to a global minimum. We describe an efficient strategy for deriving potentially good starting values for 
adaptive PENSE in Section 4.
4
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Fig. 1. Example of a good leverage point in a truly irrelevant predictor. The leverage is higher as the value in the irrelevant predictor increases and the 
residual in the intercept-only model (depicted as dashed line) is neither 0 nor too large.

2.1. Statistical properties

In Theorem 1 in the supplementary materials we show that adaptive PENSE is highly robust, with a finite-sample re-
placement breakdown point (FBP) of up to 50%. The main message from this theorem is that the adaptive PENSE estimator 
is bounded away from the boundary of the parameter space if contamination is restrained to fewer than �n min(δ, 1 − δ)�
observations. It is important to stress that the data-driven strategy for choosing the hyper-parameters must itself provision 
for contamination to not break the robustness of adaptive PENSE. The strategy proposed in Section 4.2 tries to shield against 
the detrimental effect of contamination by using the robust τ -scale for measuring the prediction accuracy and by repeating 
cross-validation several times. Without specific assumptions on the type of contamination, the actual performance of the 
estimator can only be assessed with numerical experiments and we show the favorable empirical performance of adaptive 
PENSE in Section 5.1.

We now briefly turn to the asymptotic properties of adaptive PENSE as n → ∞ and the dimensionality p remains fixed. 
Under mild assumptions given in Section S1 in the supplementary materials, we establish the oracle property of the adaptive 
PENSE estimator and its limiting Normal distribution. This implies that adaptive PENSE has the same asymptotic properties 
as if the true model would be known in advance. Therefore, adaptive PENSE has the same asymptotic efficiency as an 
unpenalized S-estimator applied to only the truly relevant predictors. These properties hold in particular if using the PENSE-
Ridge as preliminary estimate.

It is noteworthy that the assumption on the residuals does not impose any moment conditions, making our results 
applicable to heavy tailed errors. Unlike many results concerning regularized M-estimators, we only require a finite second 
moment of the predictors. Similarly, while many existing regularized estimators possess the oracle property with higher 
asymptotic efficiency, none achieve these results for heavy tailed errors without prior knowledge or consistent estimate of 
the residual scale, and simultaneously finite-sample robustness towards contamination in the predictors. Adaptive PENSE 
fills this gap which is particularly critical for reliable estimation in finite samples.

The theoretical results depend on an appropriate choice for the hyper-parameters λ̃ and λ, for PENSE and adaptive PENSE, 
respectively. For a data-driven procedure, the required conditions are difficult if not impossible to verify. To substantiate the 
theoretical properties and verify that they translate beneficially in practical problems, we carefully investigate adaptive 
PENSE’s properties in finite samples with data-driven hyper-parameter selection in Section 5.

3. Reliable variable selection

A key benefit of adaptive PENSE over estimators with other convex or folded-concave penalties is that it possesses more 
robust variable selection properties. Good leverage points, i.e., observations where the response follows the regression model 
but one or more predictors have unusually large values carry important information for estimating the model parameters 
and should not be considered outliers. If the leverage, however, is due to large values in truly irrelevant predictors, robust 
estimators have difficulty discerning irrelevance from infinitesimal effects. Such good leverage points caused by irrelevant 
predictors, as illustrated in Fig. 1, can lead to a large number of false positives in robust estimates using non-adaptive 
penalties.

The effected predictors are often the first to enter the model. This is due to a combination of how large values in 
predictors affect the sub-gradient of the objective function and robust scaling of predictors. This phenomenon is shared 
among all robust estimators which are based on down-weighting outlying observations and can be best seen in the sub-
gradient of the objective function at β = 0p . For simplicity, we focus here only on the PENSE estimator with sub-gradient at 
β = 0p given by

∇β

{
OS (y,μ + Xβ) + �EN(β; λ̃, α̃)

}|
β=0p

= −1

n

n∑
i=1

w2
i (yi − μ)xi + λ̃[−α̃; α̃],

where wi are derived from the S-loss evaluated at the intercept-only model. The weight wi is >0 if and only if the residual 
from the intercept-only model is not too large (relative to all other residuals) and different from 0 (not fit exactly). Consider 
now that predictor j is truly irrelevant and contains a very large value in observation i, but the residual for observation i
5
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Fig. 2. Effect of high-leverage points on the sensitivity and specificity of various regularized regression estimators. Sensitivity (left column) is the number of 
selected proteins relative to the number of truly relevant proteins; specificity (right column) is the number of not-selected proteins relative to the number 
of truly irrelevant proteins. Average performance over 50 replications is reported for proteins with contaminated values (top row) and proteins free from 
any contamination (bottom row). Computational details for the displayed estimators are provided in Section 5.1.

in the intercept-only model is small such that wi 
 0, like the observation shown in Fig. 1. Robust scaling of the predictor 
likely does not shrink this large value substantially and hence the j-th predictor dominates the sub-gradient at β = 0p ; 
therefore, it enters the model first. This single aberrant value leads to the false impression that the j-th predictor is relevant. 
However, because the leverage is caused by an extreme value in an irrelevant predictor, the robustly estimated coefficient for 
this predictor is likely very small, compared to coefficients of truly relevant predictors. Importantly, the higher the leverage 
of this observation, the smaller the estimated coefficient. This allows adaptive PENSE to screen out this predictor, making it 
more robust against this form of contamination.

This form of good leverage points may occur in many practical problems, particularly in sparse high-dimensional settings. 
In protein expression data, for example, a group of proteins could be highly expressed in a small fraction of subjects while 
only trace amounts of the protein are detected in the vast majority of subjects. Even if the group of proteins is not relevant 
for the outcome of interest, non-robust methods or robust methods with non-adaptive penalties are prone to selecting 
these proteins. An example of this behavior using synthetic data is shown in Fig. 2 with n = 100 and p = 32. Here, five 
out of 28 irrelevant proteins have higher expression levels in 20 observations. In another five observations, the response 
variable is outlying and two out of the five relevant proteins exert high-leverage. Details on how the shown estimators are 
computed are given in Section 5.1, and additional information on the simulation setting is provided in Section S5.1 in the 
supplementary materials.

Clearly, adaptive PENSE is the only estimator for which the variable selection is not breaking down. Overall, the effect 
of such leverage points is more pronounced the higher the leverage of the contaminated observations, but the estimators 
are affected differently. Non-robust EN estimators tend to select only the two contaminated truly relevant predictors, but 
the actual parameter estimates are highly biased due to the contamination. I-LAMM with either the LASSO or SCAD penalty 
doesn’t select any proteins if the leverage caused by the affected proteins is too high. The PENSE estimator, on the other 
hand, selects almost all of the affected irrelevant proteins but tends towards not selecting any proteins at all as leverage 
increases. Only adaptive PENSE is mostly unaffected by the contamination, identifying on average four out of five truly 
relevant predictors, while screening out 24 of the 28 irrelevant predictors.

A notion of finite sample robustness of variable selection, comparable to the finite sample replacement breakdown point 
for the estimation bias, is unfortunately still missing from the literature. We thus resort to empirical studies to analyze 
how various forms of contamination affect finite sample variable selection performance. The results presented in Section 5
underscore the superior robustness and reliability of adaptive PENSE in terms of variable selection.

4. Computing adaptive PENSE estimates

The non-convex objective function paired with the need to select hyper-parameters requires optimized algorithms for 
computing adaptive PENSE estimates. The problem is split into two stages: (1) computing a preliminary PENSE-Ridge esti-
mate and (2) computing an adaptive PENSE estimate based on this (fixed) preliminary estimate. These two stages are done 
sequentially and hyper-parameters are selected independently in each. The only information passed down is the preliminary 
estimate.

The biggest challenge for computing adaptive PENSE estimates is the potentially severe non-convexity of the objective 
function. Undesirable local minima of the objective function, however, are artifacts of contamination and should thus be 
avoided. This insight is used in Cohen Freue et al. (2019) to find approximate initial solutions which are likely closer 
to good local minima than to local minima caused by contamination. They introduce the elastic net Peña-Yohai (EN-PY) 
6
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estimator to obtain initial estimates for their non-convex optimization routine at a few penalization levels. They use these 
initial estimates as starting points to compute PENSE estimates at these penalization levels. For all other penalization levels, 
a warm-start strategy is employed, where the solution obtained for the next largest penalization level acts as starting point. 
The issue with this approach is that a given penalization level does not lead to the same penalization in the initial EN-PY 
estimator and PENSE, and the starting point can thus be too far away from the local optima of interest. We improve their 
EN-PY procedure to be computationally less demanding and adapt it for the adaptive EN penalty.

4.1. Algorithm for adaptive PENSE

We develop an algorithm which is optimized for computing adaptive PENSE estimates over a fine grid of penalization 
levels, with hyper-parameters α and ζ fixed. Using our refined adaptive EN-PY procedure, we compute initial solutions for 
adaptive PENSE at a coarse grid of penalization levels (e.g., at every fifth penalization level). We then employ the following 
novel warm-start strategy to maximize exploration of the search space while maintaining computational feasibility.

Even for a fixed penalty level, the effect of penalization on the initial solutions obtained by adaptive EN-PY is vastly 
different than on adaptive PENSE; therefore, we combine the initial solutions from all penalization levels into one large set 
of initial estimates. Beginning at the largest value in the range of penalization levels, we use every solution in the set of 
initial estimates to start an iterative algorithm following the minimization by majorization (M-M) paradigm (Lange, 2016). 
Our iterative M-M algorithm locates a local optimum by solving a sequence of weighted adaptive LS-EN problems, each with 
updated observation weights derived from the robust S-loss evaluated at the current iterate. Instead of fully iterating until 
convergence for every initial solution, the M-M algorithm is stopped prematurely, leading to a set of candidates solutions. Of 
those, only the most promising candidates are fully iterated. The fully iterated solution with smallest value of the objective 
function is finally taken as the adaptive PENSE estimate at the largest penalization level. This two-step approach – explo-
ration and improvement – is successfully applied for many other types of robust estimators (e.g., Salibián-Barrera and Yohai, 
2006; Rousseeuw and Van Driessen, 2006; Alfons et al., 2013) and works very well for adaptive PENSE, too. Section S3 in 
the supplementary materials give additional details about our M-M algorithm.

At the next smallest penalization level, the M-M algorithm is started from all initial estimates and all fully iterated, most 
promising candidates from the previous penalization level. Again, only a few iterations of the M-M algorithm are performed 
for these starting points and only the most promising solutions are iterated until convergence. This cycle is repeated for 
every value in the range of penalization levels, from largest to smallest. Carrying forward the most promising solution from 
previous penalization levels combined with initial estimates from adaptive EN-PY leads to efficient and extensive exploration 
of the parameter space. These computational solutions are implemented in the R package pense in the supplementary 
materials.

4.2. Selecting hyper-parameters

For both PENSE-Ridge and adaptive PENSE we select hyper-parameters via repeated K-fold cross-validation (CV) over a 
grid of possible values. In the first stage, only the penalization level is selected as α̃ is fixed at 0. In the second stage, the two 
additional hyper-parameters α and ζ are selected from a small set of pairs. For every pair, the penalization level is chosen 
via separate CVs (using the same splits), and the combination resulting in the best prediction performance is selected. The 
range of penalization levels is different in both stages, as well as for every pair (α, ζ ) considered in the second stage.

Estimating the prediction error of robust estimators via cross-validation suffers from high variability due to the non-
convexity of the objective function, even more so if contamination is present. The prediction error estimated from a single 
CV is highly dependent on the random split and hence unreliable for selecting the hyper-parameter. We reduce this volatility 
by repeating CV several times to get a more reliable assessment of the prediction performance for given values of the 
hyper-parameters. In addition to repeating CV, the measure of the prediction error needs to be stable in the presence of 
gross errors in the observed response values. For PENSE and adaptive PENSE we use the robust τ -scale of the uncentered 
prediction errors (Maronna and Zamar, 2002) to estimate the prediction accuracy in each individual CV run:

τ̂ =

√√√√√1

n

n∑
i=1

min

⎛
⎝cτ ,

∣∣yi − ŷi
∣∣

Median
i′=1,...,n

∣∣yi′ − ŷi′
∣∣
⎞
⎠

2

.

Here, ŷi is the predicted response value from the CV split where the i-th observation is in the test set. The cutoff cτ > 0
governs the tradeoff between efficiency and robustness of the estimate. Following previous works (Cohen Freue et al., 2019; 
Smucler and Yohai, 2017), all analyses in this manuscript use cτ = 3. Since the presence of gross errors in the predictions is 
handled by the robust τ -scale, we average the prediction errors from the replicated CVs using the sample mean. This gives 
an overall measure of prediction performance for each set of hyper-parameters. Repeating CV additionally gives insights into 
the variability of the prediction performance and affords more sensible selection of the penalization level, e.g., using the 
“1-standard-error-rule” (Hastie et al., 2009).

Another important remedy to reduce the variability incurred by CV is robust scaling of the data to make penalization 
levels more comparable across CV splits. Specifically, the predictors in the full data set are scaled to have unit M-scale such 
7
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that the penalization level λ leads to comparable penalization of all predictors. Furthermore, in each CV split we standardize 
each predictor to also have unit M-scale. Therefore, a fixed penalization level λ induces a level of sparsity to the parameter 
estimate computed on the training data comparable to the sparsity when computed on the standardized input data.

5. Numerical studies

We conduct numerical studies both on simulated and real data. The simulation study covers scenarios where p < n and 
p > n, multiple sparsity settings and various heavy-tailed error distributions. The application showcases the potential of 
adaptive PENSE in a challenging setting where other estimators are highly affected by contamination.

5.1. Simulation study

In the simulation study we compare the prediction and model selection performance of adaptive PENSE and the proposed 
hyper-parameter selection procedure with other commonly used robust and non-robust estimators. We assess the reliability 
of the estimators by considering many different contamination structures and heavy-tailed error distributions. Below we 
present the results from a scenario with n = 200 observations and p = 32, 128, 512 predictors, of which s = �0.9√p� are 
relevant. Additional simulation results are presented in the supplementary materials. Section S5.3 shows results for n = 100
and more severe contamination. Section S5.4 shows empirical results supporting the theoretical property that the estimation 
error of adaptive PENSE is decreasing as n increases.

Here we consider multiple error distributions and either no adverse contamination or contamination in 10% of obser-
vations. The outliers are placed such that they are severe enough to bias the estimators, but not as far away from the 
true signal as to be easily detectable by robust estimators. Since the outliers tend to be difficult to detect they are most 
damaging to adaptive PENSE. On the other hand, it would be easy to find contamination settings that are more detrimen-
tal to the non-robust estimators, as their coefficient estimates can get infinitely biased. This unfortunately also holds for 
MM-type estimators because a severely biased preliminary scale estimate can also lead to the break down of MM-type es-
timators. However even under these adverse conditions adaptive PENSE performs better or similar to other robust methods, 
highlighting the reliability of adaptive PENSE.

For each combination of error distribution and presence/absence of contamination, we randomly generate 50 data sets 
according to the recipe outlined below. The predictors are drawn from a multivariate t-distribution with four degrees of 
freedom and a grouped correlation structure. Predictors within each of the �1 + √

p/2� groups are highly correlated (cor-
relation of 0.96), and mildly correlated with predictors in other groups. Elastic net penalties provide the required stability 
of variable selection for this grouping structure among predictors. The true regression parameter is β0 = (1, . . . , 1, 0, . . .0)
with s 1’s and p − s 0’s. The residuals follow a symmetric stable distribution with stability parameter values ν = 1.33
(“Stable(1.33) residuals”) and ν = 1 (“Cauchy residuals”). Section S5.2 in the supplementary materials also shows results for 
light-tailed Normal errors (ν = 2). The residuals are scaled such that the true model explains 25% of the variation in the 
response, corresponding to a signal-to-noise ratio of 1/3.

In settings with 10% contamination, bad leverage points are introduced to log2(p) randomly chosen irrelevant predictors 
by changing the values in these predictors to create a moderate amount of leverage. Preliminary studies suggest adaptive 
PENSE is most affected by the chosen leverage, while results for other estimators are substantially worse when introducing 
higher leverage. This is expected as edge-cases are the most difficult to handle for robust methods, while extremely aberrant 
values are easier to detect and hence their influence can be reduced. The response variable is contaminated with gross 
outliers by using a different regression parameter with 1’s for the affected predictors and 0’s otherwise. The residuals for the 
outlying observations are scaled such that the contaminated model explains about 91% of the variation in the contaminated 
response. In addition to bad leverage points and outliers, all settings have 20% of observations as good leverage points by 
changing the values in (p − s)/2 irrelevant predictors. We introduce a moderately amount of good leverage, leading to the 
largest effect on adaptive PENSE. More details about the data generation are provided in Section S5.2 in the supplementary 
materials.

The hyper-parameters for all estimators are selected according to the schema outlined in Section 4.2 using 20 replications 
of five-fold CV. For I-LAMM with the LASSO and SCAD penalties and (adaptive) EN we use the mean absolute error (MAE) 
to measure prediction accuracy. For the other estimators, we use the uncentered τ -scale estimate with cτ = 3. The hyper-
parameter α in EN-type penalties is chosen from {0.5, 0.75, 1} and for adaptive EN-type penalties we consider ζ values in 
{1, 2}. For each estimator we consider 50 values of the penalization level λ, covering the full range of models, from the 
intercept-only model to the almost saturated model. The I-LAMM estimates are computed with a modified version of the 
package by Fan et al. (2018), provided in the supplementary materials. The only modification to the package developed 
by the paper’s authors is the change to the MAE for hyper-parameter selection. Except for the number of penalization 
levels, the penalty type, and the number of CV folds, all arguments for I-LAMM use the package’s default values. Non-
robust EN-type estimators are computed with the R package glmnet (Friedman et al., 2010), again using default argument 
values except for those controlling the penalization strength and number of CV folds. Adaptive PENSE and MM estimates are 
computed with the R package pense also provided in the supplementary materials. The adaptive MM estimator considered 
in this study is similar to the adaptive MM-LASSO (Smucler and Yohai, 2017), but replacing the LASSO by the EN penalty 
and using the scale of the residuals from PENSE-Ridge. The hyper-parameters are selected using the “1-SE-rule”, i.e., the 
8
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Fig. 3. Prediction accuracy of robust estimators, measured by the uncentered τ -scale of the prediction errors relative to the true scale of the error distribu-
tion (lower is better). The median out of 50 replications is shown by the large points, the error bars depict the interquartile range, and small points show 
the Individual results. Adaptive PENSE and adaptive MM outperform other methods, especially for heavy-tailed error distributions.

Fig. 4. Overall variable selection performance of robust estimators, measured by the MCC defined in (8) (higher is better). The median out of 50 replications 
is depicted by the large points, the error bars show the interquartile range, and the small points represent individual results. Adaptive PENSE and adaptive 
MM are substantially better than the other considered estimators in all settings.

hyper-parameters leading to the sparsest model while staying within one standard error of the best prediction accuracy. 
The full code to reproduce the simulations is provided in the supplementary materials.

The prediction performance is shown in Fig. 3, where the scale of the prediction errors is estimated by the uncentered 
τ -scale with cτ = 3. Adaptive PENSE and adaptive MM are noticeably less affected by contamination or heavy tailed errors 
than other estimators. Moreover, estimators with adaptive EN penalties are outperforming non-adaptive penalties, likely due 
to the presence of good leverage points. With moderately heavy-tailed errors, adaptive PENSE has slightly lower prediction 
accuracy than adaptive MM; likely because the residual scale can often be estimated accurately in these settings. Especially 
in high-dimensional settings the efficiency gains of adaptive MM are visible. In the presence of contamination and more 
heavy-tailed errors, however, adaptive PENSE is generally more reliable than adaptive MM. I-LAMM with either penalty 
performs only slightly worse than adaptive PENSE for Stable(1.33) errors in this simulation scenario, even in the presence 
of contamination. However, the I-LAMM estimators have similar issues with good leverage points as PENSE and they are 
more affected by bad leverage points and gross errors in the residuals under Cauchy errors. LS-EN estimators are excluded 
from the display in Fig. 3 as their prediction performance is badly affected by the heavy-tailed errors. Additional plots and 
results, including the non-robust EN estimators, are provided in Section S5.2 in the supplementary materials.

Fig. 4 shows the overall variable selection performance of the estimators. The Matthews correlation coefficient (MCC) is 
calculated from the number of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN):

MCC = TP · TN− FP · FN√
(TP + FP)(TP+ FN)(TN+ FP)(TN+ FN)

. (8)

Adaptive penalties lead to better variable selection than non-adaptive penalties; even without adverse contamination, good 
leverage points distort variable selection by non-adaptive penalties. Inspection of the sensitivity and specificity of variable 
selection (shown in Figure S.5 in the supplementary materials) highlights that non-adaptive penalties tend to select a large 
proportion of the irrelevant predictors with large values. While adaptive penalties also screen out truly relevant predictors at 
a higher rate than non-adaptive penalties, adaptive PENSE and adaptive MM substantially improve variable selection overall. 
Importantly, the robust estimators with adaptive penalty are selecting none or only few of the irrelevant predictors with 
extreme values.
9
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Fig. 5. Total computation time for each method using 4 CPU cores (Intel(R) Xeon(R) Gold 6240R). The median out of 50 replications is depicted by the 
points and the error bars show the interquartile range. I-LAMM (SCAD) estimates for p = 512 take prohibitively long to compute and are thus omitted. The 
vertical and horizontal axes are shown on the log scale.

Finally, Fig. 5 shows the total computation time for all considered methods. All methods have access to four Intel(R) 
Xeon(R) Gold 6240R CPUs. Methods implemented in the pense package (adaptive PENSE, adaptive MM, PENSE, MM) use 
multi-threading, while the other methods parallelize the 20 CV replications across the four cores using R’s parallel pack-
age. Unsurprisingly non-robust EN and adaptive EN estimates are substantially faster to compute than the robust estimates. 
Adaptive PENSE takes on average about 1.5 minutes for the simplest setting with p = 32 and up to 45 minutes for p = 512. 
I-LAMM with the LASSO penalty takes about 5 minutes in the smallest setting and more than 1.5 hours in the largest set-
ting. When using the SCAD penalty, I-LAMM requires 15 minutes for p = 32 and on average 5 hours for p = 128. Because of 
the prohibitively long computation time for p = 512, I-LAMM (SCAD) has been omitted from this high-dimensional setting. 
Similar results are shown in Figures S.11 and S.13 in the supplementary materials for the other simulation scenarios. These 
timings demonstrate that the algorithm implemented in the pense package make it possible to apply adaptive PENSE and 
the other robust estimators in a wide range of settings.

The simulation study highlights that adaptive PENSE and the strategy for choosing hyper-parameters are highly resilient 
towards many different forms of contamination in the predictors, even if they occur in tandem with heavy-tailed errors and 
gross outliers in the residuals. Both the prediction accuracy and the variable selection performance are on-par and most 
often better than other robust and non-robust regularized estimators for high-dimensional regression. While adaptive MM 
often leads to similar results as adaptive PENSE, in some situations it is substantially more affected by contamination. This is 
particularly noticeable in settings with severe contamination presented in Section S5.3 in the supplementary materials. There 
are several instances in which adaptive MM has more than 30% higher prediction error than adaptive PENSE. Figure S.10 
in the supplementary material shows that the higher prediction error in these instances is connected with poor variable 
selection by adaptive MM, likely caused by adverse contamination in combination with heavy-tailed errors. This underscores 
the issue of relying on an auxiliary scale estimate, as it can lead to an unexpected breakdown of the estimator.

5.2. Real-data example

We apply adaptive PENSE and the other methods considered in the simulation study to the analysis of the chemical 
composition of 180 archaeological glass vessels from the 15–17th century (Janssens et al., 1998). The analysis is performed 
on electron probe X-ray micro analysis spectra comprising 1920 frequencies. This data set has been analyzed in other papers 
on robust high-dimensional regression (e.g., Smucler and Yohai, 2017; Loh, 2021) as it is known to contain observations 
contaminated in the response and the frequency spectrum (Maronna, 2011). The X-ray spectra are available in the R package 
cellWise (Raymaekers and Rousseeuw, 2021), and the chemical composition in the R package chemometrics (Filzmoser and 
Varmuza, 2017). Of the 1920 frequencies available, only 487 frequencies with meaningful variation between vessels are used 
for the analysis, in line with the analyses conducted in comparable studies. The goal is to predict the concentration of the 
chemical compound P2O5, measured as the total amount of the compound relative to the total weight of the glass fragment 
[% w/w]. To get a predictive model, we model the log-concentration of P2O5 as a linear function of the spectrum. With 
similar dimensions and potential contamination as analyzed in the above simulation study, we can be confident that both 
adaptive PENSE and adaptive MM are good candidates for fitting this predictive model.

The breakdown point for the robust estimators is set to 28%, allowing up to 50 observations with contaminated residuals. 
Section S4 in the supplementary materials demonstrate that adaptive PENSE is not sensitive to the exact choice of the 
breakdown point, as similar results are achieved for breakdown points between 20%–33%. Hyper-parameters are selected 
via six-fold CV, repeated 20 times for all considered estimators. We consider 50 penalization levels for all estimators. The 
α parameter for all EN-type estimators is selected from the set {0.5, 0.75, 1}, and the ζ parameter for all estimators with 
10
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Fig. 6. Accuracy of predicting the concentration of compound P2O5 from the glass-vessel data set (a) and observed vs. fitted values from adaptive PENSE 
(b). The prediction accuracy in (a) is estimated by the uncentered τ -scale of the prediction errors from 50 replications of six-fold cross-validation. Hyper-
parameters are selected independently in each CV via an inner six-fold CV with 20 replications. Adaptive PENSE is outperforming the other methods for 
predicting the concentration. In (b) the 14 data points in the shaded areas have unusually low or high log-concentrations of log(P2O5) (> three times the 
estimated residual scale).

adaptive EN penalty is chosen from {1, 2}. The I-LAMM estimator is computed with the LASSO and the SCAD penalty, each 
considering five different robustness parameters for Huber’s loss (the default in the package).

Prediction accuracy is estimated via a nested cross-validation, with the outer loop comprising 50 replications of six-fold 
CV. In each outer CV fold, the hyper-parameters are chosen via an inner six-fold CV using 20 replications. The prediction 
accuracy in each outer CV is estimated by the uncentered τ -scale of the prediction errors for all 180 observations.

Fig. 6 (a) shows that adaptive PENSE clearly outperforms the other methods for predicting the concentration of P2O5
from the frequency spectrum. Both I-LAMM estimators are omitted from these plots because their prediction accuracies 
are substantially worse than the other methods (median τ -scale of the prediction error of 0.63 log %w/w), almost identical 
to the intercept-only model. The non-robust and non-adaptive estimators all yield very similar prediction accuracy. These 
estimators and adaptive MM select substantially fewer frequencies (Median ≤ 22) than adaptive PENSE (Median = 44) in the 
50 replications. It seems more frequencies are beneficial for prediction, and the fact that less reliable estimators are missing 
these frequencies suggests a heavy-tailed error distribution and unusual values in the spectrum have deleterious effects on 
most methods except for adaptive PENSE.

The adaptive PENSE fit computed on all 180 glass vessels, shown in Fig. 6 (b), suggests 16 vessels have unusually large 
residuals. The adaptive PENSE fit also suggests a heavy-tailed error distribution, further explaining why it gives better pre-
dictions than other estimators in this application and why I-LAMM estimators fail to select any predictors. As demonstrated 
in the experiments above, in such a setting with heavy-tailed errors the contamination in the frequency spectrum can have 
detrimental effects on most estimators. Adaptive PENSE has been shown to retain reliable variable selection performance in 
such a challenging scenario, selecting 43 frequencies belonging to several groups of adjacent and hence highly correlated 
frequencies.

6. Conclusions

Extreme predictor values, paired with heavy-tailed error distributions or even gross outliers in the residuals can have 
severe ramifications for statistical analyses if not handled properly. Particularly in high-dimensional problems such extreme 
values are highly likely. Whether these extreme values have a detrimental effect on the statistical analysis, however, is 
unknown. Omitting affected observations or predictors is therefore ill-advised and even fallacious; these anomalous values 
are often well hidden in the multivariate structure and thus difficult if not impossible to detect. We propose the adaptive 
PENSE estimator which can cope with such unusual values in the predictors and remove their influence if they are paired 
with aberrant residuals.

We demonstrate that adaptive PENSE leads to estimates with high prediction accuracy and reliable variable selection 
even under adverse contamination. Unlike other robust estimators, adaptive PENSE is capable of correctly screening out 
truly irrelevant predictors even if they contain unusual values. The extensive simulation study shows that adaptive PENSE 
achieves overall better prediction and variable selection performance than competing regularized estimators. While adaptive 
MM performs better for Normal errors and often similar for heavy-tailed error distributions, in some settings adaptive MM 
can be substantially affected by the contamination. Overall, adaptive PENSE is more resilient and reliable in challenging 
scenarios. This is underscored by adaptive PENSE’s superior prediction performance for predicting the concentration of 
the compound P2O5 in ancient glass vessels from their spectra. Adaptive PENSE not only achieves comparable or better 
prediction accuracy in our numerical studies, its variable selection performance is more reliable, as demonstrated by its 
stability across all considered contamination scenarios. In addition to the strong empirical performance, we have established 
theoretical guarantees for adaptive PENSE. It is asymptotically able to uncover the true set of relevant predictors and the 
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estimate of the respective coefficients converges to a Normal distribution. Importantly, these guarantees hold regardless of 
the tails of the error distribution and overall very mild assumptions on the distribution of the predictors or the residuals.

When using adaptive PENSE, a conservative upper limit for the proportion of contaminated response values should be 
provided for the desired breakdown point. If the breakdown point is set to low, adaptive PENSE can break down and it 
may be difficult to diagnose this problem if the outliers are masked. Using the maximal breakdown point of 50%, on the 
other hand, would yield a highly robust estimate, but at the expense of efficiency if substantially fewer response values are 
outlying. It is thus advisable to draw on subject-level expertise or prior knowledge to select a lower breakdown point if 
reasonable. As pointed out by an anonymous reviewer, exploring techniques for choosing the breakdown point adaptively 
based on the data at hand, similar to the method in Xiong and Joseph (2013), could lead to an adaptive PENSE estimator 
achieving high robustness and efficiency. Important for high-dimensional data sets, however, extreme predictor values are 
of concern to adaptive PENSE only if they occur in observations with outlying response value. It is therefore sufficient to 
have an upper limit on the number of contaminated response values, but it is not necessary to know the number of unusual 
values hidden in the predictors.

Computing adaptive PENSE estimates is challenging, but the proposed computational solutions ensure adaptive PENSE is 
applicable to many analyses. With these computational solutions, adaptive PENSE is computable in a reasonable time for 
data sets of moderate size on modern personal computers. Moreover, the algorithms are designed to efficiently leverage 
parallel computing resources, making large data sets amenable to adaptive PENSE on high-performance computing clusters. 
These efficient algorithms and the resilient hyper-parameter search are readily available in the R package pense provided 
in the supplementary materials. The superior reliability even under adverse contamination in predictors and responses alike, 
combined with the easy-to-use and scalable computational tools, make adaptive PENSE an ideal choice in a wide range of 
applications.
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