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An exact kinematic law for the motion of disclination
lines in nematic liquid crystals as a function of the
tensor order parameter Q is derived. Unlike other
order parameter fields that become singular at their
respective defect cores, the tensor order parameter
remains regular. Following earlier experimental and
theoretical work, the disclination core is defined to
be the line where the uniaxial and biaxial order
parameters are equal, or equivalently, where the
two largest eigenvalues of Q cross. This allows an
exact expression relating the velocity of the line
to spatial and temporal derivatives of Q on the
line, to be specified by a dynamical model for the
evolution of the nematic. By introducing a linear
core approximation for Q, analytical results are given
for several prototypical configurations, including
line interactions and motion, loop annihilation, and
the response to external fields and shear flows.
Behaviour that follows from topological constraints
or defect geometry is highlighted. The analytic
results are shown to be in agreement with three-
dimensional numerical calculations based on a
singular Maier–Saupe free energy that allows for
anisotropic elasticity.

1. Introduction
Topological defects play an integral role in the response
and non-equilibrium evolution of many physical systems:
in type-II superconductors, for example, vortices allow
magnetic field lines to penetrate the material and
dissipate [1,2]; in solids, dislocations mediate plastic
deformation and melting [3–6]; in developing biological
tissue, defects indicate sites of further morphogenesis

2023 The Author(s) Published by the Royal Society. All rights reserved.
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and curvature generation [7–9]; and in nematic liquid crystals, disclinations promote aggregation
of colloidal particles and generate fluid velocity in active materials [10–14]. Therefore, significant
efforts are under way to further elucidate the general principles behind their dynamics [2,15–27].
A common theoretical strategy is to treat defects as effective ‘particles’. This is made possible
by topological constraints: defects cannot spontaneously disappear or nucleate, but must instead
pairwise annihilate or unbind (similar to particles and antiparticles). Additionally, topological
defect charges can be quantized, that is, related to the non-trivial homotopy group of the physical
system [17,28]. Thus, in those cases in which the response or the temporal evolution of a system
are determined by the nature and distribution of defects (with the overall dynamics slaved to such
a distribution), one needs only focus on laws of motion for the effective ‘particles’ (or ‘strings’ or
‘membranes’ for higher-dimensional defects).

Our focus here is on topological defects in nematic phases (disclinations). In a nematic,
the order parameter is a symmetric, traceless tensor, Q, which captures both rotational and
apolar symmetries. Nematics are well known for their anisotropic optical and hydrodynamic
properties [29–31]; however, there has been increasing interest in the role of disclinations in both
passive and active nematics. In the former, disclinations mediate colloidal aggregation and can be
patterned to engineer transport throughout the material [10,11,32–36]. In the latter, disclinations
form spontaneously, and generate flows depending on their topological or geometric character
[13,14,24,37].

In this work, a particle-field transformation is introduced to describe disclination line motion
in nematic phases. Such a transformation relating the location of the line to the field equations
governing the evolution of the nematic tensor order parameter allows for an exact kinematic law
of motion for the disclination, independent of the microscopic model governing the evolution of
nematic order. The type of particle-field transformation that we introduce has been successfully
used to analyse and track vortex motion in superfluids [38], the motion of point defects in n-vector
models [39–41], and, more recently, the motion of dislocations in solids in both two [22,42] and
three dimensions [43]. The method has also been used to describe disclination motion in nematic
active matter, albeit in two spatial dimensions [44].

Despite recent interest in the motion of disclinations in nematic phases, there are still many
open questions regarding their structure and motion, particularly in three dimensions. While the
topological structure is deceptively simple (the first fundamental group in three dimensions is
Z2 instead of Z in two dimensions), the geometric character of the defect is completely different.
Nematic disclinations in two dimensions are point defects, whereas line disclinations in three
dimensions are spatially extended, and generally described by two independent vectors: the
tangent vector to the disclination T̂, and the rotation vector describing the nematic distortion
near the defect Ω̂ [29,45]. Further, and unlike all the applications of particle-field transformations
mentioned above, the tensor order parameter is regular at the disclination core [46–48]. Hence
the core is not defined by the well-studied director phase singularity, rather by a crossing of
eigenvalues of the tensor order parameter.

We first introduce the particle-field transformation to a nematic phase in three dimensions
described by a tensor order parameter Q. Even though the order parameter does not go to zero at
defect locations, a quantity defined on a subspace of the order parameter space does, a fact that is
used to locate disclination cores. The transformation leads to a kinematic law which is then used
to obtain analytic predictions of disclination motion using suitable approximations of the order
parameter in the vicinity of the core. Disclination velocity is seen to be determined by gradients
of the tensor order parameter at the core, a fact that significantly simplifies consideration of a
number of prototypical configurations involving lines, loops, and their interactions. Within a
linear core approximation for the order parameter, we obtain analytic results for the evolution
of both optimally oriented and twisted defect configurations, including elastic anisotropy,
find transverse defect mobilities of topological origin, study disclination line interaction and
recombination, loop shrinkage, and show that external fields or imposed shear flows can spatially
separate (sort) lines and loops according to their topological charge distribution. Transverse
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mobilities and defect sorting are important for the many applications that rely on defect control
and defect engineering which are currently under development in soft, active and biological
matter. Importantly, the motion that follows derives not only from the forces among disclination
segments, but also incorporates the necessary topological constraints explicit in the kinematic law.
Although our main focus is on nematic liquid crystals, the techniques described should apply to
a range of complex systems in which topological defects are allowed.

The rest of the paper is organized as follows: in §2, we briefly review the structure of the
disclination core in three-dimensional nematics. In §3, we use the fact that the eigenvalues of
the order parameter Q cross at the disclination core to derive a kinematic velocity equation in
terms of the order parameter. In §4, we describe an analytical approximation of Q near the core
(the ‘linear core approximation’), and show how this approximation may be used to obtain the
velocity of a disclination in the presence of an imposed rotation of the director (this is the analogue
of the Peach–Koehler force in elasticity theory). In §5, we present analytical predictions for the
motion of disclinations in both two- and three-dimensional configurations involving disclination
annihilation and exposure to external fields and flows. Throughout we supplement our analysis
with numerical calculations in two and three dimensions, and find excellent agreement between
the two despite the complicated nonlinearities present in the computational model. Finally,
in §6 we discuss our results and their implications for nematics and other systems in which
disclinations are pervasive. We also discuss potential further work in understanding disclination
dynamics.

2. Disclination core structure
Consider an ensemble of nematogens, each described by a unit vector ξ̂ giving its molecular
orientation. Let p(ξ̂ ) be the equilibrium probability density of orientations at constant
temperature, defined on the unit sphere S2. The tensor order parameter is defined as

Q =
∫

S2

(

ξ̂ ⊗ ξ̂ − 1
3

I

)

p(ξ̂ ) dΣ(ξ̂ ), (2.1)

where Q can be uniform or a field if distorted configurations at the mesoscale are considered.
With this definition, the tensor Q is symmetric and traceless, and can be represented as
Q = S[n̂ ⊗ n̂ − (1/3)I] + P[m̂ ⊗ m̂ − �̂ ⊗ �̂] where S and P are the uniaxial and biaxial order
parameters, respectively, n̂ is the uniaxial director, {n̂, m̂, �̂} form an orthonormal triad, and I is
the 3 × 3 unit matrix. The eigenvectors of Q give the orientation of the nematic, i.e. the director n̂,
while the eigenvalues of Q represent the degree of ordering in the nematic. For a uniaxial nematic,
Q is simply Q = S[n̂ ⊗ n̂ − (1/3)I]. The scalar S gives the local degree of ordering. S = 0 indicates
the system is in the isotropic phase, while S > 0 indicates the system is in the nematic phase.

Macroscopically, a disclination line is a continuous line in which the director, n̂, is singular. Its
geometry is characterized by its local tangent vector T̂ and a rotation vector Ω̂ . Near the singular
core, Ω̂ · n̂ = 0 on the plane normal to T̂ [45]. That is, close to the disclination core, the director
lies on a plane perpendicular to Ω̂ as one encircles the core on its normal plane. Both T̂ and Ω̂

may vary along the disclination, and their relationship (i.e. T̂ · Ω̂) greatly affects its local motion
[14,24,26]. Figure 1 illustrates director configurations on the plane normal to the line for various
values of T̂ · Ω̂ . A few special cases referenced throughout the paper include T̂ · Ω̂ = +1 (a +1/2
wedge disclination), T̂ · Ω̂ = −1 (a −1/2 wedge disclination) and T̂ · Ω̂ = 0 (a twist disclination).
The wedge disclination nomenclature follows from their analogue in two dimensions, thus
carrying over the +1/2 and −1/2 charge in two dimensions, while the twist type disclination
is named because of the characteristic twist elastic distortion present in the configuration. Even
though these cases are geometrically distinct, they are all topologically equivalent (the topological
charge of a disclination line in three dimensions is always 1/2). A general disclination line has
T̂ · Ω̂ varying along its contour. This is quite different from a dislocation in a solid, in which
the topological invariant is the Burgers vector b, constant along the line. While useful analogies
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T̂ ∙ Ω̂  = +1 T̂ ∙ Ω̂  = +1/2 T̂ ∙ Ω̂  = 0 T̂ ∙ Ω̂  = –1

Figure 1. Examples of director configurations around disclinations with varying T̂ · Ω̂ . The panels indicate that a ‘+1/2

wedge’ type disclination may be continuously rotated into a ‘−1/2 wedge’ disclination in three dimensions. While these two

configurations are topologically distinct in two dimensions, they are topologically equivalent in three dimensions.

p(ξ)

Figure 2. Computed nematogen orientational distribution, p(ξ̂ ) (equation (2.1)) at various points through awedge disclination

(colour indicates uniaxial order S, while white lines show director n̂). Far from the disclination core the distribution is uniaxial.

As the core is approached the distribution becomes biaxial. At the core, the distribution is again uniaxial such that nematogens

are all equally likely to lie in the plane perpendicular to Ω̂ . The distribution has been computed by the method of singular

potentials as outlined in [48].

have been made between Ω̂ and b [26], they are mathematically distinct, as the Burgers vector is
topologically protected, and the rotation vector is not.

More microscopically, the structure of a disclination is illustrated in figure 2 which shows the
probability distribution on the unit sphere at various locations in its vicinity (see §5a and the
electronic supplementary material for further details). Far from the disclination, the distribution
is uniaxial (fluctuations from the primary direction are isotropically distributed, and Q has two
degenerate eigenvalues). As the core is approached, the distribution spreads out in the direction
perpendicular to Ω̂ , becoming biaxial, so that the order parameter Q has three distinct eigenvalues
(P > 0). Exactly at the core, the distribution becomes that of a disc in the plane perpendicular to Ω̂ .
At this point, Q once again has two degenerate eigenvalues and so the distribution is uniaxial
(S = P). However, the director is now perpendicular to Ω̂ , and Q describes disc like particles at
the mesoscale. A subtle, but important, point is that the distribution spreads out in the plane
perpendicular to Ω̂ . Thus the two eigenvectors corresponding to the two largest eigenvalues of Q

are in this plane. At the core of the disclination, these two eigenvalues cross.
In addition to T̂ and Ω̂ , it is customary in two dimensions to define the ‘orientation’ of a

disclination line. The orientation is the phase origin of the director as it encircles the line. In the
normal plane, an angle φ may be defined that gives the azimuthal angle with respect to some
reference axis. Further, the director at a reference angle φ0 is denoted n̂0 (see equation (3.2) for
an approximate description of the director near the core). We will take φ0 = 0, and so the value
of n̂0 will describe the orientation. For example, a +1/2 disclination is in the shape of a comet
(figure 1). Taking φ to be the angle with respect to the x-axis, n̂0 = x̂ describes a +1/2 disclination
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with the head of the comet pointing in the −x̂ direction, while n̂0 = ŷ describes a +1/2 disclination
pointing in the opposite direction. Additionally, it has been shown that the local orientation of
disclination lines can be described by a series of tensors of ranks 1 − 3 [26]. The rank 1 tensor
gives the polarity of +1/2 wedge points, the rank 2 tensor gives the characteristic twist directions
for a twist point, and the rank 3 tensor gives the three primary directions associated with a trifold
symmetric −1/2 wedge point (figure 1). For an arbitrary point, all three tensors may be used
to fully describe the orientation. Although this is a more mathematical method for describing
the orientation of disclination lines, for this work it will only be necessary to use n̂0 to describe
disclination orientation.

3. Disclination kinematics
In a two-dimensional nematic, the order parameter S → 0 as the core of a disclination is
approached. This is similar to the cases of superfluids and superconductors in which the order
parameter goes to zero at vortex cores [1,17,49]. However, as shown in §2, S �= 0 at a disclination
core in three dimensions. Instead, order goes from uniaxial to biaxial and back to uniaxial
precisely at the core [46,48]. Both this lack of a singularity, and the geometric complexity of three-
dimensional nematic order near disclinations, have prevented the extension of the defect tracking
methods introduced by Halperin [38] and Mazenko and co-workers [39–41] to the case of three-
dimensional nematics. It is shown below that such tracking methods can be introduced in this
case by focusing on the line S = P in which there is a crossing of eigenvalues of the tensor Q.

Consider a system with N line disclinations, so that Ri(s) is the position of an element of line
of the ith disclination for an arbitrary parametrization of the line. The macroscopic disclination
density is [39]

ρ(r) = 1
2

N
∑

i

∫

dRi

ds
δ[r − Ri(s)] ds, (3.1)

where the factor of (1/2) arises from its topological charge, and the vector density ρ is directed
along the line tangent T̂. As discussed in §2, the mesoscopic disclination core is diffuse (as also
seen in experiments [50,51]), and the defect location Ri needs to be defined precisely. We define
the location of the defect on the line S = P.

At the core the order parameter only has three degrees of freedom: two that define the rotation
vector, Ω̂ , and one that indicates the strength of ordering at the core, SC. The director deformation
satisfies Ω̂ · n̂ = 0 on the plane normal to the disclination line [45] (close to the disclination
core, the director remains in a single plane, the plane perpendicular to Ω̂ , as it encircles the
core). Slightly away from the core on the normal plane to the line, but still within a diffuse
core radius a, the order parameter is biaxial and has five degrees of freedom: three previously
discussed describing the core, one for the orientation of the director (the dominant eigenvector in
this biaxial region), and one for the difference between uniaxial and biaxial order, δS = S − P. In
this region, the director may be written as

n̂ = n̂0 cos
(

φ − φ0

2

)

+ n̂1 sin
(

φ − φ0

2

)

, (3.2)

where {n̂0, n̂1, Ω̂} form an orthonormal triad and φ is the azimuthal angle in the normal plane with
respect to a reference axis. Equation (3.2) is a useful approximation of the director near the core.
Note that this relation is exact everywhere in the single elastic constant approximation, and for a
single straight line defect with constant Ω̂ . In general, far-field boundary conditions, the presence
of other defects, or curvature of the defect line yield more complicated director configurations,
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(S – P)

φ

Ŵ 

Figure 3. Schematic of the order parameter subspace near a disclination core. δS= S − P acts as a radial coordinate while

the director angle in the plane perpendicular to Ω̂ ,φ, acts as an azimuthal coordinate. The transformation from real space to

this subspace may be viewed as a transformation to effective polar coordinates.

especially as one moves further from the core. In the {n̂0, n̂1, Ω̂} basis, the tensor order parameter
can be expressed as

Q(0 < |r − R|⊥ < a) = SC

⎛

⎜

⎜

⎜

⎜

⎝

2
3

0 0

0
2
3

0

0 0 −4
3

⎞

⎟

⎟

⎟

⎟

⎠

+ δS

⎛

⎜

⎜

⎜

⎝

− sin2 φ

2
1
2

sin φ 0
1
2

sin φ − cos2 φ

2
0

0 0 1

⎞

⎟

⎟

⎟

⎠

(3.3)

where |r − R|⊥ indicates distance in the normal plane of the disclination, and δS = S − P = 0 at
the core.

Equation (3.3) defines a two-dimensional subspace schematically shown in figure 3. δS acts
similarly to a radial coordinate on the subspace, while φ acts as an azymuth. We denote this space
as Q⊥ as it is intuitively the part of order parameter space that is perpendicular to Ω̂ .

We next introduce the coordinate transformation from real space to this order parameter
subspace so that the delta function in equation (3.1) may be transformed to δ[Q⊥], giving
disclination locations in terms of the order parameter. To accomplish this, we first note that if
Q is parametrized in terms of S and P, with n̂ given by equation (3.2), �̂ = Ω̂ , and m̂ = Ω̂ × n̂, then
the quantity

Ω̂γ εγμνQμα∇Qνα = (δS)2

2
∇φ, (3.4)

where summation of repeated indices is assumed. We use the fact that a density ρ = ẑδ(x)δ(y)
may be transformed to typical polar coordinates, (ρ, θ ), such that ρ = ∇ × (ρ∇θ )δ(ρ). Then, one
may identify (δS)2/2 ≡ ρ and φ ≡ θ so that the curl of equation (3.4) defines the transformation
from the real space defect density to the density in order parameter space:

ρ(r) = δ[Q⊥]Ω̂ · D(r) and Dγ i = εγμνεik�∂kQμα∂�Qνα . (3.5)

This is the central result of this section that gives the transformation between the defect density
in real and order parameter spaces (as indicated by the arguments of the Dirac delta functions in
equations (3.1) and (3.5)). Note that in taking the curl of equation (3.4) there should be three terms.
However, the term ∼ ∇Ω̂ × (Q × ∇Q) goes to zero because the derivative of Ω̂ is perpendicular to
itself since Ω̂ is a unit vector and Q × ∇Q ∝ Ω̂ . The other term ∼ Ω̂ · [Q × (∇ × ∇Q)] is likewise
zero since Q is a non-singular quantity (i.e. the curl of the gradient is zero). We also note that
Ω̂ · D ∝ T̂ [52] as required since ρ ∝ T̂.

Equation (3.5) is the analogue of the transformation used to study point and line defects in
O(n) n-vector models [38–41]. Defects there are identified as zeros of the n-vector order parameter
ψ, and the map from real space to order parameter space leads to a defect density transformation
of the form

ρ(r) =
∑

i

miδ(r − ri) = δ[ψ(r)]D(r),
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where ri is the location of the ith defect with charge mi and D is the appropriate Jacobian. This
formalism has been widely used to describe defects in superfluids, superconductors, XY models
and classical ferromagnets, to name a few. A similar approach has been used to study dislocations
in solids using a phase field model of the lattice displacement [22,43].

(a) Velocity of a disclination line

The transformation (3.5) allows the derivation of the kinematic law of motion for the disclination
line. The derivation is summarized here; details can be found in the electronic supplementary
material. By taking the time derivative of the left-hand side of equation (3.5), given the definition
of the density in (3.1), one finds that ∂tρi = ∂k(viρk − vkρi), where v(s) = dR(s)/dt is the velocity of
the line. On the other hand, the derivative of the right-hand side can be computed by explicitly
obtaining the time derivative of the disclination density tensor. The following conservative form
is obtained

∂tDγ i = 2∂kJγ ik and Jγ ik = εγμνεikl∂tQμα∂lQνα ,

where Jγ ik is the disclination density current. This equation reflects the conservation of topological
charge density in the normal plane of the disclination. Therefore, one finds (also using the
definition of the density (3.5)) that,

2Ω̂τ Jτ ikδ[Q⊥] = Ω̂γ (viDγ k − vkDγ i)δ[Q⊥],

equality that applies only at the core of the disclination. This equation can be solved for the
velocity by introducing an auxiliary tensor field g, so that the velocity of a disclination line is,

v(s) = 2
T̂ × (Ω̂ · g)

|D|

∣

∣

∣

∣

∣

r=R(s)

gγ k = εγμν∂tQμα∂kQνα , (3.6)

where the tensor field g is related to the topological charge current, and all quantities are
computed at the disclination core. Note that the velocity is explicitly perpendicular to the tangent
vector of the disclination, as expected.

Equation (3.6) is an exact kinematic relation between the velocity of a disclination line (defined
as the line S = P) and the evolution equation of the tensor order parameter. Thus, the equation
is valid for any dynamic model of nematic evolution, be it simply diffusive relaxation, involve
coupling to hydrodynamic transport or be a model of an active phase. The details of the dynamic
model are contained in the tensor g, or more specifically, in its explicit dependence on ∂tQ.
Another important property of equation (3.6) is it only needs to be computed at the disclination
core. This includes both tangent and rotation vectors, T̂ and Ω̂ . This property will allow us
to analytically predict defect motion in a variety of disclination configurations in subsequent
sections by using an approximation for Q that is accurate close to the core.

Finally, we note that equation (3.6) reduces to the expression derived in [44] for the velocity of
a disclination in a two-dimensional nematic. In that case, by taking T̂ = ẑ and Ω̂ = ±ẑ, one finds

vi = ∓4
ε3ikε3μν∂tQμα∂kQνα

ε3�pε3τξ ∂�Qτβ∂pQξβ
. (3.7)

4. Linear core approximation. The Peach–Koehler force
Equation (3.6) specifies the velocity of a disclination line in terms of derivatives of the order
parameter only at the defect core. This is in general a complex problem that requires, in principle,
the solution for the field Q everywhere. Considerable analytic progress can be made, however,
by introducing the linear core approximation of Long et al. [26]. This is similar to the linear
core approximations made for vortices in superfluids and superconductors, or for the motion
of dislocations in solids when modelled by a phase field [22].

For the purposes of this section, when analysing an arbitrary point on a disclination line, we
will adjust our axes so the point of interest is located at r = 0 and take the azimuthal angle φ = 0
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to coincide with the positive x-axis so that the tangent vector to the disclination line is T̂ = ẑ. The
linear core approximation is derived by first noting that in the uniaxial region away from the core
Q may be written in terms of the vectors {n̂0, n̂1, Ω̂} in equation (3.2):

Q = SN

[

1
6

I − 1
2
Ω̂ ⊗ Ω̂ + 1

2
cos φ(n̂0 ⊗ n̂0 − n̂1 ⊗ n̂1) +1

2
sin φ(n̂0 ⊗ n̂1 + n̂1 ⊗ n̂0)

]

. (4.1)

Inside a diffuse core of radius a, Q is linearly interpolated by replacing cos φ → x/a and sin φ →
y/a, so that Q near the core is approximately given by

Q = SN

[

1
6

I − 1
2
Ω̂ ⊗ Ω̂ + x

2a
(n̂0 ⊗ n̂0 − n̂1 ⊗ n̂1) + y

2a
(n̂0 ⊗ n̂1 + n̂1 ⊗ n̂0)

]

. (4.2)

As shown in [26], this approximation for Q is quite good near the point where the eigenvalues
cross and, remarkably, it is also fully biaxial in the region 0 < ρ < a, even though far from the
core Q is purely uniaxial. We will use this approximation to make a number of predictions for
the disclination velocity in several prototypical configurations by using it in conjunction with
equation (3.6).

We focus first on simple diffusive relaxation of the tensor order parameter, ∂tQ = −Γ [δF/δQ]TS,
where F is the free energy and [·]TS denotes the traceless, symmetric part of a tensor. If F has
a functional derivative with non-gradient terms that are analytic in Q at the disclination core
(such as the Landau–de Gennes free energy or the model used here for numerics—see §5a and
the electronic supplementary material), then the velocity of the line does not depend on those
terms. This follows from gγ k = εγμν (Qn)μα∂kQνα = 0 when computed at the core for any power
n. Thus, one needs only focus on gradient terms from the elastic free energy. In the one elastic
constant approximation, we may write ∂tQ ∝ ∇2Q in equation (3.6). We will assume this gives the
evolution of Q for the rest of the paper unless otherwise specified.

First, for a single, straight line disclination, equation (3.6) predicts v = 0, since ∇2Q = 0 at the
core of the disclination. This is the correct stationary state for a single straight line disclination.
However, as we will show, curvature in the disclination line, even if isolated, may result in a
non-zero velocity.

One way to induce disclination motion is through an externally imposed distortion of the
director field. The simplest case (and most relevant to interacting disclinations) is a small, non-
uniform rotation of angle ϕ̃(r) of the director field near the disclination core about an axis
q̂. In this case,

n̂ → ñ = cos ϕ̃n̂ + sin ϕ̃(q̂ × n̂) + (1 − cos ϕ̃)(q̂ · n̂). (4.3)

We further assume that ϕ̃ is small near the core so that ñ ≈ n̂ + ϕ̃(q̂ × n̂). We then use equation
(3.2) to express ñ near the disclination core:

ñ = cos
1
2
φñ0 + sin

1
2
φñ1, (4.4)

where ñ0 and ñ1 are defined analogously to ñ.
We now have all of the pieces of our approximations to use equation (3.6) to predict

disclination motion. Combining the linear core approximation, equation (4.2), and the perturbed
director near the core, equation (4.4), gives the final approximation for the perturbed Q near the
core

Q ≈ SN

[

1
6

I − 1
2
Ω̂ ⊗ Ω̂ + x

2a
(ñ0 ⊗ ñ0 − ñ1 ⊗ ñ1) + y

2a
(ñ0 ⊗ ñ1 + ñ1 ⊗ ñ0)

]

(4.5)

where ñi ≡ n̂i + ϕ̃(q̂ × n̂i).
Substituting equation (4.5) into equation (3.6) (details of this calculation are given in the

electronic supplementary material) yields a simple expression for the velocity of the disclination
line:

v = −4(q̂ · Ω̂)(T̂ × ∇ϕ̃)|ρ=0, (4.6)

where we have expressed quantities in dimensionless units defined in §5a. In addition to giving
the line velocity, it shows that, in particular, if the director is subjected to a small, non-uniform
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top

side

t = 0 t = 8

q

T̂

Ω̂

(a) (b)

Ω̂

T̂

Figure 4. Disclination motion induced by externally imposed director rotation. The top row shows a top down view, while the

bottom row shows a side view. (a) Disclination line at time t = 0 formed between patterned ±1/2 wedge disclinations on

the bottom boundary. The top boundary has director n̂= x̂ fixed. (b) Same disclination line at t = 8 (computation units). For

t > 0, the top boundary is changed to have director n̂= cos ϕ̃0x̂ + sin ϕ̃0ŷ with ϕ̃0 = π/8, simulating a rotation of the

top boundary. This imposed rotation in turn imposes a stress on the configuration which results in motion of the disclination,

predicted by equation (4.6). In the figures, the black arrows represent the axis of rotation q̂, the red arrows indicate the tangent

vector to the disclination T̂, and the blue arrows indicate the rotation vector Ω̂ .

rotation, a point on a disclination line will move if Ω̂ · q̂ �= 0 and if T̂ at that point is not
parallel to ∇ϕ̃. We note that equation (4.6) is the analogue of the Peach–Koehler relation of
dislocation mechanics [15,17]. The Peach–Koehler force applied to nematic liquid crystals was
first introduced by Kléman [53] and has been recently used to study disclination line motion
in various scenarios [26,54]. Our analysis here using equation (3.6) represents an alternative
derivation of this result that does not directly compare disclinations to dislocations in solids.
Further, as we show in various examples in the next section, the above method may be generalized
to obtain similar velocity equations for systems with twisted defect orientations and anisotropic
elasticity, which has not been possible with the traditional application of Peach–Koehler theory to
nematics [26].

We have compared the result of (4.6) with a numerical study of the motion of a disclination
line between two plates with fixed nematogen orientation. The numerical details of the algorithm
are given in §5a and in the electronic supplementary material. The top plate boundary condition
is n̂ = x̂, parallel to the plate, while the bottom plate boundary condition has n̂ parallel to the plate
but defining a ±1/2 disclination pair. Neumann boundary conditions for the director are specified
on the lateral boundaries. The system is then allowed to relax to a stable configuration in which
a three-dimensional disclination line forms connecting the +1/2 and −1/2 disclinations on the
bottom plate. This state is shown in figure 4a along with its tangent and rotation vectors at various
points, which are computed from D [52]. After the stable state is reached, the boundary condition
on the top plate is instantaneously rotated so that the director is now given by cos ϕ̃0x̂ + sin ϕ̃0ŷ,
where ϕ̃0 = π/8. This constitutes a rotation about axis q̂ = ẑ and induces a gradient ∇ϕ̃ ∝ ẑ. As
seen in figure 4b, this induces motion in the disclination line, primarily at the midpoint where
|T̂ × ∇ϕ̃| is largest, in agreement with equation (4.6).
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5. Analytical and numerical results
We address next how this method of analytically computing disclination velocities can be used
to accurately predict the motion of multiple disclinations, as interacting disclinations behave as if
they induce rotations in the local director fields of one another.

(a) Numerical algorithm

Here we briefly summarize the numerical method used in the previous and following sections.
We model passive relaxation dynamics unless otherwise specified. That is, ∂tQ = −Γ [δF/δQ]TS

where Γ is a rotational diffusion coefficient. The free energy we choose may be written in two
parts F =

∫

[fB(Q) + fe(Q, ∇Q)] dr where fB is the bulk part of the free energy density that describes
the phase behaviour of the nematic, while fe is an elastic free energy density that penalizes spatial
variations. The bulk free energy we use is based on a singular Maier–Saupe potential originally
analysed by Ball and Majumdar and recently developed computationally [47,48,55],

fB(Q) = −κ Tr[Q2] − T�s and �s = −nkB

∫

S2
p(ξ̂ ) ln 4πp(ξ̂ ) dΣ(ξ̂ ) (5.1)

where κ is a phenomenological interaction coefficient, �s is the entropy density relative to the
isotropic phase, n is the number density of nematogens, kB is the Boltzmann constant, and p(ξ̂ )
is the constant temperature, orientational probability distribution. Note that the integral in �s is
over the unit sphere.

For the elastic free energy density, we use

fe(Q, ∇Q) = L1∂kQij∂kQij + L2∂jQij∂kQik + L3Qk�∂kQij∂�Qij, (5.2)

where Li are elastic coefficients. For a uniaxial nematic, comparison of equation (5.2) and the
Frank–Oseen elastic free energy yields a mapping to the splay (K11), twist (K22) and bend (K33)
coefficients [56–58]. The one constant approximation (K11 = K22 = K33) may be achieved by setting
L2 = L3 = 0. Note that L3 �= 0 is required to break the degeneracy K11 = K33.

Equation (5.1) with a specific form of p(ξ̂ ) constrains Q to be given by equation (2.1) [47,48,55].
Because the Landau–de Gennes free energy is unbounded for elastic energies cubic in Q, this
specific choice of bulk free energy makes the case of a nematic with anisotropic elasticity
numerically tractable [48,55,57]. In some of the presented cases, we will use the one constant
approximation, and so the use of this free energy is not strictly necessary. In these cases,
our qualitative results should be reproducible with a more common Landau–de Gennes free
energy functional instead. The electronic supplementary material provides details about the
computational implementation of equation (5.1).

In all cases, we solve the equations of motion for Q by discretizing in space on a square
(two-dimensional) or cube (three-dimensional) that is meshed with triangles or tetrahedra. We
discretize in time by using a semi-implicit convex splitting algorithm [59–61]. The discretized
matrix equations are then solved using the Matlab/C++ package FELICITY [62] and the
multigrid matrix equation solver AGMG [63–66]. For all problems, we use Neumann boundary
conditions unless otherwise specified.

Finally, all lengths are made dimensionless by the nematic correlation length ξ =
√

L1/(nkBT),
energies by ξ3nkBT, and times by the nematic relaxation time scale τ = 1/(Γ ξ3nkBT). For all
computations, we set L1 = 0.5 and Γ = 1 which set the length and time scale. This leaves the
following dimensionless parameters for the system: κ/(nkBT), L̃2 = L2/L1 and L̃3 = L3/L1. We will
always set κ/(nkBT) = 4, which corresponds to a system in the nematic phase with SN = 0.6751
[47], and we subsequently drop the tilde on L2 and L3.

(b) Twisted defects in two dimensions

We first present results that apply to disclination pairs in two-dimensional systems. These systems
have been thoroughly studied [19,21,29,67–69], and as such, the results presented here are not
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new, but rather a reinterpretation and alternative derivation of previous results. We will also
use the simpler two-dimensional case to demonstrate how we apply equation (4.6) to systems
of interacting disclinations.

In two dimensions, the director can be defined by its angle relative to the x-axis, φ. In a system
with N disclinations, φ is given by

φ(x, y) =
N

∑

i=1

mi arctan
(

y − yi

x − xi

)

+ φ0, (5.3)

mi = ±1/2 is the charge of the ith disclination, (xi, yi) is the position of the ith disclination, and φ0 is
an overall phase factor determined by the orientations of all the defects. Equation (5.3) minimizes
the one elastic constant Frank–Oseen free energy for a system constrained to have N disclinations
at points (xi, yi).

Note that, as disclinations are added to the system, the effect is to add a non-uniform
rotation everywhere outward from the centre of the disclination. From the perspective of the
jth disclination, the rest of the disclinations add small, rotatory perturbations. Hence, we identify
the field ϕ̃ in equation (4.6) with φ(x, y) − φj(x, y) where φj(x, y) is the angle of the director that is
attributed only to the jth disclination. Then, using the two-dimensional version of equation (4.6),
the velocity of the jth disclination in a two-dimensional system of N disclinations is

vj = 8
∑

i�=j

mi

Rj − Ri

|Rj − Ri|2
, (5.4)

where Ri = (xi, yi). Equation (5.4) is the well-known ‘Coulomb-like’ interaction between
disclinations in a nematic [29]. Equation (5.4) is traditionally derived by using the Frank–Oseen
free energy, written in terms of disclination positions. The disclination kinematic law is an
alternative method of deriving the same result.

Now consider the case of two oppositely charged disclinations. Equation (5.4) shows that
the disclinations will annihilate moving along the line connecting the two disclination cores.
Recently, the Frank–Oseen free energy has been minimized for the case of two disclinations
fixed in space, but having arbitrary relative orientation δφ [21]. Figure 5a shows the director
field for the standard case in which the orientation between disclinations is ‘optimal’ (δφ = 0),
whereas figure 5b shows the case of ‘twisted’ disclinations in which δφ = π . One may think of this
configuration as being formed by ‘twisting’ one of the disclinations by an angle 2δφ relative to the
other. Tang & Selinger [21] showed that in the twisted case, and for defects sufficiently separated,
the director angle is given by

φ(x, y) = 1
2

arctan
(

y − y1

x − x1

)

− 1
2

arctan
(

y − y2

x − x2

)

+ δφ

2

[

1 + ln(|r − R1|2) − ln(|r − R2|2)
ln(|r1 − r2|2) − ln(a2)

]

+ φ0, (5.5)

where a is the disclination core radius. If δφ = 0, this case reduces to the optimal orientation
case. The Frank–Oseen interaction energy of this configuration in terms of the distance between
disclinations, R = |R1 − R2|, and the ‘twistedness’ δφ of the configuration is [21],

�FFO = πK

2
ln

(

R

a

)

+ πKδφ2

2
ln[R/(2a)]
ln[R/a]2 , (5.6)

where K is the Frank–Oseen elastic constant in the one-constant approximation. Importantly,
the energy only depends on the distance between the disclinations and the twistedness of the
configuration. Thus, the effective force (computed from this energy) that one disclination exerts
on the other is directed along the line segment that joins them.

The disclinations, however, follow a more complex trajectory. As studied in [21,68,69],
disclinations in twisted configurations have velocities with components transverse to the line
segment that joins them. We show in figure 6 a few example trajectories numerically obtained. As
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optimal orientation twisted orientation(b)(a)

Figure 5. (a) Director configuration for two oppositely charged two-dimensional disclinations with ‘optimal’ orientation.

(b) Director configuration for two oppositely charged two-dimensional disclinations with ‘twisted’ orientation. The angle

between orientations δφ = π .

δφ = 3π/4

–2 0 2
–2

0

2

–2

0

2
+1/2
–1/2

y

δφ = π/4 δφ = πδφ = π/2
t = tend

t = 0

x
–2 0 2

x

–2

0

2

–2 0 2
x

–2

0

2

–2 0 2
x

Figure6. Trajectories of twisted disclinations for difference in orientationsδφ = π/4, π/2, 3π/4, π . Asδφ increases, the

trajectories become more transverse. The transverse trajectories cannot be predicted from the energy of the configuration, yet

the application of the kinematic velocity equation, equation (5.7), qualitatively captures the motion. In the figures,+ symbols

represent the positions of the+1/2 disclination, while triangles represent the positions of−1/2 disclinations. For each case,

the colouring indicates the time and is scaled from t = 0 to t = tend, the time at which the disclinations annihilate, which

increases as δφ increases.

the initial δφ is increased, the trajectories become more transverse, and straight line annihilation
occurs only after the twisted distortion between the disclinations vanishes. Intuitively, the
motion is due to a restoring torque, which drives the disclinations to rotate back to the optimal
orientation. One way to rotate a disclination is by uniformly rotating all of the nematogens in the
system. However, a uniform rotation in a system with two disclinations would only rotate both
disclinations in the same direction, and hence would not reduce the relative twistedness between
disclinations. Thus, the nematogens must rotate locally, near each defect inhomogeneously. The
only way this can be accomplished while maintaining continuity in the director field (at all points
except the disclinations) is by moving the disclinations transverse to one another.

This disclination behaviour cannot be understood from the effective force resulting from

equation (5.6). Instead, the kinematic law, equation (3.6), can be used with ϕ̃ = φ − φ
singular
1 where

φ
singular
1 is the part of equation (5.5) that is singular at R1. The predicted velocity of disclination 1 is

v1 = −2
[

1
R

R̂12 − δφ

R ln(R/a)
(ẑ × R̂12)

]

, (5.7)

where R̂12 = (R1 − R2)/R. The second term in equation (5.7) is a transverse contribution that is
proportional to δφ. If δφ = 0, the standard motion for optimally orientated disclinations follows.
The velocity of disclination 2 may also be derived in a similar manner and is precisely opposite
to that of equation (5.7).

That the kinematic law gives a qualitatively correct velocity for twisted disclinations, whereas
an over damped velocity proportional to the driving force does not, implies a tensorial effective
mobility linking velocity and driving force that is of topological origin. From the perspective of
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the nematogens, the motion is geometrically constrained: nematogens must rotate locally while
the director field remains continuous, and the only way to accomplish this is for the disclinations
to move in the transverse direction. From the alternative perspective of defects being the primary
dynamical objects, one may interpret this motion as a topological constraint that must be obeyed
while energy minimization drives the relaxation.

(c) Defect motion in two-dimensional elastically anisotropic media

We now consider two disclinations optimally oriented (not twisted relative to one another),
though we relax the one constant approximation so that K11 �= K33. The director field around a
single disclination when K11 �= K33 is known [51,70,71]. However, for configurations involving
two or more disclinations, the single defect solutions may not be simply superimposed because
the Euler–Lagrange equations determining free energy minima are no longer linear [72].
Therefore, unlike the case of isotropic elasticity, the free energy cannot be computed analytically.
The effect of one disclination on the other will be described by an unknown, local, inhomogeneous
rotation of the director. From equation (3.6) for the case of anisotropic elasticity (we assume
L3 �= 0), the contribution to the dynamics of Q from the elastic free energy, equation (5.2), is

∂tQμν = ∇2Qμν + L3(−∂μQij∂νQij + 2∂iQμν∂jQij + 2Qij∂μ∂νQij)
TS. (5.8)

We now compute the velocity of the +1/2 disclination, disclination 1, by noting that the
director is rotated by a field ϕ̃2, that is, the rotation from equilibrium caused by disclination 2,
the −1/2 disclination. We assume the same linear core approximation presented in §4, though the
form of ϕ̃2 is not known. Then by using the methods of §4, only the second term in the parentheses
of equation (5.8) gives a non-zero velocity for disclination 1,

v1 = 4(ẑ × ∇ϕ̃2) − 2SNL3

a
[x̂ cos 2φ0 + ŷ sin 2φ0], (5.9)

where φ0 is the overall phase of the configuration, defined in equation (5.3). The term proportional
to L3 does not depend on ∇ϕ̃2 within the linear core approximation, but depends instead on the
orientation of the disclination through φ0. Of additional interest is in the computation of v2:

v2 = 4(ẑ × ∇ϕ̃1), (5.10)

where ϕ̃1 is the perturbation of the director from disclination 1. Note that there are no terms
proportional to L3.

Equations (5.9) and (5.10) predict asymmetric motion of ±1/2 disclinations when K11 �= K33.
Such asymmetric motion has been observed in previous numerical work [67]. Additionally, the
velocity equation reveals multiple sources of asymmetry. There is an explicit asymmetry in which
the +1/2 disclination shows a biased motion towards its bend region if L3 > 0 or towards its
splay region if L3 < 0. The −1/2 disclination shows no such bias, as expected, since it is not polar.
However, there is also an implicit asymmetry, since in general ∇ϕ̃1 �= −∇ϕ̃2, unlike the case for
pairs of disclinations in the one-constant approximation in which ∇ϕ̃1 = −∇ϕ̃2.

We have compared these results to a numerical solution of the time evolution of the Q-tensor in
which the system is initialized with two oppositely charged disclinations. For the computations,
we set L3 = 3 and �t = 0.2. We perform computations for two different cases, φ0 = 0 and φ0 = π/2.
Figure 7 shows plots of the position x and x2, as a function of time for the +1/2 and −1/2
disclinations for both anisotropic cases, as well as the case of an elastically isotropic system
(L3 = 0) for reference. We find that for φ0 = 0, the +1/2 disclination moves faster than the −1/2
disclination while the opposite occurs for the case φ0 = π/2. This is in agreement with equation
(5.9). Additionally, the total time of annihilation is much smaller for the φ0 = 0 case than the
φ0 = π/2 case. Further, the plots of x2 are nonlinear for the anisotropic cases, which is in contrast
to the case with isotropic elasticity when the velocity is given by equation (5.4). The difference
in disclination annihilation times can be understood by noticing that the φ0 = 0 configuration has
bend deformation between the two disclinations and, hence, this configuration annihilates faster
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Figure 7. ±1/2 disclination positions x and x2 versus time t in computational units for L3 = 0 and L3 = 3. The case L3 = 3 is

further differentiated by initial conditions:φ0 = 0 andφ0 = π/2.When L3 > 0 the bend elastic constant is larger than splay,

leading to an asymmetry in±1/2 disclination motion.

to remove the bend deformation, as the bend constant is larger than the splay constant when
L3 > 0. On the other hand, the φ0 = π/2 configuration contains splay between the disclinations
resulting in slower motion. However, this intuitive argument does not account for asymmetry in
disclination motion, which is accounted for qualitatively by equations (5.9) and (5.10).

(d) Disclination line interaction

We turn our attention next to disclination lines in three dimensions with motion driven by
their mutual interaction. It is not possible to evaluate the energy of configurations with many
disclinations. Indeed, what constitutes an allowable configuration of many disclination lines
remains an open question. Nevertheless, we analyse two simple, yet interesting configurations:
disclination line recombination, and disclination loop self-annihilation.

(i) Line recombination

Disclination line recombination occurs when two disclinations meet at a point. They annihilate
at this point and then continue to annihilate as separate lines. Here we calculate the velocity of
disclination lines in a system of two straight lines with arbitrary tangent and rotation vectors. We
set our coordinates so disclination 1 is located at R1(z) = (−R/2, 0, z) with tangent vector T̂1 = ẑ.
We further orient the coordinate system so that the closest point between the disclination lines lies
on the x-axis and the tangent vector of disclination 2 lies in the yz-plane so that R2(z) = (R/2, |ẑ ×
T̂2|z, (ẑ · T̂2)z). The rotation vectors are assumed to be constant along the straight lines, but are
otherwise arbitrary. Note that we use the coordinate z as the parameter for both disclination lines.

Unlike in two dimensions, an equation for the exact director field for multiple disclination
lines is not known due to the nonlinearity of the Frank–Oseen free energy in three dimensions
[56,58]. However, we assume again that each disclination rotates the director field in its normal
plane about its rotation vector, Ω̂ , and we can thus estimate the effect of one disclination on the
other’s local director field. To do this, we define two fields, φ1(x, y, z) and φ2(x, y, z) which give the
azimuthal angle with respect to the normal planes of disclinations 1 and 2. We assume that φ1 and
φ2 are both zero along the line segment that connects the nearest point of the disclination lines
and that the disclination lines share n̂0 so that Ω̂1 · n̂0 = Ω̂2 · n̂0 = 0. We show a schematic of this
configuration in figure 8.

To compute the velocity of disclination 1 using equation (3.6), we assume the director field
near disclination 1 is given by a small rotation of the director about the axis Ω̂2. This allows us to
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n0

T̂1

T̂1

φ1

φ2

Ω̂ 2

Ω̂ 1

Figure 8. Schematic of the configuration for two straight line disclinationswith constant rotation vectors Ω̂ .φ1 andφ2 are the

azimuthal angles around each disclination defined such that φ1 = φ2 = 0 along the line segment that connects the closest

points of the disclinations. The configuration is assumed to be such that n̂0 is the same for both disclinations.

apply equation (4.6) near the disclination with ϕ̃ = (1/2)φ2 and q̂ = Ω̂2. This gives the velocity of
disclination 1 as a function of z,

v1(z) = −2(Ω̂1 · Ω̂2)

[

|T̂1 × T̂2|z
R2 + |T̂1 × T̂2|2z2

ŷ + (T̂1 · T̂2)R

R2 + |T̂1 × T̂2|2z2
x̂

]

. (5.11)

Equation (5.11) gives several qualitative predictions about the motion of recombining disclination
lines. First, the velocity is largest at z = 0, the closest point between the lines, and this point moves
along the line segment connecting the closest points of the disclinations. Additionally, if the lines
are not parallel, then there is a component of the velocity for points z �= 0 that is transverse to the
direction between disclinations. This component is odd in z, and thus indicates that non-parallel
lines will rotate to become parallel.

If we focus on the point z = 0 we find

v1(0) = 2(Ω̂1 · Ω̂2)(T̂1 · T̂2)
R̂12

R
, (5.12)

so that the closest point does not move if the tangent vectors or rotation vectors are perpendicular
to each other. This motion of the closest points between disclination lines was analysed
numerically in a previous work by us [52], and it was found that equation (5.12) for the velocity
of the closest points correctly predicts the scaling of numerical computations of annihilating
disclinations. Further, we note that equation (5.12) is proportional to the force between two
disclinations derived in [21] by using an effective Peach–Koehler force between disclinations.
Here, however, we do not integrate the force between two disclinations as is done in that
work. Instead, equation (5.11) gives the velocity at all points along the disclination, predicting
a non-uniform, rotating, motion.

We now expand upon our previous analysis by developing a simpler model for the time
evolution of two important variables in the system: the distance between disclinations at their
closest point, R, and the angle between tangent vectors at their closest point, ψ . That the
disclinations rotate is important to their dynamics, since this rotation speeds them up as time
goes on. Using equation (5.11) as well as the velocity for disclination 2, which can be derived in
a similar manner to the velocity of disclination 1, we derive an equation for the time evolution
of R by noting that dR/dt = (R1 − R2) · (v1 − v2)/R. Additionally, the time evolution of ψ may be
derived as follows:

d
dt

(T̂1 · T̂2) = d
dt

cos ψ ⇔ dT̂1

dt
· T̂2 + T̂1 · dT̂2

dt
= − sin ψ

dψ

dt
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0
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t
2 4
t

(b)(a)

Figure 9. Disclination separation R (a) and angle between tangent vectorsψ (b) at the closest points between disclinations

versus time during disclination recombination for several initial angles between disclinations. For all computations, the initial

distance between disclinations is R0 = 4. The points are data fromQ-tensor computations using themodel of §5while the solid

lines represent numerical solutions to equations (5.13). The time in the numerical solutions to equations (5.13) is scaled so that

the annihilation coincides with that of the Q-tensor computations.

with
dT̂i

dt
= d

dt

dRi

dz
= dvi

dz
.

Our simpler model for the dynamics of the closest points between disclinations is then given by
two coupled, first-order, differential equations

dR

dt
= 4(Ω̂1 · Ω̂2) cos ψ

R
and

dψ

dt
= 4(Ω̂1 · Ω̂2) sin ψ

R2 . (5.13)

Equations (5.13) are, of course, an approximation that assumes (among others) that the
disclinations remain straight, which is not the case in experiments and numerical calculations
[52,73]. Nevertheless, we note a few key predictions they make. First, as previously noted, if
the rotation vectors are perpendicular, there should be no motion between the disclination lines,
which has been predicted and found numerically previously [26,52]. Further, if the disclinations
are perpendicular and cos ψ = 0 the distance between disclinations does not change. However,
this does not mean that the disclinations do not move since, in this case, sin ψ = 1 and so ψ

changes and the disclinations rotate. Additionally, the rotation rate is proportional to 1/R2 and
so this rotation may take much longer if the disclinations are initially far apart.

We numerically solve equations (5.13) by using a simple forward Euler method in which we
take the time step �t = 0.1, and we assume Ω̂1 · Ω̂2 = −1. We compare these solutions against
full Q-tensor computations of the model given in §5, setting L2 = L3 = 0 and �t = 0.1. The three-
dimensional computations were performed on a standard tetrahedral mesh with 41 × 41 × 41
vertices. In the computations, we set Ω̂1 = ẑ and Ω̂2 = −ẑ and initialize the system so the initial
distance between disclinations is R0 = 4 with a range of initial tangent vectors so that cos ψ0 ∈
[0, 1]. We track the tangent vectors of the disclinations using the D tensor [52]. In figure 9, we
plot R and ψ as a function of time for each initial condition used. In the plots, the solid lines
are the Euler solutions to equations (5.13) while the points are determined from the Q-tensor
computations. The jumps in data from the computations stem from the finite step-size of the mesh.

The solid lines in figure 9 are not fits to the computational data; however, the time is scaled
so that the solutions of the model annihilate at the same time as the Q-tensor computations. We
find excellent agreement between the two methods, which highlights the power of the kinematic
equation for disclinations in analysing and predicting disclination motion since the differential
equations (5.13) are much simpler, and faster to solve. We also note that the results of Long
et al. [26] predict that the force between two perpendicular disclinations should be zero, yet we
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wedge-twist twist

–1/2 wedge

+1/2 wedge

twist
twist

twist

twist

–1

+1

0Ω

T̂  ∙ Ω̂ 

Ω

Figure 10. Sketches of wedge-twist and twist loop disclinations. The colour indicates Ω̂ · T̂ along the loopwhile the cylinders
depict the director at various points along the loop. These points are labelled by the type of elastic distortion present.

find computationally, and predict analytically, that disclinations should still eventually annihilate
due to a restoring torque between non-parallel disclinations.

(ii) Loop self-annihilation

We now study the self-annihilation of initially circular disclination loops in nematics. Axes are
oriented so the centre of the loop is at the origin and the loop lies in the xy-plane. We then work in
standard cylindrical coordinates. Here we focus on disclination loops in which the rotation vector
Ω̂ is constant throughout. These are the so-called ‘neutral’ disclination loops such that their total
point defect charge is zero [14,29]. Thus, they may self-annihilate to leave behind a uniform,
defect-free, nematic texture. Additionally, there are two primary, geometric classifications of
neutral disclination loops: ‘twist’ disclinations in which Ω̂ is perpendicular to the plane of the loop
and hence Ω̂ · T̂ = 0 everywhere; and ‘wedge-twist’ disclinations in which Ω̂ lies in the plane of
the loop and Ω̂ · T̂ ∈ [−1, 1] changes continuously along the loop. Sketches of both configurations
are given in figure 10.

To approximate Q near the core, we assume the director in each normal plane of the loop is
given by

n̂ = cos
(

1
2
φ1 + 1

2
φ2

)

n̂0 + sin
(

1
2
φ1 + 1

2
φ2

)

n̂1, (5.14)

where

φ1(ρ, θ , z) = arctan
(

z

R − ρ

)

and φ2(ρ, θ , z) = arctan
(

z

R + ρ

)

,

where R is the loop radius, and φ2 represents the rotation of the director field from the opposite
side of the loop. We note that this director approximation is just the rotation of the two-
dimensional two defect solution about the z-axis. The introduction of cylindrical coordinates
slightly modifies the linear approximation of Q near the disclination core, which is now
given by

Q ≈ SN

[

1
6

I − 1
2
Ω̂ ⊗ Ω̂ + R − ρ

2a
(ñ0 ⊗ ñ0 − ñ1 ⊗ ñ1) + z

2a
(ñ0 ⊗ ñ1 + ñ1 ⊗ ñ0)

]

, (5.15)

where ñ is defined as in §4 and ϕ̃ = φ2. In order to use the kinematic law, equation (3.6), to obtain
the velocity of the disclination loop, we cannot just apply equation (4.6) since the loop is not
straight, and the curvature of the loop will add to the velocity (i.e. ∇2ρ �= 0, etc.). Using the same
method as laid out in §4 and taking the tangent vector to the loop to be T̂ = θ̂ we find that the
velocity is

v = − 3
2R

ρ̂. (5.16)

The velocity in equation (5.16) does not depend on the rotation vector Ω̂ . This is expected
since, within the one-constant approximation, the Frank–Oseen free energy of a disclination loop
does not depend on Ω̂ . Additionally, the velocity predicts that the loop shrinks at the same rate
everywhere until it annihilates itself. The radius of the loop is predicted to scale as R2 ∼ −t
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which was checked numerically in a previous work and has been observed in experiments
[52,73]. We reiterate that this method does not require an integration about the loop to predict
the velocity. Rather we simply approximate the configuration Q at points along the loop. Finally,
we note in a previous analysis, [52], we did not include the contribution of ϕ̃ = φ2 to the velocity
(i.e. interaction with the opposite side of the loop) and only included the contribution due to
disclination curvature. When including the contribution of φ2, the velocity is predicted to be larger
by a factor of 3/2. Further, comparing to equations (5.13) for the case of parallel disclinations, a
loop of diameter equal to the distance between disclinations is predicted to annihilate in 2/3 the
amount of time. Comparing Q tensor computations of disclination lines and loops shows that
parallel disclinations initially separated by R0 = 5 annihilate in 21 time-steps (�t = 0.1), while a
loop disclination with initial diameter 2R0 = 5 annihilates in 12 time-steps which is close to the
factor of 2/3 predicted by the equations.

We conclude this section with one more example of a self-annihilating disclination loop. We
consider anisotropic elasticity and set L2 > 0 to describe the experimentally relevant case of larger
(but still equal) bend and splay elastic constants relative to the twist constant [56–58]. With L2 �= 0
in equation (5.2), the assumed time dependence of Q will change. We find now

∂tQij = ∂k∂kQij + L2(∂i∂kQjk)TS. (5.17)

In computing the velocity via the kinematic equation, we now choose a specific Ω̂ = x̂. Owing
to elastic anisotropy, the velocity will depend on the director configuration of the loop. If the
disclination is a twist loop, the elastic deformation around the loop is the same at each point. In
this case, the disclination will still have an isotropic velocity. Instead we focus on the case of a
wedge-twist loop in which ±1/2 wedge and twist-type deformations are represented along the
loop (figure 10).

For a circular wedge-twist loop disclination with L2 �= 0, we find that the velocity of the loop is

v(θ ) = − 1
2R

[3 + L2

4
(4 + 4 cos2 θ − 2 sin θ )]ρ̂, (5.18)

where θ is the azimuthal angle with respect to the x-axis. For the loop under consideration, the
twist portions of the loop occur at θ = 0, π while the +1/2 wedge portion occurs at θ = π/2
and the −1/2 wedge portion occurs at θ = 3π/2 (figure 10). For L2 > 0, equation (5.18) shows
significant asymmetry in the evolution of the loop. The fastest sections of the loop turn out
to be the twist sections, which is the opposite result to that obtained for straight, parallel line
disclinations. For L2 > 0, the bend and splay constants increase while the twist constant remains
the same, and hence straight wedge (Ω̂ · T̂ = ±1) disclinations will annihilate faster (because they
cost more elastic energy) than straight twist (Ω̂ · T̂ = 0) disclinations. Therefore it is the coupling
to disclination curvature that causes this asymmetry.

Additionally, there is asymmetry predicted in the wedge sections due to the sin θ term in
equation (5.18). This predicts that the −1/2 wedge section moves faster than the +1/2 wedge
section if L2 > 0. This is also against our intuition since the splay and bend constants are still
equal for this set of parameters, and so for straight, parallel lines these two wedge defects would
still annihilate symmetrically. We also note that equation (5.18) holds regardless of the choice of
n̂0 in the yz plane.

We examine the predictions of equation (5.18) through computation with the full Q-tensor
equations. For this computation, all parameters are the same as previous computations, except
we now set L2 = 2 which corresponds to a ratio of splay (or bend) to twist K11/K22 = 2. Figure 11
shows the predicted velocity alongside several time slices of the computational results. The
predicted velocity very accurately captures the evolution of the loop, particularly at early times
when the loop is circular. In the computation, the twist sections of the loop disclination move
fastest and there is asymmetry between the +1/2 and −1/2 wedge sections. We note that recent
experiments on systems of line and loop disclinations have not reported this asymmetry in loop
annihilation, even though the experimental system has a twist constant approximately half that
of the splay and bend constants [73]. This may indicate that all observed loop disclinations were
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predicted velocity

twist twist

+1/2 wedge

–1/2 wedge

t = 0

computation

t = 1.5 t = 3

Figure 11. Annihilation of an initially circular wedge-twist loop disclination with L2 > 0. The top panel shows the predicted

velocity calculated in equation (5.18). The bottom panels show the configuration in the computation at three different times.

The cylinders represent the nematic director, while the contours depict the extent of the disclination loop where S= 0.3SN .

twist type. This suggests that analytical calculations using the kinematic velocity law may be
used to classify disclination types in experimental systems in which the material parameters are
known.

(e) Defect sorting with external fields and flows

The final application of the kinematic law we examine is the motion of disclination lines under
external fields or applied flows. These are two common situations studied in experiments on
nematics, and are important in technological and biological applications as well as in the context
of active nematics [12,31,74–82].

(i) External fields

We first consider an external field that couples to the tensor order parameter free energy as
fH = −χHTQH where H, the external field, can be an electric or magnetic field [29], and χ is the
susceptibility. If χ > 0 this energy is minimized when (n̂ · H)2 = |H|2, that is, when the director
aligns or anti-aligns with the field. For our purposes, the contribution to the time dependence of
Q arising from this coupling is

∂tQij = χHiHj. (5.19)

The resulting velocity of a single, straight line disclination with constant Ω̂ , assuming that the
line lies along the z-axis and that it is oriented so φ0 = 0 corresponds to the positive x-axis, is

v = χ |H|2a

SN
[((Ĥ · n̂0)2 − (Ĥ · n̂1)2)x̂ + 2(Ĥ · n̂0)(Ĥ · n̂1)ŷ] (5.20)

where Ĥ is the unit vector in the direction of the applied field. If H is in the direction of Ω̂ , equation
(5.20) shows there will be no motion of the disclination. Thus, we may limit further analysis
to two dimensions and we will set Ω̂ = ±ẑ and n̂0 = x̂. Note that if Ω̂ �= ẑ then the following
analysis holds for H in the plane perpendicular to Ω̂ . If we let Ĥ = (cos β, sin β, 0), equation (5.20)
reduces to

v = −χ |H|2a

SN
[cos 2βx̂ + 2m sin 2βŷ], (5.21)

where m = ±1/2 is the charge of the effective two-dimensional disclination.
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Figure 12. (a) Disclination motion in the presence of an external field H= |H|(cosβ , sinβ). The top panels show the

trajectories of +1/2 wedge disclinations while the bottom panels show the trajectories of −1/2 wedge disclinations. The

colour indicates the time (in computational units). (b–c) Computedmotion of twist disclination loops (Ω̂ = ẑ) in the presence

of an external field H. (b) Loop radius R versus time t for various initial radii when H is in the direction n̂0. Above an initial

radius R0 ≈ 2, the loop grows indefinitely instead of self-annihilating. (c) z-coordinate of the centre of a twist disclination loop

Cz versus twhenH∝ x̂ + ŷ. Two cases are shown:when n̂0 = x̂ the loopmoves in the−ẑ directionwhile the opposite occurs

when n̂0 = ŷ.

Equation (5.21) shows that if the field is aligned or anti-aligned with x̂ the disclination will
move in the −x̂ direction. On the other hand, if the field is aligned or anti-aligned with ŷ the
disclination will move in the +x̂ direction. This behaviour is predicted to be independent of the
charge of the disclination. However, if Ĥ is skewed from these two alignments there is a predicted
component of the velocity along the ±ŷ direction, which depends on the charge m. Thus for
disclinations that are oriented in the same direction, a skewed field will deflect oppositely charged
disclinations in opposite directions.

We demonstrate this behaviour by computing time-dependent configurations in a two-
dimensional nematic with in plane field H. For the computations, we set �t = 0.5, χ = 1 and
|H| = 0.5. In figure 12a, we show trajectories for ±1/2 disclinations with n̂0 = x̂ and β = 0, π/4, π/2.
As shown in the figure, we find that equation (5.21) correctly predicts the direction of motion for
the disclinations. In particular, when β = π/4 the motion of the ±1/2 disclinations is opposite one
another, and hence the effect of this applied skewed field is to sort the disclinations by topological
charge.

We may also compute the effect of external fields on three-dimensional disclination loops.
Applying the kinematic equation as we did in the previous section, assuming L2 = 0, we find

v = χ |H|2a

SN
[((Ĥ · n̂0)2 − (Ĥ · n̂1)2)ρ̂ − 2(Ĥ · n̂0)(Ĥ · n̂1)ẑ] − 3

2R
ρ̂ (5.22)

where the second term is the self-annihilation term derived above in equation (5.16). Equation
(5.22) predicts a multitude of differing trajectories depending on Ω̂ and n̂0. For the case of Ω̂ = ẑ,
a pure twist loop, only field components in the plane of the disclination loop are predicted to affect
it. In this case, interestingly, if the field is directed along n̂0 equation (5.22) predicts an unstable
equilibrium radius of the loop. If the radius is smaller than the unstable length, the loop will
self-annihilate. However, if the radius is larger than this length, the field will induce a continued
growth in the loop. Additionally, if the field is skewed between the directions n̂0 and n̂1, equation
(5.22) predicts the disclination loop will deflect along the ẑ direction, depending on n̂0 and n̂1,
that is, depending on the geometric properties of the loop.

We have also tested this prediction by solving the full Q-tensor equations with H = 0.65n̂0

(n̂0 = x̂) and the rest of the parameters the same as above, only now in three dimensions for a pure
twist loop. Figure 12b shows the computed radius as a function of time for various initial radii. At
RC ≈ 2, we find the loop changes behaviour from shrinking to growing indefinitely as predicted
by equation (5.22). From the computations, we estimate a ≈ 0.75, which leads to a predicted critical
radius from equation (5.22) of RC ≈ 2.1, very close to our computational result.
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Additionally, figure 12c shows the z-coordinate of the centre of a loop Cz as a function of
time for cases in which H ∝ x̂ + ŷ with n̂0 = x̂ and n̂0 = ŷ. As evidenced by the figure, the loop
coherently moves down (up) along the z-axis when n̂0 = x̂ (n̂0 = ŷ), as predicted by equation
(5.22).

External fields have been shown to effectively identify disclinations either by topological or
geometric content. Thus, these simple analytical results may lead to a number of applications in
which different types of disclinations correspond to different active nematic or biological motifs.
Colloidal particles, or differing cell types, have been shown to preferentially accumulate at regions
of differing topological or geometric character, and hence external fields may allow particle and
cell sorting [10,32,83–85]. We note that the velocities given here (particularly the two dimensional
equation (5.21)) could have also been predicted from the energy directly, since the effect of the field
is to align the director. However, having the analytical tool is useful for more complex scenarios
where energy methods may not be analytically viable.

(ii) Shear flow

The motion of a disclination in an imposed flow u is studied next. We assume the time dependence
of Q is given by the Beris-Edwards model [30]:

∂tQ = −(u · ∇)Q + λ

[

EQ + QE + 2
3

E − 2
(

Q + 1
3

)

(Q : ∇u)
]

+ [W, Q] −
[

δF

δQ

]TS

, (5.23)

where 2E = ∇u + ∇uT is the strain rate tensor, 2W = ∇u − ∇uT is the vorticity tensor, λ is the
‘tumbling’ parameter related to the tendency for the nematogens to align with shear [86,87], and
[·, ·] is the commutator of two tensors. We choose this model because it is commonly employed in
computational studies of active nematics in which disclinations play a primary role [88].

First, consider the contribution of the first term on the right-hand side of equation (5.23). This
is the traditional advection term and is the only non-zero term in the case of uniform flow. The
kinematic velocity equation for disclinations gives, for any segment of disclination with tangent
vector T̂,

v = 2T̂ × (u × T̂) + relaxation, (5.24)

where ‘+ relaxation’ stands for terms already discussed attributed to the diffusive relaxation of
the disclination (for the rest of this section we will omit these terms though it is understood
they still contribute to disclination motion). The right hand side of equation (5.24) may also be
written as 2[u − (u · T̂)T̂], indicating that the flow in this case simply advects the disclination in
the direction perpendicular to T̂, with the speed reduced by the amount that T̂ and u overlap.
This is the expected result, and has been shown for two-dimensional disclinations already [44].

To study the effect of a more complicated—yet highly relevant—imposed flow, we turn our
attention to an imposed shear flow,

u(r) = γ (r · ŵ)û, (5.25)

where γ is the shear rate, û is the direction of the flow, and ŵ · û = 0. In this case, the tensors E and
W are non-zero. However, because we only need to compute ∂tQ at the disclination core to apply
equation (3.6), it is easy to show that all terms in equation (5.23) that multiply Q will give zero
in the computation of the disclination velocity. This is analogous to the case presented in §4 in
which terms involving Qn for some power n do not contribute to the disclination velocity. Thus,
the only term we must consider is the flow aligning term, (2λ/3)E. For the shear flow given,

E = γ

2
(ŵ ⊗ û + û ⊗ ŵ). (5.26)
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Figure 13. (a) Trajectories of±1/2 wedge disclinations in the presence of the shear flow u= γ yx̂ for γ = 2. As predicted

in equation (5.28),± 1/2 disclinations move in opposite directions depending on their charge. The colour indicates the time

(in computational units). (b-c) Motion of wedge-twist disclination loops (Ω̂ = x̂) in shear flow u= γ zŷ forγ = 2. (b) Loop

radius R versus time t for various initial radii with n̂0 ∝ x̂ + ŷ. The radius of the loop is calculated by finding the average

distance between the centre of the loop and points in which S < 0.3SN . Above R≈ 2 the loop disclinations grow indefinitely.

(c) z coordinate of the centre of the loop, Cz , versus t for the cases n̂0 = ẑ and n̂0 = ŷ. For these cases, depending on n̂0, the

loop has a positive or negative velocity component in the ẑ direction.

For a straight line disclination with constant Ω̂ and T̂ = ẑ, the flow contribution to the line
velocity is

v = 2ẑ × (u × ẑ) + 2λγ a

3SN

[

(

(ŵ · n̂1)(û · n̂1) − (ŵ · n̂0)(û · n̂0)
)

x̂

−
(

(ŵ · n̂0)(û · n̂1) + (ŵ · n̂1)(û · n̂0)
)

ŷ

]

. (5.27)

Equation (5.27) is similar to the velocity resulting from an imposed field, equation (5.20), except
there are two important directions instead of one. In particular, equation (5.27) predicts that if
either the flow direction, û, or the shear direction, ŵ, are parallel to Ω̂ , the only contribution to
the disclination velocity from the flow will be advection.

An illustrative example is when Ω̂ = ±ẑ, n̂0 = x̂, û = x̂, and ŵ = ŷ. This is the effective two-
dimensional case for ±1/2 disclinations. For this configuration, equation (5.27) reduces to

v = 2γ yx̂ − 2m
4λγ a

3SN
ŷ, (5.28)

where m = ±1/2 is the topological charge of the disclination. The first term in equation (5.28) is
advection by the flow field, while the second arises from the tendency for the nematogens to
flow align in shear flows. Just as with the applied field, the motion in the ŷ direction changes
depending on the topological charge of the disclination m, assuming disclinations are oriented
identically. We note that this result was also predicted for a purely two-dimensional liquid crystal
in reference [44].

To test this result, the full Beris-Edwards equations, equation (5.23), for a nematic are solved
under an imposed shear flow u = γ yx̂. We compute the effect of flow on ±1/2 disclinations
initially located at the origin. For the computation we set �t = 0.1, λ = 1, and γ = 2. Figure 13a

shows the trajectories of the disclinations over time. The disclinations have a component of
their velocity along either the ±ŷ directions depending on their charge, which is predicted by
equation (5.28). Much like the case of the applied field, these results demonstrate that an applied
shear flow may be used as a sorting agent for disclinations of opposite charge, while the full
behaviour, equation (5.27) may be used to predict the motion of disclinations in the more general
scenario.

Note that there is an asymmetry between the trajectories of the +1/2 and −1/2 disclinations in
figure 13a. This can be understood as a higher order effect resulting from the change in director
near the core. From the Beris-Edwards equations, equation (5.23), the rate of change of the director
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will be dependent on S (and P). Thus, since ∇S �= 0 at the core, there will be, over time, a non-zero
∇ϕ̃. This will then lead to additional motion of the disclination as per the discussion of §4. Because
this effect is due to the relaxational terms of the dynamics, we expect that if γ � 1/τ (that is, the
shear flow is much faster than the relaxation rate of the nematic) this effect will be negligible. This
is likely the case in experiments involving shear flow [81]. In our numerics, however, we have set
γ ∼ 1/τ due to computational limitations.

Finally, it is possible to obtain the evolution under shear flow of a disclination loop in a similar
manner to the prediction of the external field. Assuming the loop lies in the xy plane, we find

v = 2θ̂ × (u × θ̂ ) − 3
2R

ρ̂ + 2λγ a

3SN

[

(

(ŵ · n̂0)(û · n̂0) − (ŵ · n̂1)(û · n̂1)
)

ρ̂

−
(

(ŵ · n̂0)(û · n̂1) + (ŵ · n̂1)(û · n̂0)
)

ẑ

]

, (5.29)

where we have included the self-annihilation term predicted in equation (5.16). Equation (5.29) is
similar to equation (5.27), except the tangent vector is T̂ = θ̂ and the directions of motion are ρ̂ and
ẑ as in equation (5.22). Equation (5.29) predicts many similar features to that of the applied field,
except for the addition of advection. For instance, fixing the shear flow directions to ŵ = ẑ and
û = ŷ and setting Ω̂ = x̂ gives similar results to the applied field, and the motion is dependent
on the angle between n̂0 and the z-axis. If n̂0 = ẑ, the loop is predicted to have a component
of the velocity in the +ẑ direction. On the other hand, if n̂0 = ŷ the loop is predicted to move
oppositely. If n̂0 is skewed from these two directions, there will be an additional velocity in the
ρ̂ direction. Particularly, if n̂0 ∝ ŷ + ẑ, there will be an unstable critical radius above which the
loop will continue to grow. We note that growing disclination loops above a critical radius have
been observed experimentally and predicted theoretically for the case of Poiseuille flow through
a small channel [89,90].

We have numerically tested these predictions for the cases outlined above for a full three-
dimensional disclination loop under shear flow. We perform the same analysis as with the applied
field: figure 13b shows the radius of the loop as a function of time for various initial radii when
n̂0 = (1/

√
2)(ŷ + ẑ), and figure 13c shows the z-component of the centre of the loop disclination,

Cz, for the cases n̂0 = ẑ and n̂0 = ŷ. For the computations, we use the same parameters as indicated
above. We see from the figures that the motion of the disclination loops are qualitatively well
described by equation (5.29).

That coupling to shear flow yields similar disclination motion to that of an applied field is
a striking, yet intuitive result. For a flow aligning nematic, there is a steady state in which the
director everywhere is given by some angle to the flow [87,91]. Thus, shear flow has a similar
effect on a uniform nematic to an applied field and so it is not surprising that it would have similar
effects on disclinations. However, theoretically (and in particular analytically) proving that the
effects are similar on disclinations is not simple due to the nonlinear nature of the equations,
and the fact that the system is out of equilibrium. This demonstrates the power of the kinematic
description of disclinations, which allows analytical calculation even in non-equilibrium
systems.

6. Discussion
We have derived a kinematic equation in terms of the nematic tensor order parameter at a
disclination core that gives the velocity of three-dimensional disclination lines in nematic liquid
crystals. In particular, we have generalized previous results involving order parameter singularity
tracking methods to a case in which the order parameter is not singular at the defect core. The
focus, instead, are zeros in a subspace of the order parameter space. Further, we have made use of
the property that this velocity only depends on derivatives of the order parameter at the core to
outline an approximation scheme that allows for analytic predictions of the disclination velocity
in a number of cases of interest.
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The geometric complexity of three-dimensional disclination lines has proven a barrier in
the study of even the simplest configurations containing multiple disclinations. Here we have
presented analytic results which either reinterpret previous results or yield novel predictions
for disclination motion. They include equations for the motion of twisted disclinations in two
dimensions, recombining and rotating disclination lines in three dimensions, self-annihilating
disclination loops with both isotropic and anisotropic elasticity, and disclination lines and
loops under externally applied fields and flows. All of these configurations are of current
interest and importance in studies of the coarsening and control of passive and active
nematics.

The results and methods presented in this work should be of considerable use to experimental
and large-scale simulation studies in which disclinations play important roles. As demonstrated
in §5e, applying fields or flows to systems of disclinations allows the identification of disclination
geometry and topology without the explicit recreation of the order parameter. Additionally, the
methods may be used to engineer disclination motion which can be further used as particle
aggregators and transporters.

One aspect of disclination evolution that still needs resolution is the evolution of the rotation
vector. Because it is not topologically protected, the rotation vector may change as a function of
time. This behaviour is different from the seemingly similar [26,92] Burgers vector characterizing
dislocations in solids, which remains constant. A detailed study of how this geometric property
evolves in time for various configurations will be important as it is intricately connected to
the dynamics of disclination lines. Additionally, while we studied circular loops here with
constant Ω̂ , disclinations in experiments are not perfectly circular and have rotation vectors
that vary throughout the loop. Thus, a more general treatment of curvature and torsion of
disclination lines as well as varying Ω̂ may lead to a better understanding of their overall
dynamics.

Another interesting area that we have not studied here is active nematics. These systems have
been heavily studied in two dimensions [12,13,44,93,94] and three-dimensional active nematics
are recently receiving more attention [14,24,27]. In active nematics, disclinations play a crucial
role by driving flows into a mesoscopic chaotic state. Thus, understanding the behaviour of
disclinations is highly important in this field. However, due to the chaotic nature of the flows,
and the complex interaction with the geometric properties of disclinations, very little has been
studied analytically regarding systems of many flowing disclinations. The kinematic equation
presented here may prove to be a useful tool in understanding individual disclination dynamics
in these out of equilibrium systems.

Finally, while we have focused here on the nematic phase, the methods presented in §§3 and 4
can be generalized to other systems with broken symmetries that support topological defects. The
derivation of kinematic equations similar to equation (3.6) may yield fruitful analogies between
otherwise physically dissimilar systems. For example, an equivalent to equation (3.6) was
recently derived for dislocations in solids using a phase field approach [43]. Topological defects
are also important in high energy physics and cosmology [17,95]. Comparison of kinematic
velocities in these fields to condensed matter systems might allow for more cross disciplinary
experiments.

Data accessibility. Matlab code for numerical calculations included as supplemental material.
The data are provided in electronic supplementary material [96].

Authors’ contributions. C.D.S.: conceptualization, formal analysis, methodology, software, writing—original draft;
J.V.: conceptualization, supervision, validation, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. This research has been supported by the National Science Foundation under grant no. DMR-1838977,
and by the Minnesota Supercomputing Institute. C.D.S. also gratefully acknowledges support from the U.S.
Department of Energy through the LANL/LDRD Program and the Center for Nonlinear Studies for part of
this work.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

6
 N

o
v
em

b
er

 2
0
2
3
 



25

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

479:20230042
..........................................................

Acknowledgements. We are indebted to Jonathan Selinger and Daniel Beller for many useful comments about this
work.

References
1. Abrikosov A. 1957 The magnetic properties of superconducting alloys. J. Phys. Chem. Solids 2,

199–208. (doi:10.1016/0022-3697(57)90083-5)
2. Chaikin PM, Lubensky TC. 1995 Principles of condensed matter physics. Cambridge, UK:

Cambridge University Press.
3. Halperin BI, Nelson DR. 1978 Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121–124.

(doi:10.1103/PhysRevLett.41.121)
4. Nelson DR, Halperin BI. 1979 Dislocation-mediated melting in two dimensions. Phys. Rev. B

19, 2457–2484. (doi:10.1103/PhysRevB.19.2457)
5. Young AP. 1979 Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B 19,

1855–1866. (doi:10.1103/PhysRevB.19.1855)
6. Kleman M, Friedel J. 2008 Disclinations, dislocations, and continuous defects: a reappraisal.

Rev. Mod. Phys. 80, 61–115. (doi:10.1103/RevModPhys.80.61)
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