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setups of forced 2D turbulence as the testbeds, we examine the a priori and a posteriori performance of
three methods for incorporating physics: (1) data augmentation (DA), (2) CNN with group convolutions
(GCNN), and (3) loss functions that enforce a global enstrophy-transfer conservation (EnsCon). While

Keywords: the data-driven closures from physics-agnostic CNNs trained in the big-data regime are accurate
Large eddy simulation and stable, and outperform dynamic Smagorinsky (DSMAG) closures, their performances substantially
Deep Learning deteriorate when these CNNs are trained with 40x fewer samples (the small-data regime). An example
Turb}ﬂence ) based on a vortex dipole demonstrates that the physics-agnostic CNN cannot account for never-seen-
gm‘f;:&“mamts before samples’ rotational equivariance (symmetry), an important property of the SGS term. This

shows a major shortcoming of the physics-agnostic CNN in the small-data regime. We show that
CNN with DA and GCNN address this issue and each produce accurate and stable data-driven closures
in the small-data regime. Despite its simplicity, DA, which adds appropriately rotated samples to the
training set, performs as well or in some cases even better than GCNN, which uses a sophisticated
equivariance-preserving architecture. EnsCon, which combines structural modeling with aspect of
functional modeling, also produces accurate and stable closures in the small-data regime. Overall,
GCNN+EnsCon, which combines these two physics constraints, shows the best a posteriori performance
in this regime. These results illustrate the power of physics-constrained learning in the small-data
regime for accurate and stable LES.
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1. Introduction

Large-eddy simulation (LES) is widely used in the model-
ing of turbulent flows in natural and engineering systems as
it offers a balance between accuracy and computational cost.
In LES, the large-scale structures are explicitly resolved on a
coarse-resolution grid while the subgrid-scale (SGS) eddies are
parameterized in terms of the resolved flow using a closure
model [1-4]. Therefore, the fidelity of LES substantially depends
on the accuracy of the SGS closure, improving which has been
a longstanding goal across various disciplines [e.g., 4-14]. In
general, the SGS models can be classified into two categories:
structural and functional [3]. Structural models, such as the gradi-
ent model [15,16], are developed to capture the structure (pattern
and amplitude) of the SGS stress tensor and are known to produce
high correlation coefficients (c) between the true and predicted
SGS terms (¢ > 0.9) in a priori analysis. However, they often
lead to numerical instabilities in a posteriori LES, for example,
because of excessive backscattering and/or lack of sufficient dis-
sipation [17-21]. Functional models, such as the Smagorinsky
model [1] and its dynamic variants [22-24], are often developed
by considering the inter-scale interactions (e.g., energy transfers).
While producing low ¢ (< 0.6) between the true and predicted
SGS terms in a priori analysis [25-28], these functional models
usually provide numerically stable a posteriori LES, at least partly
due to their dissipative nature. Thus, developing SGS models
that perform well in both a priori and a posteriori analyses has
remained a long-lasting research focus.

In recent years, there has been a rapidly growing interest in
using machine learning (ML) methods to learn data-driven SGS
closure models from filtered direct numerical simulation (DNS)
data [e.g., 25,29-44]. Different approaches applied to a variety of
canonical fluid systems have been investigated in these studies.
For example, Maulik et al. [31,45] and Xie et al. [46-48] have,
respectively, developed local data-driven closures for 2D decay-
ing homogeneous isotropic turbulence (2D-DHIT) and 3D incom-
pressible and compressible turbulence using multilayer percep-
tron artificial neural networks (ANNs); also see [28,49-51]. Zanna
and Bolton [35,52], Beck and colleagues [32,53], Pawar et al. [25],
Guan et al. [26], and Subel et al. [54] developed non-local closures,
e.g., using convolutional neural networks (CNNs), for ocean cir-
culation, 3D-DHIT, 2D-DHIT, and forced 1D Burgers’ turbulence,
respectively. While finding outstanding results in a priori analy-
ses, in many cases, these studies also reported instabilities in a
posteriori analyses, requiring further modifications to the learnt
closures for stabilization.

More recently, Guan et al. [26] showed that increasing the size
of the training set alone can lead to stable and accurate a posteriori
LES (as well as high c¢ in a priori analysis) even with physics-
agnostic CNNs.! This was attributed to the following: Big training
datasets obtained from filtered DNS (FDNS) snapshots can pro-
vide sufficient information such that the physical constraints and
processes (e.g., backscattering) are correctly learnt by data-driven
methods, leading to a stable and accurate LES in both a priori
and a posteriori analyses. However, in the small-data regime, the
physical constraints and processes may not be captured correctly,

1 For simplicity, we refer to any “physics-agnostic CNN” as CNN hereafter.

and the inaccuracy of the data-drivenly predicted SGS term (par-
ticularly inaccuracies in backscattering) can result in unstable or
unphysical LES [26]. Note that as discussed later in Section 3,
whether a training dataset is big or small depends on both the
number of samples and the inter-sample correlations; thus it
depends on the total length of the available DNS dataset, which
can be limited due to computational constraints. As a result, there
is a need to be able to learn data-driven closures in the small-
data regime for stable and accurate LES. This can be achieved
by incorporating physics into the learning process, which is the
subject of this study.

Past studies have shown that embedding physical insights or
constraints can enhance the performance of data-driven models,
e.g., in reduced-order models [e.g., 55-65] and in neural net-
works [e.g., 44,54,66-77]. There are various ways to incorporate
physics in neural networks (e.g., see the reviews by Kashinath
et al. [78] and Karniadakis et al. [79]). For neural network-based
data-driven SGS closures, in general, three of the main ways to do
this are: data augmentation (DA), physics-constrained loss func-
tions, and physics-aware network architectures. Training datasets
can be constructed to represent some aspects of physics. For
example, Galilean invariance and some of the translational and
rotational equivariances of the SGS term [2,80] can be incor-
porated through DA, i.e., built into the input and output train-
ing samples [33,54,81]. Here, “equivariance” means that the SGS
terms are preserved under some coordinate transformations, re-
sulting from properties of the Navier-Stokes equations [2]; see
Appendix A for more details. Physical constraints such as con-
servation laws can also be included through an augmented loss
function — the optimization target during training [e.g., 72,73,82-
84]. Finally, physical constraints can also be enforced in the neural
network architecture, e.g., by modifying particular layers [35,
85] or using special components such as equivariance-preserving
spatial transformers [86-88].

Building on these earlier studies, here we aim to examine
the effectiveness of three methods for incorporating physics into
the learning of non-local, data-driven SGS closure models, with
a particular focus on the performance in the small-data regime.
The three methods employed here are:

(a) DA, for incorporating rotational equivariances into the in-
put and output training samples,

(b) Physics-constrained loss function that enforces a global
enstrophy constraint (EnsCon),

(c) Group CNN (GCNN), a type of equivariance-preserving CNN
that has rotational symmetries (equivariances) built into its
architecture.

The test case here is a deterministically forced 2D-HIT flow.
As discussed in the paper, the use of DA and GCNN are inspired
by an example showing the inability of a CNN to account for
rotational equivariances in the small-data regime, while the use
of EnsCon is motivated by the success of similar global energy
constraints in improving the performance of reduced-order and
closure models in past studies [55,73]. We examine the accuracy
of the learnt closure models in a priori (offline) tests, in terms of
both predicting the SGS terms and capturing inter-scale transfers,
and the accuracy and stability of LES with these SGS models in a
posteriori (online) tests, with regard to long-term statistics.

The remaining sections of this paper are as follows. Governing
equations of the forced 2D-HIT system, the filtered equations, and
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the DNS and LES numerical solvers are presented in Section 2. The
CNNs and their a priori performance trained in the small- and big-
data regimes are discussed in Section 3. The physics-constrained
CNN models (DA, GCNN, and EnsCon) are described in Section 4.
Results of the a priori and a posteriori tests with these CNNs in the
small data regime are shown in Section 5. Conclusions and future
work are discussed in Section 6.

2. DNS and LES: Equations, numerical solvers, and filterings
2.1. Governing equations

As the testbed, we use forced 2D-HIT, which is a fitting proto-
type for many large-scale geophysical and environmental flows
(where rotation and/or stratification dominate the dynamics).
This system has been widely used as a testbed for novel tech-
niques, including ML-based SGS modeling [e.g., 89-95]. The di-
mensionless governing equations in the vorticity (@) and stream-
function () formulation in a doubly periodic square domain with
length L = 27 are:

w 1
— = —Vio—f- 1
T: + Mo, ¥) R’ @ f—ro, (1a)
Vi = —o. (1b)
Here, N(w, ¥) represents the nonlinear advection term:
Y dw Y dw

Now,¥)=——— ——, 2

(. ¥) ay dx 0x 0y 2)

and f represents a deterministic forcing [e.g., 90,93]:

f(x,y) = ke[cos (kex) 4 cos (kry)]. (3)

We study 5 cases, in which the forcing wavenumber (k;) and lin-
ear friction coefficient (r) have been varied, creating a variety of
flows that differ in dominant length scales and energy/enstrophy
cascade regimes (Fig. 1). For all cases, the Reynolds number (Re)
is set to 20000. In DNS, as discussed in Section 2.2, Eqs. (1a)-
(1b) are numerically solved at high spatio-temporal resolutions.
Fig. 1(b) shows the angle-averaged spectra of turbulent kinetic
energy E(k) and enstrophy Z(k), further illustrating the difference
in both large and small scales of the flow systems. (See Subel
et al. [96] for analyses showing that CNN-based SGS models
trained on one of these systems lead to unstable a posteriori
LES on another system (unless transfer learning is used), further
suggesting that these cases cover different dynamics and data
distribution.)

To derive the equations for LES, we apply Gaussian filtering [2,

3,26], denoted by (-), to Egs. (1a)-(1b) to obtain
ow — 1 - _
NG ) = o VB~ - 15+ NG, T -
at Re

N, ¥), (4a)

n
VY = —w. (4b)

The LES can be solved using a coarser resolution (compared to
DNS) with the SGS term IT being the unclosed term, requiring a
closure model. The power spectra of IT for all cases are shown in
Fig. 1(b), illustrating the difference of the SGS terms in both large
and small scales.

2.2. Numerical simulations

In DNS, we solve Egs. (1a)-(1b). A Fourier-Fourier pseudo-
spectral solver is used along with second-order Adams-Bashforth
and Crank-Nicolson time-integration schemes for the advection
and viscous terms, respectively [26]. The computational grid has
uniform spacing Apys = L/Npns, where Npys = 1024 is the
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number of grid points in each direction. The time-stepping size
is set as Atpns = 5 x 107> dimensionless time unit for all cases
except for Case 5, for which Atpys = 2 x 107> is used. For each
case, using different random initial conditions, we conducted 3
independent DNS runs to generate the training, offline testing,
and online testing datasets. Once the flow reaches statistical equi-
librium after a long-term spin-up, each DNS run produces 2000
snapshots, with each consecutive snapshots 1000Atpys apart to
reduce the correlation between training samples (inter-sample
correlation c;,, or the correlation coefficient between two consec-
utive I7, is below 0.75; see Section 3 for further discussions). We
have also retained data sampled at 25 Atpys intervals to examine
the effect of cj,.

For LES, we solve Egs. (4a)-(4b) employing the same nu-
merical solver used for DNS, but with grid resolutions Nigs (=
Npns/16 or Npns/8) listed in Fig. 1 for each case and Atjgs =
10Atpns. The SGS term 7 is parameterized using a data-driven
closure model that is a physics-agnostic or physics-constrained
CNN (Sections 3 and 4) or a physics-based dynamic Smagorinsky
model (DSMAG). For DSMAG, positive clipping is used to enforce
non-negative eddy-viscosity, thus providing stable a posteriori
LES [25,26].

2.3. Filtered DNS (FDNS) data

To obtain the FDNS and to construct the training and testing
data for data-driven methods, we apply a Gaussian filter and
then coarse-grain the filtered variables to the LES grid, generating
V¥, w, and IT [2,3]. The filtering and coarse-graining process is
described in detail in our recent paper [26], and is only briefly
described here. (i) Spectral transformation: transform the DNS
variables into the spectral space by Fourier transform; (ii) Filter-
ing: apply (element-wise-multiply) a Gaussian filter kernel (with
filter size A = 2Aigs) in the spectral space to filter the high-
wavenumber structures (the resulting variables still have the
DNS resolution); (iii) Coarse-graining: truncate the wavenumbers
greater than the cut-off wavenumber (k. = m/Ags) of the
filtered variables in the spectral space ((the resulting variables
have the LES resolution); (iv) Spectral transformation: transfer the
filtered, coarse-grained variables back to the physical space by
inverse Fourier transform.

3. Convolutional neural network (CNN): Architecture and re-
sults

3.1. Architecture

In this work, we first parameterize the unclosed SGS term IT
in (4a) using a physics-agnostic CNN (CNN hereafter) described in
this section. The CNN used in this work has the same architecture
as the one used in our previous study [26], which is 10-layer deep
with fully convolutional layers, i.e., no pooling or upsampling. All
layers are randomly initialized and trainable. The convolutional
depth is set to be 64, and the convolutional filter size is 5 x 5.
We have performed extensive trial and error analysis for these
hyperparameters to prevent over-fitting while maintaining accu-
racy. For example, a CNN with more than 12 layers overfits on this
dataset while a CNN with less than 8 layers results in significantly
lower a priori correlation coefficients. The activation function of
each layer is the rectified linear unit (ReLU) except for the final
layer, which is a linear map.

We have standardized the input samples as

{lﬁ/%, w/ow} € R NissxNiss (5)
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Case 1: ky =4 Case 2: ky =4 Case 3: ky =10 Case 4: ky =10 Case 5: ky =25
(a) r=01 Nrps=64 r=0.1, Nprgs =128 r=0.1, Npgs =64 r=0.01, Npgs =64 r=0.1, Npps = 128
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Fig. 1. (a) Examples of vorticity fields of DNS, FDNS, and LES with SGS terms modeled by CNN and DSMAG for 5 cases of forced 2D turbulence with different forcing
wavenumber (kf), friction coefficients (r), and LES resolutions (Nigs). For all cases, Re = 20,000 and Npys = 1024. The scales of the flow structures depend on ki;
the higher the k; the smaller the scales. The linear drag coefficient, r, determines the similarity of the flow structure. When r = 0.1, the flow contains several large
vortices of similar sizes. With r = 0.01 (Case 4), often two large vortices rotating in opposite directions dominate, co-existing with smaller vortices. For the LES,
the CNN is trained on big data (number of training snapshots: n, = 2000, ¢;; < 0.75) to ensure accuracy and numerical stability. DSMAG, in general, captures the
large-scale structures but underpredicts the vorticity magnitudes due to the excessive dissipation produced by the non-negative eddy viscosity. (b) Turbulent kinetic

energy spectra E(k) and enstrophy spectra Z(k) of DNS; power spectra of the SGS term I7 for all cases. The spectra show the difference in both small and large
scales.

and the output samples as between the inputs and outputs
{H/an} € RMNwes*Nues | (6) M : [@/a@ 5/05] € R¥*NuesxNigs [17/017] e RMues>*Nies - (7)

where o7, 0, and o7 are the standard deviations of ¥, @, and by minimizing the mean-squared-error (MSE) loss function
IT calculated over all training samples, respectively. In the later ey

sections, we omit o for clarity, but we always standardize the  pp — Z [ ITENN — [7FPNS |2

input/output samples. The CNN is trained as an optimal map M Ny

(8)

i=1
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Fig. 2. Turbulent kinetic energy (TKE, E(k)) spectra and probability density functions (PDFs) of @ for representative cases (1, 4, and 5). The CNNs used here are
trained on big data. The spectra and PDFs are averaged over 100 samples from the testing set. The PDF is calculated using a kernel estimator [97].

where n; is the number of training samples and || - ||; is the L,
norm.

3.2. Results

Fig. 1 shows examples of vorticity fields from DNS and FDNS,
and from a posteriori LES that uses CNN or DSMAG for the 5 cases.
The CNN used here is trained on the full dataset (2000 snapshots
with ¢;; < 0.75), which we will refer to as “big data” here-
after. Qualitatively, the LES with CNN more closely reproduces
the small-scale features of FDNS compared to DSMAG. To better
compare the a posteriori performance, Fig. 2 shows the turbulent
kinetic energy (TKE) spectra E(k) and the probability density func-
tions (PDF) of w averaged over 100 randomly chosen snapshots
from LES (spanning 2 x 10° Atigs or equally 2 x 10%Atpys) for 3
representative cases (1, 4, and 5). Note that in forced 2D turbu-
lence, according to the classic Kraichnan-Leith-Batchelor (KLB)
similarity theory [98-101], the energy injected by the forcing
at wavenumber k; is transferred to the larger scales (k < ks,
energy inverse cascade) while the enstrophy redistributes to the
smaller scales (k > ks, enstrophy forward cascade). The KLB
theory predicts a k=>/3 slope of the TKE spectrum for k < ks and
k=3 slope for k > k.

In general, the E"(k) of LES with CNN better matches the FDNS
than that of the LES with DSMAG. For Cases 1 and 4, where

the enstrophy forward cascade dominates, the LES with DSMAG
incorrectly captures the spectra at small scales For Case 5, where
the energy inverse cascade is important too, the DSMAG fails to
recover the energy at large scales correctly. Examining the PDFs
of w shows that in Cases 4 and 5, the PDF from LES with CNN
almost overlaps with the one from FDNS even at the tails, while
the PDF from LES with DSMAG deviates beyond 3 standard devi-
ations. Due to the excessive dissipation, the LES with DSMAG is
incapable of capturing the extremes (tails of the PDF). Therefore,
in a posteriori analysis, similar to decaying 2D turbulence [26],
for different setups of forced 2D turbulent flows, LES with CNN
trained with big data better reproduces the FDNS flow statistics
as compared to LES with DSMAG. Note that in this study, we
are comparing the CNN-based closures against DSMAG, which is
more accurate and powerful than the typical baseline, the static
Smagorinsky model [26,45]. Finally, we highlight that the CNN
has outstanding a priori performance too, yielding ¢ > 0.9 (Fig. 3).

Although the CNNs yield outstanding performance in both a
priori and a posteriori analyses when trained with big data, their
performance deteriorates when the training dataset is small. Be-
fore introducing three physics-constrained CNNs for overcoming
this problem (Section 4), we first show in Fig. 3 that classifying
“big” versus “small” data depends not only on the number of
snapshots in the training dataset (n,) but also on the inter-
sample correlation (ci;). In a priori analysis (bar plots in Fig. 3),
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(a) Case 1: A priori analysis
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(c) Case 3: A priori analysis
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Fig. 3. (a) and (c): a priori and (b) and (d): a posteriori analyses with 3 CNNs: CNN

apart leading to ¢;,; ~ 0.6 — 0.7, CNN20%

small data

CT<0

uses ng, = 2000 with each two consecutive snapshots being 25Atpys apart, leading to cj, ~ 0.99, and CNN
ny = 2000 with each two consecutive snapshots being 1000Atpys apart, leading to ¢j,; ~ 0.6 — 0.7. The training DNS datasets of CNN>C and CNN20%
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(b) Case 1: E(k)
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the same time range (50, 000Atpys), and their performance are very similar both in a priori and a posteriori analyses. The training DNS datasets of CNNggJUO are 40

g data

times longer (“big data”), and these models outperform the ones trained on “small data” based on all the a priori metrics in (a) and (c) and a posteriori performance
in (b) and (d). The error bars denote plus and minus standard deviation (the error bars on ¢ are small and not shown for the save of clarify).

we use four metrics. The first two are c;,, which is the average
correlation coefficient between consecutive snapshots of IT in the
training set, and ¢, which is the average correlation coefficient
between the true (FNDS) and CNN-predicted I7 over 100 random
snapshots in the testing set. Following past studies [26,45], we
introduce

T = sgn(V?®@) O I, (9)

whose sign at a grid point determines whether the SGS term is
diffusive T > 0 or anti-diffusive T < 0 (® denotes element-
wise multiplication). The third metric we use is ¢ computed
separately based on the sign of T for testing samples: cr.o,
which is the average ¢ on the grid points experiencing diffusion
by SGS processes and cr_g, which is the average c¢ on the grid
points experiencing anti-diffusion. Finally, noticing that the global
enstrophy transfer due to the SGS term is (wIT) (see Appendix B),
where (-) denotes domain averaging, we define ¢, the relative
error in global enstrophy transfer by the SGS term as

€ = [(@I ™M) — @I™)|/|(@IT™*)). (10)

Fig. 3 compares the performance of CNNs trained with three
training sets for two representative cases (1 and 3). CNN?I?]&H data
uses n, = 50 with each two consecutive snapshots being
1000Atpys apart, leading to ¢, ~ 0.6 — 0.7, while CNN22%0
uses n, = 2000 with each two consecutive snapshots being
25 Atpns apart, leading to highly correlated samples with ¢, ~
0.99 (note that these two DNS datasets have the same total time
length). CNN?9. . uses n, = 2000 with each two consecutive
snapshots being 1000 Atpys apart, leading to ¢;; ~ 0.6 — 0.7 (note
that this dataset is 40 times longer than the other two).

The a priori results show that CNN2® .. ~and CNN20% -
have comparable c, cr-o, cT<o, and €, which are all worse than
those of CNN%%?%&H. This demonstrates the importance of both n,;
and c;, in determining the effective size of the training set and
the performance of the learnt closure (note that similar to what
was shown in our earlier work [26], in the small-data regime,
Cr-0 < Cr-o0). The a posteriori analysis leads to the same con-

clusion: The TKE spectra of LES with CNN22?%. . closely matches

that of the FDNS while the spectra of LES with CNNSr?mll data and
CNNZ0%9 ... are comparable and do not match the spectra of
FDNS at wavenumbers larger than around 10.

These analyses show that increasing the number of training
samples from 50 to 2000 within the same DNS dataset does not
enhance the performance of CNN. In general, the performance
of CNN depends on the total DNS time length that the training
dataset spans. In fact, both the number of training snapshots (1)
and the inter-sample correlation (c;,) determine whether we are
in the “big” or “small” data regime. As “big” datasets may not be
available for many problems, in the next section, we will discuss
how to enhance the performance of the CNNs in the small-data
regime using physics constraints.

4. Physics-constraint CNNs: Incorporating rotational equivari-
ance and SGS enstrophy transfer

In this section, we demonstrate how incorporating rotational
equivariances via DA or GCNNs, or enforcing a global SGS en-
strophy transfer in the loss function can improve the a priori
and a posteriori performance of the CNN-based closures in the
small-data regime (with n, = 50).

The example in Fig. 4 shows one of the shortcomings of a
physics-agnostic CNN: the inability to capture rotational equiv-
ariance when the training set is small. In this example, a CNN is
trained on snapshots of w and its IT term (from Gaussian filtering)
for an inviscid vertically aligned vortex dipole (first and second
columns from left, first row). This dipole moves around the do-
main, i.e., it translates but does not rotate (thus, a horizontally
aligned dipole is never seen in the training set). The trained CNN
can accurately predict the I7 term for out-of-sample @ snapshots
(third column for left, first row). However, for a @ snapshot
that is rotated by 90° clockwise (first column, second row), the
CNN cannot accurately predict the correct IT term, which is also
rotated by 90° clockwise (second column, second row). Note that
there was no horizontally aligned dipole like this in the training
set. The CNN, instead, predicts an incorrect I7 term that is based
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Fig. 4. A dipole vortex shows the shortcoming of a physics-agnostic CNN in capturing the rotational equivariance of the SGS term (third column). The physics-agnostic
CNN regards the rotational transform between the training and testing vortex field as a translational transform (the translation of the structure in the black dashed
box). However, the CNN with DA or GCNN can capture this rotational equivariance correctly (fourth and fifth columns). The symbol * means rotation by 90°

clockwise and |} means translation.

on separate translations of the two parts of the vertically aligned
dipole (third column, second row).2

The implication of this example is that if the training set only
involves limited flow configurations (i.e., small-data regime) such
as only those from the first row, then the CNN can be quite
inaccurate for a testing set involving new configurations such
as those in the second row. In the much more complicated 2D-
HIT flow, there are various complex flow configurations. In a big
training set, it is more likely that these different configurations
would be present and the CNN learns their corresponding IT
terms and the associated transformations; however, this is less
likely in a small training set. The SGS term IT is known to
be equivariant to translation and rotation, i.e., if the flow state
variables are translated or rotated, I7 should also be translated
or rotated to the same degree [2]. While translation equivariance
is already achieved in a regular CNN by weight sharing [102], ro-
tational equivariance is not guaranteed. Recent studies show that
rotational equivariance can actually be critical in data-driven SGS
modeling [33,74,77,81]. To capture the rotational equivariance
in the small-data regime, we propose two approaches: (1) DA,
by including 3 additional rotated (by 90°, 180°, and 270°) coun-
terparts of each original FDNS snapshot in the training set [81]
and (2) by using a GCNN architecture, which enforces rotational
equivariance by construction [102,103].

The GCNN uses group convolutions, which increases the de-
gree of weight sharing by transforming and reorienting the fil-
ters such that the feature maps in GCNN are equivariant un-
der imposed symmetry transformations, e.g., rotation and re-
flection [104]. In our work, the group convolutional filters are
oriented at 0°, 90°, 180°, and 270° such that the feature map and
the output (/7°NN) are rotationally equivariant with respect to
the inputs (¥ and ), i.e., Eq. (15) in Appendix A.

In addition to the structural modeling approaches mentioned
above that achieve rotational equivariance (still with the MSE loss
function, Eq. (8)), we can also modify the loss function to combine
structural and functional modeling approaches to enhance the
performance of CNN in the small-data regime. For example, in
2D turbulence, the SGS enstrophy transfer is critical in main-
taining the accuracy and stability of LES [26,45,105]. Therefore,

2 The CNN basically predicts that because the red blob of the dipole is now
to the left of the blue blob, the part of the /T term corresponding to the red
blob in the first row now should be to the right of the part corresponding to
the blue blob (see the black box in the third column).

capturing the correct SGS enstrophy transfer (wIT) in a CNN
can be important for its performance. The a priori analysis in
Fig. 3 already showed that the error in capturing the global SGS
enstrophy transfer € is small in the big-data regime, but can be
large in the small-data regime. Here we propose to add a penalty
term to the loss function that acts as regularization, enforcing
(as a soft constraint) the global SGS enstrophy transfer. A pre-
vious study has used similar constraints on energy conservation,
derived from the fact that advection terms do not produce or
destroy energy [73]. Our global enstrophy transfer constraint is
similar in implementation but it is derived directly from the
filtered enstrophy equation (see Appendix B), and is used given
the importance of inter-scale enstrophy transfer in geophysical
turbulence and the fact that here we compute , the forcing on the
vorticity equation. This physics-constrained loss function consists
of the MSE plus the global SGS enstrophy transfer error:

1—,3 ner

CNN FDNS |2
Loss = >IN — PNy
i=1

Mgy

ner

+ LS @ney — @y,

n
tr i—1

(11

where 8 € [0, 1] is an adjustable hyperparameter. We empirically
find B = 0.5 to be optimal in minimizing the relative total
enstrophy transfer error (¢) without significantly affecting c. This
physics-constrained loss function (Eq. (11)) synergically combines
the structural and functional modeling approaches. The com-
putational efficiency during the training process of the various
methods are included in Appendix D.

5. Results
5.1. A priori analysis

A priori analysis is performed using the following metrics:
correlation coefficients (c), global enstrophy transfer error (¢),
and scale-dependent enstrophy and energy transfers (T and T,
as defined later in this section). Fig. 5 shows the bar plots of c,
cr-0, Cr-0, and € for 3 representative cases (1, 3, and 4). In the
small-data regime (n, = 50), the use of DA or GCNN increases
the correlation coefficients ¢, cr—g, and cy-g; the increases are
largest for cr-o, whose low values could lead to instabilities in
a posteriori LES, as discussed earlier. The use of DA or GCNN also
decreases the relative total enstrophy transfer error €, particularly
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Fig. 5. A priori analysis in terms of correlation coefficients c, cr-o, and cr-o, and the relative enstrophy transfer error €. It is shown that EnsCon does not improve
the structural modeling metric ¢ but significantly reduces the functional modeling error, €. DA and GCNN enhance the structural modeling performance and also
reduce €. The superscripted number denotes the n, in the training dataset with c¢;;, < 0.75 as in Fig. 3. The error bars denote plus and minus one standard deviation

(the error bars on € are small and not shown for the sake of clarify).

for Case 1. One point to highlight here is that DA can achieve the
same, and in some cases even better, a priori accuracy compared
to GCNN, while the network architecture is much simpler in
DA, which builds equivariance simply in the training data. The
EnsCon does not improve the correlation coefficient ¢ (because
it only adds a functional modeling component), but as expected,
it decreases ¢, which as shown later improves the a posteriori
LES. To examine a combined approach, we build an enstrophy-
constrained GCNN (GCNN-EnsCon),> which performs somewhere
in between GCNN and EnsCon: GCNN-EnsCon has a higher ¢ than
EnsCon but lower than GCNN, and GCNN-EnsCon has higher €
than EnsCon but lower than GCNN. As shown later, the LES with
GCNN-EnsCon has the best a posteriori performance among all
tested models.

To summarize Fig. 5, the physics-constrained CNNs trained
on small data (n;, = 50) outperform the physics-agnostic CNN
trained on small data, but none could outperform the physics-
agnostic CNN trained on 40 times more data (n, = 2000) in these
a priori tests. However, we emphasize that 40 is a substantial
factor in terms of the amount of high-fidelity data. This figure
also shows that adding physics constraints to the CNN trained
in the big-data regime (n, = 2000) does not necessarily lead
to any improvement over CNN2°%, suggesting that these physics
constraints could be learnt by a physics-agnostic CNN from the
data given enough training samples. More a priori analyses in
terms of ¢ and ¢ are included in Appendix C to demonstrate the
dependence on ny,.

To further assess the performance of the closures computed
using physics-constrained CNNs trained in the small-data regime,
we also examine the scale-dependent enstrophy and energy
transfers (T; and Tg) defined as: [91,106]

Ty (k) = R(—IT; @), (12)
Te(k) = R(—TT; ). (13)

Here, 2(-) means the “real part of”, (T) denotes Fourier transform,
and the asterisks denote complex conjugate. The scale-dependent

3 Here, we present the results from GCNN-EnsCon since it is not only a
combination of structural and functional modeling (in terms of LES physics [3])
but also a combination of a hard constraint (built into the architecture) and a
soft constraint (incorporated in the loss function) in terms of deep learning
methodology. We have found that the DA-EnsCon leads to similar a priori
performance (not shown).

enstrophy/energy transfer is positive for enstrophy/energy
backscatter (enstrophy/energy moving from subgrid scales to
resolved scales) and negative for enstrophy/energy forward trans-
fer (enstrophy/energy moving from resolved scales to subgrid
scales) [106]. Note that backscatter and forward transfer here
are inter-scale transfers by the SGS term (/7), and are different
concepts from inverse and forward cascades (discussed earlier in
Section 3.2).

Fig. 6 shows the power spectra of |ﬁ(l<)|2, Tz, and T¢ from
FDNS and different CNNs, providing further evidence that the in-
corporating physics constraints improves the a priori performance

of the data-driven closures. For Case 1 (first row), the |f1(k)|2
is better predicted by DA and GCNN at the high wavenumbers.
The scale-dependent enstrophy forward transfer (T; < O in
Fig. 6(b)) is underpredicted by CNN, and the deviation from FDNS
is corrected by DA, GCNN, EnsCon, and GCNN-EnsCon. For Case
5 (second row), however, where the inverse energy cascade is
important (see Section 3.2), the gain from the physics-constrained
CNNs (DA, GCNN, EnsCon, and GCNN-EnsCon) can be seen in
the scale-dependent energy transfer (Tg in Fig. 6(f)), where the
physics-agnostic CNN incorrectly predicts a portion (k < 4) of
energy backscatter (T > 0) to be forward energy transfer (T <
0).

5.2. A posteriori analysis

Figs. 7-9 show the E‘(k) spectra of Cases 1-5 . In general,
the TKE spectrum from LES with the physics-agnostic CNN (de-
noted by CNN°®) matches the one from FDNS at low wavenum-
bers (large-scale structures) but severely over-predicts the TKE at
high wavenumbers (small-scale structures). For example, CNN>°
starts to deviate from FDNS at k ~ 20 for Cases 1, 3, and 4
as shown in Fig. 7 (left) and Fig. 8. This over-prediction can
lead to unphysical and unstable numerical results. For example,
the vorticity field of LES with CNN°° exhibits extensive noisy
(i.e., very high-wavenumber) structures in several simulations
(not shown). All LES runs with physics-constrained CNNs (DA,
GCNN>°, EnsCon>°, and GCNN-EnsCon>°) outperform the LES with
CNN>°. In particular, for Cases 2 (Fig. 7 (right)) and 3 (Fig. 8 (left)),
the LES runs with DA%, GCNN>°, EnsCon>°, and GCNN-EnsCon®°
produce similar TKE spectra which are consistently better than
that of the LES with CNN*°. For Cases 1 (Fig. 7 (left)) and 4
(Fig. 8 (right)), however, incorporating rotational equivariance
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Fig. 6. A priori analysis in terms of scale-dependent power spectra |I7(k)| , and scale-dependent enstrophy and energy transfers T; and T for two representative

cases (1 and 5). The inertial part of the \1:1(k)|2 spectrum has a slope of 2.46, consistent with previous studies [106,107]. (a)-(c): In Case 1 where the enstrophy
direct cascade is important (as discussed in Section 3.2), CNN>° does not capture the power spectra correctly at high wavenumbers, and the enstrophy forward
transfer (T; < 0) is under-predicted. (d)-(f): In Case 5 where the energy inverse cascade is important (see Section 3.2), the prediction discrepancy occurs at the low
wavenumbers of the power spectra, and at the backscattering part of the energy transfer (T > 0). In general, the proposed physics-constrained CNNs (DA, GCNN,

EnsCon, and GCNN-EnsCon) reduce the prediction error in both structural (\f? (k)lz) and functional (T; and Tg) modelings metrics.

E(k)

10°F Case 1

FDNS

— CNN®°
=50
10 - - EnsCon®
— DASO
-- GCNN®°
GCNN-EnsCon®
10°10 .
10° 10! 102

k

E(k)

100k

1075 L

10-1()

10° 10" 10?
k

Fig. 7. The TKE spectra I;‘(k) of Cases 1 and 2 from a posteriori LES run. Results are from long-term LES integrations (2 x 10 Atygs or 2 x 108 Atpys). The l:Z(k) is
calculated from 100 randomly chosen snapshots and then averaged. The inset in Case 2 magnifies the tails of the I:Z(k) spectra for better visualization. In general, the
physics-constrained CNNs (DA®°, GCNN>°, EnsCon®’, or GCNN-EnsCon®®) improve the a posteriori performance of LES compared to the LES with the physics-agnostic
CNN°%: The spectra from the LES with physics-constrained CNNs better match the FDNS spectra especially at the tails (high-wavenumber structures). In particular,
the spectra from the LES with GCNN-EnsCon®® have the best match with the FDNS spectra especially at the high wavenumbers. The improvement is more prominent

for the coarser-grid LES (Case 1, Njgs = 64, compared to Case 2, Nijgs = 128).

(through DA, GCNN, or GCNN-EnsCon) leads to better a posteriori
performances than incorporating the global enstrophy constraint
alone (EnsCon) in terms of matching the FDNS spectra. Overall,
the LES with GCNN-EnsCon®® has the best performance in these
4 cases, showing the advantage of combining different types of
physics constraints in the small-data regime.

In Case 5, the gain from the physics constraints is less obvious
from the TKE spectra, although a slight improvement at the tails
can still be observed (Fig. 9 (left)). In this case, the PDF of vorticity
(Fig. 9 (right)) better reveals the gain, where LES with CNN>°
predicts spuriously large vorticity extremes due to the excessive
high-wavenumber structures in the vorticity field. The physics-
constrained CNNs (DA%®, GCNN>?, EnsCon®, and GCNN-EnsCon®°)
result in a stable and more accurate LES as the TKE spectrum and

PDF of vorticity better match those of the FDNS. The effects of
the enstrophy constraints can further be observed in the time
evolution of the enstrophy and total kinetic energy (see Fig. 10).
CNN®° predicts spuriously large enstrophy and total energy over
time. GCNN? also exhibits a slight increase in the total energy but
shows an improvement in performance compared to CNN>°, DA%
and the enstrophy-constrained CNNs (EnsCon®®, GCNN-EnsCon>°,
DA-EnsCon®?) all result in evolutions close to that of the DNS.

6. Summary and discussion
The objective of this paper is to learn CNN-based non-local

SGS closures from filtered DNS data for stable and accurate LES,
with a focus on the small-data regime, i.e., when the available DNS
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Fig. 8. Same as Fig. 7 but for Cases 3 and 4. Similar to the finding of Fig. 7, the physics-constrained CNNs (DA%®, GCNN>°, EnsCon®°, or GCNN-EnsCon®) improve the
a posteriori performance of LES compared to the LES with the physics-agnostic CNN°C. For Case 3, the improvement can only be observed at the highest wavenumber.
For Case 4, however, incorporating the rotational equivariance (DA, GCNN°°, and GCNN-EnsCon®°) leads to a more accurate LES than the enstrophy constraint alone
(EnsCon®?) alone. Also similar to the finding of Fig. 7, the spectra from the LES with GCNN-EnsCon® have the best match with the FDNS spectra especially at the

high wavenumbers.
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Fig. 9. Same as Fig. 7 but showing (a) The TKE spectra E‘(k) and (b) probability density function (PDF) of @ for Case 5. Although, the physics-constrained CNNs (DA°,
GCNN®°, EnsCon®, or GCNN-EnsCon®®) result in slightly improved LES in terms of the TKE spectrum, the gain from the physical constraints can be observed more
clearly in the PDF of vorticity where the LES with CNN°° over-predicts the extreme values (tails of the PDF).

training set is small. We demonstrate that incorporating physics
constraints into the CNN using three methods can substantially
improve the a priori (offline) and a posteriori (online) performance
of the data-driven closure model in the small-data regime. While
physics-constrained deep learning-based SGS modeling has been
recently explored in a couple of studies [e.g., 73,77], a systematic
analysis of the improvements in stability and accuracy, particu-
larly in the small-data regime, is still needed. This is the regime
most relevant to many real-world applications in science and
engineering.

In this paper, our contributions are: (1) illustrating the defi-
ciency of physics-agnostic CNNs in the small-data regime through
analyzing the rotational equivariance of the SGS term in a dipole;
(2) demonstrating that the small- vs big-data regime depends
not only on the number of training samples but also on their
inter-sample correlations; (3) identifying the reasons behind the
instabilities/inaccuracies through analyzing the global inter-scale
enstrophy transfer in 2D turbulence; and (4) proposing three
physics-constrained CNNs that achieve comparable a posteriori
performances with only 1/40 of the big training data. We show
that while with the big training set, even a physics-agnostic

10

CNN yields long-term stable/accurate a posteriori performance,
with the small training set, adding physics-constraints are es-
sential for stability/accuracy. To the best of our knowledge, this
is the first systematic analysis of the small-data regime and
physics-constrained CNNs for LES modeling.

To summarize the results: We use 5 different forced 2D ho-
mogeneous isotropic turbulence (HIT) flows with various forcing
wavenumbers, linear drag coefficients, and LES grid sizes as the
testbeds. First, we show in Section 3 that in the “big-data” regime
(with n, = 2000 weakly correlated training samples), the LES
with physics-agnostic CNN is stable and accurate, and outper-
forms the LES with the physics-based DSMAG closure, particularly
as the data-driven closure captures backscattering well (see Fig. 2
and Ref. [26]). Next, we show, using a priori (offline) and a
posteriori (online) tests, that the performance of the physics-
agnostic CNNs substantially deteriorate when they are trained
in the “small-data” regime: with n, = 2000 highly correlated
samples or with n, = 50 weakly correlated samples. This analysis
demonstrates that the small versus big data regime depends not
only on the number of training samples but also on their inter
correlations.
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Fig. 10. Time evolution of the enstrophy Z = % and total energy E =

of Case 5, normalized by the LES initial condition, Z(0) and E(0), respectively.

Examining both Z(t) and E(t) shows that in the small-data regime, CNN° leads to a gradual increase, indicating excessive noise in the vorticity field. GCNN>C, despite
its improvement, also shows a slight increase in both Z(t) and E(t). All the other methods, especially those with enstrophy constraints, lead to Z(t)/Z(0) ~ 1.0 and
E(t)/E(0) ~ 1.0, which is also the case for DNS, as the LES initial condition is already in the statistical equilibrium regime. DSMAG, due to its excessive diffusivity
and lack of backscattering, leads to a significant decrease in both Z(t) and E(t). Here, the time series is scaled by the eddy-turnover time 7 = 1/wpax, Where wmax

is the maximum vorticity in DNS.

To improve the performance of CNNs trained in the small-
data regime, in Section 4, we propose incorporating physics in
the CNNs through using 1) data augmentation (DA), 2) a group
equivariant CNN (GCNN), or an enstrophy-constrained loss func-
tion (EnsCon). The idea behind using DA and GCNN is to account
for the rotational equivariance of the SGS term. This is inspired
by a simple example of a vortex dipole, which shows that for
never-seen-before samples, the physics-agnostic CNN can only
capture the translational equivariance, but not the rotational
equivariance, another important property of the SGS term. The
idea behind EnsCon is to combine structural and functional mod-
eling approaches through a regularized loss function. A priori
and a posteriori tests show that all these physics-constrained
CNNs outperform the physics-agnostic CNN in the small-data
regime (n, = 50). GCNN, which uses an equivariance-preserving
architecture, improves the data-driven SGS closures. However, it
should be mentioned that DA, which simply builds equivariance
in the training samples and can be used with any architecture,
shows comparable or even in some cases, better performance
than GCNN. Also, note that a recent study suggested using an aug-
mented GCNN which preserves rotational equivariance by multi-
ples of 27 /m (m > 4), in addition to multiples of 7 /2, as in our
GCNN [77]. This can potentially further enhance the performance
of GCNN, though DA can also incorporate such equivariance in the
training samples as well.

Overall, GCNN+EnsCon, which combines these two main con-
straints, demonstrate the best a posteriori performance, showing
the advantage of adding physics constraints together. Note that
here we focus on rotational equivariance, which is a property of
the 2D turbulence test case. In other flows, other equivariance
properties might exist (e.g., reflection equivariance as in Rayleigh
Bénard convection), and they can be incorporated through DA
or GCNN as needed. These results show the major advantage
and potential of physics-constrained deep learning methods for
SGS modeling in the small-data regime, which is of substantial
importance for complex and high-Reynolds number flows, for
which the availability of high-fidelity (e.g., DNS) data could be
severely limited.
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Appendix A. Equivariance properties of the SGS term

According to the transformation properties of the Navier-
Stokes equations [2], the SGS term IT should satisfy:

I(Tgw, Ty ) = Tg I (o, ), (14)

where T, represents a translational or rotational transformation.
w and ¢ are the vorticity and streamfunction, respectively (as
described in Section 2).

In the ML literature, “equivariance” means that transforming
an input (e.g., by translation or rotation, denoted by T;) and then
passing the transformed input through the learnt map (CNN in
our case) should give the same result as first mapping the input
and then transforming the output [102,104]:

ONN(T,o, T, ¥, 0) = T,IT™N(@, ¥, 0). (15)

Here, 0 represents a group of learnable parameters of the net-
work. To preserve the translational and rotational equivariance
of IT (Eq. (14)), the network parameters 6 should be learnt such
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that the CNNs with rotational equivariance enhance the structural performance where the enstrophy constraint does not help. On the other hand, the enstrophy

constraints (EnsCon and GCNN-EnsCon) reduce the enstrophy transfer error e.

that Eq. (15) is satisfied. In turbulence modeling, “equivariance”
may also be referred to as “symmetry” [2,80]. In this paper, we
use the term “equivariance”, and use an equivariance-preserving
network (GCNN) or build this property into the training via DA.

Appendix B. The global enstrophy-transfer constraint

The equation for enstrophy transfer can be obtained by first
multiplying the filtered equation (Eq. (4a)) by w:

0w 1 _ L
aa—i’ +IN@. V) = G VT~ af ~ 13 +TN(@. §) — N (. ).

oll
(16)
Rearranging Eq. (16) gives:
190 1, — 171 -
——+ -N(® = — | =V — (Vo) | -aof —re* +oll.
3 5t +2N(w ) T |:2 (Vo) of —ro°+o
(17)

The evolution equation for domain-averaged enstrophy Z =
(%52) is then obtained by domain averaging Eq. (17) and invoking
the domain’s periodicity [108]:

dz 1 _

i (Vo)) — (@f) — 21Z + (@I).

e (18)

Therefore, the domain-averaged enstrophy transfer due to the
SGS term is (wIT). In Eq. (11), we enforce (wIT) predicted by the
CNN to be close to that of the FDNS as a domain-averaged (global)
soft constraint.

Appendix C. A priori analysis on data-size dependency

Fig. 11 shows the c for a variety of CNNs (CNN, GCNN, DA,
EnsCon, and GCNN-EnsCon) trained with different number of
n, for Cases 1-5, and ¢ for Case 1. It can be observed that
the rotational equivariance constraint enhances the structural
performance in terms of ¢ but the enstrophy constraint does not
show improvement. For the global enstrophy-transfer error ¢, the
EnsCon and GCNN-EnsCon reduce the a priori loss.

Appendix D. Training cost

The normalized computational times of various CNNs for the
training process are shown in Table 1. It can be seen that the
GCNN and GCNN-EnsCon are the most costly approaches dur-
ing the training process, possibly due to the extra weights and
weights-sharing as well as the permutation processes. The DA
is precisely four times more expensive to train compared to
CNN as DA’s training data set is expanded by a factor of 4. The
extra global enstrophy transfer loss adds a minimal amount of
computational time to the training. Note that during inference,
the computational costs of these methods are the same.
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Table 1
The computational time of the training process for n, = 2000
normalized by the that of baseline CNN.

CNN GCNN DA EnsCon GCNN-EnsCon
1.00 5.58 4.00 1.07 5.75
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