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a b s t r a c t

We demonstrate how incorporating physics constraints into convolutional neural networks (CNNs)
enables learning subgrid-scale (SGS) closures for stable and accurate large-eddy simulations (LES) in
the small-data regime (i.e., when the availability of high-quality training data is limited). Using several
setups of forced 2D turbulence as the testbeds, we examine the a priori and a posteriori performance of
three methods for incorporating physics: (1) data augmentation (DA), (2) CNN with group convolutions
(GCNN), and (3) loss functions that enforce a global enstrophy-transfer conservation (EnsCon). While
the data-driven closures from physics-agnostic CNNs trained in the big-data regime are accurate
and stable, and outperform dynamic Smagorinsky (DSMAG) closures, their performances substantially
deteriorate when these CNNs are trained with 40x fewer samples (the small-data regime). An example
based on a vortex dipole demonstrates that the physics-agnostic CNN cannot account for never-seen-
before samples’ rotational equivariance (symmetry), an important property of the SGS term. This
shows a major shortcoming of the physics-agnostic CNN in the small-data regime. We show that
CNN with DA and GCNN address this issue and each produce accurate and stable data-driven closures
in the small-data regime. Despite its simplicity, DA, which adds appropriately rotated samples to the
training set, performs as well or in some cases even better than GCNN, which uses a sophisticated
equivariance-preserving architecture. EnsCon, which combines structural modeling with aspect of
functional modeling, also produces accurate and stable closures in the small-data regime. Overall,
GCNN+EnsCon, which combines these two physics constraints, shows the best a posteriori performance
in this regime. These results illustrate the power of physics-constrained learning in the small-data
regime for accurate and stable LES.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Large-eddy simulation (LES) is widely used in the model-
ng of turbulent flows in natural and engineering systems as
t offers a balance between accuracy and computational cost.
n LES, the large-scale structures are explicitly resolved on a
oarse-resolution grid while the subgrid-scale (SGS) eddies are
arameterized in terms of the resolved flow using a closure
odel [1–4]. Therefore, the fidelity of LES substantially depends
n the accuracy of the SGS closure, improving which has been
longstanding goal across various disciplines [e.g., 4–14]. In

eneral, the SGS models can be classified into two categories:
tructural and functional [3]. Structural models, such as the gradi-
nt model [15,16], are developed to capture the structure (pattern
nd amplitude) of the SGS stress tensor and are known to produce
igh correlation coefficients (c) between the true and predicted

SGS terms (c > 0.9) in a priori analysis. However, they often
ead to numerical instabilities in a posteriori LES, for example,
ecause of excessive backscattering and/or lack of sufficient dis-
ipation [17–21]. Functional models, such as the Smagorinsky
odel [1] and its dynamic variants [22–24], are often developed
y considering the inter-scale interactions (e.g., energy transfers).
hile producing low c (< 0.6) between the true and predicted

GS terms in a priori analysis [25–28], these functional models
sually provide numerically stable a posteriori LES, at least partly
ue to their dissipative nature. Thus, developing SGS models
hat perform well in both a priori and a posteriori analyses has
emained a long-lasting research focus.

In recent years, there has been a rapidly growing interest in
sing machine learning (ML) methods to learn data-driven SGS
losure models from filtered direct numerical simulation (DNS)
ata [e.g., 25,29–44]. Different approaches applied to a variety of
anonical fluid systems have been investigated in these studies.
or example, Maulik et al. [31,45] and Xie et al. [46–48] have,
espectively, developed local data-driven closures for 2D decay-
ng homogeneous isotropic turbulence (2D-DHIT) and 3D incom-
ressible and compressible turbulence using multilayer percep-
ron artificial neural networks (ANNs); also see [28,49–51]. Zanna
nd Bolton [35,52], Beck and colleagues [32,53], Pawar et al. [25],
uan et al. [26], and Subel et al. [54] developed non-local closures,
.g., using convolutional neural networks (CNNs), for ocean cir-
ulation, 3D-DHIT, 2D-DHIT, and forced 1D Burgers’ turbulence,
espectively. While finding outstanding results in a priori analy-
es, in many cases, these studies also reported instabilities in a
osteriori analyses, requiring further modifications to the learnt
losures for stabilization.
More recently, Guan et al. [26] showed that increasing the size

f the training set alone can lead to stable and accurate a posteriori
ES (as well as high c in a priori analysis) even with physics-
gnostic CNNs.1 This was attributed to the following: Big training
atasets obtained from filtered DNS (FDNS) snapshots can pro-
ide sufficient information such that the physical constraints and
rocesses (e.g., backscattering) are correctly learnt by data-driven
ethods, leading to a stable and accurate LES in both a priori
nd a posteriori analyses. However, in the small-data regime, the
hysical constraints and processes may not be captured correctly,

1 For simplicity, we refer to any ‘‘physics-agnostic CNN’’ as CNN hereafter.
2

and the inaccuracy of the data-drivenly predicted SGS term (par-
ticularly inaccuracies in backscattering) can result in unstable or
unphysical LES [26]. Note that as discussed later in Section 3,
whether a training dataset is big or small depends on both the
number of samples and the inter-sample correlations; thus it
depends on the total length of the available DNS dataset, which
can be limited due to computational constraints. As a result, there
is a need to be able to learn data-driven closures in the small-
data regime for stable and accurate LES. This can be achieved
by incorporating physics into the learning process, which is the
subject of this study.

Past studies have shown that embedding physical insights or
constraints can enhance the performance of data-driven models,
e.g., in reduced-order models [e.g., 55–65] and in neural net-
works [e.g., 44,54,66–77]. There are various ways to incorporate
physics in neural networks (e.g., see the reviews by Kashinath
et al. [78] and Karniadakis et al. [79]). For neural network-based
data-driven SGS closures, in general, three of the main ways to do
this are: data augmentation (DA), physics-constrained loss func-
tions, and physics-aware network architectures. Training datasets
can be constructed to represent some aspects of physics. For
example, Galilean invariance and some of the translational and
rotational equivariances of the SGS term [2,80] can be incor-
porated through DA, i.e., built into the input and output train-
ing samples [33,54,81]. Here, ‘‘equivariance’’ means that the SGS
terms are preserved under some coordinate transformations, re-
sulting from properties of the Navier–Stokes equations [2]; see
Appendix A for more details. Physical constraints such as con-
servation laws can also be included through an augmented loss
function — the optimization target during training [e.g., 72,73,82–
84]. Finally, physical constraints can also be enforced in the neural
network architecture, e.g., by modifying particular layers [35,
85] or using special components such as equivariance-preserving
spatial transformers [86–88].

Building on these earlier studies, here we aim to examine
the effectiveness of three methods for incorporating physics into
the learning of non-local, data-driven SGS closure models, with
a particular focus on the performance in the small-data regime.
The three methods employed here are:

(a) DA, for incorporating rotational equivariances into the in-
put and output training samples,

(b) Physics-constrained loss function that enforces a global
enstrophy constraint (EnsCon),

(c) Group CNN (GCNN), a type of equivariance-preserving CNN
that has rotational symmetries (equivariances) built into its
architecture.

The test case here is a deterministically forced 2D-HIT flow.
As discussed in the paper, the use of DA and GCNN are inspired
by an example showing the inability of a CNN to account for
rotational equivariances in the small-data regime, while the use
of EnsCon is motivated by the success of similar global energy
constraints in improving the performance of reduced-order and
closure models in past studies [55,73]. We examine the accuracy
of the learnt closure models in a priori (offline) tests, in terms of
both predicting the SGS terms and capturing inter-scale transfers,
and the accuracy and stability of LES with these SGS models in a
posteriori (online) tests, with regard to long-term statistics.

The remaining sections of this paper are as follows. Governing
equations of the forced 2D-HIT system, the filtered equations, and
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he DNS and LES numerical solvers are presented in Section 2. The
NNs and their a priori performance trained in the small- and big-
ata regimes are discussed in Section 3. The physics-constrained
NN models (DA, GCNN, and EnsCon) are described in Section 4.
esults of the a priori and a posteriori tests with these CNNs in the
mall data regime are shown in Section 5. Conclusions and future
ork are discussed in Section 6.

. DNS and LES: Equations, numerical solvers, and filterings

.1. Governing equations

As the testbed, we use forced 2D-HIT, which is a fitting proto-
ype for many large-scale geophysical and environmental flows
where rotation and/or stratification dominate the dynamics).
his system has been widely used as a testbed for novel tech-
iques, including ML-based SGS modeling [e.g., 89–95]. The di-
ensionless governing equations in the vorticity (ω) and stream-

unction (ψ) formulation in a doubly periodic square domain with
ength L = 2π are:
∂ω

∂t
+ N (ω,ψ) =

1
Re

∇
2ω − f − rω, (1a)

∇
2ψ = −ω. (1b)

ere, N (ω,ψ) represents the nonlinear advection term:

(ω,ψ) =
∂ψ

∂y
∂ω

∂x
−
∂ψ

∂x
∂ω

∂y
, (2)

nd f represents a deterministic forcing [e.g., 90,93]:

(x, y) = kf [cos (kf x)+ cos (kf y)]. (3)

We study 5 cases, in which the forcing wavenumber (kf ) and lin-
ear friction coefficient (r) have been varied, creating a variety of
flows that differ in dominant length scales and energy/enstrophy
cascade regimes (Fig. 1). For all cases, the Reynolds number (Re)
is set to 20000. In DNS, as discussed in Section 2.2, Eqs. (1a)–
(1b) are numerically solved at high spatio-temporal resolutions.
Fig. 1(b) shows the angle-averaged spectra of turbulent kinetic
energy Ê(k) and enstrophy Ẑ(k), further illustrating the difference
in both large and small scales of the flow systems. (See Subel
et al. [96] for analyses showing that CNN-based SGS models
trained on one of these systems lead to unstable a posteriori
LES on another system (unless transfer learning is used), further
suggesting that these cases cover different dynamics and data
distribution.)

To derive the equations for LES, we apply Gaussian filtering [2,
3,26], denoted by (·), to Eqs. (1a)–(1b) to obtain
∂ω

∂t
+ N (ω,ψ) =

1
Re

∇
2ω − f − rω + N (ω,ψ)− N (ω,ψ)  

Π

, (4a)

∇
2ψ = −ω. (4b)

he LES can be solved using a coarser resolution (compared to
NS) with the SGS term Π being the unclosed term, requiring a
losure model. The power spectra of Π for all cases are shown in
ig. 1(b), illustrating the difference of the SGS terms in both large
nd small scales.

.2. Numerical simulations

In DNS, we solve Eqs. (1a)–(1b). A Fourier–Fourier pseudo-
spectral solver is used along with second-order Adams–Bashforth
and Crank–Nicolson time-integration schemes for the advection
and viscous terms, respectively [26]. The computational grid has
uniform spacing ∆ = L/N , where N = 1024 is the
DNS DNS DNS

3

number of grid points in each direction. The time-stepping size
is set as ∆tDNS = 5 × 10−5 dimensionless time unit for all cases
except for Case 5, for which ∆tDNS = 2 × 10−5 is used. For each
ase, using different random initial conditions, we conducted 3
ndependent DNS runs to generate the training, offline testing,
nd online testing datasets. Once the flow reaches statistical equi-
ibrium after a long-term spin-up, each DNS run produces 2000
napshots, with each consecutive snapshots 1000∆tDNS apart to
reduce the correlation between training samples (inter-sample
correlation cin, or the correlation coefficient between two consec-
utive Π , is below 0.75; see Section 3 for further discussions). We
ave also retained data sampled at 25∆tDNS intervals to examine

the effect of cin.
For LES, we solve Eqs. (4a)–(4b) employing the same nu-

merical solver used for DNS, but with grid resolutions NLES (=
DNS/16 or NDNS/8) listed in Fig. 1 for each case and ∆tLES =

0∆tDNS. The SGS term Π is parameterized using a data-driven
losure model that is a physics-agnostic or physics-constrained
NN (Sections 3 and 4) or a physics-based dynamic Smagorinsky
odel (DSMAG). For DSMAG, positive clipping is used to enforce
on-negative eddy-viscosity, thus providing stable a posteriori
ES [25,26].

.3. Filtered DNS (FDNS) data

To obtain the FDNS and to construct the training and testing
ata for data-driven methods, we apply a Gaussian filter and
hen coarse-grain the filtered variables to the LES grid, generating
ψ , ω, and Π [2,3]. The filtering and coarse-graining process is
described in detail in our recent paper [26], and is only briefly
described here. (i) Spectral transformation: transform the DNS
variables into the spectral space by Fourier transform; (ii) Filter-
ing: apply (element-wise-multiply) a Gaussian filter kernel (with
filter size ∆F = 2∆LES) in the spectral space to filter the high-
avenumber structures (the resulting variables still have the
NS resolution); (iii) Coarse-graining: truncate the wavenumbers

greater than the cut-off wavenumber (kc = π/∆LES) of the
filtered variables in the spectral space ((the resulting variables
have the LES resolution); (iv) Spectral transformation: transfer the
filtered, coarse-grained variables back to the physical space by
inverse Fourier transform.

3. Convolutional neural network (CNN): Architecture and re-
sults

3.1. Architecture

In this work, we first parameterize the unclosed SGS term Π

in (4a) using a physics-agnostic CNN (CNN hereafter) described in
his section. The CNN used in this work has the same architecture
s the one used in our previous study [26], which is 10-layer deep
ith fully convolutional layers, i.e., no pooling or upsampling. All

ayers are randomly initialized and trainable. The convolutional
epth is set to be 64, and the convolutional filter size is 5 × 5.
e have performed extensive trial and error analysis for these
yperparameters to prevent over-fitting while maintaining accu-
acy. For example, a CNN with more than 12 layers overfits on this
ataset while a CNN with less than 8 layers results in significantly
ower a priori correlation coefficients. The activation function of
ach layer is the rectified linear unit (ReLU) except for the final
ayer, which is a linear map.

We have standardized the input samples as

ψ/σψ , ω/σω

}
∈ R2×NLES×NLES , (5)
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Fig. 1. (a) Examples of vorticity fields of DNS, FDNS, and LES with SGS terms modeled by CNN and DSMAG for 5 cases of forced 2D turbulence with different forcing
avenumber (kf ), friction coefficients (r), and LES resolutions (NLES ). For all cases, Re = 20,000 and NDNS = 1024. The scales of the flow structures depend on kf ;
he higher the kf the smaller the scales. The linear drag coefficient, r , determines the similarity of the flow structure. When r = 0.1, the flow contains several large
ortices of similar sizes. With r = 0.01 (Case 4), often two large vortices rotating in opposite directions dominate, co-existing with smaller vortices. For the LES,
he CNN is trained on big data (number of training snapshots: ntr = 2000, cin < 0.75) to ensure accuracy and numerical stability. DSMAG, in general, captures the
arge-scale structures but underpredicts the vorticity magnitudes due to the excessive dissipation produced by the non-negative eddy viscosity. (b) Turbulent kinetic
nergy spectra Ê(k) and enstrophy spectra Ẑ(k) of DNS; power spectra of the SGS term Π for all cases. The spectra show the difference in both small and large
cales.
nd the output samples as

Π/σΠ

}
∈ RNLES×NLES , (6)

where σψ , σω , and σΠ are the standard deviations of ψ , ω, and
calculated over all training samples, respectively. In the later

ections, we omit σ for clarity, but we always standardize the
input/output samples. The CNN is trained as an optimal map M
4

between the inputs and outputs

M :

{
ψ/σψ , ω/σω

}
∈ R2×NLES×NLES →

{
Π/σΠ

}
∈ RNLES×NLES , (7)

by minimizing the mean-squared-error (MSE) loss function

MSE =
1
n

ntr∑
∥ΠCNN

i −Π FDNS
i ∥

2
2, (8)
tr i=1
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here ntr is the number of training samples and ∥ · ∥2 is the L2
orm.

.2. Results

Fig. 1 shows examples of vorticity fields from DNS and FDNS,
nd from a posteriori LES that uses CNN or DSMAG for the 5 cases.
he CNN used here is trained on the full dataset (2000 snapshots
ith cin < 0.75), which we will refer to as ‘‘big data’’ here-
fter. Qualitatively, the LES with CNN more closely reproduces
he small-scale features of FDNS compared to DSMAG. To better
ompare the a posteriori performance, Fig. 2 shows the turbulent
inetic energy (TKE) spectra Ê(k) and the probability density func-
ions (PDF) of ω averaged over 100 randomly chosen snapshots
from LES (spanning 2 × 105∆tLES or equally 2 × 106∆tDNS) for 3
representative cases (1, 4, and 5). Note that in forced 2D turbu-
lence, according to the classic Kraichnan–Leith–Batchelor (KLB)
similarity theory [98–101], the energy injected by the forcing
at wavenumber kf is transferred to the larger scales (k < kf ,
energy inverse cascade) while the enstrophy redistributes to the
smaller scales (k > kf , enstrophy forward cascade). The KLB
theory predicts a k−5/3 slope of the TKE spectrum for k < kf and
−3 slope for k > kf .
In general, the Ê(k) of LES with CNN better matches the FDNS

than that of the LES with DSMAG. For Cases 1 and 4, where
5

the enstrophy forward cascade dominates, the LES with DSMAG
incorrectly captures the spectra at small scales For Case 5, where
the energy inverse cascade is important too, the DSMAG fails to
recover the energy at large scales correctly. Examining the PDFs
of ω shows that in Cases 4 and 5, the PDF from LES with CNN
almost overlaps with the one from FDNS even at the tails, while
the PDF from LES with DSMAG deviates beyond 3 standard devi-
ations. Due to the excessive dissipation, the LES with DSMAG is
incapable of capturing the extremes (tails of the PDF). Therefore,
in a posteriori analysis, similar to decaying 2D turbulence [26],
or different setups of forced 2D turbulent flows, LES with CNN
rained with big data better reproduces the FDNS flow statistics
s compared to LES with DSMAG. Note that in this study, we
re comparing the CNN-based closures against DSMAG, which is
ore accurate and powerful than the typical baseline, the static
magorinsky model [26,45]. Finally, we highlight that the CNN
as outstanding a priori performance too, yielding c > 0.9 (Fig. 3).
Although the CNNs yield outstanding performance in both a

riori and a posteriori analyses when trained with big data, their
erformance deteriorates when the training dataset is small. Be-
ore introducing three physics-constrained CNNs for overcoming
his problem (Section 4), we first show in Fig. 3 that classifying
‘big’’ versus ‘‘small’’ data depends not only on the number of
napshots in the training dataset (ntr ) but also on the inter-
ample correlation (c ). In a priori analysis (bar plots in Fig. 3),
in
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small data uses ntr = 50 with each two consecutive snapshots being 1000∆tDNS

part leading to cin ∼ 0.6− 0.7, CNN2000
small data uses ntr = 2000 with each two consecutive snapshots being 25∆tDNS apart, leading to cin ∼ 0.99, and CNN2000

big data uses
ntr = 2000 with each two consecutive snapshots being 1000∆tDNS apart, leading to cin ∼ 0.6− 0.7. The training DNS datasets of CNN50

small data and CNN2000
small data span

the same time range (50, 000∆tDNS), and their performance are very similar both in a priori and a posteriori analyses. The training DNS datasets of CNN2000
big data are 40

times longer (‘‘big data’’), and these models outperform the ones trained on ‘‘small data’’ based on all the a priori metrics in (a) and (c) and a posteriori performance
in (b) and (d). The error bars denote plus and minus standard deviation (the error bars on ϵ are small and not shown for the save of clarify).
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we use four metrics. The first two are cin, which is the average
correlation coefficient between consecutive snapshots ofΠ in the
training set, and c , which is the average correlation coefficient
between the true (FNDS) and CNN-predicted Π over 100 random
snapshots in the testing set. Following past studies [26,45], we
introduce

T = sgn(∇2ω)⊙Π, (9)

whose sign at a grid point determines whether the SGS term is
diffusive T > 0 or anti-diffusive T < 0 (⊙ denotes element-
ise multiplication). The third metric we use is c computed
eparately based on the sign of T for testing samples: cT>0,
hich is the average c on the grid points experiencing diffusion

by SGS processes and cT<0, which is the average c on the grid
oints experiencing anti-diffusion. Finally, noticing that the global
nstrophy transfer due to the SGS term is ⟨ωΠ⟩ (see Appendix B),
here ⟨·⟩ denotes domain averaging, we define ϵ, the relative
rror in global enstrophy transfer by the SGS term as

= |⟨ωΠCNN
⟩ − ⟨ωΠ FDNS

⟩|/|⟨ωΠ FDNS
⟩|. (10)

Fig. 3 compares the performance of CNNs trained with three
raining sets for two representative cases (1 and 3). CNN50

small data
ses ntr = 50 with each two consecutive snapshots being

1000∆tDNS apart, leading to cin ∼ 0.6 − 0.7, while CNN2000
small data

ses ntr = 2000 with each two consecutive snapshots being
5∆tDNS apart, leading to highly correlated samples with cin ≈

.99 (note that these two DNS datasets have the same total time
ength). CNN2000

big data uses ntr = 2000 with each two consecutive
napshots being 1000∆tDNS apart, leading to cin ∼ 0.6−0.7 (note
hat this dataset is 40 times longer than the other two).

The a priori results show that CNN50
small data and CNN2000

small data
ave comparable c , cT>0, cT<0, and ϵ, which are all worse than
hose of CNN2000

big data. This demonstrates the importance of both ntr
nd cin in determining the effective size of the training set and
he performance of the learnt closure (note that similar to what
as shown in our earlier work [26], in the small-data regime,

T<0 < cT>0). The a posteriori analysis leads to the same con-
lusion: The TKE spectra of LES with CNN2000 closely matches
big data s

6

hat of the FDNS while the spectra of LES with CNN50
small data and

NN2000
small data are comparable and do not match the spectra of

DNS at wavenumbers larger than around 10.
These analyses show that increasing the number of training

amples from 50 to 2000 within the same DNS dataset does not
nhance the performance of CNN. In general, the performance
f CNN depends on the total DNS time length that the training
ataset spans. In fact, both the number of training snapshots (ntr )
nd the inter-sample correlation (cin) determine whether we are
n the ‘‘big’’ or ‘‘small’’ data regime. As ‘‘big’’ datasets may not be
vailable for many problems, in the next section, we will discuss
ow to enhance the performance of the CNNs in the small-data
egime using physics constraints.

. Physics-constraint CNNs: Incorporating rotational equivari-
nce and SGS enstrophy transfer

In this section, we demonstrate how incorporating rotational
quivariances via DA or GCNNs, or enforcing a global SGS en-
trophy transfer in the loss function can improve the a priori
nd a posteriori performance of the CNN-based closures in the
mall-data regime (with ntr = 50).

The example in Fig. 4 shows one of the shortcomings of a
hysics-agnostic CNN: the inability to capture rotational equiv-
riance when the training set is small. In this example, a CNN is
rained on snapshots of ω̄ and itsΠ term (from Gaussian filtering)
or an inviscid vertically aligned vortex dipole (first and second
olumns from left, first row). This dipole moves around the do-
ain, i.e., it translates but does not rotate (thus, a horizontally
ligned dipole is never seen in the training set). The trained CNN
an accurately predict the Π term for out-of-sample ω̄ snapshots
third column for left, first row). However, for a ω̄ snapshot
hat is rotated by 90◦ clockwise (first column, second row), the
NN cannot accurately predict the correct Π term, which is also
otated by 90◦ clockwise (second column, second row). Note that
here was no horizontally aligned dipole like this in the training

et. The CNN, instead, predicts an incorrect Π term that is based
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Fig. 4. A dipole vortex shows the shortcoming of a physics-agnostic CNN in capturing the rotational equivariance of the SGS term (third column). The physics-agnostic
NN regards the rotational transform between the training and testing vortex field as a translational transform (the translation of the structure in the black dashed
ox). However, the CNN with DA or GCNN can capture this rotational equivariance correctly (fourth and fifth columns). The symbol 90 means rotation by 90◦
lockwise and ⇓ means translation.
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n separate translations of the two parts of the vertically aligned
ipole (third column, second row).2
The implication of this example is that if the training set only

nvolves limited flow configurations (i.e., small-data regime) such
s only those from the first row, then the CNN can be quite
naccurate for a testing set involving new configurations such
s those in the second row. In the much more complicated 2D-
IT flow, there are various complex flow configurations. In a big
raining set, it is more likely that these different configurations
ould be present and the CNN learns their corresponding Π
erms and the associated transformations; however, this is less
ikely in a small training set. The SGS term Π is known to
e equivariant to translation and rotation, i.e., if the flow state
ariables are translated or rotated, Π should also be translated
r rotated to the same degree [2]. While translation equivariance
s already achieved in a regular CNN by weight sharing [102], ro-
ational equivariance is not guaranteed. Recent studies show that
otational equivariance can actually be critical in data-driven SGS
odeling [33,74,77,81]. To capture the rotational equivariance

n the small-data regime, we propose two approaches: (1) DA,
y including 3 additional rotated (by 90◦, 180◦, and 270◦) coun-
erparts of each original FDNS snapshot in the training set [81]
nd (2) by using a GCNN architecture, which enforces rotational
quivariance by construction [102,103].
The GCNN uses group convolutions, which increases the de-

ree of weight sharing by transforming and reorienting the fil-
ers such that the feature maps in GCNN are equivariant un-
er imposed symmetry transformations, e.g., rotation and re-
lection [104]. In our work, the group convolutional filters are
riented at 0◦, 90◦, 180◦, and 270◦ such that the feature map and
he output (ΠGCNN) are rotationally equivariant with respect to
he inputs (ψ̄ and ω̄), i.e., Eq. (15) in Appendix A.

In addition to the structural modeling approaches mentioned
bove that achieve rotational equivariance (still with the MSE loss
unction, Eq. (8)), we can also modify the loss function to combine
tructural and functional modeling approaches to enhance the
erformance of CNN in the small-data regime. For example, in
D turbulence, the SGS enstrophy transfer is critical in main-
aining the accuracy and stability of LES [26,45,105]. Therefore,

2 The CNN basically predicts that because the red blob of the dipole is now
o the left of the blue blob, the part of the Π term corresponding to the red
lob in the first row now should be to the right of the part corresponding to
he blue blob (see the black box in the third column).
7

apturing the correct SGS enstrophy transfer ⟨ωΠ⟩ in a CNN
an be important for its performance. The a priori analysis in
ig. 3 already showed that the error in capturing the global SGS
nstrophy transfer ϵ is small in the big-data regime, but can be
arge in the small-data regime. Here we propose to add a penalty
erm to the loss function that acts as regularization, enforcing
as a soft constraint) the global SGS enstrophy transfer. A pre-
ious study has used similar constraints on energy conservation,
erived from the fact that advection terms do not produce or
estroy energy [73]. Our global enstrophy transfer constraint is
imilar in implementation but it is derived directly from the
iltered enstrophy equation (see Appendix B), and is used given
he importance of inter-scale enstrophy transfer in geophysical
urbulence and the fact that here we compute , the forcing on the
orticity equation. This physics-constrained loss function consists
f the MSE plus the global SGS enstrophy transfer error:

oss =
1− β
ntr

ntr∑
i=1

∥ΠCNN
i −Π FDNS

i ∥
2
2

+
β

ntr

ntr∑
i=1

|⟨ωiΠ
CNN
i ⟩ − ⟨ωiΠ

FDNS
i ⟩|, (11)

here β ∈ [0, 1] is an adjustable hyperparameter. We empirically
ind β = 0.5 to be optimal in minimizing the relative total
nstrophy transfer error (ϵ) without significantly affecting c. This
hysics-constrained loss function (Eq. (11)) synergically combines
he structural and functional modeling approaches. The com-
utational efficiency during the training process of the various
ethods are included in Appendix D.

. Results

.1. A priori analysis

A priori analysis is performed using the following metrics:
orrelation coefficients (c), global enstrophy transfer error (ϵ),
nd scale-dependent enstrophy and energy transfers (TZ and TE ,
s defined later in this section). Fig. 5 shows the bar plots of c ,
T<0, cT>0, and ϵ for 3 representative cases (1, 3, and 4). In the
mall-data regime (ntr = 50), the use of DA or GCNN increases
he correlation coefficients c , cT<0, and cT>0; the increases are
argest for cT>0, whose low values could lead to instabilities in
posteriori LES, as discussed earlier. The use of DA or GCNN also
ecreases the relative total enstrophy transfer error ϵ, particularly
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Fig. 5. A priori analysis in terms of correlation coefficients c , cT>0 , and cT>0 , and the relative enstrophy transfer error ϵ. It is shown that EnsCon does not improve
he structural modeling metric c but significantly reduces the functional modeling error, ϵ. DA and GCNN enhance the structural modeling performance and also
reduce ϵ. The superscripted number denotes the ntr in the training dataset with cin < 0.75 as in Fig. 3. The error bars denote plus and minus one standard deviation
(the error bars on ϵ are small and not shown for the sake of clarify).
for Case 1. One point to highlight here is that DA can achieve the
same, and in some cases even better, a priori accuracy compared
to GCNN, while the network architecture is much simpler in
DA, which builds equivariance simply in the training data. The
EnsCon does not improve the correlation coefficient c (because
it only adds a functional modeling component), but as expected,
it decreases ϵ, which as shown later improves the a posteriori
LES. To examine a combined approach, we build an enstrophy-
constrained GCNN (GCNN-EnsCon),3 which performs somewhere
in between GCNN and EnsCon: GCNN-EnsCon has a higher c than
EnsCon but lower than GCNN, and GCNN-EnsCon has higher ϵ
than EnsCon but lower than GCNN. As shown later, the LES with
GCNN-EnsCon has the best a posteriori performance among all
tested models.

To summarize Fig. 5, the physics-constrained CNNs trained
on small data (ntr = 50) outperform the physics-agnostic CNN
trained on small data, but none could outperform the physics-
agnostic CNN trained on 40 times more data (ntr = 2000) in these
a priori tests. However, we emphasize that 40 is a substantial
factor in terms of the amount of high-fidelity data. This figure
also shows that adding physics constraints to the CNN trained
in the big-data regime (ntr = 2000) does not necessarily lead
o any improvement over CNN2000, suggesting that these physics
onstraints could be learnt by a physics-agnostic CNN from the
ata given enough training samples. More a priori analyses in
erms of c and ϵ are included in Appendix C to demonstrate the
dependence on ntr .

To further assess the performance of the closures computed
using physics-constrained CNNs trained in the small-data regime,
we also examine the scale-dependent enstrophy and energy
transfers (TZ and TE) defined as: [91,106]

TZ (k) = R(−Π̂∗

k
ˆ̄ωk), (12)

E(k) = R(−Π̂∗

k
ˆ̄ψk). (13)

ere, R(·) means the ‘‘real part of’’, ˆ(·) denotes Fourier transform,
and the asterisks denote complex conjugate. The scale-dependent

3 Here, we present the results from GCNN-EnsCon since it is not only a
ombination of structural and functional modeling (in terms of LES physics [3])
ut also a combination of a hard constraint (built into the architecture) and a
oft constraint (incorporated in the loss function) in terms of deep learning
ethodology. We have found that the DA-EnsCon leads to similar a priori
erformance (not shown).
8

enstrophy/energy transfer is positive for enstrophy/energy
backscatter (enstrophy/energy moving from subgrid scales to
resolved scales) and negative for enstrophy/energy forward trans-
fer (enstrophy/energy moving from resolved scales to subgrid
scales) [106]. Note that backscatter and forward transfer here
are inter-scale transfers by the SGS term (Π), and are different
concepts from inverse and forward cascades (discussed earlier in
Section 3.2).

Fig. 6 shows the power spectra of |Π̂(k)|
2
, TZ , and TE from

FDNS and different CNNs, providing further evidence that the in-
corporating physics constraints improves the a priori performance
of the data-driven closures. For Case 1 (first row), the |Π̂(k)|

2

is better predicted by DA and GCNN at the high wavenumbers.
The scale-dependent enstrophy forward transfer (TZ < 0 in
Fig. 6(b)) is underpredicted by CNN, and the deviation from FDNS
is corrected by DA, GCNN, EnsCon, and GCNN-EnsCon. For Case
5 (second row), however, where the inverse energy cascade is
important (see Section 3.2), the gain from the physics-constrained
CNNs (DA, GCNN, EnsCon, and GCNN-EnsCon) can be seen in
the scale-dependent energy transfer (TE in Fig. 6(f)), where the
physics-agnostic CNN incorrectly predicts a portion (k < 4) of
energy backscatter (TE > 0) to be forward energy transfer (TE <
0).

5.2. A posteriori analysis

Figs. 7–9 show the Ê(k) spectra of Cases 1–5 . In general,
the TKE spectrum from LES with the physics-agnostic CNN (de-
noted by CNN50) matches the one from FDNS at low wavenum-
bers (large-scale structures) but severely over-predicts the TKE at
high wavenumbers (small-scale structures). For example, CNN50

starts to deviate from FDNS at k ≈ 20 for Cases 1, 3, and 4
as shown in Fig. 7 (left) and Fig. 8. This over-prediction can
lead to unphysical and unstable numerical results. For example,
the vorticity field of LES with CNN50 exhibits extensive noisy
(i.e., very high-wavenumber) structures in several simulations
(not shown). All LES runs with physics-constrained CNNs (DA50,
GCNN50, EnsCon50, and GCNN-EnsCon50) outperform the LES with
CNN50. In particular, for Cases 2 (Fig. 7 (right)) and 3 (Fig. 8 (left)),
the LES runs with DA50, GCNN50, EnsCon50, and GCNN-EnsCon50

produce similar TKE spectra which are consistently better than
that of the LES with CNN50. For Cases 1 (Fig. 7 (left)) and 4
(Fig. 8 (right)), however, incorporating rotational equivariance
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Fig. 6. A priori analysis in terms of scale-dependent power spectra |Π̂ (k)|
2
, and scale-dependent enstrophy and energy transfers TZ and TE for two representative

ases (1 and 5). The inertial part of the |Π̂ (k)|
2
spectrum has a slope of 2.46, consistent with previous studies [106,107]. (a)–(c): In Case 1 where the enstrophy

irect cascade is important (as discussed in Section 3.2), CNN50 does not capture the power spectra correctly at high wavenumbers, and the enstrophy forward
ransfer (TZ < 0) is under-predicted. (d)–(f): In Case 5 where the energy inverse cascade is important (see Section 3.2), the prediction discrepancy occurs at the low
avenumbers of the power spectra, and at the backscattering part of the energy transfer (TE > 0). In general, the proposed physics-constrained CNNs (DA, GCNN,
nsCon, and GCNN-EnsCon) reduce the prediction error in both structural (|Π̂ (k)|

2
) and functional (TZ and TE ) modelings metrics.
Fig. 7. The TKE spectra Ê(k) of Cases 1 and 2 from a posteriori LES run. Results are from long-term LES integrations (2 × 105∆tLES or 2 × 106∆tDNS). The Ê(k) is
alculated from 100 randomly chosen snapshots and then averaged. The inset in Case 2 magnifies the tails of the Ê(k) spectra for better visualization. In general, the
hysics-constrained CNNs (DA50 , GCNN50 , EnsCon50 , or GCNN-EnsCon50) improve the a posteriori performance of LES compared to the LES with the physics-agnostic
NN50: The spectra from the LES with physics-constrained CNNs better match the FDNS spectra especially at the tails (high-wavenumber structures). In particular,
he spectra from the LES with GCNN-EnsCon50 have the best match with the FDNS spectra especially at the high wavenumbers. The improvement is more prominent
or the coarser-grid LES (Case 1, NLES = 64, compared to Case 2, NLES = 128).
P
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S

through DA, GCNN, or GCNN-EnsCon) leads to better a posteriori
erformances than incorporating the global enstrophy constraint
lone (EnsCon) in terms of matching the FDNS spectra. Overall,
he LES with GCNN-EnsCon50 has the best performance in these
cases, showing the advantage of combining different types of
hysics constraints in the small-data regime.
In Case 5, the gain from the physics constraints is less obvious

rom the TKE spectra, although a slight improvement at the tails
an still be observed (Fig. 9 (left)). In this case, the PDF of vorticity
Fig. 9 (right)) better reveals the gain, where LES with CNN50

redicts spuriously large vorticity extremes due to the excessive
igh-wavenumber structures in the vorticity field. The physics-
onstrained CNNs (DA50, GCNN50, EnsCon50, and GCNN-EnsCon50)
esult in a stable and more accurate LES as the TKE spectrum and
 w

9

DF of vorticity better match those of the FDNS. The effects of
he enstrophy constraints can further be observed in the time
volution of the enstrophy and total kinetic energy (see Fig. 10).
NN50 predicts spuriously large enstrophy and total energy over
ime. GCNN50 also exhibits a slight increase in the total energy but
hows an improvement in performance compared to CNN50. DA50

nd the enstrophy-constrained CNNs (EnsCon50, GCNN-EnsCon50,
A-EnsCon50) all result in evolutions close to that of the DNS.

. Summary and discussion

The objective of this paper is to learn CNN-based non-local
GS closures from filtered DNS data for stable and accurate LES,
ith a focus on the small-data regime, i.e., when the available DNS
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Fig. 8. Same as Fig. 7 but for Cases 3 and 4. Similar to the finding of Fig. 7, the physics-constrained CNNs (DA50 , GCNN50 , EnsCon50 , or GCNN-EnsCon50) improve the
posteriori performance of LES compared to the LES with the physics-agnostic CNN50 . For Case 3, the improvement can only be observed at the highest wavenumber.
or Case 4, however, incorporating the rotational equivariance (DA50 , GCNN50 , and GCNN-EnsCon50) leads to a more accurate LES than the enstrophy constraint alone
EnsCon50) alone. Also similar to the finding of Fig. 7, the spectra from the LES with GCNN-EnsCon50 have the best match with the FDNS spectra especially at the
igh wavenumbers.
Fig. 9. Same as Fig. 7 but showing (a) The TKE spectra Ê(k) and (b) probability density function (PDF) of ω for Case 5. Although, the physics-constrained CNNs (DA50 ,
CNN50 , EnsCon50 , or GCNN-EnsCon50) result in slightly improved LES in terms of the TKE spectrum, the gain from the physical constraints can be observed more
learly in the PDF of vorticity where the LES with CNN50 over-predicts the extreme values (tails of the PDF).
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raining set is small. We demonstrate that incorporating physics
onstraints into the CNN using three methods can substantially
mprove the a priori (offline) and a posteriori (online) performance
f the data-driven closure model in the small-data regime. While
hysics-constrained deep learning-based SGS modeling has been
ecently explored in a couple of studies [e.g., 73,77], a systematic
nalysis of the improvements in stability and accuracy, particu-
arly in the small-data regime, is still needed. This is the regime
ost relevant to many real-world applications in science and
ngineering.
In this paper, our contributions are: (1) illustrating the defi-

iency of physics-agnostic CNNs in the small-data regime through
nalyzing the rotational equivariance of the SGS term in a dipole;
2) demonstrating that the small- vs big-data regime depends
ot only on the number of training samples but also on their
nter-sample correlations; (3) identifying the reasons behind the
nstabilities/inaccuracies through analyzing the global inter-scale
nstrophy transfer in 2D turbulence; and (4) proposing three
hysics-constrained CNNs that achieve comparable a posteriori
erformances with only 1/40 of the big training data. We show
hat while with the big training set, even a physics-agnostic
10
NN yields long-term stable/accurate a posteriori performance,
ith the small training set, adding physics-constraints are es-
ential for stability/accuracy. To the best of our knowledge, this
s the first systematic analysis of the small-data regime and
hysics-constrained CNNs for LES modeling.
To summarize the results: We use 5 different forced 2D ho-

ogeneous isotropic turbulence (HIT) flows with various forcing
avenumbers, linear drag coefficients, and LES grid sizes as the
estbeds. First, we show in Section 3 that in the ‘‘big-data’’ regime
with ntr = 2000 weakly correlated training samples), the LES
ith physics-agnostic CNN is stable and accurate, and outper-

orms the LES with the physics-based DSMAG closure, particularly
s the data-driven closure captures backscattering well (see Fig. 2
nd Ref. [26]). Next, we show, using a priori (offline) and a
osteriori (online) tests, that the performance of the physics-
gnostic CNNs substantially deteriorate when they are trained
n the ‘‘small-data’’ regime: with ntr = 2000 highly correlated
amples or with ntr = 50 weakly correlated samples. This analysis
emonstrates that the small versus big data regime depends not
nly on the number of training samples but also on their inter
orrelations.
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Fig. 10. Time evolution of the enstrophy Z =
⟨ω2

⟩

2 and total energy E =
⟨ψω⟩

2 of Case 5, normalized by the LES initial condition, Z(0) and E(0), respectively.
xamining both Z(t) and E(t) shows that in the small-data regime, CNN50 leads to a gradual increase, indicating excessive noise in the vorticity field. GCNN50 , despite
ts improvement, also shows a slight increase in both Z(t) and E(t). All the other methods, especially those with enstrophy constraints, lead to Z(t)/Z(0) ≈ 1.0 and
(t)/E(0) ≈ 1.0, which is also the case for DNS, as the LES initial condition is already in the statistical equilibrium regime. DSMAG, due to its excessive diffusivity
nd lack of backscattering, leads to a significant decrease in both Z(t) and E(t). Here, the time series is scaled by the eddy-turnover time τ = 1/ωmax , where ωmax
s the maximum vorticity in DNS.
To improve the performance of CNNs trained in the small-
ata regime, in Section 4, we propose incorporating physics in
he CNNs through using 1) data augmentation (DA), 2) a group
quivariant CNN (GCNN), or an enstrophy-constrained loss func-
ion (EnsCon). The idea behind using DA and GCNN is to account
or the rotational equivariance of the SGS term. This is inspired
y a simple example of a vortex dipole, which shows that for
ever-seen-before samples, the physics-agnostic CNN can only
apture the translational equivariance, but not the rotational
quivariance, another important property of the SGS term. The
dea behind EnsCon is to combine structural and functional mod-
ling approaches through a regularized loss function. A priori
nd a posteriori tests show that all these physics-constrained
NNs outperform the physics-agnostic CNN in the small-data
egime (ntr = 50). GCNN, which uses an equivariance-preserving
architecture, improves the data-driven SGS closures. However, it
should be mentioned that DA, which simply builds equivariance
in the training samples and can be used with any architecture,
shows comparable or even in some cases, better performance
than GCNN. Also, note that a recent study suggested using an aug-
mented GCNN which preserves rotational equivariance by multi-
ples of 2π/m (m > 4), in addition to multiples of π/2, as in our
GCNN [77]. This can potentially further enhance the performance
of GCNN, though DA can also incorporate such equivariance in the
training samples as well.

Overall, GCNN+EnsCon, which combines these two main con-
straints, demonstrate the best a posteriori performance, showing
the advantage of adding physics constraints together. Note that
here we focus on rotational equivariance, which is a property of
the 2D turbulence test case. In other flows, other equivariance
properties might exist (e.g., reflection equivariance as in Rayleigh
Bénard convection), and they can be incorporated through DA
or GCNN as needed. These results show the major advantage
and potential of physics-constrained deep learning methods for
SGS modeling in the small-data regime, which is of substantial
importance for complex and high-Reynolds number flows, for
which the availability of high-fidelity (e.g., DNS) data could be
severely limited.
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Appendix A. Equivariance properties of the SGS term

According to the transformation properties of the Navier–
Stokes equations [2], the SGS term Π should satisfy:

Π(Tgω, Tgψ) = TgΠ(ω,ψ), (14)

where Tg represents a translational or rotational transformation.
ω and ψ are the vorticity and streamfunction, respectively (as
described in Section 2).

In the ML literature, ‘‘equivariance’’ means that transforming
an input (e.g., by translation or rotation, denoted by Tg ) and then
passing the transformed input through the learnt map (CNN in
our case) should give the same result as first mapping the input
and then transforming the output [102,104]:

ΠCNN(Tg ω̄, Tg ψ̄, θ ) = TgΠCNN(ω̄, ψ̄, θ ). (15)

Here, θ represents a group of learnable parameters of the net-
work. To preserve the translational and rotational equivariance
of Π (Eq. (14)), the network parameters θ should be learnt such

https://github.com/envfluids/2D-DDP
https://github.com/envfluids/2D-DDP
https://github.com/envfluids/2D-DDP
https://github.com/envfluids/2D-DDP
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hat the CNNs with rotational equivariance enhance the structural performance where the enstrophy constraint does not help. On the other hand, the enstrophy
onstraints (EnsCon and GCNN-EnsCon) reduce the enstrophy transfer error ϵ.
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hat Eq. (15) is satisfied. In turbulence modeling, ‘‘equivariance’’
may also be referred to as ‘‘symmetry’’ [2,80]. In this paper, we
use the term ‘‘equivariance’’, and use an equivariance-preserving
network (GCNN) or build this property into the training via DA.

Appendix B. The global enstrophy-transfer constraint

The equation for enstrophy transfer can be obtained by first
multiplying the filtered equation (Eq. (4a)) by ω:

ω
∂ω

∂t
+ωN (ω,ψ) = ω

1
Re

∇
2ω−ωf − rω2

+ωN (ω,ψ)− ωN (ω,ψ)  
ωΠ

.

(16)

Rearranging Eq. (16) gives:

1
2
∂ω2

∂t
+

1
2
N (ω2, ψ) =

1
Re

[
1
2
∇

2ω2
− (∇ω)2

]
−ωf − rω2

+ωΠ .

(17)

The evolution equation for domain-averaged enstrophy Z =

⟨
1
2ω

2
⟩ is then obtained by domain averaging Eq. (17) and invoking

the domain’s periodicity [108]:

dZ
= −

1
⟨(∇ω)2⟩ − ⟨ωf ⟩ − 2rZ + ⟨ωΠ⟩. (18)
dt Re t

12
Therefore, the domain-averaged enstrophy transfer due to the
SGS term is ⟨ωΠ⟩. In Eq. (11), we enforce ⟨ωΠ⟩ predicted by the
NN to be close to that of the FDNS as a domain-averaged (global)
oft constraint.

ppendix C. A priori analysis on data-size dependency

Fig. 11 shows the c for a variety of CNNs (CNN, GCNN, DA,
nsCon, and GCNN-EnsCon) trained with different number of
tr for Cases 1–5, and ϵ for Case 1. It can be observed that
he rotational equivariance constraint enhances the structural
erformance in terms of c but the enstrophy constraint does not
how improvement. For the global enstrophy-transfer error ϵ, the
nsCon and GCNN-EnsCon reduce the a priori loss.

ppendix D. Training cost

The normalized computational times of various CNNs for the
raining process are shown in Table 1. It can be seen that the
CNN and GCNN-EnsCon are the most costly approaches dur-
ng the training process, possibly due to the extra weights and
eights-sharing as well as the permutation processes. The DA

s precisely four times more expensive to train compared to
NN as DA’s training data set is expanded by a factor of 4. The
xtra global enstrophy transfer loss adds a minimal amount of
omputational time to the training. Note that during inference,
he computational costs of these methods are the same.
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Table 1
The computational time of the training process for ntr = 2000
normalized by the that of baseline CNN.
CNN GCNN DA EnsCon GCNN-EnsCon

1.00 5.58 4.00 1.07 5.75
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