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Abstract
Transfer learning (TL), which enables neural networks (NNs) to generalize out-of-distribution via targeted re-training, is becoming a 
powerful tool in scientific machine learning (ML) applications such as weather/climate prediction and turbulence modeling. Effective 
TL requires knowing (1) how to re-train NNs? and (2) what physics are learned during TL? Here, we present novel analyses and a 
framework addressing (1)–(2) for a broad range of multi-scale, nonlinear, dynamical systems. Our approach combines spectral (e.g. 
Fourier) analyses of such systems with spectral analyses of convolutional NNs, revealing physical connections between the systems 
and what the NN learns (a combination of low-, high-, band-pass filters and Gabor filters). Integrating these analyses, we introduce a 
general framework that identifies the best re-training procedure for a given problem based on physics and NN theory. As test case, we 
explain the physics of TL in subgrid-scale modeling of several setups of 2D turbulence. Furthermore, these analyses show that in 
these cases, the shallowest convolution layers are the best to re-train, which is consistent with our physics-guided framework but is 
against the common wisdom guiding TL in the ML literature. Our work provides a new avenue for optimal and explainable TL, and a 
step toward fully explainable NNs, for wide-ranging applications in science and engineering, such as climate change modeling.
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Significance Statement

The use of deep neural networks (NNs) in critical applications such as weather/climate prediction and turbulence modeling is growing 
rapidly. Transfer learning (TL) is a technique that enhances NNs’ capabilities, e.g. enabling them to extrapolate from one system to 
another. This is crucial in applications such as climate change prediction, where the system substantially evolves in time. For effective 
and reliable TL, we need to (a) understand physics that is learned in TL, and (b) have a framework guiding the TL procedure. Here, we 
present novel analysis techniques and a general framework for (a)–(b) applicable to a broad range of multi-scale, nonlinear dynamical 
systems. This is a major step toward developing interpretable and generalizable NNs for scientific machine learning.

Introduction
There are ever-growing efforts focused on using machine learning 
(ML), particularly the powerfully expressive deep neural networks 
(NNs), to improve simulations or predictions of nonlinear, multi- 
scale, high-dimensional systems. For example, in thermo-fluid 
sciences and in weather/climate modeling, a number of different 
approaches using NNs have shown significant promise for fully 
data-driven forecasting, subgrid-scale (SGS) closure modeling, 
and novel ways of solving partial differential equations (PDEs) 
[12, 3, 6, 11, 2, 1, 5, 10, 13, 4, 14, 7–9]. However, one major challenge 
facing such efforts is the inability of NNs, and more broadly ML 
techniques, to generalize out-of-distribution, i.e. to perform equal
ly well when tested on a dataset whose distribution (or some 
measure of its statistics) is different from the training set [16, 
15].a Some degree of such out-of-distribution generalization is 

essential for NNs to be practically useful in many applications. 

For instance, NN-based SGS closures (i.e. data-driven parameter
izations) should work accurately for a range of climates to be use

ful for global warming projections. If this were not the case, once 

some parameters (e.g. sea-surface temperature or forcing) 
change, the data-driven closures may lead to unstable or inaccur

ate simulations [11, 18, 17]. Studies have found a similar challenge 

arising across thermo-fluid applications [22, 19, 20, 23, 21].
Transfer learning (TL) provides a powerful and flexible frame

work for improving the out-of-distribution generalization of NNs, 

and has shown success in various ML applications [24, 25, 16]. 
Consider an NN that is already trained on a large-enough number 

of training samples (Mtr) from a base system and makes predictions

with sufficient out-of-sample accuracy. We hereafter refer to this 
network as a base NN (BNN). The goal of TL is to build a new NN 
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from a BNN that works with similar accuracy for a target system 
whose statistical properties could be different from those of the 
base system. For instance, this could be because of a change in 
physical properties (e.g. in the context of turbulence, an increase 
in Reynolds number, Re) or in external forcing (e.g. in the context 
of climate change, a higher radiative forcing due to increased 
greenhouse gases). We refer to this network as a TLNN. In TL, a 
(usually small) number of the layers of the BNN are re-trained, 
starting from their current weights, with a small number of re- 
training samples from the target system (e.g. Mtr/10 or Mtr/100 sam
ples). The TL procedure, if properly formulated (as discussed later), 
can produce a TLNN whose out-of-sample accuracy for the target 
system is comparable to that of the BNN, despite using only a small 
amount of re-training data from the target system.

In thermo-fluid sciences and weather/climate modeling, a few 
studies have reported such success with TL for SGS closure mod
eling and spatio-temporal forecasting [18, 28, 22, 21, 27, 29, 26]. For 
example, in data-driven closure modeling with a convolutional 
NN (CNN) for large-eddy simulation (LES) of decaying 2D turbu
lence, Guan et al. [21] showed stable and accurate a posteriori (on
line)b LES using only Mtr/100 re-training samples from a target 
system that had a 16 × higher Re number. Aside from enabling 
generalization for one system when parameters change, TL can 
also be used to effectively blend datasets of different quality and 
length for training, e.g. a large, high-fidelity training set from high- 
resolution simulations and a very small but higher-quality re- 
training set from observations/experiments or much higher- 
resolution simulations [5, 32, 31, 30]. Such an application of TL 
in blending large climate model outputs and small observational 
datasets has shown promising results in forecasting El Niño– 
Southern Oscillation and daily weather [5, 32, 33]. Even further, 
TL has been suggested as a way to improve the training of 
physics-informed NNs, a novel PDE-solving technique [35, 34].

In the TL procedure, there is one critical decision to make: 
Which layer(s) to re-train? This is an important question, consid
ering that the goal of TL is to find the best-performing TLNN given 
the constraint imposed by the limited availability of re-training 
samples from the target system. Finding the best layer(s) to re-train 
via trial-and-error can become intractable for deep NNs, given 
that hyperparameter tuning and a priori (offline) and a posteriori 
(online) tests would be needed for each trial (i.e. a combination 
of re-trained layers). So far, all of the aforementioned studies us
ing TL for turbulence or weather/climate modeling have followed 
the conventional wisdom from the ML community [16, 36, 37], 
which is to re-train the deepest, i.e. near the output, layers (or 
have re-trained all layers or most layers in an ad-hoc fashion). 
The idea here, mainly developed based on experiments and ana
lyses using static images and classification tasks, is that the shal
low layers learn general features of images while the deep layers 
learn features specific to the images in a given training set [38]. 
Thus, for effective TL to an out-of-distribution set of images, these 
deepest layers are the best to re-train [16]. Following this idea of 
re-training, the deepest layers has yielded good results in the 
aforementioned studies on turbulence and weather/climate mod
eling, e.g. to generalize to canonical flows with 10–16 times higher 
Re numbers [21]. However, given the increasing interest in using 
TL, its broad applications in these areas, and the need for effective 
TL in more complex systems, the best practices and the learned 
physics should be understood and readily accessible. 
Specifically, the question of the best layer(s) for re-training should 
be more deeply investigated for the types of data and networks 
relevant to turbulence and weather/climate modeling applica
tions. Here, we report on such an investigation for the first time.

In this paper, we use CNN-based non-local SGS closure modeling 
for LES of several setups of forced 2D turbulence as the test case. We 
first demonstrate the power of TL in enabling out-of-distribution 
generalization to 100 × higher Re numbers, and even more challen
ging target flows. We further show that here, against the conven
tional wisdom in the ML literature, the shallowest layers are the 
best to re-train. Next, we leverage the fundamentals of turbulence 
physics and recent theoretical advances in ML to 

1. explain what is learned during TL to a different turbulent 
flow, which is based around changes in the convolution ker
nels of the BNN after re-training to the TLNN, and these ker
nels’ physical interpretation,

2. explain why the shallowest layers, rather than the deepest 
ones, are the best to re-train in these setups,

3. introduce a general framework to guide TL of similar systems 
based on a number of analysis steps that could be performed 
before re-training any TLNN.

While we use the SGS modeling of canonical 2D turbulence as the 
test case, the methods used for (1)–(2) and the framework in (3) 
can be readily applied to any other TL applications in turbulence 
or weather/climate modeling. More broadly, this framework can 
be used for TL applications beyond SGS modeling and for any 
multi-scale, nonlinear, high-dimensional dynamical systems.

2D turbulence: DNS and LES
The dimensionless governing equations of 2D turbulence in a dou
bly periodic square domain are:

∂ω
∂t

+
∂ψ
∂y

∂ω
∂x

−
∂ψ
∂x

∂ω
∂y

􏽼�������􏽻􏽺�������􏽽
N (ω,ψ)

=
1
Re
∇2ω − mf cos (mf x) + nf cos (nf y)

􏽼�����������������􏽻􏽺�����������������􏽽
f (x,y)

−rω,

(1a) 

∇2ψ = −ω, (1b) 

where ψ is the stream-function, ω is the vorticity, and N (ω, ψ) is 
the advection term. r is the linear drag coefficient and f (x, y) is a 
time-independent external forcing at wavenumbers mf and nf. 
This system, with different combinations of f and r, is a fitting 
prototype for a variety of large-scale geophysical and environ
mental flows and has been widely used to test novel techniques 
including data-driven SGS closures [40, 21, 7, 41, 42, 39].

For direct numerical simulations (DNS), Eqs. 1a–1b are solved 
using a pseudo-spectral solver with high resolution (NDNS colloca
tion grid points in each direction), resolving all relevant spatio- 
temporal scales (see Materials and methods for the solver’s de
tails). Filtering Eqs. 1a–1b yields equations for LES (Eqs. 2–3). In 
the LES equations, an SGS term, Π =N (ω, ψ) −N (ω, ψ), arises and 
has to be explicitly represented in terms of the resolved flow 
(ω, ψ) via an SGS closure. Here, (·) denotes filtering and coarse- 
graining (see Materials and methods for details). The same 
pseudo-spectral solver, but with a lower spatio-temporal reso
lution (e.g. NLES = NDNS/8 and a 10 × larger time step), is used to 
solve the LES equations (2–3). While the LES solver is computa
tionally much cheaper, it requires an accurate closure for 
Π(ω, ψ), a long-standing challenge in every discipline of science 
and engineering dealing with turbulent flows.

Here, to build data-driven closures, we train CNNs on filtered 
and coarse-grained DNS (FDNS) datac: The input of the CNNs is 
(ψ̅, ω̅) and the output is Π (see Materials and methods for details). 
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By changing Re, r, mf, and nf, we have created six distinctly differ
ent flows, divided into three cases, each with a base and a target 
system (Table 1 and Materials and methods). We have shown in 
previous studies that for various setups of 2D turbulence, CNNs 
trained on large training sets, or on small training sets with 
physics-constraints incorporated, produce accurate and stable 
data-driven closures in a priori (offline) and a posteriori (online) 
tests [21, 39]. These CNN-based closures were found to accurately 
capture both diffusion and backscattering, and to outperform 
widely used physics-based SGS closures such as the 
Smagorinsky, dynamic Smagorinsky, and mixed models in both 
a priori and a posteriori tests. In this paper, we focus on TL and ad
dressing objectives (1)–(3) listed in the Introduction.

Closing the generalization gap using 
transfer learning
Before attempting to explain the physics of TL, we first show that 
TL enables our CNN-based SGS closures to effectively generalize 
between the base and target systems in each of the three cases. 
The first three rows of Fig. 1 demonstrate the differences in spatial 
scales between each pair of base and target systems. In Case 1, the 
base system is decaying turbulence while the target systems is 
forced turbulence. From the ω and Π snapshots, their spectra, 
and the kinetic energy (KE) spectra, it is clear that the two systems 
are different at both the large and small scales. As a results of 
these substantial differences across all scales, the LES of the tar
get system using a BNN trained on the base system (BNNbase) pro
duces a KE spectrum that does not agree with that of the target 
system’s FDNS (the truth). This indicates that the BNNbase fails 
to generalize here, leading to a generalization gap that is the dif
ference between the two KE spectra (most noticeable at wave
numbers, k, larger than 10). Note that comparing the KE spectra 
of FDNS and LES is the most common measure of the a posteriori 
(online) performance of SGS closures.

Similar failures of the BNNbase to generalize are seen for Cases 2 
and 3, leading to large generalization gaps in the KE spectra. In 
Case 2, the base system has Re = 103 and the target system has 
Re = 105. This 100 × increase in the Re number leads to the develop
ment of more small-scale features in the target system, and 
changes the spectrum of Π in both large and small scales. In 
Case 3, the forcing of the base system is at wavenumber mf = nf = 
25, while the target system’s forcing is at mf = nf = 4. This decrease 
in forcing wavenumbers results in more (less) large-scale (small- 
scale) structures in the resolved flow, as seen in the spectra of 
both ω̅ and KE. This change in forcing wavenumber also leads to 
more large-scale structures in Π without any noticeable change 
in its small-scale structures. In short, Cases 1–3 represent 6 fluid 
flow systems that are different in terms of both the physics that 

drive the differences and the spatial scales of the resolved and 
SGS components.

In all three cases, TL closes the out-of-distribution generalization 
gap: LES of the target system using a TLNN (re-trained with Mtr/10 
samples) produces a KE spectrum that matches that of the target 
system’s FDNS. For the LES of the target system, the TLNN not 
only significantly outperforms the BNNbase, but is almost as good 
as the BNN trained on Mtr samples from the target system, 
BNNtarget (see the insets in Fig. 1).

Impact of re-training layer(s) on accuracy
Fig. 1 shows the power of TL in closing the generalization gaps. 
These results also show that in contrast to the conventional wis
dom, the best layers to re-train are not the deepest, but rather, 
the shallowest ones. For each case, we have explored all possible 
combinations of 1, 2, and 3 hidden layers for re-training; i.e. 
each layer, each pair of layers, and each 3-layer combination. 
Based on the correlation coefficient of the Π terms from FDNS 
and TLNN, which is the most common metric for a priori (offline) 
tests, we have found that for Cases 2 and 3, re-training layer 2 
alone is enough to get the best performance. For Case 1, re- 
training layers 2 and 5 provides the best performance, although 
most of the gap can be closed by re-training layer 2 alone.

To better understand the effects of “re-training layer” selection 
in TL, Fig. 2 shows the offline and online performance of TLNNℓ as 
a function of an individual re-trained hidden layer ℓ. In Case 1, the 
offline performance of TLNNs substantially declines as deeper 
layers are used for re-training (top row). As a result, TL with deep
est layers is completely ineffective; for example, LES with TLNN10 

is as poor as LES with BNNbase, leaving a large generalization gap in 
the KE spectrum for k > 10 (bottom row). In contrast, LES with 
TLNN2 has a KE spectrum that closely matches that of the FDNS 
and only has a small generalization gap for k > 40 (as shown in 
Fig. 1, this gap is further closed when both layers 2 and 5 are re- 
trained). Similarly, in Case 3, the offline performance of TLNNs de
clines as ℓ increases. That said, in this case, TL with even the worst 
layer to re-train (ℓ = 10) is effective in closing the generalization 
gap in the online test. Still, LES with TLNN2 is slightly better 
than LES with TLNN10 (see the inset). In these two cases, there 
are substantial changes in the large scales of the inputs and out
puts between the base and target systems (see the spectra of ω̅ and 
Π in Fig. 1). The offline results show a clear deterioration of the 
performance when moving from shallow to deep layers, which 
is due to the inability of the deeper layers to learn about changes 
in large scales during TL, as shown later.

In Case 2, the offline performance of TL is not a monotonic 
function of ℓ, though ℓ = 2 is still the best layer to re-train (ℓ = 7 
is the worst), based on both offline and online results. The non- 
monotonicity emerges because changes between the base and 
target systems’ ω̅ and Π occur predominantly at smaller scales 
(see their spectra in Fig. 1), which deeper layers are also able to 
learn during TL. For this case, as in Case 1, there is a noticeable dif
ference in the online performance of the LES with TLNNs that use 
the best and worst performing re-trained layers.

The above analysis demonstrates that a poor selection of the 
re-training layer can lead to poor offline and/or online perform
ance of the TLNN. This analysis also shows that in all three cases, 
re-training the shallowest layers consistently yields the best- 
performing TLNNs. This is in contrast to the conventional wisdom 
of TL, which is predominantly built on studies on classification of 
static images, which often do not have a broad continuous spec
trum of spatial scales [16, 25, 43].

Table 1. Physical and numerical parameters for the six different 
systems, which are divided into three cases, each with a base and 
a target system

System Re mf nf r NDNS NLES

Base (Case 1) 3.2 × 104 0 0 0 2,048 128
Target (Case 1) 1 × 104 4 0 0.1 1,024 128
Base (Case 2) 1 × 103 4 0 0.1 512 128
Target (Case 2) 1 × 105 4 0 0.1 2,048 128
Base (Case 3) 2 × 104 25 25 0.1 1,024 128
Target (Case 3) 2 × 104 4 4 0.1 1,024 128

See Fig. 1 for snapshots and some of the statistical properties of these distinctly 
different flows.

Subel et al. | 3
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/2/3/pgad015/6998042 by R
ice U

niversity user on 06 N
ovem

ber 2023



A spectral approach to interpreting transfer 
learning
Failure of deep layers to learn changes in large 
scales during transfer learning
To understand why different re-training layers lead to different TL 
performance, next, we conduct a spectral analysis of the CNNs in 
this section and the next one. The mathematical representation of 
CNNs is discussed in Materials and methods. Explained briefly, in 
our CNNs, inputs u = (ω̅, ψ̅) are passed through 11 sequential con
volutional layers to predict outputs, Π (Fig. 3). The hidden layers 
each have 64 channels. The output of channel j of layer ℓ, called 
activation gj

ℓ, is computed using Eq. 4: 64 kernels perform convo
lution on gj

ℓ−1 of each of the 64 channels, j, and the outcome of 
these linear operations is sent through a ReLU nonlinear activa
tion function, σ. Fig. 3 shows examples of gj

ℓ, which are 128 × 128 
matrices (the size of the LES grid). Note that these 642 kernels in 

each hidden layer extract information from the activations 
through spatial convolution, and their weight matrices Wβ,j

ℓ ∈ 
R5×5 are the main parameters that are learned during the training 
of a CNN.

In the second row of Fig. 3, we compare the all-channels- 
averaged Fourier spectra of activations of the last hidden layer 
〈ĝj

10〉 from a fully trained BNNbase, TLNN2, and TLNN10 (〈 · 〉 repre
sents averaging over all channels and ̂·means Fourier transform). 
The spectrum of 〈ĝj

10〉 from TLNN2 differs from that of the BNNbase 

at most wavenumbers including the small wavenumbers. This in
dicates that re-training layer 2 can account for differences in the 
output (Π) from the base and target flows at all scales, including 
the large scales. In contrast, the spectra from TLNN10 are almost 
the same as those from BNNbase at all scales (Case 1) or at large 
scales k < 10 (Cases 2 and 3). This indicates that re-training layer 
10 cannot account for differences in the output from the base 
and target flows at large scales. Given that in all three cases there 

Fig. 1. Some comparisons between the base and target systems of the three cases (rows 1–3) and the ability of TL to close the generalization gaps in a 
posteriori (online) LES (row 4). Parameters of the six systems are listed in Table 1, and these cases are further described in Materials and methods. Each 
case consists of a base (left column) and a target (right column) system. The first and second rows show, respectively, the DNS snapshots of one of the 
inputs to the CNNs, ω, and the snapshots of the SGS terms, Π, the output of the CNNs (note that NLES = 128 for all systems). These rows visualize the 
substantial differences in the length scales dominating the base and target systems in each case. To further demonstrate these differences in spatial 
scales, using the entire training sets and solid blue lines for base (top of legend) and solid red lines (bottom of legend) for target systems, we show the 
angle-averaged spectra of ω̅ (left) and Π (right) in the third row, and the KE spectra of FDNS in the fourth row. In these panels, the horizontal axis is 
wavenumber k =

���������
k2

x + k2
y

􏽱
, where kx and ky are the wavenumbers in x and y directions. The fourth row also shows the out-of-sample accuracy of the 

NN-based closures: The KE spectra are from a posteriori LES of the target systems using SGS closures that are BNNs trained on Mtr samples from the base 
systems (BNNbase, dashed blue lines) or from the target systems (BNNtarget, dashed red lines), or from the TLNN (black lines) re-trained using Mtr/10 
samples (see Materials and methods for details of TL). In all three cases, there is a large generalization gap (difference between the dashed blue and solid 
red lines), particularly for k > 10. In each case, TL closes this gap (black and solid red lines almost overlap for all k). Note that for the TL here, layers 2 and 5 
are re-trained for Case 1, and layer 2 is re-trained for Cases 2 and 3 (see Section “Impact of re-training layer(s) on accuracy” and Fig. 2 for more 
discussions).
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are large-scale differences in the Π terms between the base and 
target flows (Fig. 1), this analysis explains why re-training layer 
10 (or other deep layers) leads to ineffective TL, while re-training 
layer 2 leads to the best TL performance.

To further understand what controls the spectra of gj
ℓ, we have 

examined Eq. 8, which is the analytically derived Fourier trans
form of Eq. 4. As discussed in Materials and methods, this analysis 
shows that the Fourier spectrum of gj

ℓ depends on the spectrum of 
ĝj

ℓ−1 ∈ C128×128, the spectra of the weight matrices 􏽥̂W
β,j
ℓ ∈ C128×128 

(and constant biases b̂j
ℓ ∈ R), as well as where linear activation 

hj
ℓ(x, y) > 0 (defined in Eq. 7). The latter is a result of the Fourier 

transform of the ReLU activation function, the only source of non
linearity in the calculation of gj

ℓ. In Fig. S1, we have compared the 
spectra of activations from layers 2 and 10 before and after apply
ing the ReLU activation function. From this, we find that in all 
three cases, linear changes due to updating the weights substan
tially alter the spectra of the activations, while nonlinear changes 
only play a significant role in Case 1. These results (and further 
discussions in Materials and methods) suggest that a deeper in
sight into TL might be obtained by examining the spectra of the 
weight matrices, 􏽥̂W

β,j
ℓ , and how they change from BNNbase to 

TLNN, as done next.

Spectral analysis of the kernels’ weights
Before investigating how TL changes the spectra of kernels’ 
weights, let us first look at the spectra from the BNNbase of the 
three cases. A close examination of | 􏽥̂W

β,j
ℓ | in different layers shows 

that the learned kernels are a combination of a number of known 
spectral filters. While visualizing all the 642 kernels in each layer is 
futile, we realize that the similarity across the spectra of many 

kernels allows us to meaningfully cluster them using the k-means 
algorithm. Fig. S2 presents the cluster centers (in Fourier space) 
for ℓ = 2 and 10 for each case. This figure shows that the learned 
kernels are a combination of coherent low-pass filters (row 1), 
high-pass filters (row 8), as well as band-pass and Gabor filters. 
It should be pointed out that learning Gabor filters by CNNs has 
been reported in the past for a number of applications such as 
text recognition [44]. Even more broadly, the emergence of such 
filters for learning multi-scale, oriented, localized features has 
been reported in the sparse coding and vision literature [45].

Since deep CNNs contain a very large number of parameters 
(O(106)), it is often intractable to isolate the effect of each convolu
tion kernel for either a BNN or TLNN. Moreover, investigating the 
learned convolution kernels in physical space (Wβ,j

ℓ ∈ R5×5) does 
not lead to any meaningful physical understanding. Above, we 
show that examining the kernels in the spectral space 
( 􏽥̂W

β,j
ℓ ∈ C

128×128) leads to physically interpretable insight into their 
role as spectral filters. Still, due to the large number of parameters 
and the impact of nonlinearities, it is currently challenging to 
understand the physics learned by the entire BNN. Fortunately, 
due to the over-parameterized nature of these deep CNNs, TL oc
curs in the lazy training regime [46]. In this regime, significant 
changes occur in only a small number of kernels, as shown below. 
This opens an avenue for explaining what is learned in TL through 
examining the spectra of the few kernels with the largest changes.

For each case, we quantify the change in each kernel by com
puting the Frobenius norm of the difference between 􏽥̂W

β,j
ℓ from 

the BNNbase and TLNNℓ for ℓ = 2 and 10. As demonstrated in Fig. 
S3, in each case and each layer, there are a few kernels with sub
stantial changes, much larger than the changes in the rest of the 
642 kernels. Fig. 4 shows the spectra of the four most-changed 

Fig. 2. Online and offline performance of TLNNs as a function of the individual re-trained layer. For each individual layer re-trained with Mtr/10 samples, 
the top row shows the most common measure of a priori (offline) accuracy of a SGS model: the correlation coefficient between Π from FDNS (truth) and 
from the TLNN. The vertical lines on the bar plots show uncertainty measured as the standard deviation calculated over 100 random samples from the 
testing set. The bottom row shows the KE spectra of the target systems’ FDNS and the KE spectra from a posteriori (online) LES with BNNbase or TLNNℓ, 
where ℓ indicates the re-trained layer. These KE spectra are calculated using five long integrations, each equivalent to 106ΔtDNS. Shading shows 
uncertainty, estimated as 25th–75th percentiles of standard error calculated from partitioning each of the 5 runs into 10 sub-intervals. For each case, the 
best (worst) individual layer to re-train is shown in red (blue) in both rows. The best- and worst-performing layers here are chosen based on the online 
performance, i.e. how closely the KE spectrum matches that of the FDNS. Note that in Fig. 1, both layers 2 and 5 are re-trained during TL for Case 1, leading 
to a better TLNN with LES’ KE spectrum matching that of the FDNS even at the highest wavenumbers. See Fig. S5 for the offline results of Case 3 with the 
base and target systems switched.
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kernels (due to TL) in layers 2 and 10 from BNNbase and TLNNℓ. We 
see that in all three cases, re-training layer 2 converts a few rela
tively inactive kernels into clear low-pass filters (one exception is 
the 4th most-changed kernel in Case 1, discussed later). In con
trast, re-training layer 10 turns inactive or complex filters into 
other complex (often less coherent) filters, though some of them 
can be identified as band- or high-pass filters. The two panels on 
the right further show that the kernels learned in TL act as their 
spectra suggest: the new low-pass filter learned from re-training 
layer 2 produces activation gj

2 that is different from that of the 
BNNbase (for the same input u) only in large scales, while the most- 
changed kernel from re-training layer 10 (a high-pass filter) produ
ces activation gj

10 that is different from that of the BNNbase mainly 
in the small scales.

We remind the reader of the earlier discussion in this section: TL 
needs to capture changes in large scales of the output Π between 
the base and target systems, and the inability of the re-trained layer 
10 to do so is the reason for the ineffectiveness of TLNN10. Based on 
the above analysis, we can now explain the reason of this ineffect
iveness (and the effectiveness of layer 2): layer 10 fails to learn new 
low-pass filters, which are essential for capturing changes in the 
large scales, especially at the end of the network right before the lin
ear output layer. In contrast, layer 2 is capable of learning new low- 
pass filters to capture these changes in the large scales of the base 

and target systems’ outputs. Admittedly, the nonlinearity and sub
sequent layers after ℓ = 2 could impact the outcome of a low-pass 
filter, but it is possible to separate out the impact of the nonlinear
ity. Fig. 4 and Fig. S1 show the impact of the ReLU nonlinearity by 
comparing the spectrum of the activation before and after ReLU 
is applied. In Case 1, where the ReLU function plays an important 
role in changing the activations’ spectra after TL, we find that in 
addition to low-pass filters, TLNN2 also learns more complex filters, 
such as the 4th most-changed kernel in Fig. 4, that impact the sign 
of the linear activations, hj

2.
The analyses presented so far provide answers to objectives 1-2 

from the Introduction. To address objective 3 (develop a general 
framework to guide TL), we need to understand why layer 10 can
not learn the filters needed for the TL in these cases while layer 2 
can. This question is investigated next by leveraging recently de
veloped ideas in theoretical ML.

Loss landscapes: sensitivity of kernels to 
perturbations and re-training data
So far, we have presented post-hoc analyses, investigating changes 
in the spectra of activations and weights, as well as the learned 
physics, after a BNNbase has been re-trained to obtain a TLNN. 
Here, we present a non-intrusive method for gaining insight into 

Fig. 3. The top row shows a schematic of the CNN architecture and its governing equations. Examples of activations gj
ℓ ∈ R128×128 of some of the layers ℓ 

and channels j are shown as red shading (with σ being the ReLU nonlinear function, the values of these activations are all positive). Note that training a 
CNN means learning the convolution kernels’ weight matrices Wβ,j

ℓ ∈ R5×5 and biases’ constant matrices bj
ℓ ∈ R128×128 (for hidden layers ℓ = 2…10, β ∈ {1, 

2…64} and j ∈ {1, 2…64}). See Materials and methods for a detailed discussion of the CNN and its mathematical representation. In the bottom row, the 
effects of re-training layer 2 versus layer 10 on the Fourier spectrum of the averaged activation of the last hidden layer (ℓ = 10) are compared (note that the 
output layer ℓ = 11 has a linear activation function). The averaging is done over all channels, denoted by 〈 · 〉. Shading shows uncertainty, estimated as 
25th–75th percentiles of the averaged activation spectra computed with 20 random input samples.

6 | PNAS Nexus, 2023, Vol. 2, No. 3

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/2/3/pgad015/6998042 by R

ice U
niversity user on 06 N

ovem
ber 2023

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad015#supplementary-data


which layers of a BNNbase are the best (or worst) to re-train for a 
given target system before performing any actual re-training. 
This analysis exploits the concept of “loss landscapes” [43, 47, 
48] and examines, for a given CNN input u, the sensitivity of the 
loss function L to perturbations of the weights (and biases) of 
the layer(s) to be re-trained. Training a deep CNN requires solving 
a high-dimensional non-convex optimization problem, for which 
the smoothness of the loss function can be a significant factor in 
the success of training. Previous studies [48, 43, 47, 49] show 
that even one- or two-dimensional approximations of the loss 
landscape can provide meaningful information about how easily 
a deep neural network, such as a CNN, can be trained. In this 
study, leveraging recent work in theoretical ML [43], we extend 
the application of loss landscape analysis to studying TL; see 
Materials and methods for more details and discussions about 
computing the loss landscapes.

Fig. 5 (rows 1 and 2) shows the loss landscape calculated for 
perturbations along two random directions in parameter space 

of shallow or deep layers for the BNNbase with data from the target 
system as the input. Fig. S4 presents the loss landscapes obtain us
ing a second method (based on perturbations along the eigenvec
tors of the Hessian of the loss). These loss landscapes provide 
insight to indicate if a layer is receptive to change when re-trained 
with new data during TL. Two important characteristics of these 
landscapes are their convexity and the magnitude. Notably, the 
landscapes in row 1 (re-training layer 2, or 2 and 5) are both 
smooth and of much lower magnitude than those in row 2 (deep 
layers). For Case 1, we show results for combinations of two layers 
as this yields better performance than re-training a single layer, 
and this also demonstrates that the method is robust beyond per
turbations of individual layers. This analysis indicates that these 
shallow BNNbase layers are easier to re-train for these target sys
tems’ data, and that the loss function will likely reach a better op
timum during TL. This loss landscape analysis is consistent with 
our previous findings of TLNN2’s ability (TLNN10’s inability) to per
form well in these TL tasks.

Fig. 4. The three left columns compare the Fourier spectra |W̃
β,j
ℓ | of the four convolution kernels that have changed the most between BNNbase and TLNN2 

(top row) and TLNN10 (bottom row). The change in each kernel is quantified using the Frobenius norm ‖F ( 􏽥̆W
β,j

ℓ ) − F ( 􏽥W
β,j
ℓ )‖F, where F indicates the Fourier 

transform (Eq. 5) and ̆· indicates that the weight matrix is from a TLNN (absence of ̆· in this figure means that the matrix is from a BNNbase). The two panels 
on the right show examples of how changes in one kernel of layer 2 and one kernel of layer 10 affect the activations’ spectra of layer 10 by comparing ĝj

10 
from BNNbase (solid blue) with that from the TLNNℓ (solid red). We also show the activations before the application of ReLU nonlinearity σ with dashed 
lines. Note that the inputs to the networks (u) are the same and from the target system. The top panel shows that the newly learned kernel in layer 2 
substantially changes the activation in low wavenumbers (k ≤ 20) without affecting the higher wavenumbers, as expected from a low-pass filter. Here, 
nonlinearity has little impact: the solid and dashed lines coincide. The bottom panel shows that the newly learned kernel in layer 10 only changes the 
activation at high wavenumbers and that in this case, the ReLU nonlinearity has a contribution.
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Additionally, Fig. 5 (bottom row) shows how quickly the loss de
creases as a function of the number of epochs during re-training 
layer 2, 6, or 10 of the BNNbase using the target system’s data. 
For all three cases, TLNN2 converges the fastest. This is a direct 
consequence of the structure of the loss landscapes shown in 
rows 1 and 2 of Fig. 5: landscapes obtained from perturbing layer 
2 are more favorable for convergence (an absence of pathological 
non-convexities) as compared to the landscapes obtained from 
perturbing layer 10.

As a final note, we point out that the concept of “spectral bias” 
[50, 51] from theoretical ML suggests that layer 2, which converges 
faster, is learning the large scales while the slow-converging layer 
10 is learning the small scales. This is consistent with the conclu
sions of our earlier analyses of the weights’ spectra.

Discussion
In Section ‘2D turbulence: DNS and LES’, we present a number of 
novel analysis steps, ranging from a) the most intrusive, computa
tionally expensive ones to gain insight into the learned physics, to 

b) non-intrusive, inexpensive analysis, which can effectively guide 
TL for any new problem. For (a), we examine the BNNs’ and TLNNs’ 
activations and weights (done after re-training), revealing that the 
newly learned kernels are meaningful spectral filters, consistent 
with the physics of the base and target systems and their difference 
in the spectral space. To the best of our knowledge, this is the first 
full interpretation of CNNs’ kernels in an application for turbulence 
or weather/climate modeling. For (b), we introduce a novel use of 
loss landscapes, shedding light on which layers are most receptive 
to learn the new filters in re-training.

These steps connect the spectral analysis of turbulent flowsd

and CNNs, and further connect them to the most recent advances 
in analyzing deep NNs. The above analyses show that the shallow
est layers are the best to re-train here, and shed light on the learn
ed physics and the inner workings of TL for these three test cases. 
Admittedly, some or all of these findings, in terms of learned phys
ics and best layer(s) to re-train, are likely specific to these three 
cases, our specific NN architecture, and the SGS modeling applica
tion. However, the analysis methods we introduce or employ are 
all general and can be used for any base-target systems, 

Fig. 5. The top two rows present the loss landscape L(δ1,δ2) computed from Eq. 9. In row 1, the weights and biases of layers 2 and 5 (Case 1) or 2 (Cases 2 and 
3) from the BNNbase are perturbed in two random directions by amplitudes δ1 and δ2; see Materials and methods for details. Similarly, in row 2, the deepest 
layers are perturbed. Row 3 shows the convergence of the training loss when individual shallow, middle, and deep layers are re-trained for TL. In all 
calculations, the inputs are from the target system.
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applications (SGS modeling, data-driven forecasting, or blending 
training sets), and most CNN architectures.e Therefore, putting 
all these analysis steps together, below we propose a general 
framework for guiding and explaining TL, which we expect to 
benefit a broad range of applications involving multi-scale non
linear dynamical systems.

The framework is shown schematically in Fig. 6. Assuming that 
we have a large number of training samples from the base system, 
an accurate BNNbase already trained on these samples, and a small 
number of re-training samples from the target system, the frame
work involves the following steps: 

1. Compare the spectra of the input and output variables from 
the base and target systems. The three cases studied here 
have shown that the change of spatial scales between the 
base and target systems, particularly in the output variables, 
significantly impacts which layers are optimal for re-training.

2. Compute the loss landscapes of the BNNbase with target sys
tems’ data as various combinations of layers are chosen for 
re-training. Re-training layer(s) with favorable landscapes 
(smooth and small magnitudes) should be the first choices 
for TL. We further suggest examining the properly clustered 
weights’ spectra of the BNNbase to see if they have clear inter
pretations as spectral filters.

3. Re-train a TLNN based on the outcome of Step 2. Examine the 
spectra of the activations from the re-trained layer(s) and the 
last hidden layer to see if the differences in the spatial scales 
identified in Step 1 are learned.

4. Examine the spectra of the most-changed kernels between 
BNNbase and TLNN. Investigate if the nature of the newly 
learned kernels (as spectral filters) is consistent with the out
come of Steps 1 and 3 in terms of spatial scales that need to be 
learned in TL.

Steps 1–2 are non-intrusive, inexpensive analyses that do not re
quire any re-training, and will effectively guide Step 3, replacing 
expensive and time-consuming trial-and-error with many combi
nations of re-training layers. Steps 3–4 provide an explanation for 
what is learned in TL and act to validate decisions made based on 
Steps 1–2.

There are a few points about this framework that need to be 
further clarified. In general, turbulent flows have universal behav
ior in their smallest scales [52, 53] and vary in large scales due to 
forcing and geometry. This might seem to suggest that TL will al
ways need to learn changes in large scales between a base and a 
target turbulent flow. This is not necessarily true, as even in 
Cases 1–2 here, in which the base and target flows are different 
in forcing and Re number, there are differences in small scales 
of Π too. Furthermore, in the broader applications of TL (e.g. in 
blending different datasets) and beyond just single-physics turbu
lent flows, there might be differences between the base and target 
systems at any scales. Step 1 is intended to identify these 
differences.

We also emphasize that currently there is no complete theoret
ical understanding of which layers of a CNN are better in learning 
what spatial scales. Our findings for Cases 1–3 and some other 
studies [43, 50] in the ML community suggest that the shallower 
layers are better in learning large scales. If further work confirms 
this behavior for a variety of systems and CNN architectures, then 
Steps 1–2 together would be able to even better guide TL in terms 
of the best layer(s) to re-train.

It should be noted that in more complex, an-isotropic, in- 
homogeneous systems (e.g. channel flows or ocean circulations), 
spectral analysis using other basis functions, such as Chebyshev 
or wavelets [54, 55], might be needed. Moreover, additional mod
ifications of the spectral analysis component of the framework 
might be needed for some types of NN architectures, e.g. those 

Fig. 6. Overview of the framework for guiding and explaining TL onto a new target system. The top row shows the steps of the TL process: acquiring a 
large amount of training data from the base system and a small amount from the target system, training a BNNbase using data from the base system, and 
re-training it using data from the target system to obtain a TLNN. On the bottom, we present the analyses involved in this framework, listed (left to right) 
in the order of when they should be used. The arrows indicate what is needed from each step of the TL process and the corresponding analyses. Here, the 
blue line represents data from the target system, the red line represents the trained BNNbase, and the orange line represents the re-trained TLNN.
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involving pooling layers, fully connected layers, or other activa
tion functions. Recent work in the ML literature on spectral ana
lysis of NNs, particularly on developing end-to-end analysis, 
could be leveraged in addressing these challenges [51, 56].

Aside from items (1)–(3) in the Introduction addressed in this 
study, another major question about TL is how much re-training 
data are needed to achieve a certain level of out-of-sample accur
acy for the target system. Currently, there is no theoretical frame
work to answer this question, particularly for data from 
dynamical systems such as turbulent flows or the climate system. 
However, a few recent developments in the ML literature for TL er
ror bounds of simple NNs (e.g. shallow or linear) could be lever
aged as the starting point [57–59], and combined with extensive 
empirical explorations, may provide some insight into this critical 
question.

Finally, we point out that a number of recent studies have pro
posed improving out-of-distribution generalization via incorpor
ating physics constraints into NNs (e.g. [60, 61]) or via data 
augmentation (e.g. [62, 63, 64]). The latter approach has shown 
promising results in image classification tasks, and could be po
tentially used in applications involving dynamical systems too. 
Incorporating physics has also shown promising results for specif
ic applications; however, such an approach requires the existence 
of a physical constraint that is universal (e.g. a scaling law), other
wise, it could potentially deteriorate the performance of the NN. 
However, the availability of such constraints are very limited. In 
contrast, TL provides a flexible framework that beyond improving 
out-of-distribution generalization, is also broadly useful to blend 
disparate datasets for training, an important application on its 
own. Note that the aforementioned approaches can be combined 
with TL to possibly reduce the amount of re-training data.

To summarize, here we have presented the first full explan
ation of the physics learned in TL for multi-scale, nonlinear dy
namical systems, and a novel general framework to guide and 
explain TL for such systems. This framework will benefit a broad 
range of applications in areas such as turbulence modeling and 
weather/climate prediction. Climate change modeling, which 
deals with an inherently non-stationary system and also involves 
combining various observational and model datasets, is an appli
cation that particularly needs TL, and can benefit from the frame
work proposed here.

Materials and methods
Numerical solvers for DNS and LES
We have performed DNS for all six systems used in this study (see 
Table 1 and below). In DNS, Eqs. 1a–1b are solved using a Fourier– 
Fourier pseudo-spectral solver with NDNS collocation grid points 
and second-order Adams-Bashforth and Crank-Nicolson time- 
integration schemes with time step ΔtDNS for the advection and 
viscous terms, respectively. See Guan et al. [21, 39] for more de
tails on the solvers and these simulations. For the base system 
in Case 1 (decaying 2D turbulence), following earlier studies [40, 
21], the flow is initialized randomly using a vorticity field (ωic) 
with a prescribed power spectrum. Snapshots of (ω, ψ) in this sys
tem are obtained from 50–200τ, where τ is the initial 
eddy-turn-over time: τ = 1/max (ωic). For the other five systems 
(forced 2D turbulence), once the randomly initialized flow reaches 
statistical equilibrium after a long-term spin-up, we take sequen
tial snapshots of (ω, ψ) that are 1000ΔtDNS apart, in order to reduce 
the correlation between samples. We use the filtered and coarse- 
grained DNS data, referred to as FDNS data (details below), for 

training the CNN-based data-driven closures for Π and for testing 
their a priori (offline) and a posteriori (online) performance.

For LES, we solve Eqs. 2–3 employing the same numerical solver 
used for DNS, but with coarser grid resolutions (NLES = 128 < NDNS) 
and larger time steps (ΔtLES = 10ΔtDNS). To represent Π, a 
CNN-based closure that is trained on FDNS data is coupled to 
the LES solver.

Filtering and coarse-graining: LES equations and 
FDNS data
Filtering Eqs. 1a–1b yields the governing equations for LES [39, 53, 
65]:

∂ω
∂t

+N (ω, ψ) =
1
Re
∇2ω − f − rω

+N (ω, ψ) −N (ω, ψ)
􏽼�����������􏽻􏽺�����������􏽽

Π

,
(2) 

∇2ψ = −ω. (3) 

In LES, only the large-scale structures (ψ and ω) are resolved using 
a coarser grid resolution (compared to DNS). The effects of the 
structures smaller than the grid spacing are included in the un
closed SGS term Π, which requires a closure in terms of the re
solved flow, (ψ, ω).

To obtain the FDNS data, we use the DNS snapshots of (ψ, ω), 
which are of size NDNS × NDNS, to compute snapshots of ψ, ω, and 
Π (defined in Eq. 2), where (·) represents filtering and coarse- 
graining. The latter is needed to compute these variables on the 
LES grid (size: NLES × NLES). Here, we use a Gaussian filter and 
then sharp spectral cutoff coarse-graining [21, 39]. For each sys
tem, the FDNS dataset is divided into completely independent 
training, validation, and testing sets [21, 39].

Cases 1–3: base and target systems
By changing Re, r, mf, and nf, we have created six distinct systems 
of 2D turbulence, which are grouped into three cases, each with a 
base and a target system (Table 1). Snapshots of ω and Π as well as 
the spectra of ω̅, Π, and KE of these systems are shown in Fig. 1 to 
demonstrate the rich variety of fluid flow characteristics among 
these systems, particularly between each case’s base and target 
systems. Case 1 involves TL from decaying to forced 2D turbu
lence. From the ω and Π snapshots as well as their spectra shown 
in Fig. 1, it is clear that the two systems are different at both the 
large and small scales. The significant differences across all scales 
make this case the most challenging one, and result in the largest 
generalization gap as discussed in the main text.

Case 2 involves TL between two forced 2D turbulence systems: 
the base system has Re = 103 and the target system has a 100 × 
higher Reynolds number (Re = 105), making this the largest ex
trapolation in Re using TL ever reported, to the best of our knowl
edge. The increase in Re adds more small-scale features in ω̅ (see 
the spectrum), and changes the spectrum of Π in both large and 
small scales. Case 3 involves decreasing the forcing wavenumbers 
of the system. Here, the base system has mf = nf = 25 while the tar
get system has mf = nf = 4. This decrease in forcing wavenumbers, 
as expected, results in more (less) large-scale (small-scale) struc
tures in the resolved flow; see the spectra of ω̅ and KE. 
Furthermore, more large-scale structures appear in Π without 
any noticeable change in the small-scale structures (see the 
power spectrum of Π).
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Convolutional neural network and transfer 
learning
Building on the success of our earlier work [21, 39], to develop non- 
local data-driven SGS closure for each system, we train a CNN 
with input u = (ω̅(x, y), ψ̅(x, y)) to predict Π(x, y) (output). These 
CNNs are built entirely from 11 sequential convolution layers, 9 
of which are hidden layers each with 642 kernels of size 5 × 5 
(note that these numbers are hyperparameters that have been op
timized for this application to avoid underfitting or overfitting [21, 
39]). The outputs of a convolutional layer are called activations. 
For channel j, of layer ℓ, the equation for activation gj

ℓ ∈ 
RNLES×NLES is:

gj
ℓ(u) = σ

􏽘

β
(Wβ,j

ℓ ⊛ gβ
ℓ−1(u)) + bj

ℓ

􏼠 􏼡

. (4) 

Note that NLES = 128 for all systems (Table 1). Here, ⊛ represents 
spatial convolution and σ( · ) = max(0, · ) is the ReLU activation 
function (which is not present for the linear output layer, ℓ = 11). 

Wβ,j
ℓ ∈ R5×5 is the weight matrix of a convolution kernel, and bj

ℓ ∈ 
R128×128 is the regression bias, a constant matrix. We have β ∈ {1, 
2…64} and j ∈ {1, 2…64} for all layers with two exceptions: in the in
put layer (ℓ = 1) β ∈ {1, 2}, and in the output layer (ℓ = 11), j = 1, as 
the output is a single channel. The kernels’ weights and biases to
gether constitute the NN’s trainable parameters, which we col
lectively refer to as θ ∈ Rp. Note that gin = g0 = u and gout = g11 = Π.

A visualization of these networks as well as examples of activa
tions in the hidden layers are presented in Fig. 3. An important dis
tinction between these CNNs and traditional CNNs is that these 
do not include any max-pooling layers or dense layers such that 
they maintain the dimension of the input through all layers and 
channels in the network. Our earlier work and a few other studies 
have found such an architecture to lead to more accurate CNNs 
for SGS closures [21, 39, 66].

We train these CNNs using the Adam optimizer and a 
mean-squared-error (MSE) loss function L. For BNNs, all their 
trainable parameters θ are randomly initialized, and each CNN is 
trained for 100 epochs using Mtr = 2000 samples from the training 
set of the base system.f Note that even when we use Mtr samples 
from the training set of the target system to train a CNN, we still 
call it a “BNN” for convenience (e.g. in Fig. 1). Subscripts on 
BNNs clearly indicate which system provided the Mtr training 
samples.

To appropriately train and evaluate the networks, for each of 
the six systems, we have created three independent training, val
idation, and testing sets from a long DNS dataset. To ensure inde
pendence, these subsets are chosen far apart and pattern 
correlations between u and between Π of samples are computed 
and found negligible. The training set is reserved solely for the ac
tual training procedure, and the only metric calculated with this 
set is the MSE loss (during training) to assess the convergence of 
the network parameters, θ. The validation set is used to assess 
both convergence and overfitting during training: Alongside the 
training set, we compute the MSE loss on the validation set after 
each epoch to ensure that the network’s performance is continu
ing to improve out-of-sample rather than overfitting. The testing 
set is used to evaluate the CNNs’ a priori performance reported 
in Figs. 2–4. Furthermore, note that the FDNS data used in Figs. 
1 and 2 are from the testing set of the corresponding system. No 
data from LES have been used during the training of any CNN.

To perform TL from a BNN, the weights and biases of the TLNN 
are initialized with those of the BNN. The layers to re-train are 

selected (trainable layers) and the remaining weights/biases are 
frozen (non-trainable layers). The TLNN is then re-trained using 
standard backpropagation and the same MSE loss function with 
Mtr/10 samples from the training set of the target system, updating 
the weights and biases of the trainable layers. The re-training con
tinues until the loss plateaus (for TL, this happens at around 50 
epochs), which helps avoid overfitting. Note that based on offline 
metrics such as the correlation coefficients for Π, we have not 
found any need for adjusting the hyperparameters such as the 
learning rate or adding additional layers between training a BNN 
and TLNN.

Spectral analysis of CNNs
The Fourier transform operator F is defined as

·̂ = F (·), F : R128×128 ↦ → C
128×128

. (5) 

To represent convolution as an operation in the spectral space, we 

first note that we can extend each kernel Wβ,j
ℓ ∈ R5×5 to the full do

main of the input by padding it with zeros, as done in practice for 

faster training [67], to obtain W̃
β,j
ℓ ∈ R128×128. Then, the convolution 

theorem yields

Wβ,j
ℓ ⊛ gβ

ℓ−1 = F−1( 􏽥̂W
β,j
ℓ ⊙ ĝβ

ℓ−1), (6) 

where ⊙ is element-wise multiplication.
Next, we define linear activation hj

ℓ, which contains all the lin
ear operations in Eq. 4:

hj
ℓ =

􏽘

β
(Wβ,j

ℓ ⊛ gβ
ℓ−1) + bj

ℓ. (7) 

Despite the nonlinearity of Eq. 4 due to the ReLU function, its 
Fourier transform can be written analytically. Using Eqs. 6 and 7
and the linearity of the Fourier transform we obtain

ĝj
ℓ =

􏽘

α
(e−i(kxxα+kyyα)) ⊛ ĥj

ℓ

=
􏽘

α
(e−i(kxxα+kyyα)) ⊛

􏽘

β
( 􏽥̂W

β,j
ℓ ⊙ ĝβ

ℓ−1) + b̂j
ℓ

􏼨 􏼩

,
(8) 

where (xα, yα) ∈ {(x, y) |hj
ℓ(x, y) > 0} and i =

����
−1

√
. The term with sum 

over α is a result of the ReLU function and involves summing over 

grid points where hj
ℓ > 0 (note that this term is the Fourier trans

form of the Heaviside function). Also note that bj
ℓ is a constant ma

trix, therefore, b̂j
ℓ is only non-zero at kx = ky = 0 (and is real). See [50, 

51, 56] for more information and discussion about Fourier analysis 
of NNs.

Equation 8 shows that the spectrum of ĝj
ℓ depends on the spec

trum of ĝj
ℓ−1, the spectra of the weights 􏽥̂W

β,j

ℓ (and constant biases 

b̂j
ℓ), and where hj

ℓ > 0 in the physical (grid) space. With TL, the 
weights and biases are updated, which changes their spectra as 
well as where hj

ℓ > 0. Understanding the full effects of all these 
changes on ĝj

ℓ is challenging. In Fig. S1, we have examined the 
spectra of activations of layers 2 and 10 from BNNbase, TLNN2, 
and TLNN10 before and after applying the ReLU activation func
tion (i.e., compare the spectra of ĥj

ℓ and ĝj
ℓ). This analysis shows 

that in all three cases, linear changes due to updating ĥj
ℓ substan

tially alter the spectra of the activations while nonlinear changes 
only play a significant role in Case 1. These results and Eq. 8 sug
gest that a deeper insight into TL might be obtained by investigat
ing 􏽥̂W

β,j
ℓ and how they change from BNNbase to TLNN.
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Calculating the loss landscape
Let us represent a CNN with input u and trainable parameters θ as 
C(u, θ). The MSE loss function of this CNN is a function of the out
put: L(C). The concept of loss landscape (of L) has received much 
attention in recent years and is widely used to study the training 
phase of NNs [48, 47, 49]. Below, leveraging recent work in theoret
ical ML [43], we compute the loss landscape to study the re-training 
phase of NNs in order to gain insight into TL.

Suppose that θℓ ∈ R p are all the trainable parameters of a 
BNNbase from all layers ℓ. We define θ∗L ∈ R p∗ as the subset of pa
rameters that are updated in TL, i.e. the weights and biases of 
the re-trained layer(s), L. Next, we follow two methodologies for 
constructing loss landscapes. In the first method, we follow Li 
et al. [48] and select two random direction vectors v1, v2 ∈ R p∗

and normalize them with the 2-norm of θ*. In the second method, 
we follow Yao et al. [68] and find the eigenvectors of the Hessian of 
L(C) computed with respect to θ*L. The first two eigenvectors with 
largest positive eigenvalues are chosen as v1 and v2.

Next, in both methods, we perturb θ* along directions v1 and v2 

by amplitudes δ1 and δ2, respectively (δ1, δ2 ∈ [ − 2, 2] for method 1, 
[ − 1, 1] for method 2). Finally, we compute

L(δ1,δ2) = L(C(utarget, [θℓ≠L θ∗L + δ1v1 + δ2v2])) (9) 

to generate a 2D approximation of the loss landscape and plot the 
surface as a function of δ1 and δ2. Note that the input u is from the 
target system. Loss landscapes from the first (second) method are 
shown in Fig. 5 (Fig. S4).

In the context of TL, the shape of the loss landscape indicates 
how receptive the re-training layers, L, are to change for the new 
re-training samples from the target system. In practice, a shallow, 
convex landscape suggests that the network is in a favorable region 
of parameter space, and gradient descent will easily converge. 
Deviations from this in the form of pathological non-convexities 
or extremely large loss magnitudes can cause problems during 
training and prevent the network from converging to a useful op
timum. See Li et al. [48] and Krishnapriyan et al. [47] for further 
discussions on the interpretation of loss landscapes for the com
mon application where, in Eq. 9, u is from the base system and 
θ* represent parameters still changing during the epochs of 
training.

Notes

a. Throughout this paper, we use “out-of-distribution” to indicate 
cases in which the training and testing datasets have different 

distributions. Furthermore, we use “out-of-sample” for accuracy 
computed using samples from a testing set that is completely in
dependent from the training set, but has the same distribution.

b. Following the turbulence and climate literature [21, 65, 69], we 
use the terms “a posteriori” and “online” to refer to experiments/ 
tests involving the data-driven closure coupled to the LES numer
ical solver. “a priori” and “offline” refer to experiments/tests in
volving the closure (e.g. the trained CNN) alone.

c. Whether the training FDNS data are from the base or target sys
tem or both is clearly explained for each analysis.

d. Spectral analysis has been the cornerstone of understanding tur
bulence physics since the pioneering work of Kolmogorov [52].

e. The weights’ spectra analysis might have to be further modified 
for networks that involve dimension changes, e.g. via pooling 
layers. See the Discussions.

f. While Mtr = 2000 might seem like a small number of training sam
ples, we are in fact here using a big training set, because these 

samples are chosen far apart to be weakly correlated, requiring 
a long DNS dataset (two million ΔtDNS). See Guan et al. [39] for fur
ther discussions about the big versus small training sets.
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