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Abstract

Transfer learning (TL), which enables neural networks (NNs) to generalize out-of-distribution via targeted re-training, is becoming a
powerful tool in scientific machine learning (ML) applications such as weather/climate prediction and turbulence modeling. Effective
TL requires knowing (1) how to re-train NNs? and (2) what physics are learned during TL? Here, we present novel analyses and a
framework addressing (1)—(2) for a broad range of multi-scale, nonlinear, dynamical systems. Our approach combines spectral (e.g.
Fourier) analyses of such systems with spectral analyses of convolutional NNs, revealing physical connections between the systems
and what the NN learns (a combination of low-, high-, band-pass filters and Gabor filters). Integrating these analyses, we introduce a
general framework that identifies the best re-training procedure for a given problem based on physics and NN theory. As test case, we
explain the physics of TL in subgrid-scale modeling of several setups of 2D turbulence. Furthermore, these analyses show that in
these cases, the shallowest convolution layers are the best to re-train, which is consistent with our physics-guided framework but is
against the common wisdom guiding TL in the ML literature. Our work provides a new avenue for optimal and explainable TL, and a
step toward fully explainable NNs, for wide-ranging applications in science and engineering, such as climate change modeling.
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Significance Statement

The use of deep neural networks (NNs) in critical applications such as weather/climate prediction and turbulence modelingis growing
rapidly. Transfer learning (TL) is a technique that enhances NNs’ capabilities, e.g. enabling them to extrapolate from one system to
another. Thisis crucialin applications such as climate change prediction, where the system substantially evolves in time. For effective
and reliable TL, we need to (a) understand physics that is learned in TL, and (b) have a framework guiding the TL procedure. Here, we
present novel analysis techniques and a general framework for (a)-(b) applicable to a broad range of multi-scale, nonlinear dynamical
systems. This is a major step toward developing interpretable and generalizable NNs for scientific machine learning.

Introduction

There are ever-growing efforts focused on using machine learning
(ML), particularly the powerfully expressive deep neural networks
(NNs), to improve simulations or predictions of nonlinear, multi-
scale, high-dimensional systems. For example, in thermo-fluid
sciences and in weather/climate modeling, a number of different
approaches using NNs have shown significant promise for fully
data-driven forecasting, subgrid-scale (SGS) closure modeling,
and novel ways of solving partial differential equations (PDEs)
[12,3,6,11,2,1,5, 10, 13, 4, 14, 7-9]. However, one major challenge
facing such efforts is the inability of NNs, and more broadly ML
techniques, to generalize out-of-distribution, i.e. to perform equal-
ly well when tested on a dataset whose distribution (or some
measure of its statistics) is different from the training set [16,
15].2 Some degree of such out-of-distribution generalization is

essential for NNs to be practically useful in many applications.
For instance, NN-based SGS closures (i.e. data-driven parameter-
izations) should work accurately for a range of climates to be use-
ful for global warming projections. If this were not the case, once
some parameters (e.g. sea-surface temperature or forcing)
change, the data-driven closures may lead to unstable or inaccur-
ate simulations [11, 18, 17]. Studies have found a similar challenge
arising across thermo-fluid applications [22, 19, 20, 23, 21].
Transfer learning (TL) provides a powerful and flexible frame-
work for improving the out-of-distribution generalization of NNs,
and has shown success in various ML applications [24, 25, 16].
Consider an NN that is already trained on a large-enough number
of training samples (My,) from a base system and makes predictions
with sufficient out-of-sample accuracy. We hereafter refer to this
network as a base NN (BNN). The goal of TL is to build a new NN
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from a BNN that works with similar accuracy for a target system
whose statistical properties could be different from those of the
base system. For instance, this could be because of a change in
physical properties (e.g. in the context of turbulence, an increase
in Reynolds number, Re) or in external forcing (e.g. in the context
of climate change, a higher radiative forcing due to increased
greenhouse gases). We refer to this network as a TLNN. In TL, a
(usually small) number of the layers of the BNN are re-trained,
starting from their current weights, with a small number of re-
training samples from the target system (e.g. M,,/10 or M,,/100 sam-
ples). The TL procedure, if properly formulated (as discussed later),
can produce a TLNN whose out-of-sample accuracy for the target
system is comparable to that of the BNN, despite using only a small
amount of re-training data from the target system.

In thermo-fluid sciences and weather/climate modeling, a few
studies have reported such success with TL for SGS closure mod-
eling and spatio-temporal forecasting [18, 28, 22, 21, 27, 29, 26]. For
example, in data-driven closure modeling with a convolutional
NN (CNN) for large-eddy simulation (LES) of decaying 2D turbu-
lence, Guan et al. [21] showed stable and accurate a posteriori (on-
line)® LES using only M,/100 re-training samples from a target
system that had a 16 x higher Re number. Aside from enabling
generalization for one system when parameters change, TL can
also be used to effectively blend datasets of different quality and
length for training, e.g. a large, high-fidelity training set from high-
resolution simulations and a very small but higher-quality re-
training set from observations/experiments or much higher-
resolution simulations [5, 32, 31, 30]. Such an application of TL
in blending large climate model outputs and small observational
datasets has shown promising results in forecasting El Nifio—
Southern Oscillation and daily weather [5, 32, 33]. Even further,
TL has been suggested as a way to improve the training of
physics-informed NNs, a novel PDE-solving technique [35, 34].

In the TL procedure, there is one critical decision to make:
Which layer(s) to re-train? This is an important question, consid-
ering that the goal of TL is to find the best-performing TLNN given
the constraint imposed by the limited availability of re-training
samples from the target system. Finding the best layer(s) to re-train
via trial-and-error can become intractable for deep NNs, given
that hyperparameter tuning and a priori (offline) and a posteriori
(online) tests would be needed for each trial (i.e. a combination
of re-trained layers). So far, all of the aforementioned studies us-
ing TL for turbulence or weather/climate modeling have followed
the conventional wisdom from the ML community [16, 36, 37],
which is to re-train the deepest, i.e. near the output, layers (or
have re-trained all layers or most layers in an ad-hoc fashion).
The idea here, mainly developed based on experiments and ana-
lyses using static images and classification tasks, is that the shal-
low layers learn general features of images while the deep layers
learn features specific to the images in a given training set [38].
Thus, for effective TL to an out-of-distribution set of images, these
deepest layers are the best to re-train [16]. Following this idea of
re-training, the deepest layers has yielded good results in the
aforementioned studies on turbulence and weather/climate mod-
eling, e.g. to generalize to canonical flows with 10-16 times higher
Re numbers [21]. However, given the increasing interest in using
TL, its broad applications in these areas, and the need for effective
TL in more complex systems, the best practices and the learned
physics should be understood and readily accessible.
Specifically, the question of the best layer(s) for re-training should
be more deeply investigated for the types of data and networks
relevant to turbulence and weather/climate modeling applica-
tions. Here, we report on such an investigation for the first time.

In this paper, we use CNN-based non-local SGS closure modeling
for LES of several setups of forced 2D turbulence as the test case. We
first demonstrate the power of TL in enabling out-of-distribution
generalization to 100 x higher Re numbers, and even more challen-
ging target flows. We further show that here, against the conven-
tional wisdom in the ML literature, the shallowest layers are the
best to re-train. Next, we leverage the fundamentals of turbulence
physics and recent theoretical advances in ML to

1. explain what is learned during TL to a different turbulent
flow, which is based around changes in the convolution ker-
nels of the BNN after re-training to the TLNN, and these ker-
nels’ physical interpretation,

2. explain why the shallowest layers, rather than the deepest
ones, are the best to re-train in these setups,

3. introduce a general framework to guide TL of similar systems
based on a number of analysis steps that could be performed
before re-training any TLNN.

While we use the SGS modeling of canonical 2D turbulence as the
test case, the methods used for (1)-(2) and the framework in (3)
can be readily applied to any other TL applications in turbulence
or weather/climate modeling. More broadly, this framework can
be used for TL applications beyond SGS modeling and for any
multi-scale, nonlinear, high-dimensional dynamical systems.

2D turbulence: DNS and LES

The dimensionless governing equations of 2D turbulence in a dou-
bly periodic square domain are:

dw  Oydw Oy ow

Bt Tayox  axay
—_—
N(wwy)

) (1a)
=26 Ve - mg cos (MyX) + ng cos (ngy) —Tw,
fly)
V= —o, (1b)

where y is the stream-function, o is the vorticity, and NV (o, y) is
the advection term. r is the linear drag coefficient and f(x, y) is a
time-independent external forcing at wavenumbers my and ny.
This system, with different combinations of f and r, is a fitting
prototype for a variety of large-scale geophysical and environ-
mental flows and has been widely used to test novel techniques
including data-driven SGS closures [40, 21, 7, 41, 42, 39].

For direct numerical simulations (DNS), Egs. 1a-1b are solved
using a pseudo-spectral solver with high resolution (Npys colloca-
tion grid points in each direction), resolving all relevant spatio-
temporal scales (see Materials and methods for the solver’s de-
tails). Filtering Egs. 1a—-1b yields equations for LES (Egs. 2-3). In
the LES equations, an SGS term, II = N (@, ¥) — N (o, ), arises and
has to be explicitly represented in terms of the resolved flow
(@, ¥) via an SGS closure. Here, (-) denotes filtering and coarse-
graining (see Materials and methods for details). The same
pseudo-spectral solver, but with a lower spatio-temporal reso-
lution (e.g. Nigs = Npns/8 and a 10 x larger time step), is used to
solve the LES equations (2-3). While the LES solver is computa-
tionally much cheaper, it requires an accurate closure for
(o, ¥), a long-standing challenge in every discipline of science
and engineering dealing with turbulent flows.

Here, to build data-driven closures, we train CNNs on filtered
and coarse-grained DNS (FDNS) data“: The input of the CNNs is
(@, @) and the output is IT (see Materials and methods for details).
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Table 1. Physical and numerical parameters for the six different
systems, which are divided into three cases, each with a base and
a target system

System Re mg ng r Nppns Nigs
Base (Case 1) 3.2x10* 0 0 0 2,048 128
Target (Case 1) 1x10* 4 0 0.1 1,024 128
Base (Case 2) 1x10° 4 0 0.1 512 128
Target (Case 2) 1x10° 4 0 0.1 2,048 128
Base (Case 3) 2x10* 25 25 0.1 1,024 128
Target (Case 3) 2x10* 4 4 0.1 1,024 128

See Fig. 1 for snapshots and some of the statistical properties of these distinctly
different flows.

By changing Re, 1, my, and ny, we have created six distinctly differ-
ent flows, divided into three cases, each with a base and a target
system (Table 1 and Materials and methods). We have shown in
previous studies that for various setups of 2D turbulence, CNNs
trained on large training sets, or on small training sets with
physics-constraints incorporated, produce accurate and stable
data-driven closures in a priori (offline) and a posteriori (online)
tests [21, 39]. These CNN-based closures were found to accurately
capture both diffusion and backscattering, and to outperform
widely used physics-based SGS closures such as the
Smagorinsky, dynamic Smagorinsky, and mixed models in both
a priori and a posteriori tests. In this paper, we focus on TL and ad-
dressing objectives (1)—(3) listed in the Introduction.

Closing the generalization gap using
transfer learning

Before attempting to explain the physics of TL, we first show that
TL enables our CNN-based SGS closures to effectively generalize
between the base and target systems in each of the three cases.
The first three rows of Fig. 1 demonstrate the differences in spatial
scales between each pair of base and target systems. In Case 1, the
base system is decaying turbulence while the target systems is
forced turbulence. From the w and IT snapshots, their spectra,
and the kinetic energy (KE) spectra, it is clear that the two systems
are different at both the large and small scales. As a results of
these substantial differences across all scales, the LES of the tar-
get system using a BNN trained on the base system (BNNjygs,) pro-
duces a KE spectrum that does not agree with that of the target
system’s FDNS (the truth). This indicates that the BNN, fails
to generalize here, leading to a generalization gap that is the dif-
ference between the two KE spectra (most noticeable at wave-
numbers, k, larger than 10). Note that comparing the KE spectra
of FDNS and LES is the most common measure of the a posteriori
(online) performance of SGS closures.

Similar failures of the BNNj,qs to generalize are seen for Cases 2
and 3, leading to large generalization gaps in the KE spectra. In
Case 2, the base system has Re=10° and the target system has
Re=10°. This 100 x increase in the Re number leads to the develop-
ment of more small-scale features in the target system, and
changes the spectrum of II in both large and small scales. In
Case 3, the forcing of the base system is at wavenumber my=n;=
25, while the target system’s forcing is at my=ng=4. This decrease
in forcing wavenumbers results in more (less) large-scale (small-
scale) structures in the resolved flow, as seen in the spectra of
both @ and KE. This change in forcing wavenumber also leads to
more large-scale structures in I without any noticeable change
in its small-scale structures. In short, Cases 1-3 represent 6 fluid
flow systems that are different in terms of both the physics that

drive the differences and the spatial scales of the resolved and
SGS components.

In all three cases, TL closes the out-of-distribution generalization
gap: LES of the target system using a TLNN (re-trained with M,,/10
samples) produces a KE spectrum that matches that of the target
system’s FDNS. For the LES of the target system, the TLNN not
only significantly outperforms the BNNy,,, but is almost as good
as the BNN trained on M; samples from the target system,
BNNigg4et (€€ the insets in Fig. 1).

Impact of re-training layer(s) on accuracy

Fig. 1 shows the power of TL in closing the generalization gaps.
These results also show that in contrast to the conventional wis-
dom, the best layers to re-train are not the deepest, but rather,
the shallowest ones. For each case, we have explored all possible
combinations of 1, 2, and 3 hidden layers for re-training; i.e.
each layer, each pair of layers, and each 3-layer combination.
Based on the correlation coefficient of the IT terms from FDNS
and TLNN, which is the most common metric for a priori (offline)
tests, we have found that for Cases 2 and 3, re-training layer 2
alone is enough to get the best performance. For Case 1, re-
training layers 2 and 5 provides the best performance, although
most of the gap can be closed by re-training layer 2 alone.

To better understand the effects of “re-training layer” selection
in TL, Fig. 2 shows the offline and online performance of TLNN” as
a function of an individual re-trained hidden layer #. In Case 1, the
offline performance of TLNNs substantially declines as deeper
layers are used for re-training (top row). As a result, TL with deep-
est layers is completely ineffective; for example, LES with TLNN*°
is as poor as LES with BNNy,, leaving a large generalization gap in
the KE spectrum for k>10 (bottom row). In contrast, LES with
TLNN? has a KE spectrum that closely matches that of the FDNS
and only has a small generalization gap for k> 40 (as shown in
Fig. 1, this gap is further closed when both layers 2 and 5 are re-
trained). Similarly, in Case 3, the offline performance of TLNNs de-
clines as Zincreases. That said, in this case, TL with even the worst
layer to re-train (£=10) is effective in closing the generalization
gap in the online test. Still, LES with TLNN? is slightly better
than LES with TLNN™ (see the inset). In these two cases, there
are substantial changes in the large scales of the inputs and out-
puts between the base and target systems (see the spectra of @ and
I1 in Fig. 1). The offline results show a clear deterioration of the
performance when moving from shallow to deep layers, which
is due to the inability of the deeper layers to learn about changes
in large scales during TL, as shown later.

In Case 2, the offline performance of TL is not a monotonic
function of #, though ¢=2 is still the best layer to re-train (/=7
is the worst), based on both offline and online results. The non-
monotonicity emerges because changes between the base and
target systems’ @ and IT occur predominantly at smaller scales
(see their spectra in Fig. 1), which deeper layers are also able to
learn during TL. For this case, asin Case 1, there is a noticeable dif-
ference in the online performance of the LES with TLNNs that use
the best and worst performing re-trained layers.

The above analysis demonstrates that a poor selection of the
re-training layer can lead to poor offline and/or online perform-
ance of the TLNN. This analysis also shows that in all three cases,
re-training the shallowest layers consistently yields the best-
performing TLNNSs. This is in contrast to the conventional wisdom
of TL, which is predominantly built on studies on classification of
static images, which often do not have a broad continuous spec-
trum of spatial scales [16, 25, 43].
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A spectra] approach to interpreﬁng transfer each hidden layer extract information from the activations

learning through spatial convolution, and their weight matrices Wf‘j €
. . R>® are the main parameters that are learned during the training

Failure of deep layers to learn changes in large of 2 CNN

scales durlng tr?'nSfer lear.n_lng ) In the second row of Fig. 3, we compare the all-channels-

Tounderstand why different re-training layers lead to different TL averaged Fourier spectra of activations of the last hidden layer

performance, next, we conduct a spectral analysis of the CNNs in (§,,) from a fully trained BNNjgs, TLNN?, and TLNN™® (- ) repre-
this section and the next one. The mathematical representation of sents averaging over all channels and * means Fourier transform).
CNNs is discussed in Materials and methods. Explained briefly, in The spectrum of @’m from TLNN? differs from that of the BNNyge
our CNNs, inputs u = (@, ) are passed through 11 sequential con- at most wavenumbers including the small wavenumbers. This in-

volutional layers to predict outputs, IT (Fig. 3). The hidden layers dicates that re-training layer 2 can account for differences in the
each hgve 64 F:hannels. The output of channel j of layer 7, called output (I1) from the base and target flows at all scales, including
activation g, is computed using Eq. 4: 64 kernels perform convo- the large scales. In contrast, the spectra from TLNN'C are almost

lution on g, of each of the 64 channels, j, and the outcome of the same as those from BNN,. at all scales (Case 1) or at large
these linear operations is sent through a ReLU nonlinear activa- scales k<10 (Cases 2 and 3). This indicates that re-training layer
tion function, o. Fig. 3 shows examples of g, which are 128 x 128 10 cannot account for differences in the output from the base
matrices (the size of the LES grid). Note that these 64° kernels in and target flows at large scales. Given that in all three cases there

Case 1 Case 2 Case 3

Re = 3.2 x10* Re =10* Re =10° Re =10° Re =2 x10* Re = 2 x10*
mf:nfzo_) my =4 mf:nf:4_>mf=nf=4 mf:nf:25_>mf=nf=4
Npng = 2048 Npng = 1024 Npys = 512 Npng = 2048 Npys = 1024 Npng = 1024
AT

e

;_i BL{Y?X@T \y) /4 PNTEL )
NS e Sl

-4} —Decaying
—Forced

10

100[

—FDNS,
—FDNSpue
[ —TLNN

1070 - -BNN,,

[ - -BNNpue
1 10

r
107%
b

KE

10°

Fig. 1. Some comparisons between the base and target systems of the three cases (rows 1-3) and the ability of TL to close the generalization gapsin a
posteriori (online) LES (row 4). Parameters of the six systems are listed in Table 1, and these cases are further described in Materials and methods. Each
case consists of a base (left column) and a target (right column) system. The first and second rows show, respectively, the DNS snapshots of one of the
inputs to the CNNs, o, and the snapshots of the SGS terms, I, the output of the CNNs (note that Nigs = 128 for all systems). These rows visualize the
substantial differences in the length scales dominating the base and target systems in each case. To further demonstrate these differences in spatial
scales, using the entire training sets and solid blue lines for base (top of legend) and solid red lines (bottom of legend) for target systems, we show the
angle-averaged spectra of @ (left) and II (right) in the third row, and the KE spectra of FDNS in the fourth row. In these panels, the horizontal axis is
wavenumber k= /kZ + k3, where ky and ky are the wavenumbers in x and y directions. The fourth row also shows the out-of-sample accuracy of the
NN-based closures: The KE spectra are from a posteriori LES of the target systems using SGS closures that are BNNs trained on M, samples from the base
systems (BNNy,s,, dashed blue lines) or from the target systems (BNN, 4, dashed red lines), or from the TLNN (black lines) re-trained using M,/10
samples (see Materials and methods for details of TL). In all three cases, there is a large generalization gap (difference between the dashed blue and solid
red lines), particularly for k> 10. In each case, TL closes this gap (black and solid red lines almost overlap for all k). Note that for the TL here, layers 2 and 5
are re-trained for Case 1, and layer 2 is re-trained for Cases 2 and 3 (see Section “Impact of re-training layer(s) on accuracy” and Fig. 2 for more
discussions).
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I - -BNNjp.e 1 |
1 10 ¥l 10 10 10*

k

k k

Fig. 2. Online and offline performance of TLNNs as a function of the individual re-trained layer. For each individual layer re-trained with M;,/10 samples,
the top row shows the most common measure of a priori (offline) accuracy of a SGS model: the correlation coefficient between II from FDNS (truth) and
from the TLNN. The vertical lines on the bar plots show uncertainty measured as the standard deviation calculated over 100 random samples from the
testing set. The bottom row shows the KE spectra of the target systems’ FDNS and the KE spectra from a posteriori (online) LES with BNNyg, or TLNN,
where # indicates the re-trained layer. These KE spectra are calculated using five long integrations, each equivalent to 10°Atpys. Shading shows

uncertainty, estimated as 25th-75th percentiles of standard error calculated from partitioning each of the 5 runs into 10 sub-intervals. For each case, the
best (worst) individual layer to re-train is shown in red (blue) in both rows. The best- and worst-performing layers here are chosen based on the online
performance, i.e. how closely the KE spectrum matches that of the FDNS. Note thatin Fig. 1, both layers 2 and 5 are re-trained during TL for Case 1, leading
to a better TLNN with LES’ KE spectrum matching that of the FDNS even at the highest wavenumbers. See Fig. S5 for the offline results of Case 3 with the

base and target systems switched.

are large-scale differences in the II terms between the base and
target flows (Fig. 1), this analysis explains why re-training layer
10 (or other deep layers) leads to ineffective TL, while re-training
layer 2 leads to the best TL performance.

To further understand what controls the spectra of gj[, we have
examined Eq. 8, which is the analytically derived Fourier trans-
form of Eq. 4. As discussed in Materials and methods, this analysis
shows that the Fourier spectrum of gjl depends on the spectrum of
§,_, € C?*1% the spectra of the weight matrices Wf?e C128x128
(and constant biases BJ;Z € R), as well as where linear activation
hﬂ_;(x, y) >0 (defined in Eq. 7). The latter is a result of the Fourier
transform of the ReLU activation function, the only source of non-
linearity in the calculation of gjl In Fig. S1, we have compared the
spectra of activations from layers 2 and 10 before and after apply-
ing the ReLU activation function. From this, we find that in all
three cases, linear changes due to updating the weights substan-
tially alter the spectra of the activations, while nonlinear changes
only play a significant role in Case 1. These results (and further
discussions in Materials and methods) suggest that a deeper in-
sight into TL might be obtained by examining the spectra of the
weight matrices, NE'J, and how they change from BNNpg, to
TLNN, as done next.

Spectral analysis of the kernels’ weights

Before investigating how TL changes the spectra of kernels’
weights, let us first look at the spectra from the BNNy,g of the
three cases. A close examination of |\X/f')| in different layers shows
that the learned kernels are a combination of a number of known
spectral filters. While visualizing all the 642 kernels in each layer is
futile, we realize that the similarity across the spectra of many

kernels allows us to meaningfully cluster them using the k-means
algorithm. Fig. S2 presents the cluster centers (in Fourier space)
for #=2 and 10 for each case. This figure shows that the learned
kernels are a combination of coherent low-pass filters (row 1),
high-pass filters (row 8), as well as band-pass and Gabor filters.
It should be pointed out that learning Gabor filters by CNNs has
been reported in the past for a number of applications such as
text recognition [44]. Even more broadly, the emergence of such
filters for learning multi-scale, oriented, localized features has
been reported in the sparse coding and vision literature [45].
Since deep CNNs contain a very large number of parameters
(0(10%), it is often intractable to isolate the effect of each convolu-
tion kernel for either a BNN or TLNN. Moreover, investigating the
learned convolution kernels in physical space (W € R5) does
not lead to any meaningful physical understanding. Above, we
show that examining the kernels in the spectral space
(\X/fJ € C**128) leads to physically interpretable insight into their
role as spectral filters. Still, due to the large number of parameters
and the impact of nonlinearities, it is currently challenging to
understand the physics learned by the entire BNN. Fortunately,
due to the over-parameterized nature of these deep CNNs, TL oc-
curs in the lazy training regime [46]. In this regime, significant
changes occur in only a small number of kernels, as shown below.
This opens an avenue for explaining what is learned in TL through
examining the spectra of the few kernels with the largest changes.
For each case, we quantify the change in each kernel by com-
puting the Frobenius norm of the difference between W / from
the BNNygs and TLNN? for #=2 and 10. As demonstrated in Fig.
S3,in each case and each layer, there are a few kernels with sub-
stantial changes, much larger than the changes in the rest of the
642 kernels. Fig. 4 shows the spectra of the four most-changed
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Fig. 3. The top row shows a schematic of the CNN architecture and its governing equations. Examples of activations g, € R*?®*1?® of some of the layers #
and channels j are shown as red shading (with o being the ReLU nonhnear function, the values of these activations are all positive). Note that training a
CNN means learning the convolution kernels’ weight matrices W4 € R and biases’ constant matrices b, € R'8¥128 (for hidden layers #=2...10, f&(1,

2...64}and je(1, 2...64}). See Materials and methods for a detaﬂed discussion

of the CNN and its mathematlcal representation. In the bottom row, the

effects of re-traininglayer 2 versus layer 10 on the Fourier spectrum of the averaged activation of the last hidden layer (# = 10) are compared (note that the
output layer £=11 has a linear activation function). The averaging is done over all channels, denoted by (- ). Shading shows uncertainty, estimated as
25th-75th percentiles of the averaged activation spectra computed with 20 random input samples.

kernels (due to TL) in layers 2 and 10 from BNNy,s. and TLNN?. We
see that in all three cases, re-training layer 2 converts a few rela-
tively inactive kernels into clear low-pass filters (one exception is
the 4th most-changed kernel in Case 1, discussed later). In con-
trast, re-training layer 10 turns inactive or complex filters into
other complex (often less coherent) filters, though some of them
can be identified as band- or high-pass filters. The two panels on
the right further show that the kernels learned in TL act as their
spectra suggest: the new low-pass filter learned from re-training
layer 2 produces activation gj2 that is different from that of the
BNNjgs. (for the same input u) only in large scales, while the most-
changed kernel from re-traininglayer 10 (a high-pass filter) produ-
ces activation gjlo thatis different from that of the BNNy,, mainly
in the small scales.

We remind the reader of the earlier discussion in this section: TL
needs to capture changes in large scales of the output II between
the base and target systems, and the inability of the re-trained layer
10 to do so s the reason for the ineffectiveness of TLNN'. Based on
the above analysis, we can now explain the reason of this ineffect-
iveness (and the effectiveness of layer 2): layer 10 fails to learn new
low-pass filters, which are essential for capturing changes in the
large scales, especially at the end of the network right before the lin-
ear output layer. In contrast, layer 2 is capable of learning new low-
pass filters to capture these changes in the large scales of the base

and target systems’ outputs. Admittedly, the nonlinearity and sub-
sequent layers after #=2 could impact the outcome of a low-pass
filter, but it is possible to separate out the impact of the nonlinear-
ity. Fig. 4 and Fig. S1 show the impact of the ReLU nonlinearity by
comparing the spectrum of the activation before and after ReLU
is applied. In Case 1, where the ReLU function plays an important
role in changing the activations’ spectra after TL, we find that in
addition to low-pass filters, TLNN? also learns more complex filters,
such as the 4th most-changed kernel in Fig. 4, that impact the sign
of the linear activations, hj24

The analyses presented so far provide answers to objectives 1-2
from the Introduction. To address objective 3 (develop a general
framework to guide TL), we need to understand why layer 10 can-
not learn the filters needed for the TL in these cases while layer 2
can. This question is investigated next by leveraging recently de-
veloped ideas in theoretical ML.

Loss landscapes: sensitivity of kernels to
perturbations and re-training data

So far, we have presented post-hoc analyses, investigating changes
in the spectra of activations and weights, as well as the learned
physics, after a BNNy,s, has been re-trained to obtain a TLNN.
Here, we present a non-intrusive method for gaining insight into
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Fig. 4. The three left columns compare the Fourier spectra |\7x/’f’j | of the four convolution kernels that have changed the most between BNNj,;s and TLNN?

(top row) and TLNN?® (bottom row). The change in each kernel is quantified using the Frobenius norm || F(

B \X/BJ . .
W, ) = F(W,")llr, where F indicates the Fourier

transform (Eq. 5) and “indicates that the weight matrix is from a TLNN (absence of * in this figure means that the matrix is from a BNNy,s,). The two panels
on the right show examples of how changes in one kernel of layer 2 and one kernel of layer 10 affect the activations’ spectra of layer 10 by comparing ¢,
from BNNj, (solid blue) with that from the TLNN' (solid red). We also show the activations before the application of ReLU nonlinearity ¢ with dashed
lines. Note that the inputs to the networks (u) are the same and from the target system. The top panel shows that the newly learned kernel in layer 2
substantially changes the activation in low wavenumbers (k <20) without affecting the higher wavenumbers, as expected from a low-pass filter. Here,
nonlinearity has little impact: the solid and dashed lines coincide. The bottom panel shows that the newly learned kernel in layer 10 only changes the
activation at high wavenumbers and that in this case, the ReLU nonlinearity has a contribution.

which layers of a BNNy,,, are the best (or worst) to re-train for a
given target system before performing any actual re-training.
This analysis exploits the concept of “loss landscapes” [43, 47,
48] and examines, for a given CNN input u, the sensitivity of the
loss function £ to perturbations of the weights (and biases) of
the layer(s) to be re-trained. Training a deep CNN requires solving
a high-dimensional non-convex optimization problem, for which
the smoothness of the loss function can be a significant factor in
the success of training. Previous studies [48, 43, 47, 49] show
that even one- or two-dimensional approximations of the loss
landscape can provide meaningful information about how easily
a deep neural network, such as a CNN, can be trained. In this
study, leveraging recent work in theoretical ML [43], we extend
the application of loss landscape analysis to studying TL; see
Materials and methods for more details and discussions about
computing the loss landscapes.

Fig. 5 (rows 1 and 2) shows the loss landscape calculated for
perturbations along two random directions in parameter space

of shallow or deep layers for the BNNy,,¢, with data from the target
system as the input. Fig. S4 presents the loss landscapes obtain us-
ing a second method (based on perturbations along the eigenvec-
tors of the Hessian of the loss). These loss landscapes provide
insight to indicate if a layer is receptive to change when re-trained
with new data during TL. Two important characteristics of these
landscapes are their convexity and the magnitude. Notably, the
landscapes in row 1 (re-training layer 2, or 2 and 5) are both
smooth and of much lower magnitude than those in row 2 (deep
layers). For Case 1, we show results for combinations of two layers
as this yields better performance than re-training a single layer,
and this also demonstrates that the method is robust beyond per-
turbations of individual layers. This analysis indicates that these
shallow BNNy layers are easier to re-train for these target sys-
tems’ data, and that the loss function will likely reach a better op-
timum during TL. This loss landscape analysis is consistent with
our previous findings of TLNN?'s ability (TLNN'”'s inability) to per-
form well in these TL tasks.
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Fig. 5. The top two rows present the loss landscape L5, 5,) computed from Eq. 9. Intow 1, the weights and biases of layers 2 and 5 (Case 1) or 2 (Cases 2 and
3) from the BNNy,, are perturbed in two random directions by amplitudes 6, and d,; see Materials and methods for details. Similarly, in row 2, the deepest
layers are perturbed. Row 3 shows the convergence of the training loss when individual shallow, middle, and deep layers are re-trained for TL. In all

calculations, the inputs are from the target system.

Additionally, Fig. 5 (bottom row) shows how quickly the loss de-
creases as a function of the number of epochs during re-training
layer 2, 6, or 10 of the BNNy,, using the target system’s data.
For all three cases, TLNN? converges the fastest. This is a direct
consequence of the structure of the loss landscapes shown in
rows 1 and 2 of Fig. 5: landscapes obtained from perturbing layer
2 are more favorable for convergence (an absence of pathological
non-convexities) as compared to the landscapes obtained from
perturbing layer 10.

As a final note, we point out that the concept of “spectral bias”
[50, 51] from theoretical ML suggests that layer 2, which converges
faster, is learning the large scales while the slow-converging layer
10is learning the small scales. This is consistent with the conclu-
sions of our earlier analyses of the weights’ spectra.

Discussion

In Section 2D turbulence: DNS and LES’, we present a number of
novel analysis steps, ranging from a) the most intrusive, computa-
tionally expensive ones to gain insight into the learned physics, to

b) non-intrusive, inexpensive analysis, which can effectively guide
TL for any new problem. For (a), we examine the BNNs’ and TLNNs’
activations and weights (done after re-training), revealing that the
newly learned kernels are meaningful spectral filters, consistent
with the physics of the base and target systems and their difference
in the spectral space. To the best of our knowledge, this is the first
full interpretation of CNNs’ kernels in an application for turbulence
or weather/climate modeling. For (b), we introduce a novel use of
loss landscapes, shedding light on which layers are most receptive
to learn the new filters in re-training.

These steps connect the spectral analysis of turbulent flows?
and CNNs, and further connect them to the most recent advances
in analyzing deep NNs. The above analyses show that the shallow-
est layers are the best to re-train here, and shed light on the learn-
ed physics and the inner workings of TL for these three test cases.
Admittedly, some or all of these findings, in terms of learned phys-
ics and best layer(s) to re-train, are likely specific to these three
cases, our specific NN architecture, and the SGS modeling applica-
tion. However, the analysis methods we introduce or employ are
all general and can be used for any base-target systems,
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Fig. 6. Overview of the framework for guiding and explaining TL onto a new target system. The top row shows the steps of the TL process: acquiring a
large amount of training data from the base system and a small amount from the target system, training a BNNy,,¢, using data from the base system, and
re-training it using data from the target system to obtain a TLNN. On the bottom, we present the analyses involved in this framework, listed (left to right)
in the order of when they should be used. The arrows indicate what is needed from each step of the TL process and the corresponding analyses. Here, the
blue line represents data from the target system, the red line represents the trained BNNj,,, and the orange line represents the re-trained TLNN.

applications (SGS modeling, data-driven forecasting, or blending
training sets), and most CNN architectures.® Therefore, putting
all these analysis steps together, below we propose a general
framework for guiding and explaining TL, which we expect to
benefit a broad range of applications involving multi-scale non-
linear dynamical systems.

The framework is shown schematically in Fig. 6. Assuming that
we have a large number of training samples from the base system,
an accurate BNNy, already trained on these samples, and a small
number of re-training samples from the target system, the frame-
work involves the following steps:

1. Compare the spectra of the input and output variables from
the base and target systems. The three cases studied here
have shown that the change of spatial scales between the
base and target systems, particularly in the output variables,
significantly impacts which layers are optimal for re-training.

2. Compute the loss landscapes of the BNNy,s, with target sys-
tems’ data as various combinations of layers are chosen for
re-training. Re-training layer(s) with favorable landscapes
(smooth and small magnitudes) should be the first choices
for TL. We further suggest examining the properly clustered
weights’ spectra of the BNNy,, to see if they have clear inter-
pretations as spectral filters.

3. Re-train a TLNN based on the outcome of Step 2. Examine the
spectra of the activations from the re-trained layer(s) and the
last hidden layer to see if the differences in the spatial scales
identified in Step 1 are learned.

4. Examine the spectra of the most-changed kernels between
BNNjese and TLNN. Investigate if the nature of the newly
learned kernels (as spectral filters) is consistent with the out-
come of Steps 1 and 3 in terms of spatial scales that need to be
learned in TL.

Steps 1-2 are non-intrusive, inexpensive analyses that do not re-
quire any re-training, and will effectively guide Step 3, replacing
expensive and time-consuming trial-and-error with many combi-
nations of re-training layers. Steps 3-4 provide an explanation for
what is learned in TL and act to validate decisions made based on
Steps 1-2.

There are a few points about this framework that need to be
further clarified. In general, turbulent flows have universal behav-
ior in their smallest scales [52, 53] and vary in large scales due to
forcing and geometry. This might seem to suggest that TL will al-
ways need to learn changes in large scales between a base and a
target turbulent flow. This is not necessarily true, as even in
Cases 1-2 here, in which the base and target flows are different
in forcing and Re number, there are differences in small scales
of IT too. Furthermore, in the broader applications of TL (e.g. in
blending different datasets) and beyond just single-physics turbu-
lent flows, there might be differences between the base and target
systems at any scales. Step 1 is intended to identify these
differences.

We also emphasize that currently there is no complete theoret-
ical understanding of which layers of a CNN are better in learning
what spatial scales. Our findings for Cases 1-3 and some other
studies [43, 50] in the ML community suggest that the shallower
layers are better in learning large scales. If further work confirms
this behavior for a variety of systems and CNN architectures, then
Steps 1-2 together would be able to even better guide TL in terms
of the best layer(s) to re-train.

It should be noted that in more complex, an-isotropic, in-
homogeneous systems (e.g. channel flows or ocean circulations),
spectral analysis using other basis functions, such as Chebyshev
or wavelets [54, 55], might be needed. Moreover, additional mod-
ifications of the spectral analysis component of the framework
might be needed for some types of NN architectures, e.g. those
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involving pooling layers, fully connected layers, or other activa-
tion functions. Recent work in the ML literature on spectral ana-
lysis of NNs, particularly on developing end-to-end analysis,
could be leveraged in addressing these challenges [S1, 56].

Aside from items (1)—(3) in the Introduction addressed in this
study, another major question about TL is how much re-training
data are needed to achieve a certain level of out-of-sample accur-
acy for the target system. Currently, there is no theoretical frame-
work to answer this question, particularly for data from
dynamical systems such as turbulent flows or the climate system.
However, a few recent developments in the ML literature for TL er-
ror bounds of simple NNs (e.g. shallow or linear) could be lever-
aged as the starting point [57-59], and combined with extensive
empirical explorations, may provide some insight into this critical
question.

Finally, we point out that a number of recent studies have pro-
posed improving out-of-distribution generalization via incorpor-
ating physics constraints into NNs (e.g. [60, 61]) or via data
augmentation (e.g. [62, 63, 64]). The latter approach has shown
promising results in image classification tasks, and could be po-
tentially used in applications involving dynamical systems too.
Incorporating physics has also shown promising results for specif-
ic applications; however, such an approach requires the existence
of a physical constraint that is universal (e.g. a scaling law), other-
wise, it could potentially deteriorate the performance of the NN.
However, the availability of such constraints are very limited. In
contrast, TL provides a flexible framework that beyond improving
out-of-distribution generalization, is also broadly useful to blend
disparate datasets for training, an important application on its
own. Note that the aforementioned approaches can be combined
with TL to possibly reduce the amount of re-training data.

To summarize, here we have presented the first full explan-
ation of the physics learned in TL for multi-scale, nonlinear dy-
namical systems, and a novel general framework to guide and
explain TL for such systems. This framework will benefit a broad
range of applications in areas such as turbulence modeling and
weather/climate prediction. Climate change modeling, which
deals with an inherently non-stationary system and also involves
combining various observational and model datasets, is an appli-
cation that particularly needs TL, and can benefit from the frame-
work proposed here.

Materials and methods

Numerical solvers for DNS and LES

We have performed DNS for all six systems used in this study (see
Table 1 and below). In DNS, Egs. 1a-1b are solved using a Fourier—
Fourier pseudo-spectral solver with Npys collocation grid points
and second-order Adams-Bashforth and Crank-Nicolson time-
integration schemes with time step Atpyns for the advection and
viscous terms, respectively. See Guan et al. [21, 39] for more de-
tails on the solvers and these simulations. For the base system
in Case 1 (decaying 2D turbulence), following earlier studies [40,
21], the flow is initialized randomly using a vorticity field (wi)
with a prescribed power spectrum. Snapshots of (w, y) in this sys-
tem are obtained from 50-200r, where ¢ is the initial
eddy-turn-over time: r=1/max (wic). For the other five systems
(forced 2D turbulence), once the randomly initialized flow reaches
statistical equilibrium after a long-term spin-up, we take sequen-
tial snapshots of (w, y) that are 1000Atpys apart, in order to reduce
the correlation between samples. We use the filtered and coarse-
grained DNS data, referred to as FDNS data (details below), for

training the CNN-based data-driven closures for I1 and for testing
their a priori (offline) and a posteriori (online) performance.

For LES, we solve Egs. 2-3 employing the same numerical solver
used for DNS, but with coarser grid resolutions (Nygs = 128 < Npys)
and larger time steps (Aties=10Atpns). To represent II, a
CNN-based closure that is trained on FDNS data is coupled to
the LES solver.

Filtering and coarse-graining: LES equations and
FDNS data

Filtering Egs. 1a-1b yields the governing equations for LES [39, 53,
65]:

w1, -
E+N(w,(//)—R—ve—f—Ya) o
+N@ p) - N ),
it
V= -w. (3)

In LES, only the large-scale structures (y and o) are resolved using
a coarser grid resolution (compared to DNS). The effects of the
structures smaller than the grid spacing are included in the un-
closed SGS term II, which requires a closure in terms of the re-
solved flow, (v, ).

To obtain the FDNS data, we use the DNS snapshots of (y, ),
which are of size Npns X Npns, to compute snapshots of ¢, @, and
1l (defined in Eq. 2), where () represents filtering and coarse-
graining. The latter is needed to compute these variables on the
LES grid (size: Nipps x Nigs). Here, we use a Gaussian filter and
then sharp spectral cutoff coarse-graining [21, 39]. For each sys-
tem, the FDNS dataset is divided into completely independent
training, validation, and testing sets [21, 39].

Cases 1-3: base and target systems

By changing Re, 1, my, and n;, we have created six distinct systems
of 2D turbulence, which are grouped into three cases, each with a
base and a target system (Table 1). Snapshots of w and IT as well as
the spectra of @, I1, and KE of these systems are shown in Fig. 1 to
demonstrate the rich variety of fluid flow characteristics among
these systems, particularly between each case’s base and target
systems. Case 1 involves TL from decaying to forced 2D turbu-
lence. From the w and I snapshots as well as their spectra shown
in Fig. 1, it is clear that the two systems are different at both the
large and small scales. The significant differences across all scales
make this case the most challenging one, and result in the largest
generalization gap as discussed in the main text.

Case 2 involves TL between two forced 2D turbulence systems:
the base system has Re=10° and the target system has a 100x
higher Reynolds number (Re=10°), making this the largest ex-
trapolation in Re using TL ever reported, to the best of our knowl-
edge. The increase in Re adds more small-scale features in  (see
the spectrum), and changes the spectrum of II in both large and
small scales. Case 3 involves decreasing the forcing wavenumbers
of the system. Here, the base system has my=ny= 25 while the tar-
get system has my=ny=4. This decrease in forcing wavenumbers,
as expected, results in more (less) large-scale (small-scale) struc-
tures in the resolved flow; see the spectra of @ and KE.
Furthermore, more large-scale structures appear in II without
any noticeable change in the small-scale structures (see the
power spectrum of ).

€202 18qWIBAON 90 UO Jasn Alisiaaiun 901y Aq Z¥08669/S | 0pebd/g/z/aone/snxauseud/woo dno-olwspese//:sdny wolj papeojumoq



Subeletal. | 11

Convolutional neural network and transfer
learning

Building on the success of our earlier work [21, 39], to develop non-
local data-driven SGS closure for each system, we train a CNN
with input u=(@(x, y), #(x, y)) to predict II(x, y) (output). These
CNNs are built entirely from 11 sequential convolution layers, 9
of which are hidden layers each with 64° kernels of size 5x5
(note that these numbers are hyperparameters that have been op-
timized for this application to avoid underfitting or overfitting [21,
39]). The outputs of a convolutional layer are called activations.

For channel j, of layer ¢, the equation for activation gjée
RNiesxNies {g-

g,(u)= U(Z (W} ® g7 (w) + b@) ()
B

Note that Nigs = 128 for all systems (Table 1). Here, ® represents

spatial convolution and o(-)=max(0,-) is the ReLU activation

function (which is not present for the linear output layer, #=11).

W# e R is the weight matrix of a convolution kernel, and b, e

R128x128 ig the regression bias, a constant matrix. We have ge {1,

2...64}andje(1,2...64} for all layers with two exceptions: in the in-
put layer (#=1) f€{1, 2}, and in the output layer (#=11),j=1, as
the output is a single channel. The kernels’ weights and biases to-
gether constitute the NN’s trainable parameters, which we col-
lectively refer to as 6§ € RP. Note that gi,=go=u and gour=g11 =1L

Avisualization of these networks as well as examples of activa-
tionsin the hidden layers are presented in Fig. 3. An important dis-
tinction between these CNNs and traditional CNNs is that these
do not include any max-pooling layers or dense layers such that
they maintain the dimension of the input through all layers and
channels in the network. Our earlier work and a few other studies
have found such an architecture to lead to more accurate CNNs
for SGS closures [21, 39, 66].

We train these CNNs using the Adam optimizer and a
mean-squared-error (MSE) loss function £. For BNNs, all their
trainable parameters 6 are randomly initialized, and each CNN is
trained for 100 epochs using M, = 2000 samples from the training
set of the base system.f Note that even when we use My samples
from the training set of the target system to train a CNN, we still
call it a “BNN” for convenience (e.g. in Fig. 1). Subscripts on
BNNs clearly indicate which system provided the M, training
samples.

To appropriately train and evaluate the networks, for each of
the six systems, we have created three independent training, val-
idation, and testing sets from a long DNS dataset. To ensure inde-
pendence, these subsets are chosen far apart and pattern
correlations between u and between I of samples are computed
and found negligible. The training set is reserved solely for the ac-
tual training procedure, and the only metric calculated with this
set is the MSE loss (during training) to assess the convergence of
the network parameters, 6. The validation set is used to assess
both convergence and overfitting during training: Alongside the
training set, we compute the MSE loss on the validation set after
each epoch to ensure that the network’s performance is continu-
ing to improve out-of-sample rather than overfitting. The testing
set is used to evaluate the CNNs’ a priori performance reported
in Figs. 2-4. Furthermore, note that the FDNS data used in Figs.
1 and 2 are from the testing set of the corresponding system. No
data from LES have been used during the training of any CNN.

To perform TL from a BNN, the weights and biases of the TLNN
are initialized with those of the BNN. The layers to re-train are

selected (trainable layers) and the remaining weights/biases are
frozen (non-trainable layers). The TLNN is then re-trained using
standard backpropagation and the same MSE loss function with
M/10 samples from the training set of the target system, updating
the weights and biases of the trainable layers. The re-training con-
tinues until the loss plateaus (for TL, this happens at around 50
epochs), which helps avoid overfitting. Note that based on offline
metrics such as the correlation coefficients for I, we have not
found any need for adjusting the hyperparameters such as the
learning rate or adding additional layers between training a BNN
and TLNN.

Spectral analysis of CNNs

The Fourier transform operator F is defined as

C=F(),  FoRIZ8 1284128 (5)
Torepresent convolution as an operation in the spectral space, we
first note that we can extend each kernel W/’ € R™S to the full do-
main of the input by padding it with zeros, as done in practice for

faster training [67], to obtain W/’ € R1?128 Then, the convolution
theorem yields

W/tzf'j ® 9/;71 = fﬁl(\X/j} ) 9/2—1)' (6)

where @ is element-wise multiplication.
Next, we define linear activation h’[ which contains all the lin-
ear operations in Eq. 4:

n=> (W @g)_,)+b. 7)
B

Despite the nonlinearity of Eq. 4 due to the ReLU function, its
Fourier transform can be written analytically. Using Egs. 6 and 7
and the linearity of the Fourier transform we obtain

6= 2l o,

= Z (e_i(kxxa‘*kvya)) ®

where (X, Vo) € {(x, y) | hj[ (x, y)>0}andi=+/-1. The term with sum
over a is a result of the ReLU function and involves summing over

" _ (®)
S0 0l ) +B, |,
B

grid points where hjl >0 (note that this term is the Fourier trans-
form of the Heaviside function). Also note that blz isa constant ma-

trix, therefore, b’l is only non-zero at k, =k, =0 (andis real). See [50,
51, 56] for more information and discussion about Fourier analysis
of NNs. ‘

Equation 8 shows that the spectrum of §, depends on the spec-

trum of @i_l, the spectra of the weights \7\/fJ (and constant biases

Bﬂ,), and where hj[ >0 in the physical (grid) space. With TL, the
weights and biases are updated, which changes their spectra as
well as where hjl > 0. Understanding the full effects of all these
changes on gjl is challenging. In Fig. S1, we have examined the
spectra of activations of layers 2 and 10 from BNNjy,gs,, TLNN?,
and TLNN'? before and after applying the ReLU activation func-
tion (i.e., compare the spectra of h and sz This analysis shows
thatin all three cases, linear changes due to updating hjl substan-
tially alter the spectra of the activations while nonlinear changes
only play a significant role in Case 1. These results and Eq. 8 sug-
gest that a deeper insight into TL might be obtained by investigat-
ing Wf and how they change from BNNjgs, to TLNN.
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Calculating the loss landscape

Let us represent a CNN with input u and trainable parameters 6 as
C(u, ). The MSE loss function of this CNN is a function of the out-
put: £(C). The concept of loss landscape (of £) has received much
attention in recent years and is widely used to study the training
phase of NNs [48, 47, 49]. Below, leveraging recent work in theoret-
ical ML [43], we compute the loss landscape to study the re-training
phase of NNs in order to gain insight into TL.

Suppose that 6, € RP are all the trainable parameters of a
BNNys from all layers #. We define 6 € R as the subset of pa-
rameters that are updated in TL, i.e. the weights and biases of
the re-trained layer(s), L. Next, we follow two methodologies for
constructing loss landscapes. In the first method, we follow Li
et al. [48] and select two random direction vectors vy, v, € R?*
and normalize them with the 2-norm of #*. In the second method,
we follow Yao et al. [68] and find the eigenvectors of the Hessian of
L(C) computed with respect to §%.. The first two eigenvectors with
largest positive eigenvalues are chosen as v, and vs.

Next, in both methods, we perturb 6" along directions v, and v,
by amplitudes 6; and d,, respectively (61, 6, €[ - 2, 2] for method 1,
[-1, 1] for method 2). Finally, we compute

L5, 5,) = LIC(target, [Qez 07 + 911 + 52V2])) 9)

to generate a 2D approximation of the loss landscape and plot the
surface as a function of §; and d,. Note that the input uis from the
target system. Loss landscapes from the first (second) method are
shown in Fig. 5 (Fig. S4).

In the context of TL, the shape of the loss landscape indicates
how receptive the re-training layers, L, are to change for the new
re-training samples from the target system. In practice, a shallow,
convex landscape suggests that the network is in a favorable region
of parameter space, and gradient descent will easily converge.
Deviations from this in the form of pathological non-convexities
or extremely large loss magnitudes can cause problems during
training and prevent the network from converging to a useful op-
timum. See Li et al. [48] and Krishnapriyan et al. [47] for further
discussions on the interpretation of loss landscapes for the com-
mon application where, in Eq. 9, u is from the base system and
0" represent parameters still changing during the epochs of
training.

Notes

a. Throughout this paper, we use “out-of-distribution” to indicate
cases in which the training and testing datasets have different
distributions. Furthermore, we use “out-of-sample” for accuracy
computed using samples from a testing set that is completely in-
dependent from the training set, but has the same distribution.

b. Following the turbulence and climate literature [21, 65, 69], we
use the terms “a posteriori” and “online” to refer to experiments/
tests involving the data-driven closure coupled to the LES numer-
ical solver. “a priori” and “offline” refer to experiments/tests in-
volving the closure (e.g. the trained CNN) alone.

c. Whether the training FDNS data are from the base or target sys-
tem or both is clearly explained for each analysis.

d. Spectral analysis has been the cornerstone of understanding tur-
bulence physics since the pioneering work of Kolmogorov [52].

e. The weights’ spectra analysis might have to be further modified
for networks that involve dimension changes, e.g. via pooling
layers. See the Discussions.

f. While My, = 2000 might seem like a small number of training sam-
ples, we are in fact here using a big training set, because these

samples are chosen far apart to be weakly correlated, requiring
a long DNS dataset (two million Atpys). See Guan et al. [39] for fur-
ther discussions about the big versus small training sets.
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