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Abstract

We make connections between complexity of training of physics-informed neural networks (PINNs) and Kolmogorov
n-width of the solution. Leveraging this connection, we then propose Lagrangian PINNs (LPINNs) as a partial differential
equation (PDE)-informed solution for convection-dominated problems. PINNs employ neural-networks to find the solutions of
PDE-constrained optimization problems with initial conditions and boundary conditions as soft or hard constraints. These soft
constraints are often blamed to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that
the complexity of training (i) is closely related to the Kolmogorov n-width associated with problems demonstrating transport,
convection, traveling waves, or moving fronts, and therefore becomes apparent in convection-dominated flows, and (ii) persists
even when the boundary conditions are strictly enforced. Given this realization, we describe the mechanism underlying the
training schemes such as those used in eXtended PINNs (XPINN), curriculum learning, and sequence-to-sequence learning. For
an important category of PDEs, i.e., governed by non-linear convection—diffusion equation, we propose reformulating PINN's
on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is
proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional
characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction
of travel of the information in the domain, i.e., on the characteristics. This approach is unique as it reduces the complexity of
convection-dominated PINNs at the PDE level, instead of optimization strategies and/or schedulers. Finally, we demonstrate
that the loss landscapes of LPINNs are less sensitive to the so-called “complexity” of the problems, i.e., convection, compared
to those in the traditional PINNs in the Eulerian framework.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The evolution of many physical phenomena and engineering systems can be derived from first principles leading
to governing equations in the form of partial differential equations (PDEs). Although analytical solutions of many
of non-linear PDEs are seldom known, development of numerical methods has made approximation of the solution
possible. One of the paradigms of solving for a state of the system is through optimization. Consider a PDE

R((w(x,1) =0, (1)

where R () is a differential operator representing the residual of the PDE, w (x, t) is the state parameter on a spatial
domain of x € 2 and ¢ € [0, T'] with appropriate boundary and initial conditions. Therefore, solving the PDE
of Eq. (1), is equivalent to finding a minimizer, w*, in

w* = argmin R (w (x, 1)), 2)
subject to boundary and initial conditions as constraints. Iterative methods are classically used to find minimizers
of high-dimensional non-linear residual equations.

In the absence of the governing equations, where the phenomena/task cannot be described using first principles,
machine learning (ML) methods such as artificial neural networks (ANNs) have been revolutionary. Moreover, the
application of ANNSs to solve the systems with known or partially known governing equations, inverse problems and
data assimilation (DA) shows great promise [1,2]. While the compromise between incorporating a priori knowledge
of the system and learning from data (experimental or observation) remains a problem dependent endeavor, setting
the known governing equations as a loss component in ANNs nudges the network to a solution informed by the
physics. This paradigm is matured in physics—informed neural networks (PINNs) [2], such that ANNs are trained
to find the minimizer of (2), as well as the observational/experimental data to estimate the state parameter (direct
problem) or the unknown parameters (inverse problem).

Although many of the traditional numerical solvers outperform PINNs in well-posed forward problems without
DA, there are many critical applications where the use of PINNs is particularly advantageous [3]. PINNs provide
flexible and scalable implementations [4], and readily provide adjoints via automatic differentiation. The low
inference cost of PINNs and simultaneous estimation of the state parameters and independent parameters are
particularly appealing. These advantages lead to successful use of PINNSs, especially in inverse problems and inverse
design [5], ill-posed/conditioned problems [6], and control [7].

However, the training phase of PINNs, which is equivalent to solving ordinary differential equations (ODEs)
or PDEs, faces some practical challenges [8—16]. The innovations and attempts to improve the accuracy of the PINNs
can be classified into two categories. In the first category, the ANN architecture and loss are targeted to improve
the training behavior. In [10], it is shown that the eigenvalues of the Neural Tangent Kernels (NTKs) of different
loss components explains the training behavior. Accordingly, penalty weights in the loss function are adaptability
determined at each iteration of the training. Similarly in [11], the unbalanced gradients of the components of the
loss is associated with training failure, and annealing the learning rate is proposed. It is also demonstrated that the
architecture of the network can meaningfully change the stiffness of the gradients in the learning phase, and therefore
it is suggested that a specialized architecture can be beneficial to specific problems [11]. Subsequently, reformulating
the constraints using Augmented Lagrangian method (ALM) [17] demonstrates a flatter/smoother loss landscape,
and therefore leads to a more favorable training behavior [15], compared to the originally proposed penalty terms [2].
Notably, the loss landscape of PINNs are less smooth compared to purely data-driven ANNs [12,15]. The raggedness
of loss landscape explains why PINNs are more prone to converge to an unfavorable local minima. Such challenge
depends on both the governing equations, and system parameters [8,12,15].

In the second category, prior knowledge/property of the system is leveraged. For instance, in hyperbolic systems,
e.g., inviscid Burgers’ equation, total variation diminishing (TVD), and entropy inequalities can be imposed in
addition to artificial viscosity [18]. In [8], the flux term of non-linear convection diffusion had to be modified to
help with the accuracy of the solution. Both of these remedies violate the consistency between the solution and the
governing equations. However, such solutions are PDE specific, and are not applicable to all the challenging test
cases. Approaches such as curriculum learning (training on a simple problem and transferring the learned weights
to the harder problems) [12], adaptive sampling (in both space and time) [16], parallel in time decomposition [13]
or the very similar sequence-to-sequence learning' (decomposing the temporal domain) [12] can be applied to a

1 Different than the seminal work of Venugopalan et al. [19] in the context of video to text caption generation.
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wider range of problems without any prior assumptions. Note that sequence-to-sequence learning [12] or parallel in
time decomposition [13] here refer to the same method and should not be confused with PPINNs [20]. In many of
the aforementioned studies, the same network is shown to be capable of expressing a more accurate solution, given
additional attention is paid in defining the loss and the training phase. Such experiments demonstrate that the used
architectures are expressive enough, and therefore, the challenge lies in the training. Unfortunately, many of the
remedies require solving many intermediate subproblems [12], or training multiple networks [13]. It is argued that
all such challenges can be more naturally overcome by respecting the underlying spatio-temporal causality [14].
One proposed approach is to impose such causality is by prioritizing the earlier time steps in the training phase
by addition of temporal weights[14]. Causality training of [14] is successfully applied to Allen—Cahn equation
and as an additional component of temporal decomposition to Kuramoto—Sivashinsky and Navier—Stokes equation
(Re = 100). However, the proposed approach does not take into account the direction of travel of information.

While chaotic systems, e.g., turbulent flow, and Lorenz 63, and higher order derivatives in governing equations,
has been recognized to be challenging since the earliest formulation of PINNs [14], they merely cannot explain
the difficulty in training of regular non-chaotic systems, e.g., advection/convection, reaction, reaction—diffusion,
Poisson’s, or wave equations. Table 1 summarizes challenging test cases for training of accurate PINNs, the
proposed remedies and their advantages and shortcomings. There main aspects of these methods are compared,
ie.,

1. Is the method applicable in a no-data regime? That is, can the method be applied to PINN when no training
data is available?

2. Can a single ANN deliver a global solution in the full training regime, and without requiring to solve for
intermediate problems, i.e., in one shot?

3. Does the solution of the PINN satisfy the governing equation of interest, i.e., does the method preserve
consistency between the equations and the model?

Moreover, the type of the differential operators, i.e., parabolic, hyperbolic, or elliptic, is believed to describe the
difficulty in discovery of the minima. In the case of elliptic and parabolic PDEs, the generalization error, i.e., the
difference between a global minimizer of the loss and the solution to the PDEs, converges to zero under certain
conditions, given enough number of data points [25]. However, similar results are lacking for hyperbolic equations.
More importantly, the optimization error, i.e., the difference between the global and local minima given some data
points, is poorly understood. This is especially important as many of the non-chaotic, yet challenging cases in
Table 1 are either hyperbolic or hyperbolic—parabolic (where hyperbolic traits are dominant), the main focus of the
present paper.

Although the previous studies have described some of the difficulties and dynamics of the training phase, there
is no universal theory on convergence rate or a priori measure of success of the training [26]. In this paper,
we provide some evidence that connects the dimensionality of solution, in the Kolmogorov n-width sense, to
the difficulties in the training phase. Moreover, we explain how the previous remedies connects to the presented
description of complexity. Subsequently, we add an unrecognized complex test case, to the existing list of Table 1,
i.e., the Burgers’ equation in the presence of a shock sweeping the domain (traveling shock). Specifically, we
demonstrate that in the cases where the shock sweeps long distances, the training phase has a similar complexity
of training as in convection equation. We emphasize that PINNs can easily solve the viscous Burgers’ equation
with stationary shocks [2]. Finally, we emphasize that most of the methods in Table 1, e.g., [12,13,23,24], are not
demonstrated for the problem of our interest, i.e., convection-dominated problems. Moreover, the proposed methods
are algorithmically more complex than the original PINN [2], and require multiple ANNSs or training passes (solution
of subproblems). We propose an approach that can reach the solution in one shot of training and without requiring
solutions of intermediate problems.

In this paper, we focus on an important category of the recognized challenging cases, i.e., convection—diffusion
problems. We propose LPINNs which conforms to the “causality” in the system. LPINNSs’ architecture is informed
by the direction of travel of information in the domain, i.e., along the characteristic curves. In this architecture the
solution is to be learned with an inherently reduced dimensionality, a simpler task for any of ML architectures. The
proposed approach successfully learns the solution with a single ANN, in a no-data regime, in one shot and without
requiring to learn any intermediate solutions. The solution is consistent with the governing PDEs on the Eulerian
frame, giving PINNs an advantage over methods introducing artificial viscosity.
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Table 1
Challenging problems in the training of PINNs and the suggested remedies. Only some of these methods have been demonstrated to improve
the training of convection-dominated problems (marked by ¥).

in

o
< =]
£% 32 3
S E =S z
: o Eg 8
Study PDEs Domain Test case Proposed remedy z £ = o O
[8] Convection—diffusion 1D Buckley—Leverett Introducing viscosity v X X
[16] Reaction—diffusion 1D Allen—Cahn Time adaptive X X v
Adsorption/ 2D Cahn-Hilliard (sampling/marching), v v v
desorption — 3D and mini-batching, v v v
surface diffusion and regularizing the
loss components
[9] Euler 1D Sod’s shock tube Characteristic form, v v v
Oversampling the shock X v v
[21] Convection—diffusion 1D Buckley-Leverett Tuning the flux term v X X
[11] Helmholtz 2D N/A Annealing v v v
Klein—Gordon 1D N/A the learning rate
Navier—Stokes 2D Lid-driven cavity
(Re = 100)
[13]% Advection Spherical Traveling feature Parallel in v X v
Shallow-water time decomposition
[121% Convection 1D Moving interfaces, Curriculum v X v
Reaction traveling features learning, v X v
Reaction—diffusion Sequence-to-sequence
learning
[22] Inviscid Burgers’ 1D Shock Enriching the data-set, X v v
Convection—diffusion Rarefaction and artificial viscosity v X X
shock
[10] Wave 1D Traveling wave Adaptive penalty v v v
[14] Chaotic ODE R3 Lorenz 63 Causal training of loss, v v v
Reaction—diffusion 1D Allen—Cahn and/or transformer
Kuramoto—Sivashinsky 2D Decaying turb- architecture
Navier-Stokes ulence (Re = 100)
[15] Poisson’s 1D High wave-number Enforcing the v v v
2D forcing constraints by ALM
[18] Euler 1D Sod’s shock tube TVD, and v v v
Convection—diffusion Buckley—Leverett entropy inequalities
23]} Convection 1D Moving interfaces, Ensemble training v X v
Reaction traveling features
Reaction—diffusion
[241% Convection 1D Traveling features, Evolutionary sampling v X v
Reaction—diffusion Allen Cahn (Evo)
Ourst Convection—diffusion 1D Traveling feature, Lagrangian PINN v v v
Viscous Burgers’ 2D Traveling shock

The paper is organized as follows. We first summarize PINNs in Section 2. In Section 3, some of the challenging
cases of training of PINNs are discussed. More importantly, we for the first time, explain and demonstrate the
mechanism leading to the complexity in training through the lens of approximation theory. Our explanation motivates
the proposed LPINNs in Section 4, where we focus on an important canonical set of problems governed by
non-linear convection—diffusion equation, in one-dimensional (1D) and 2D domains. The proposed approach is
numerically investigated in Section 5. The properties and possible foreseeable challenges of the proposed LPINNs
are discussed in Section 6, followed by our conclusions in Section 7.
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2. PINNs

A PINN architecture is composed of a densely connected ANN that minimizes a composite loss comprised of
the PDE of Eq. (1) evaluated at the spatiotemporal collocation points, data, and the initial and boundary points [2].
The output of the ANN given ith coordinate of a spatiotemporal grid, N (u), is the local and instantaneous state
parameter, w(x;, t;), i.e.,

w(x,-, ti) ZN(u) = ¢m (Wmd)m—l (Wm—l v '¢1 (W]ll +bl) T +bm—l) +bm) s (3)

where the input vector is the concatenation of the spatial and temporal location, i.e., u = [x;, 51T € R, d is the
dimension of physical space, ¢; (.) is the activation function at the ith-layer, W, € Rwx@+h W, e R¥*¥ vV e
{2,...,m—1}, and W,, € R¥" are the weights, and b; e R¥,Vi € {1,...,m — 1}, and b,, € R? are biases. The
weights and biases are learned to minimize the physics-informed loss, minimizing the governing equation and the
appropriate boundary and initial conditions, i.e.,

L = Lr + Lh(; + LiCﬂ (4)
where
1 &

Lr=Krﬁr;|R(xi,li)|2, oY

1 Npe
£ae = e 3 3101 (e 1), oY

¢ i=1

Nic

(5¢)

1 i
Lic = }\-icN_iC ; |w (x, 0) — g (xi,) 2°

and {¢, x! }INZ'I is the set of temporal and spatial coordinates of the collocation points where the residual is evaluated,
{th. xLL}lN:"? is a set of temporal and spatial coordinates of the boundary points (8[w] (x},. #;.)), and {xic}lN:"l, is
the set of coordinates where the initial condition is known (g (xﬁg) at t = 0). The partial derivatives in the residual
operator, R (x;,t;), are calculated using automatic differentiation (AD). The hyper-parameters A,, A, and A;. are
scalars tuned to improve the convergence. Augmenting the loss using more data points leads to faster convergence,
especially in convection-dominated problems [22]. However, we intentionally refrain from using any data points to
evaluate the convergence of PINNs as a solver (no-data regime).

In this paper, without loss in generality, we limit the spatial domain to 1D and 2D problems. The periodic
boundary condition is strictly enforced using a custom layer [13], i.e., hard constraint, and therefore A,. = 0. The
custom layer in x € [0, 27] transforms the domain to a polar coordinate, i.e.,

y (x) = [cos (x), sin (x)]", (6)

and for 2D domains, i.e., (x1, x2) € [0, 2] x [0, 27r] transforms the domain to a doubly periodic polar coordinate,
i.e.,

y (x1, x2) = [cos (x1), sin (x1) , cos (x2) , sin (x2)]", 7

and out-put of this layer is fed into the traditional ANN as described in Eq. (3) with appropriate adjustment of the
dimension of the weight of the first layer, i.e., W; € R¥*?4*+D increasing the number of network variables by
only w x d. Further discussion of strictly enforcing the boundary conditions can be found in [27]. The described
architecture is illustrated in Fig. 1.

3. Kolmogorov n-width and convergence of PINNs

In this section, we connect the dimensionality of the problem to the training difficulties in PINNs. Specifically,
we provide numerical evidence to connect the decay of singular values of the snapshots to the difficulties in the
training phase, where the slow decay of singular values corresponds to transport phenomena, convection, traveling
waves, and moving fronts. Although limited attempts were made to quantify connection of dimensionality and slow
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Fig. 1. The traditional PINNs architecture with periodic boundary condition satisfied via a custom layer (hard constraint).

convergence of some specific classes of ML architectures [28,29], many of the questions regarding the choice of
activation functions, norms, and architecture remains open [28]. Formal investigations of such questions are out of
the scope of the present paper.

In approximation theory, Kolmogorov n-width is a measure of how close n-dimensional subspaces can
approximate the solution manifold, M [30]. The following definitions briefly explains this measure [31].

Definition. Let M be a normed linear space and M, any n-dimensional subspace of M. For each x € M,
) (x, M,,) shall denote the distance of the n-dimensional subspace M, from x, defined by

§(x; M,) =inf{llx — yllx : y € M,}, ®)

where |.||x denotes any arbitrary choice of norms. If there exists a y* € ./W,, for which § (x, ./\71,1) = |lx — y*|,
then y* is the best approximation of x from M,. Extending the concept from a single element of x to S, a given

subset of M, the deviation of S from ./\A;l,, is defined as

5(S; M,) =sup inf |x —yl|, )
xeS }'EMn

representing the worst element of x € S approximated in M,

Definition. Kolmogorov n—-width of M, d,, (M), is defined as
dy, (S; M) == inf § (S; M,,), (10)
M,

where the infimum is taken over all n-dimensional subspaces (./f\v/ln) of the state space, M.

In the context of Petrov—Galerkin projection schemes, n—width correlates with the best achievable rate of
convergence for a given set of snapshots [32]. The connection of rate of decay of singular values of the snapshots to
accuracy of approximation in linear subspaces are established [33-35]. The extension of such results to non-linear
manifolds, such as those discovered through training of PINNs, has not been identified yet. Here, we numerically
evaluate whether the rate of decay of singular values could be used as a simple a priori guideline to the complexity
of the training phase of PINNs.

Krishnapriyan et al. [12] have characterized complexities of training of PINNs for some canonical problems.
They argue that the condition number of the governing equation as the regularization term is one of the origins of
the difficulties in the training of PINNs in specific regimes. > Here, we revisit these cases and introduce the rate
of decay of singular values of the solution as a robust and predictive indicator of difficulties in training of PINNs.
Based on our findings, we predict Burgers’ equation, in convection-dominated regimes, as an additional challenging
test case for PINNS.

2 We show that the so-called “failure modes” are more probable for optimization using L-BFGS and are less frequent with Adam optimizer.
Regardless of the choice of optimizer, it is harder to train PINNs for higher convection speeds. A detailed and probabilistic investigation
of convergence of PINNs for convection and its sensitivity to optimization scheme, sampling of collocation points, hyper-parameters of the
composite loss, and soft versus hard enforcing of the periodic boundary condition is presented in Appendix A. Subsequently, we demonstrate
that traditional PINNs are slower to train in the presence of high convection, moving features, and surfaces.
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Table 2
Canonical problems with high Kolmogorov n—width complexity. In all cases, the domain is defined on [0, 27] x [0, 1]. F (.), F —1(), and
k respectively denote Fourier transform, its inverse, and wave number in the Fourier space.

Canonical problem PDE Initial condition, w (x, 0) Boundary condition Solution, w (x, t)
] el ;
1 Convection S e =0 sin (x) w (0,0 =w@r,1 FUF w (x, 00) e e)[12]
X

(Introduced in [12])

F) —)? ,0) et
2 Reaction (Tw —pw(l—w)=0 exp <7 & 71)2 ) w(0,1) =wQ2mn,1) %[121
(Introduced in [12]) ! 2(/4) w(x,0) e’ +1—w(x,0)
Jw 9w (x — 7'[)2
3 Reaction—diffusion w5 v Fro pw(l —w)=0 exp | — 5 w(0,1) =wQ2m,1) Strang splitting [12], i.e.,
(Introduced in [12]) ! * 2(/4) ; w(x, 0)e?!
T w(x, 0)eft + 1 —w(x,0)
i, 77! (]: (w (x,0)) 87”K2'>
. [ Jw ow 2w . 1 ot —iext
4 Convection—diffusion — +c— =v- sin (x) w(0,1) = w(2m, t) F (}" (w(x,0)) e Vet )
. ar ax ax2
(Similar to 1)
P 2
5 Burgers’ ﬂ +w dw =v M sin (x) + ¢ w(0,1) =wQ2mn,1) Fourier Pseudo—Spectral

: 912
(Our contribution) & dx dx

In Figs. 2 to 5, the snapshots of the solution and the corresponding singular value decays are plotted for given
snapshots of convection equation, reaction equation, reaction—diffusion equation, and Burgers’ equation where the
state variable w = w(x, ¢t) is in the domain (x, ¢) € [0, 27 ] x [0, 1], and the PDEs are equipped with initial conditions
w(x,0) = wp(x), and periodic boundary conditions, as summarized in Table 2. Convection speed, viscosity, and
reaction coefficient are denoted by ¢, v, and p, respectively. Note that to introduce traveling shocks in the Burgers’
equation, the initial condition is offset by c.

In each of these experiments, the solution of the governing equation is depicted in the space—time domain, and
the corresponding singular value spectra are also compared, where o; is the ith singular value of the snapshots of
the solution.

Krishnapriyan et al. [12] showed that PINNs are harder to train for higher convection speeds (so-called “failure
modes”). Subsequently, the cases with ¢ = 0 and ¢ = 50 are compared in Fig. 2.1t is clear that o,/0; increases
quickly as ¢ increases. For the reaction equation, the decay of singular values becomes slower as p increases, in a
similar trend, the PINNs become more difficult to train. For the cases of reaction—diffusion in [12], all cases show
similar slow rate of decay of singular values, and in a similar trend, training in all the cases encounters difficulties.
Finally, we consider Burgers’ equation, a case successfully solved in early studies of PINNs [2]. However, in that
case, a viscous shock forms and collapses on its place, without traveling in the domain. In this paper, to impose the
shock moving through the domain, the initial condition is offset from zero. Similar to the convection case, the rate
of decay of singular values decreases as the speed of the shock is increased. In such cases, the shock sweeps the
domain before collapsing/diffusing. Subsequently, similar challenges in training of PINNs for Burgers’ equation in
convection-dominated regimes is observed.

These experiments suggest that although ANNs can express any solutions on non-linear manifolds, the dimen-
sionality of the solution on the linear optimal subspace of singular vectors can still inform the convergence behavior
of PINNs, for the same system of governing equations. However, the singular value spectra between two different
governing equations do not explain difficulty of the training, e.g., collapsing shock has a slower rate of decay of
singular values compared to convection with high speed and yet the training phase is well-behaved. Nevertheless,
in all cases the network is hard to train at the presence of traveling features, such as shock, fronts, and gradients.

Although the connection of Kolmogorov n—width and training of PINNs is lacking from the literature, some of
the successful remedies in training of PINNs [9,12,13] can be explained by reducing the Kolmogorov n—width, an
active research subject in finite element method of solving PDEs [36,37], DA [38], neural networks (NNs)-based
reduced order models (ROMs) [39—41], projection-based ROMs [37,42-50], flexDeepONet [51], Gaussian Process
Hydrodynamics [52], and projection—-based ROMs on NN-based manifolds [53,54].

Here, we apply some of the proposed remedies to enhance convergence of traditional PINNs [4,12,13] to synthetic
snapshots, and demonstrate the connection between the proposed remedies and the rate of decay of (normalized)
singular values. We compare (i) random and uniformly sampling of the domain, (ii) random but weighted sampling
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Fig. 2. Convection equation. In 2(a) and 2(b), dark red and dark blue represent +1 and —1, respectively. In 2(c), the black triangle and
blue rectangle markers represent ¢ = 0 (fast convergence), and ¢ = 50 (slow convergence), respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Reaction equation. In 3(a) and 3(b), dark red and white represent +1 and 0, respectively. In 3(c), the black triangle and blue rectangle
markers represent p = 1 (fast convergence), and p = 10 (slow convergence), respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Reaction—diffusion equation. In 4(a) and 4(b), dark red and white represent +1 and 0, respectively. In 4(c), the black triangle and
blue rectangle markers represent (v, p) = (5, 2) (slow convergence), and (v, p) = (6,5) (slow convergence), respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Burgers’ equation. In 5(a) and 5(b), dark red and dark blue represent ¢+ 1 and ¢ — 1, respectively. In 2(c), the black triangle and blue
rectangle markers represent ¢ = 0 (fast convergence), and ¢ = 50 (slow convergence), respectively. In all cases, v = 0.01. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

of the domain similar to [9], and (iii) decomposition of the temporal domain similar to [12,13]. Some of the
aforementioned methods in training of PINNs for convection equation are compared with our proposed LPINNs
in Appendix B. In this section, we focus on a representative problem to evaluate such remedies through the lens
of Kolmogorov n—width. Consider a synthetic traveling shock/interface (Fig. 6(a)). The snapshot is constructed on
N, = 256 spatial grid points and N; = 500 time steps. The spectra of singular values of the full data, in Fig. 6(b),
shows that O (10%) bases are required to reconstruct the data to the error of O (1072) on the subspace spanned by
singular vectors.

Firstly, at each time level 25 data points are sampled randomly and uniformly. As in Fig. 6(b), the sampled
data has a lower rank compared to the full data, demonstrating the distance in accuracy of approximation of the
full data. However, the leading singular values remains unchanged (a property used in randomized singular value
decomposition).

Secondly, the data points are selected randomly but weighted such that the probability of sampling is proportional
to the absolute value of the gradient of the data. Specifically, randsample function in MATLAB [55] is used, where
the weight vector is the absolute value of the difference between two consecutive data points. In this case, the rate of
decay of singular values is increased, reducing the approximation error given the same number of singular vectors.

Thirdly, the temporal domain is decomposed by selecting 25 consecutive time steps (i.e., the domain is divided
into 20 consecutive subdomains, Fig. 6(g)), significantly increasing the rate of decay of singular values as in
Fig. 6(h). This strategy is effectively equivalent to parallel-in-time decomposition [13] and sequence-to-sequence
learning [12], where the temporal domain is decomposed into short time intervals. For an effective reduction in the
Kolmogorov n—width, the subdomains’ time horizon are very limited, leading to an inefficient and repeated training
in PINNSs. For example in the case of our synthetic data, 20 different networks/training passes are required to cover
the full temporal domain. This strategy is similar to principal interval decomposition (PID) (in linear subspace),
applied to ROMs [47] and Long short-term memory (LSTM) networks [40], and reduces the Kolmogorov n—width
of the data at the cost of localizing of the solution. Subsequently, increasing the temporal domain, decreases the
rate of decay. Decomposition of the computational domain, in both space and time, is possible using eXtended
PINNs (XPINNs), originally developed to tackle the scalability of PINNs [4].

Given the numerical evidence in this section, one paradigm to tame the training of PINNSs is to reformulate the
problem on a manifold such that Kolmogorov n—width is decreased, or equivalently, the rate of decay of the singular
values is increased. For non-linear convection—diffusion flows, where convection dominates diffusion, such goal is
achievable by reformulating the governing equations on the characteristics curves [56]. Accordingly, we expect
a similar strategy, when applicable, can reduce the challenges in training of PINNs. We reconsider the synthetic
data in Fig. 6. When the characteristics are followed or the observer is re-framed on the traveling shock Fig. 6(a) is
transformed into a stationary shock of Fig. 6(i). Consequently, the rank of the transformed snapshots is exactly equal
to 1, Fig. 6(j). In the cases where the transformed state parameter does not remain constant, e.g., in the presence

9
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Fig. 6. A comparison of different methods reducing the Kolmogorov n—width. The synthetic data depicts a traveling shock, Fig. 6(a), and
Fig. 6(b) is the corresponding singular value spectra. Figures 6(c) to 6(d) represent uniform sampling (black triangles), and Figs. 6(e) to
6(f) represent weighted sampling (red circles), Figs. 6(g) to 6(h) represent the effect of domain decomposition sampling (red circles), b. The
corresponding singular value spectra of the uniformly sampled data (black triangles), the weighted sampled data (blue squares and shaded
subdomain). Finally, Fig. 6(g) depicts the data represented on a frame following the traveling shock (i.e., Lagrangian frame), and Fig. 6(h)
shows the optimal reduction of rank to 1. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

of non-linear convection, or diffusion, the rank of the transformed snapshots is greater than 1, nevertheless, it is
significantly smaller compared to the snapshots in the original, Eulerian frame of reference. See [56] for a more
detailed discussion.

4. Proposed Lagrangian PINNs for non-linear convection—diffusion

Consider the following scalar, one-dimensional convection—diffusion equation

Bw(x 1) (x 1) 32w(x, 1)

Ri= =2+ filx, — bt w) =5 (11)

in the domain (x, 1) € [x,, x5 ] x[0, T ], w1th initial conditions w(x, 0) = wy(x), and appropriate boundary conditions
at x, and x;.

=0,

10
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As motivated in Section 3, to address the complexity of the training, the governing equation Eq. (11) is
reformulated in the Lagrangian frame of reference, i.e.,

d
x = );( ) = fiw(x(®), 1)) =0, (12a)
dw (x,
Ry = %mm fole, ) = w(x D)y =0, (12b)

where x denotes the characteristics, and w is the state variable on the characteristics.

Here, we describe the additional changes to the architecture of the traditional PINNs to conform with the
Lagrangian formulation to satisfy Eq. (12). We propose a parallel architecture comprised of two branches,
corresponding to the trajectory of the characteristics and the state parameter on the characteristics, respectively
denoted by N, (u) and N, (u). The output of the first branch is the trajectory of the characteristic curves, i.e.,

Xxi, 1) =Ny (W) = ¢ Wit Wiy -t (Wis+b1) -+ bp1) +by) s (13)
and the second branch outputs the state parameter on the characteristics curves, i.e.,
w(x;, ti) = Nw (u) = ¢m (W111¢m—l (Wm—l T ¢1 (W[ll + bl) R bm—l) + bm) s (14)

where all the parameters are defined similar to the network in Section 2. The two branches can be of different width,
and depth. The output of the network is the state parameter on the characteristics curves minimizing the loss, i.e.,

L= er + Lrw + Lica (15)
where L,X, and er are the loss associated with the residuals in Eq. (12), i.e
1 &
Lry =ty D Ry i) (162)
"=l
= hr, Z Ry (X1, 1)1 (16b)

and £, is the loss associated with initial condition of both the state and grid, i.e.,
N.
1 '€ . .
Lie = hiex— Y (Jw 0 = gu (xfc) |, + [x 6, 0) = g (¥i0)],). (17)

ic
i=1

where g, (x!,) and g, (xi.) are the known initial conditions for the state and grid, respectively. The proposed
architecture is depicted in Fig. 7.

The output of the proposed network is the state variable on the Lagrangian frame, i.e., w (x (¢) , t). The solution
on the Lagrangian frame of reference is consistent with the solution on the Eulerian frame. Finally, one can
interpolate the states from the Lagrangian to the Eulerian frame of reference.

We recognize the residual equations in Eq. (12) can also be solved in an architecture similar to that of the
traditional PINNs. However, the proposed two-branch architecture leverages the inherent low-dimensionality of the
characteristics [56], and employ a shallow and compact network to solve Eq. (12a).

In the cases where the characteristics are independent of the state variable, e.g., linear convection where
dx (t)/dt = c in Eq. (12a), the equations for state and characteristics are decoupled. Subsequently, the two branches
of LPINNS can be trained separately. In this paper, we use the same coupled architecture of Fig. 7 for all discussed
problems.

The proposed LPINNs reformulation and architecture is causality conforming. Characteristics are curves on which
the state variables are governed by ordinary differential equations. Therefore, the evolution of the state variable is
only “influenced” or “caused” by the state on the corresponding characteristics curve. In other words, the evolution of
the state variables in time is only influenced/caused by their history and on the corresponding characteristics, i.e., the
domain of dependence. Similarly, the current state can only influence/cause the future state on the corresponding
characteristic curve, i.e., the region of influence. Therefore, by redefining the state variable on the curves, the
direction of travel of information is by construction enforced.

11
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Fig. 7. The proposed LPINNs architecture with periodic boundary condition.

5. Numerical Experiments

In this section, the traditional PINN and the proposed LPINN are compared. The equidistant collocation points in
the spatio-temporal are of size (N,, N;) = (256, 100) for (x, ¢) € [0, 2] x [0, 1]. In the convection and convection—
diffusion cases, the initial condition is wy = sin (x), and the solutions in Table 2 are considered as the truth. In the
Burgers’ case, the initial condition is wy = sin (x) + c.

In all cases, the PINNs have 4 hidden-layers, and the LPINNs have an additional shallow branch with 2 hidden-
layers. All the hidden layers have 50 neurons. All activation functions are ¢(.) = tanh(.), except those of the last
layer, where activation is linear (identity). The hyper-parameters in Eq. (4) of PINNs are [A,, Ai¢, Apc] = [1, 15, 0]
(hard constraint for the periodic boundary), and are chosen via the explorations described in Appendix A. Similarly,
the hyper-parameters in Eq. (15) of LPINNs are [)\,w, Arys Aics Abc] = [1, 10, 1000, 0] (hard constraint for the
periodic boundary), unless otherwise stated. Adam optimizer [57] with 2 x 10* iterations and learning rate of 0.01 are
used for all the cases, as we observe more consistent converged solutions of PINNs using Adam (see Appendix A).
As described in Appendix A, an ensemble of 10 random seeds are trained for both PINNs and LPINNs, and the
probability distribution and lowest values of the error are compared.

The relative error is defined as,

lw —w*,
lwll,
where w is the truth, and w* is the output of the network (interpolated) on the Eulerian grid, both after removing the

boundary condition, to remove synthetic deflation of the reported error due to ¢ in the cases of Burgers’ equation.
A quadratic scheme is used to interpolate the output of LPINN to the Eulerian grid.

Error = s (18)

5.1. Convection

Consider the inviscid convection equation,
ow(x,t) ow(x,t)
+c =

0, 19
dat 0x (19)
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Fig. 8. Comparison of the error in PINN (with hard constraint) vs. the proposed LPINNs (with hard constraint) for the convection equation,
Eq. (19).

and its reformulation in the Lagrangian frame of reference,

d

d)t( —c, (20a)
ow

— =0. 20b
a7 (20b)

The solution to Eq. (20) is straightforward. Eq. (20b) dictates the grid points to move with the constant convection
velocity, ¢, while the state variable remains constant along the moving points, Eq. (20b). The accuracy of PINN
and LPINN are compared for different convection velocity in Fig. 8. Similar to [12], the error of PINN increases
for larger values of ¢, such that for ¢ = 20 many of the random initialization seeds do not converge to an accurate
solution. For ¢ > 30, none of the ensemble members are converged to a small error. In case of the proposed
LPINN, where the problem is simply reformulated on the Lagrangian frame of reference, the minimum error for all
cases remains below 5%. Note that the reported error is also comprised of the error originating from interpolating
the predicted state from the moving grid of the Lagrangian frame to the stationary grid of the Eulerian frame, and
in its current implementation has lead to a limit in the accuracy of the proposed LPINNSs.

To evaluate the optimality of the trained network, the loss landscape of the network at the end of the training phase
is often used as a qualitative measure [8,12,15,58]. To compute the loss landscape, the two dominant eigenvectors
of the Hessian of the loss with respect to the trainable parameters of the networks, § and », are computed using
an efficient approximation [59]. Subsequently, the network is perturbed along the eigenvectors and its loss, £, is
evaluated, i.e.,

Lo, ) =L (0 +ad+ By), 21

where (¢, B) € [—ag, ag] X [—Bo, Bol- Finally, log (5/ (a, ,8)) is visualized in Fig. 9, for ¢ = {0, 30, 50} and in both
PINN and LPINN architectures. In Fig. 9(a), we recover the saddle shape of the loss landscape for small convection
speed as reported for PINN in [12]. Similarly, by increasing c, the landscape becomes less smooth (sharper, or more
rugged), implying the trained network is not at a minimizer (Figs. 9(b) to 9(c)). In the case of LPINN (Figs. 9(d)
to 9(f)), the loss landscapes are significantly smoother compared to their PINN counterparts (Figs. 9(a) to 9(c)).
Moreover, the landscape is smooth (flat), even at high ¢, increasing the confidence that the obtained minimizer is
a global one. In LPINNS, explaining why the landscape for ¢ = 50 (Fig. 9(f)) is smoother compared to ¢ = 30
(Fig. 9(e)) or ¢ = 0 (Fig. 9(d)) requires further investigations.

5.2. Convection—diffusion

Consider the viscous convection—diffusion equation,
ow(x,t) Jw(x,t) 2w(x, 1)
+c =v R
ot 0x 0x2

(22)
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Fig. 9. The (log of) loss landscape of convection equation given different convection speeds, ¢ € {0, 30, 50}. a-c. PINN,d-e. LPINN.

and its reformulation in the Lagrangian frame of reference,

d
d—’: —c, (23a)
ow 32w

Fig. 10 compares the accuracy of PINN and the proposed LPINNs. Similar to the inviscid case discussed in
Section 5.1, the error in PINNs increases by increasing ¢. However, the minimum error in LPINNs is relatively
insensitive with respect to ¢, and the error remains below 10% in all of the cases.

5.3. Burgers’ equation

Consider the viscous Burgers’ equation,

ow(x, 1) dw(x, 1) 32w (x, 1)
—_— ,t = , 24
o T T SV e o

and its representation on the Lagrangian frame,

Wy (25a)

— = w(x, 1), a

dt

ow 0%w

— =v—. 25b

or ' ax2 (23)

While the traditional formulation of PINN is successfully demonstrated for Burgers’ equation [2], the examined
problem lacks the main property of challenging cases for training, i.e., the large Kolmogorov n—-width associated
with the travel of the shock as in Fig. 5. In Burgers’ equation, similar to convection—diffusion equation, the PINN
is slower to train for larger ¢, while the LPINN is trained for all cases (Fig. 11). The higher error in this case
compared to the convection—diffusion equation is due to the higher interpolation error close to the shock. Note that
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Fig. 10. Comparison of the (probability distribution and minimum) error in PINN vs. the proposed LPINNs for the convection—diffusion
equation Eq. (22) for v € {0.01,0.1, 1.0}. For the probabilistic plots, PINNs are denoted by blue (left) and LPINNs are denoted by red
(right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

in these cases the viscosity, v, is small enough to form the high gradient shock and is large enough to avoid the
intersecting characteristics. Fig. 12 shows the accuracy of the proposed LPINN compared to the numerical solver
at different simulation times.

5.4. 2D convection—diffusion

Consider the 2D viscous convection—diffusion equation,

(26)

ow(xy, x2, 1) ow(xy, x2,1) ow(xy, xz,1) w(xy, x2,1)  2w(xy, xa, 1)
+ 1 + =V 3 3 ,
ot 0x1 0x> 0x; 9x;
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Fig. 11. Comparison of the (probability distribution and minimum) error in PINN vs. the proposed LPINNs for the Burgers’ equation
Eq. (22) for v € {0.01, 0.1, 1.0}. For the probabilistic plots, PINNs are denoted by blue (left) and LPINNs are denoted by red (right). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and its representation on the Lagrangian frame

dxi

E =y,

dx>

7 = (2,

ow 2w(xy, x2, 1) *w(xy, xa, 1)
ar_”( ox? ax2 )

(27a)
(27b)

(27¢)
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Fig. 12. Comparison of the proposed LPINN with pseudo-spectral solver for the viscous Burgers’ equation of Eq. (24) (v = 0.01) at
t €{0,1/3,2/3, 1} (black circle, blue square, red triangle, blue diamond) for ¢ = {30, 50}. PINN are not converged to a low error in both
regimes.

where x; and y, are the characteristics path on horizontal and vertical directions. The difficulty in training of PINNs
for this case is reported in [60].

In the Eulerian frame, the domain is (x, xp,7) € [0,27] x [0,27] x [0, 1] and doubly periodic boundary
conditions are imposed. The initial condition is set to w (x1, x2,0) = exp —WS and v = 0.01.
The network is similar to that of the 1D case, and the hyper-parameters are set to .Abc =0, Aic = 1, and
X, = 1. The equidistant collocation points in the spatio-temporal are of size (Ni, N, N;) = (128, 128, 100). The
Adam optimizer [57] with 10* iterations and learning rate of 0.01 are used for all the cases. The exact solution,

(202 . .
ie, Y F(w(x1,x2,0))e U(K' +K2)re"""‘”e‘”2’(2’ , the solution of PINN, and LPINN at t = 1 are compared for

different cases of ¢; = ¢; € {0.5,0.75,2.0} in Fig. 13. While the PINNs is hard to train for convection speed higher
than ~ 0.5, our proposed LPINN is easily trained independent of the convection speed. Note that the solution of
LPINNSs is on a translating grid, x; and x,. The periodic boundary condition, by definition, is easily imposed by
removing the whole period of the domain.

6. Potentials, challenges, and limitations

In the previous sections, we motivated reformulating convection-dominated problems on a Lagrangian frame
of reference. While sequence-to-sequence learning [12] and in parallel in time decomposition [13] require
decomposition of time in training and training/inference regimes, LPINNs provides the solution independent of
the temporal domain length and in a global time-continuous domain. Moreover, LPINNs do not require solution of
intermediate problems (in contrast to [12]). LPINN is also independent of data sampling and therefore can be applied
in a no-data regime, where the network is used as a forward solver. This independence is particularly important
since one does not necessarily have access to location of the provided data and refinement/adaptation the location
of data/collocation points requires some a priori knowledge of the solution or repeating the experiment, where
sampling methods such as those in [9,22] might not be practically efficient. The change of frame of reference is
mathematically consistent with the initial problem and does not require ad-hoc engineering of the problem [21] or
tuning of the system parameters [22].

In summary, the inherent reduced dimension of the solution on a frame of reference following the traveling
features is consistent with the original problem in the Eulerian frame and enables training of a single network (one set
of weights and biases), and in a global time continuous domain without requiring solutions intermediate problems.
While the discussed advantages make LPINNs a promising method for highly convection-dominated problems and,
in principle, can be extended to high dimensional multi-scale problems, there are additional practical challenges
that have to be considered. In the following subsections, the challenge of grid management and interpolation is
discussed.
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(a) Exact, ¢ = ¢ = 0.50 (b) Exact, ¢c; = ¢ =0.75 (c) Exact, ¢ = ¢ = 2.00

(d) PINN, ¢; = ¢, =0.50 (e) PINN, ¢; =2 =0.75 (f) PINN, ¢; =2 =2.00

(g) LPINN, ¢1 = ¢, =0.50 (h) LPINN, ¢| = ¢ =0.75 (i) LPINN, ¢1 = ¢; = 2.00

Fig. 13. Comparison of the exact solution of 2D convection—diffusion equation with convection speed of ¢; = ¢ € {0.5,0.75, 2.0} and
v=20.01 at T =1 (Figs. 13(a) to 13(c)) with output of PINN (Figs. 13(d) to 13(f)), and our proposed LPINNs (Figs. 13(g) to 13(i)).

6.1. Grid management

Grid management is one of the well-known challenges of solvers in traditional numerical Lagrangian solvers,
where the grid points, by definition, convect with the local flow velocity. Depending on the local velocity the
adjacent grid points can depart and depreciate the accuracy of local gradients or they can move towards each
other and eventually cross such that the grid volume becomes negative, i.e., grid tanglement (mesh imprinting),
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Fig. 14. Solution of LPINN for inviscid Burgers’ equation on a 2D infinite domain, showing formation of a strong solution and grid
tanglement.

or small enough to lead to unacceptably small time-steps (due to the Courant—Friedrichs—Lewy (CFL) limit) [61].
The challenge of accurate and strictly positive grid volume has been recognized since the early days of Lagrangian
solvers [62] and has been continually an active topic of research [63—65]. Despite these challenges, the Lagrangian
solvers are extended to three-dimensional (3D) flows with highly complicated shocks [66].

To examine the capabilities of LPINNs for a case where the characteristics intersect, i.e., grid tanglement, we
consider Lagrangian representation of inviscid Burgers’ equation in an unbounded 2D domain,

d

% = w(x,, x2, 1), (28a)

dx2

_— = s ,[ s 28b
R w(xy, xa2,1) (28b)
o, (28¢)
at

1.52
shock. The LPINN architecture is similar to that of 2D convection—diffusion problem presented in Section 5.4. The

LPINN is trained for a long time horizon of 7 = 5, and the solution in the last time step is shown in Fig. 14. The
grids in this case simply intersect and pass, but such grid tanglement does not lead to any instabilities or challenge
in the training phase. However, the output is the strong solution of inviscid Burgers’ equation, and to obtain physical
weak solution of the Burgers’ the so called entropy condition must be introduced.

Another classical approach to avoid the challenges associated with grid tanglement is to relax the assumption
of the Lagrangian frame. In the arbitrary Lagrangian—Eulerian (ALE) frame, the grid can move in an arbitrary and
prescribed manner [67]. Therefore, the grid velocity can be set to be independent of flow velocity. The governing
equations have to be adjusted to account for convective velocity, i.e., the difference between the grid velocity and
the local velocity, e.g, [68]. Such a generalization can alleviate the challenge of grid tanglement. The optimality
and effectiveness of an arbitrary grid for reducing the Kolmogorov n—width of convection-dominated problems are
shown in [39], where an optimization problem is solved to discover a grid trajectory such that the rank of the
mapped solution is small. The application of a similar strategy in the context of PINNs remains a topic for future
work.

Moreover, the PINN formulation provides unique opportunities to address the aforementioned challenges. Firstly,
the accuracy of derivatives calculated via AD, in contrast to traditional methods, does not degrade with what
traditionally is defined as the grid quality measures, e.g. skewness, and aspect ratio. Accordingly, the inviscid
Burgers’ problem discussed above and the developments of Neural Particle Methods (NPMs) [69,70] show that a
PINN-based implementations remain stable even when the collaboration points become highly irregular. Secondly,
the stability in PINNs seems not to be restricted by the CFL condition, therefore small grid volumes do not restrict
the choice of refinement of collocation points in time. Finally, an arbitrary grid trajectory can directly be learned
by simple addition of constraints to the NN.

0 2 . . .
with the initial condition of w (x, x2, 0) = ¢ + exp (—M), where c¢ is set to 1.0 to induce a traveling
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6.2. Interpolation error

The immediate consequence of reformulating the problem on the Lagrangian frame is detachment of the solution
from the (stationary) Eulerian grid/collocation points. While the choice of a frame of reference is arbitrary, there are
cases where the solution is sought on a stationary frame, e.g., coupling with other Eulerian solvers, or a quantity
of interest (Qol) is defined in the Eulerian frame. In such cases, an additional post-processing step is necessary
to map the solution from the Lagrangian to the Eulerian grid. Although the interpolation step can introduce error,
its convergence and error bounds are well studied, and typically negligible. There is no one correct choice of an
interpolation scheme, an appropriate scheme is a delicate compromise between tolerable error, cost of search for
the neighboring grid points, dimension, the scale of the problem, and the assigned computational budget. This can
be more pronounced in presence of high gradient features in the solution, e.g., shocks.

7. Conclusions

In this paper, we explored the slow convergence of PINN for convection-dominated problems. It is demonstrated
that regardless of the choice of commonly used optimization schemes (Adam or L-BFGS) or distribution of the
collocation points (equidistant or uniform), convergence of PINN is significantly more challenging as convection
dominates. Our contributions are threefold.

1. We described the challenges of training traditional PINNs through the lens of approximation theory using
Kolmogorov n—width and the rate of decay of singular values of the solution. Accordingly, we explained many
of the successful remedies in training of PINNs. Moreover, this lens can lead to identifying new challenging
problems and novel methods to address them.

2. We identified Burgers’ equation in the presence of traveling shocks as another challenging case. The
complexity of training is explained based on our discussion of the irreducibly on a linear space, i.e., large
Kolmogorov n—width.

3. Finally, we demonstrated our proposed architecture, i.e., LPINNs for linear and non-linear convection—
diffusion equations. The reformulation of the equations on the characteristics automatically conforms to
the direction of travel of information in the domain, and satisfies the expected causality. More importantly,
the solution on the manifold is of lower dimension, i.e., low Kolmogorov n-width, and is less sensitive
to the system parameters. Using the inherent low-dimensionality of the characteristics [56], only a shallow
branch is added to the traditional PINN to minimize the composite loss comprised of residual equations of
characteristics, and the state variable on the characteristics. While it is suggested that the condition number
of the loss is a probable source of complexity in training of PINNs [12], the proposed LPINN architecture
is robust with respect to the condition number and good convergence is demonstrated regardless.

The advantage of LPINN is most highly evident in very strongly convection-dominated problems, where traveling
features dominates the solution. Such problems often surface additional challenges that should be taken into account
when developing the proposed approach. For example, in the nonlinear equations governing compressible fluid flows,
multiple features may from a single point, e.g., Sod’s shock tube problem [71], where the shock and expansion waves
are initiated instantly, from a single point and are emanated in different directions.

So far we have only discussed time dependent problems where the solution depicts convection with respect to
time. Another category of problems with large Kolmogorov n—width occurs in steady state parametric systems,
where different system parameters lead to snapshots depicting similar features at different spatial locations [72]. In
practice, the number of such parameters is often fewer than the number of time steps in unsteady problems, however,
we predict a similar challenge in training of PINNs. The proposed Lagrangian approach is not applicable to such
cases, however, a similar idea can be beneficial, i.e., to learn a mapping that reduces the Kolmogorov n—width of
the problem by removing traveling features between the cases, e.g., [39,72].

We have demonstrated viability of LPINN for inviscid Burgers’ equation where the characteristics intersect. The
strong solution is found without any challenge in training or additional considerations of grid tanglement. In such
cases, a vanishing viscosity approach or removing the triple point value using Rankine—Hugoniot condition (entropy
condition) seem to be straightforward to solve for the weak solutions [73]. Similar strategies are applied to PINNs
in Eulerian frame and in the presence of shocks in [21,22]. An extension of the proposed LPINN to higher spatial
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dimensions is possible using the Radon transform [74]. In cases where characteristics curves are not real, e.g., wave
equation, a manifold can be identified by registration-based or feature tracking approaches, e.g., [37,39,46,75,76],
and in particle method formulation of PINNs [69]. Specifically, an optimal and low-rank manifold can be constructed
offline by identifying an optimally morphing grid [39]. Subsequently, PINNs’ architecture provides an opportunity
for one-shot discovery of an optimal manifold defined on an ALE grid.
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Appendix A. Convergence of PINNs for convection equation

In this section, convergence behavior of traditional PINNs with respect to choice of hyper-parameters, opti-
mization schemes, distribution of the collocation points, and types of enforcing of periodic boundary conditions
(soft versus hard enforcement) are investigated. Specifically, we compare training dynamics of PINNs using two
commonly used optimization schemes [2], i.e., Adam [57] and L-BFGS, [77], sweeping a range of hyper-parameters
of the composite loss, i.e., A := Ay, = A;c € {0.01, 0.1, 1.0, 10, 15, 20, 25, 50, 100}, and A, = 1. The search for an
optimal hyper-parameter is carried out with the soft enforcement of the boundary conditions, as the most common
architecture of PINNs in Appendix A.l and Appendix A.2. A comparison of soft versus hard imposing of the
boundary conditions is made in Appendix A.3. Each instance is repeated for 10 different random seeds to study the
probabilistic behavior in training with respect to random initialization of the networks, i.e., a multi-start global search
commonly used in non-convex optimization problems, e.g., for control [78]. As the metric of comparison, relative
error (¢) of the solution of the trained PINNs is compared with the exact solution (see Table 2). The maximum
number of iterations is 2 x 10*, unless otherwise stated. The probability distribution of the error over the random
seeds are approximated with kernel density estimations (KDEs), and are plotted between the minima and maxima
of the occurrences of the error. The effect of two different distribution of collocation points are also compared. The
equidistant collocation points are of (N, N;) = (45, 45) (total of 2025 points). The random collocation points are
sampled from a Latin hypercube distribution [79] (total of 2000 points). The domain is (x, ¢) € [0, 27] x [0, 1].

A.l1. Choice of hyper-parameters

In Fig. A.1 the error of the trained PINNs using the different optimization schemes and grids are compared for
¢ = 30. In all cases, it is observed that the accuracy of the converged solution is sensitive to the choice of the
hyper-parameters used to scale the loss components, see Eq. (5) in Section 2.

A bifurcation in the accuracy is apparent in PINNs trained using L-BFGS regardless of the type of the grid,
i.e., one branch of the trained networks is stuck in local minima with high error (around 100%), while the other
branch is converged to error of approximately 3%. The type of the grid affects the probability of occurrence of
each these branches. Random collocation points are more likely to lead to inaccurate solutions, meaning that,
for an accurate solution of a PINN on random collocation points, a large ensemble of networks must be trained.
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Fig. A.1. The stability map of convergence of training of PINNs to solve convection equation with ¢ = 30. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.2. The stability map of convergence of training of PINNs to solve convection equation with ¢ = 50. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

However, on the uniform collocation points, the chances of accurate solution and high error are almost equal (given
an acceptable 1).

This bifurcated behavior is less pronounced using the Adam optimizer, however, it similarly suffers from
large variance in accuracy and sensitivity to the hyper-parameter (e.g., while ¢ € [3%, 7%] with A = 15, with
A =10, € € [3%, 25%]).

Similar experiments for ¢ = 50 are shown in Fig. A.2. In this case, regardless of the grid type or the optimization
scheme, the error remains consistently high over the range of hyper-parameters.

A commonly used strategy in training of PINNs, starting an optimization using Adam followed by L-BFGS is
shown in Fig. A.3 and Fig. A.4. In the case of ¢ = 30, the addition of L-BFGS reduces the error in most cases (in
the range of acceptable hyper-parameters), however, there are still rare incidences of poor convergence. Moreover,
for ¢ = 50, such a strategy does not effectively reduce the error.

Note that given these experiments, one cannot claim that accurate PINNs are unattainable in such regimes.
The expressivity of the network is shown by training the same architecture with different optimization and
scheduling (see Appendix B). However, it is clear that convergence of PINNs becomes slower as c increases.
Clearly, this complexity is not due to higher order derivatives or chaos in the solution, as they are simply
absent from the showcased convection equation. This realization motivates our proposed architecture, i.e., LPINNs,
where the complexity due to the convection is reduced by transformation of convection-dominated problems to
diffusion-dominated ones. The details of our proposed approach is presented in Section 4.

A.2. Choice of collocation distribution

In this section, the effect of collocation point strategies are compared for convection problems of ¢ = 30 and
¢ =50 in Fig. A.5 and Fig. A.5, respectively. For the case of ¢ = 30, the L-BFGS scheme is more sensitive to the
distribution of collocation points, where higher accuracy is more probable on a uniform grid. However, the Adam
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optimizer reaches acceptable error range more frequently. For the case of ¢ = 50, all approaches fail to converge
(see Fig. A.6).

A.3. Choice of constraints

In Section 2 two approaches of enforcing periodic boundary conditions of PINNs are discussed, (i) adding

periodicity of the state at the boundaries in the loss function (soft constraint and A, # 0), and (ii) addition of
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Fig. A.7. The effect of soft (left, blue) and hard (red, right) enforcing of periodic boundary conditions on accuracy of PINNs of convection
equation for a range of c. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

a non-trainable periodic layer to the architecture of PINNs (hard constraint and A, = 0). In Fig. A.7, the effect of
this choice on accuracy of PINNs is compared for a range of ¢ of the convection equation. The hyper-parameters
are A;. = 15 (both cases) and A, = 15 (soft constraint) and the results are shown for Adam optimizer with uniform
collocation points. Hard constraints increase solution accuracy for small ¢, however, as c is increased both methods
go through a transition phase, where accurate and inaccurate solutions are similarly probable. This transition occurs
in ¢ € [10, 20] and ¢ € [30, 40] for hard and soft constraints, respectively. For ¢ larger than of the transition value,
the PINNs show high error, regardless of the type of enforcing of the periodic boundary conditions.

Appendix B. Remedies to train PINNs for convection

In this section, several approaches for improving training performance are compared. Specifically, we focus on
methods that (i) are demonstrated or claimed to be applicable to convection-dominated problems, (ii) are independent
of sampling strategies, and (iii) can be implemented using commonly used and off-the-shelf numerical libraries.
Finally, the existing methods are compared with our proposed LPINNS.

B.1. Sequence-to-sequence learning [12]

In sequence-to-sequence [12] (or sometimes referred to parallel in time decomposition [13], the temporal domain
is decomposed into shorter non-overlapping subdomains, i.e., each subdomain is 7; = [(i — 1) Az, i At] such that
Uf_lT [0, T'] with no overlapping subdomains, 7; N 7; = @, Vi # j, where t is the number of subdomains, At

is the length of each subdomain, and T = t Ar. Subsequently, a PINN is trained on each subdomain such that it
satisfies the solution of the PINN in the previous subdomain as the initial condition. This procedure is repeated so
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as to cover the full temporal domain. Generally, this method does not guarantee smoothness of the solution and its
derivatives across the subdomains. For this purpose, XPINNs can be employed to impose smoothness across the
subdomains [4].

B.1.1. Sequence-to-sequence learning with warm initialization

In the previously discussed seq-to-seq learning, the network is initialized with random weights in the beginning
of training for each of the subdomains (cold initialization). However, a warm initialization strategy [80] can be
used, i.e., the weights in the subsequent networks can be initialized from the previous subdomain. Note that warm
initialization is not equivalent to transfer learning, where often the deepest layers are retrained. However, recent
studies claim such a choice might not be optimal for physical systems [81]. In our comparison, we simply retrain
the same network with newly introduced initial conditions, i.e., warm initialization.

B.1.2. Curriculum learning [12]

In curriculum learning or curriculum regularization [12], a network is trained to solve the PDE at various different
levels of modeling complexity, i.e., the trained weights and biases are transferred (used in warm initialization, to be
precise) from simpler regimes to progressively harder regimes [12]. In the case of convection equation, the network
is first trained to model small convection speed and then, training is progressed towards the target problem with
high convection speed.

B.1.3. Extended sequence-to-sequence learning

We introduce a natural extension to the seq-to-seq method discussed above. In this method, the temporal
domain is decomposed to subdomains, however, each subdomain is an extension of all the previous subdomains,
ie., T = [0, i At] such that U7_,7; = [0, T'] with overlapping subdomains of 7; N 7;y1 = [0,iA¢],Vi e {1,7 — 1}.
In this method, by progressively extending the length of the initial subdomain (instead of progressing to the next
subdomain), the boundary of subdomains become interior points in the subsequent training of the subdomains and

the smoothness considerations become irrelevant.

Remark. The extended sequence-to-sequence learning approach becomes progressively more expensive to train as
extending the temporal domain also increases the number of collocation points. This backward-compatible PINN
(bc—PINN) method [82] is expected to have a more favorable scalability by removing some portion of collocation
points from previously learned subdomains. More specifically, at each subsequent subdomain, bc—PINN minimizes
the difference between the prediction of the previously trained PINN with the current network at fraction of the initial
collocation points. Although this strategy reduces the number of function evaluations, we note that the extended
sequence-to-sequence learning proposed above is at most as large as training a network in the full spatiotemporal
domain and is still is affordable in our experiments. We expect bc—PINN to be beneficial for larger problems with
hardware limitations.

B.2. Comparison

In this section, the aforementioned approaches are compared. The boundary conditions are imposed through the
composite loss (soft constraint) for sequence-to-sequence, extended sequence-to-sequence, and curriculum learning.
For the traditional PINNs on Eulerian frame, both soft and hard constraints (using the custom layer described in
Section 2) enforcing of the periodic boundary condition are compared. Hard constraint periodic boundary condition
is always imposed on LPINNSs.

In Fig. B.8 the results for ¢ = 30 are summarized. The collocation points are random and the optimizer is
L-BFGS. In Fig. B.8(a), the effect of warm initialization on the seq-to-seq approach is compared. Both approaches
reduces the error compared to direct optimization on the full temporal domain (compare to Fig. A.1(a)). Moreover,
the warm initialization leads to more consistent convergence, while the variance of the error without the warm
initialization strategy remains high. In Fig. B.8(b) the seq-to-seq approach (with warm initialization) is compared
to our proposed extended seq-to-seq approach. Both the overall error and sensitivity to the hyper-parameters are
decreased in our proposed approach. This can be explained by the smoothness on the boundary of domains and
avoiding error accumulations over the subdomains. In Fig. B.8(c) the curriculum learning approach is studied, where
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Fig. B.8. Comparison of different strategies of training of PINNs for convection equation (¢ = 30). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

a total of 20 x 103 iterations are budgeted in T = 10 and 7 = 20. In this case, the T = 10 shows lower error compared
tor =10 and T = 1 (Fig. A.1(a)), suggesting balancing the number of subdomains and iterations per subdomain
is a necessary task.

Similar experiments are carried out for ¢ = 50 in Fig. B.9. The seq-to-seq with warm initialization may reach
10% error in some instances, but with high uncertainty and less probability (Fig. B.9(a)). The extended seq-to-seq
approach also suffers from slower convergence and requires more iterations Fig. B.9(b), compared to Fig. B.8(b).
The curriculum learning approach reaches more accurate solutions and is less sensitive to the hyper-parameters
Fig. B.9(c), compared to extended seq-to-seq (Fig. B.9(b)).

Finally, in Fig. B.10 the methods discussed in Appendix B are compared with our proposed LPINNs. The budget
for each of the methods is set to 2 x 10*. In the case of ¢ = 30, the traditional formulation of PINNs with soft
constraint has the lowest error compared to all other formulations. However, in the case of enforcing the boundary
condition with hard constraint, LPINN outperforms PINN. Moreover, the accuracy of the best solution of LPINNS is
close to that of seq-to-seq learning, while extended and seq-to-seq and curriculum reaches more accurate solutions.
However, given the high variance in the accuracy, it is also probable for those methods to show poor convergence
within the assigned budget. For the higher convection speed of ¢ = 50, LPINNs is shown to be more accurate than
all other methods and achieves this accuracy for the majority of random seeds.

To summarize, although many of the remedies proposed in the literature provide some improvements in training
convergence, these methods remain highly sensitive to additional hyper-parameters (e.g., number of sub-problems
such as subdomains in seq-to-seq training or intermediate problems in curriculum learning). More importantly, in the
aforementioned methods, the probability of achieving an accurate solution is reduced at higher convection speed,
such that large ensemble of training over randomized seeds has to be generated to achieve an accurate enough
solution. This is in contrast to our proposed method, LPINNs, where the accuracy shows small variance across a
broad range of convection speeds.
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