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Data assimilation (DA) is a key component of many forecasting models in science and 
engineering. DA allows one to estimate better initial conditions using an imperfect 
dynamical model of the system and noisy/sparse observations available from the system. 
Ensemble Kalman filter (EnKF) is a DA algorithm that is widely used in applications 
involving high-dimensional nonlinear dynamical systems. However, EnKF requires evolving 
large ensembles of forecasts using the dynamical model of the system. This often becomes 
computationally intractable, especially when the number of states of the system is very 
large, e.g., for weather prediction. With small ensembles, the estimated background error 
covariance matrix in the EnKF algorithm suffers from sampling error, leading to an 
erroneous estimate of the analysis state (initial condition for the next forecast cycle). In 
this work, we propose hybrid ensemble Kalman filter (H-EnKF), which is applied to a two-
layer quasi-geostrophic turbulent flow as a test case. This framework utilizes a pre-trained 
deep learning-based data-driven surrogate that inexpensively generates and evolves a large 
data-driven ensemble of the states to accurately compute the background error covariance 
matrix with smaller sampling errors. The H-EnKF framework outperforms EnKF with only 
dynamical model or only the data-driven surrogate, and estimates a better initial condition 
without the need for any ad-hoc localization strategies. H-EnKF can be extended to any 
ensemble-based DA algorithm, e.g., particle filters, which are currently too expensive to 
use for high-dimensional systems.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Data assimilation (DA) is an indispensable component in many of the forecasting models used for applications in science 
and engineering [1–5]. DA allows one to estimate better initial conditions for a system from which noisy and sparse obser-
vations are available, along with an imperfect dynamical model of the system. These initial conditions are then used by the 
dynamical model to predict the future states of the system. The quality of future forecasts strongly depends on the accuracy 
of the initial conditions. This is especially important in chaotic systems, where even a small error in an initial condition 
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can result in drastically different forecasts [6]. In such systems, an accurate initial condition is of the utmost importance for 
predictive dynamical models to provide accurate forecasts. DA is critical in various areas of engineering and sciences, such 
as weather prediction [7–10], environmental and geophysical flows [11–13], combustion systems [14–16], aeronautics [17], 
hydrology [18], acoustics [19], and fluid mechanics [20,21].

There are two main categories of DA algorithms: ensemble-based methods and variational methods. Ensemble-based DA 
algorithms such as ensemble Kalman filter (EnKF) were proposed for estimating better initial conditions from noisy obser-
vations assuming Gaussian observation noise [22]. Several other DA algorithms such as variational methods (e.g., 3D-Var and 
4D-Var) or a combination of ensemble and variational algorithms also exist [23,24]. 4D-Var requires obtaining the adjoint 
of the system’s dynamical model, which is often a difficult and non-trivial task. Moreover, 4D-Var optimizes a cost function 
which can be computationally expensive. Ensemble-based algorithms do not require obtaining adjoints but require evolving 
a large ensemble of forecasts of the dynamical system. In this paper, we will focus on ensemble-based algorithms for DA.

A major challenge in EnKF is generating and evolving a large number of ensemble members of the dynamical model in 
time. The accuracy of the background error covariance matrix in EnKF (which affects the performance of EnKF) depends 
on the ensemble size [25]. For a full-rank estimation of the background error covariance matrix, the number of ensemble 
members should be of the order of the number of states, s, in the system, which can be large (e.g., in the weather system, 
s ≈ O (107) − O (108)). Having said that, an accurate estimation of the covariance matrix that leads to a divergence-free 
filter, even with rank deficiency, requires one to only generate and evolve ensemble members up to the number of unstable 
and neutral Lyapunov vectors of the system [26,27]. However, for practical systems, the number of unstable and neutral 
Lyapunov vectors would still be a very large number and evolving such a large number of ensemble members over multiple 
time steps becomes computationally intractable. Thus, fewer ensemble members are typically used in practice (≈ O (50) in 
operational weather models [28]). These covariance matrices, generated from a smaller number of ensemble members, are 
rank-deficient and suffer from sampling error that degrades the quality of the estimated initial condition (often referred to 
as the “analysis state”). For this reason, various ad-hoc localization strategies have been proposed to remove spurious long-
range spatial correlations in the covariance matrix [3]. However, in this process, one may also remove physically-consistent 
long-range spatial correlations and this can adversely affect the performance of EnKF and thus, the quality of forecasts [29]. 
There are other methods to estimate the background error covariance matrix without evolving a large ensemble, e.g., the 
stochastic Galerkin method [30].

In recent years, we have seen an increase in interest at the intersection of machine learning (ML) and DA for applications 
in dynamical systems. For example, in Yang et al. [31], a generative model was used to facilitate ensemble generation for 
analog-based DA. In our previous work [32], we have shown that a data-driven weather forecasting model can be integrated 
with a sigma-point ensemble Kalman filter to obtain accurate initial conditions for forecasting. Tsuyuki et al. [33] integrated 
ML with an EnKF to perform state estimation in a nonlinear dynamical system using a small number of ensemble members. 
Maulik et al. [34] used 4D-Var-based DA with ML for forecasting in high-dimensional dynamical systems. Penny et al. [35]
used a recurrent neural network and 4D-Var for scalable state estimation. Chen et al. [36] showed the application of DA in 
ML-based forecasts in complex turbulent flows with partial observations. There are several other studies that have shown 
different applications, where ML has been integrated with DA, e.g., predicting subgrid-scale processes in multi-scale chaotic 
systems [37,38], closed-form equation discovery of model error [39], etc.

In this paper, we propose hybrid ensemble Kalman filter (H-EnKF), a hybrid algorithm for enhancing the performance 
of EnKF without resorting to localization strategies. H-EnKF leverages deep learning to build a data-driven surrogate of the 
dynamical model of the system. This surrogate is used to generate and evolve a large number of data-driven ensemble 
members, O (s), to compute the background error covariance matrix of the dynamical system. The data-driven model is 
trained on the full state of the system and serves as a computationally cheap surrogate to predict the evolution of the 
states, and is used just for estimating the background error covariance matrix. While the less-accurate but large data-driven 
ensembles are used to compute the background error covariance matrix with low sampling error, the numerical model of 
the system is used to generate and evolve a small number of ensemble members, g , where g � s (note that g could be 
just 1). This small number of ensemble members are used to compute an accurate background forecast state to be used in 
the H-EnKF algorithm. In order to demonstrate the performance of H-EnKF, we have applied it to a well-known test-bed for 
fully turbulent geophysical flows: the two-layer quasi-geostrophic (QG) system [40,41].

The remainder of the paper is organized into several sections. In section 2, we describe the QG system, the numerical 
solver used to simulate the system, the data-driven surrogate model, and the EnKF algorithm. In section 3, we introduce our 
proposed H-EnKF algorithm. Section 4 describes the metrics to evaluate the performance of EnKF and H-EnKF. In section 5, 
the performance of the algorithms, in terms of accuracy and cost, is presented, followed by summary and discussion in 
section 6.

2. Method

2.1. Two-layer QG system

The dimensionless dynamical equations of the two-layer QG flow have been developed following Lutsko et al. [40]
and Nabizadeh et al. [41]. The system consists of two constant density layers with a β-plane approximation in which the 
meridional temperature gradient is relaxed towards an equilibrium profile. The system’s equations are:
2
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Table 1
Number of layers and filters in the U-NET architecture used as the 
data-driven surrogate model.

Number Layer Number of Filters

1 5× 5 2D Convolution 32
2 5× 5 2D Convolution 32
3 2× 2 Max Pooling –
4 5× 5 2D Convolution 32
5 5× 5 2D Convolution 32
6 2× 2 Max Pooling –
7 5× 5 2D Convolution 32
8 5× 5 2D Convolution 32
9 Up-sampling –
10 Concatenation –
11 5× 5 2D Convolution 32
12 5× 5 2D Convolution 32
13 Up-sampling –
14 5× 5 2D Convolution 32
15 Concatenation –
16 5× 5 2D Convolution 32
17 5× 5 2D Convolution 32
18 5× 5 2D Convolution 2

∂qk
∂t

+ J (ψk,qk) = − 1

τd
(−1)k (ψ1 − ψ2 − ψR)

− 1

τ f
δk2∇2ψk − ν∇8qk.

(1)

Here, q is potential vorticity

qk = ∇2ψk + (−1)k (ψ1 − ψ2) + β y, (2)

where ψk is the streamfunction of the system. In Eqs. (1) and (2), k denotes the upper (k = 1) and lower (k = 2) layers. β

is the y−gradient of the Coriolis parameter. τd is the Newtonian relaxation time scale and τ f is the Rayleigh friction 
time scale, which only acts on the lower layer. δk2 is the Kronecker δ− function. J denotes the Jacobian. ν denotes the 
hyperdiffusion coefficient. We have introduced a baroclinically unstable jet at the center of a zonally periodic channel by 
setting ψ1 − ψ2 to be equal to a hyperbolic secant centered at y = 0. When eddy fluxes are absent, ψ2 is identically zero, 
making zonal velocity in the upper layer, u1(y) = − ∂ψ1

∂ y = − ∂ψR
∂ y , where we set

−∂ψR

∂ y
= sech2

( y

σ

)
. (3)

σ is the width of the jet. Parameters of the model are set following previous works [40,41]; β = 0.19, σ = 3.5, τ f = 15, and 
τd = 100.

To non-dimensionalize the equations, we have used the maximum strength of the equilibrium velocity profile as the 
velocity scale (U ) and the deformation radius (L) for the length scale. The system’s time scale (L/U ) is referred to as the 
“advective time scale” (τadv ) which is approximately 6 h in this system.

2.2. Numerical solver

The spatial discretization is spectral in both x and y, where we have retained 96 and 192 Fourier modes, respectively. 
The length and width of the domain are equal to 46 and 68, respectively. Sponge layers are applied to the northern and 
southern boundaries. Note that the domain is wide enough for the sponges to not affect the dynamics. Here 5τadv ≈ 1 Earth 
day ≈ 200	t , where 	t = 0.025 is the time step of the leapfrog time integrator used in the numerical scheme.

2.3. The data-driven model: U-NET

To build a data-driven surrogate model to approximate the QG dynamics, we adopt a U-NET architecture [42]. The choice 
of this architecture is inspired by our previous work in data-driven weather forecasting [32]. The details of the architec-
ture are provided in Table 1 and a schematic is shown in Fig. 1. The U-NET allows one to extract small-scale features in 
the encoder that are directly passed into the decoder as skipped connections. This has been shown to result in improved 
performance on turbulent flow prediction [43]. The U-NET architecture is trained on Ntr noise-free samples (we have per-
formed experiments with Ntr = 105 and Ntr = 104 samples; see section 5.1) of the system’s state, i.e., streamfunction, ψk(t), 
k = {1, 2}. The input to the network is ψk(t) and the target is ψk(t + γ	t). We have shown in a previous study [32] that 
3
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Fig. 1. Schematic of the U-NET model used as a surrogate for data-driven prediction of ψk(t) in the two-layer QG system. The input to the model is the 
system’s full state, ψk(t) and the output is ψk(t + 40	t), where k = {1, 2}. The detailed information of the number of layers, their index number, number 
of filters, and size of convolutional kernels after hyperparameter optimization is given in Table 1. Here, 40	t ≈ 6h.

large values of γ improve the prediction horizon of the data-driven model over small values of γ . Hence, γ > 1 would result 
in a longer prediction horizon than γ = 1. However, in the H-EnKF algorithm (see section 3 for more details) an accurate 
computation of the background error covariance matrix with data-driven ensembles requires one to evolve the data-driven 
model for a sufficient number of time steps as well. Since we obtain observations from the system at every 200	t (1 DA 
cycle), γ has to be smaller than 200. Hence, the aim is to choose a γ such that the U-NET has a good prediction horizon 
while the data-driven ensembles can evolve sufficiently to provide an accurate covariance matrix as well. In this paper, we 
have chosen γ = 40, such that γ	t matches τadv (≈ 6 h) of the QG system.

The samples of ψk(t) are obtained from numerically solving Eq. (1) and Eq. (2). Each sample corresponds to a different 
time (t). The training and testing sets are obtained from independent simulations starting from different random initial 
conditions so that there is no correlation between the training and testing sets. The hyperparameters of the U-NET are 
determined after extensive trial and error.

As shown by us and others in previous studies, the performance of the U-NET can be improved by incorporating the 
symmetries in the system inside the architecture [44,32] or by using physics-based regularizers in the loss function of 
the U-NET [45]. However, in the H-EnKF framework, we only need the U-NET to predict short-term evolution (200	t ≈
1 Earth day into the future, more details in section 3). For such a short-term forecast, the performance of the U-NET 
remains roughly the same as compared to an architecture with physics-constrained loss functions or imposed symmetries. 
For more complicated problems (such as weather forecasting) that might benefit from enforcing physics within the data-
driven architecture, see the comprehensive review by Kashinath et al. [46]. Note that other types of neural architectures can 
also be used to build the surrogate model, e.g., neural operator-based models, which have recently been shown to achieve 
state-of-the-art performance in weather forecasting [47].

2.4. Data assimilation with a stochastic EnKF

In this section, we describe DA with stochastic EnKF. Stochastic EnKF requires a dynamical model of the system, also 
called “background forecast model”, represented by M . We further assume that an ensemble of noisy observations, ψ j

obs , 
where j is the index of the ensemble member, is obtained by adding Gaussian white noise to the observations. Here, we 
assume that the observation noise distribution can be represented as a standard Gaussian with zero mean and standard 
deviation of σobs . In this paper, we have considered σobs = 0.1 (10% of standard deviation of ψk(t), 1.0). Throughout the rest 
of the paper, we will drop the word “stochastic”, assuming that an ensemble of noisy observations is available as opposed to 
a single noisy observation. M evolves an ensemble of state vectors ψ j from t to t+	t starting from a noisy initial condition, 
ψ(t0). Let us assume that j ∈ {1, 2, · · ·n}, where n denotes the number of ensemble members. Here, and throughout the rest 
of the paper, we have dropped the subscript k (the index for the two layers in the system) for clarity unless it is necessary 
4
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(e.g., in Eq. (A.1) and Eq. (A.2)) keeping in mind that all computations take place on both layers. Furthermore, we assume 
that assimilation of observations takes place at every α	t (in this paper, we choose α = 200, i.e., DA occurs every day).

The ensemble of state vectors is generated by adding Gaussian white noise with zero mean and standard deviation of σb

to the noisy state vector, ψ(t0), at initialization time, t0:

ψ j(t0) = ψ(t0) +N
(
0,σ 2

b

)
. (4)

The value of σb has been chosen after significant trial and error for both EnKF and H-EnKF algorithms separately to obtain 
the best performance (see section 5). The evolution of the ensemble of state vectors, ψ j(t), at any time t , can be written in 
discrete form:

ψ j(t + α	t) = M ◦ M ◦ · · ·M︸ ︷︷ ︸
α

[
ψ j(t)

]
. (5)

Then, we compute the background error covariance matrix using the ensembles that are obtained at α	t:

P = E
[(

ψ j(t + α	t) − ψ(t + α	t)
)

(
ψ j(t + α	t) − ψ(t + α	t)

)T
]

,
(6)

where ψ(t + α	t) is the mean over the n ensemble members and E is the sample expectation operator. The Kalman gain 
is computed using P as:

K = P (P+ σobsI)
−1 . (7)

Here, the observation operator, H , is I. However, we can extend Eq. (7) to nonlinear H as well. Finally, using the ensemble 
of noisy observations, ψ j

obs(t + α	t), the noise-reduced analysis state is computed as:

ψ
j
a (t + α	t) = ψ j(t + α	t)+

K
(
ψ

j
obs(t + α	t) − ψ j(t + α	t)

)
,

(8)

where ψ j
a (t + α	t) is the jth member of the ensemble of analysis states. ψa(t + α	t) is a noise-reduced estimate of the 

state of the system. Hence, ψa(t + α	t) is used as the initial condition by the dynamical model, M , for free forecasting. 
Moreover, the ensemble of analysis states, ψ j

a (t + α	t), can be used for probabilistic forecasting as well, see e.g., Holstein 
et al. [48].

3. Proposed DA algorithm: H-EnKF

The major challenge with using EnKF is computing the background error covariance matrix, P, using Eq. (6). An accurate 
computation of P requires n to be large, typically the same order as that of the dimension of ψ(t). However, this makes 
the evaluation of Eq. (5) computationally expensive. This is especially true for high-dimensional systems where M is an 
expensive numerical model. Hence, traditional applications of EnKF use small values of n, which induces sampling error in 
P, resulting in spurious long-range correlations. In this section, we show how the U-NET-based surrogate model is used in 
developing H-EnKF. A schematic of H-EnKF is shown in Fig. 2.

We denote the U-NET-based surrogate model as MD , which evolves the state ψ(t) to ψ(t +γ	t) (in this paper, γ = 40). 
Since MD is already trained, it is computationally inexpensive during inference. Hence, one can afford to evolve a very large 
number of ensemble members, O (1000), with MD . We denote the number of ensemble members that are evolved with MD

as nD . Similarly, we denote the number of ensemble members evolved with the numerical model (MN ) as nN . Note that for 
all practical problems involving high-dimensional systems, one can computationally afford a small number of nN but a very 
large number of nD (nN � nD ). Similar to section 2.4, DA occurs at every α	t and we assume that α is an integer multiple 
of γ .

In H-EnKF, we first evolve a large data-driven ensemble using MD :

ψ i
D(t + α	t) = MD ◦ MD ◦ · · ·MD︸ ︷︷ ︸

α/γ

[
ψ i

D(t)
]
, (9)

where i ∈ {1, 2, 3, · · ·nD}. At the same time, we evolve a small number of numerical ensemble members using MN :

ψ
j
N(t + α	t) = MN ◦ MN ◦ · · ·MN︸ ︷︷ ︸

[
ψ

j
N(t)

]
, (10)
α

5
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Fig. 2. Schematic of the H-EnKF framework. Noisy initial condition ψ(t0) is perturbed with N (
0, σ 2

b

)
to generate two sets of ensembles: 1) ψ i

D (t) with 
nD ensembles where nD ≈ O (1000) and 2) ψ

j
N (t) with nN ensembles where nN ≈ O (10). A pre-trained U-NET predicts the evolution of each of the nD

ensembles autoregressively for α	t . Similarly, the numerical solver for the QG system evolves the nN ensembles of ψ j
N (t) for α	t . At this point, a noisy 

observation of ψobs is perturbed with N (
0, σ 2

obs

)
to generate nN ensemble members. Here, an EnKF algorithm computes the background covariance matrix 

PD using the ensembles evolved with the U-NET and finally produces the analysis state ensembles ψ j
a using the background forecast ψ j

N (t) from the 
numerical model. While the analysis ensemble members are carried forward and evolved by the numerical model, the U-NET needs the ensembles to be 
restarted by perturbing the ensemble-averaged analysis state using Gaussian noise (zero mean and σb standard deviation) generating nD ensembles to be 
evolved over the next α	t . In this paper, we have chosen α = 200 and γ = 40. Here, 40	t ≈ 6h and 200	t ≈ 1 Earth day.

where j ∈ {1, 2, 3, · · ·nN}. In both Eq. (9) and Eq. (10), the ensembles are generated with Gaussian white noise as shown in 
Eq. (4). At this point, we compute the background error covariance matrix, PD , using the nD ensemble members evolved by 
MD :

PD = E
[(

ψ i
D(t + α	t) − ψD(t + α	t)

)
(
ψ i

D(t + α	t) − ψD(t + α	t)
)T

]
.

(11)

Similar to Eq. (6), ψD(t+α	t) denotes the mean of ψ i
D (t+α	t) over nD ensemble members. Since nN � nD , PD calculated 

with nD ensemble members would have much lower sampling error as compared to the one computed with nN ensemble 
members. Then, we compute Kalman gain, KD , as:

KD = PD (PD + σobsI)
−1 . (12)

Then we compute the ensemble of analysis states as:

ψ
j
a (t + α	t) = ψ

j
N(t + α	t)+

KD

(
ψ

j
obs(t + α	t) − ψ

j
N(t + α	t)

)
,

(13)

where ψ j
a (t + α	t) is the ensemble of analysis states. Note that in Eq. (13), we have used nN ensemble members of the 

background forecast state which are more accurate (since MN is a more accurate numerical model that integrates physical 
equations as compared to the data-driven model, MD ). However, PD is obtained from the large number (nD ) of ensemble 
members from MD to alleviate issues related to sampling error and spurious long-range correlations.

In H-EnKF, the nN ensemble members (obtained as the analysis states) keep evolving for future DA cycles with the 
numerical model, as is done in a standard EnKF. However, after every DA cycle, we reinitialize the nD ensemble members 
using Eq. (4), where ψ(t0) is replaced with ψa(t + α	t) for t > t0. This is because the data-driven models’ forecasts do not 
remain stable for long time scales [44,49,50].

It is important to note that, one can also use the data-driven model’s prediction to compute the background forecast 
state, i.e., a fully data-driven model without the need for any numerical integration [32]. However, the quality of such 
forecasts would depend on how frequently we perform DA. If the frequency of DA is small, i.e., we evolve the data-driven 
model for a long period of time before performing DA, the quality of the data-driven forecasted state would degrade. That 
would lead to inaccuracies in the computation of the analysis state.

4. Metrics for measuring performance

We define two metrics for measuring the performance of a model: relative error (Ek(t)) and Anomaly Correlation Coef-
ficient (ACCk) for each layer, k. Details on computing these metrics are given in Appendix A.
6
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Fig. 3. Predicted patterns of time-mean removed ψ1(t) anomalies by the U-NET trained on Ntr = 105 and Ntr = 104 training samples as compared to the 
truth (obtained from numerical simulation). Note that only part of the latitudinal extent of the domain is shown.

Fig. 4. Performance metrics of the U-NET trained on Ntr = 105 and Ntr = 104 samples. (a) E1(t), where the subscript “1” refers to the first layer. (b) ACC1
is the ACC for the first layer. Note that similar results are found for E2(t) and ACC for 2nd layer, but are not shown for brevity. Shading shows standard 
deviation over 100 random noise-free initial conditions.

5. Results

5.1. Performance of U-NET for fully data-driven prediction

First, we show the performance of fully data-driven predictions with U-NET trained on Ntr samples of ψk(t). Fig. 3
shows the predicted patterns of the time-mean removed anomalies of ψ1(t) with U-NET trained on Ntr = 104 and Ntr = 105

samples. Qualitatively good performance up to day 3 can be seen in Fig. 3 with both Ntr = 104 and Ntr = 105 samples.
We quantify the accuracy of the predicted ψ1 using the metrics defined in section 4. Fig. 4 shows that E1(t) is 22.2%

lower for the U-NET trained with Ntr = 105 samples as compared to the one trained with Ntr = 104 samples at day 3. ACC1
in Fig. 4 shows that both U-NETs have roughly the same prediction horizon (time at which ACC1 ≈ 0.60).

For the H-EnKF framework, we need the U-NET to predict the states of the system for only 1 day. For 1-day prediction, 
both the relative error and ACC metrics of the U-NETs are not sensitive to Ntr . We have used an U-NET trained on Ntr = 105

samples as our data-driven model in the H-EnKF algorithm. However, using an U-NET trained on Ntr = 104 samples, we 
would obtain the same performance for the H-EnKF algorithm. We have also conducted experiments where an energy-
constrained loss function was used to train the U-NET and found no significant improvement over the baseline performance 
in short-term forecasts (not shown for brevity).
7
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Fig. 5. Performance of H-EnKF and standard EnKF for ψ1(t) over 60 DA cycles. (a) E1(t) over 60 DA cycles for H-EnKF (nD = 2000, nN = 10), H-EnKF 
(nD = 1000, nN = 10), and EnKF (nD = 0, nN = 20). (b) Same as (a) but for ACC1. (c) Zoomed in view of (a) between 0 ≤ E1(t) ≤ 0.15. (d) Zoomed in view 
of (b) between 0.90 ≤ ACC1 ≤ 1.0. Shading shows standard deviation over 30 random initial conditions. σb = 0.80 has been used for EnKF while σb = 0.10
has been used for the H-EnKF models. The σb value has been chosen to minimize the average E1(t) over 60 DA cycles based on extensive trial and error.

5.2. Performance of H-EnKF for DA

Next, we show the performance of H-EnKF as compared to standard EnKF for different values of nD and nN . For MD in 
H-EnKF, we have used a U-NET trained on Ntr = 105 samples. For regular EnKF, we take the dynamical model to be the 
numerical solver of the QG system. As discussed in section 2.4, we have considered the observation noise, σobs = 0.1, to be 
10% of the standard deviation (≈ 1.0) of ψk(t). Note that the computational cost (based on the wall-clock time of execution, 
see section 5.5 for details) of evolving 1 numerical ensemble member (nN = 1) of the state vectors ψk(t) for one 	t is 
similar to evolving 200 data-driven ensemble members (nD = 200) using the U-NET.

Fig. 5(a) and (c) show that the best performance is given by H-EnKF (nD = 2000, nN = 10) followed by H-EnKF (nD =
1000, nN = 10) and finally EnKF (nD = 0, nN = 20). Regular EnKF diverges due to the small number of ensemble members, 
a well known problem with EnKF in the absence of localization. Based on the computational cost analysis, EnKF (nD = 0, 
nN = 20) is as expensive as H-EnKF (nD = 2000, nN = 10) while the latter has 5× smaller average E1(t) over 60 DA cycles. 
Moreover, H-EnKF (nD = 1000, nN = 10) is 0.75× cheaper than EnKF (nD = 0, nN = 20) with 3× smaller average E1(t) over 
60 DA cycles.

A similar conclusion can be made from Fig. 5(b) and (d) where ACC1 for H-EnKF algorithms remain ≈ 0.95 throughout 
the 60 DA cycles while EnKF (nD = 0, nN = 20) shows a rapid decrease in ACC1 from the beginning of the DA cycles (when 
localization is not performed). For H-EnKF, σb = 0.10 has been used to obtain the best performance. We have conducted 
several trials with different values of σb and chose the value that minimized the average E1(t) over 60 DA cycles.

These results demonstrate the effectiveness of the H-EnKF framework in terms of estimating a better initial condition 
from noisy observations of the system. In this framework, one can trade off a small number of computationally expensive 
numerical ensemble members for a large number of cheap data-driven ensemble members to improve the accuracy of the 
estimated analysis states without affecting the overall computational cost.

It must be kept in mind that the performance of standard EnKF can be improved by simply increasing the number of 
numerical ensemble members or with localization. In our experiments with QG, we have seen that stable and divergence-
free filters can be obtained with O (1000) numerical ensemble members. Fig. B.9 in Appendix B shows the performance 
of EnKF over 10 DA cycles with nN = 1000 and nN = 5000. For standard EnKF, σb = 0.80 has been used to obtain the best 
performance. Similar to H-EnKF, we had conducted several trials to obtain the best σb , that minimized the average E1(t) over 
10 DA cycles. However, evolving O (1000) ensemble members with the numerical solver comes at 50× more computational 
cost compared to H-EnKF (nD = 2000, nN = 10). Moreover, for other practical systems with higher dimensions, evolving 
such a large size of ensembles may not even be computationally tractable. We further demonstrate results with EnKF (nD =
0, nN = 20) with localization in Fig. C.10 (Appendix C), which shows that localization can also improve the performance 
of EnKF in this system without any increase in the computational cost. However, in more complex systems, localization 
can remove long-range physical correlations and affect the accuracy of the estimated analysis states [29]. Furthermore, 
for other types of ensemble-based DA algorithms, such as particle filters, one may not be able to perform localization 
[51,52]. Moreover, in particle filters, the large data-driven ensembles would provide an advantage in terms of sampling 
non-parametric and non-Gaussian distributions.
8
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Fig. 6. The normalized background covariance matrix averaged over 60 DA cycles, except EnKF (nD = 0, nN = 5000) which is averaged over 10 DA cycles (due 
to limitations on computational cost). H-EnKF algorithms show more localized covariance structure and less spurious long-range correlation as compared 
to EnKF (nD = 0, nN = 20). The non-local structure of covariance of EnKF is due to low ensemble size leading to sampling error.

5.3. Analysis of covariance matrices

The superior performance of H-EnKF (nD = 1000, nN = 10) and H-EnKF (nD = 2000, nN = 10) over EnKF (nD = 0, nN =
20) is due to the improved representation of the background error covariance matrix, PD , which is calculated using the nD

data-driven ensembles. Fig. 6 shows that the 60 DA cycles-averaged covariance structure of grid point x = 3.38 and y = 1.21
is localized around that grid point for H-EnKF (nD = 1000, nN = 10) and H-EnKF (nD = 2000, nN = 10). However, for EnKF 
(nD = 0, nN = 20), the covariance structure is non-local with spurious long-range correlations across the domain. This is due 
to the reduction of sampling error during the computation of PD in Eq. (11) using the nD ensembles. We have also shown 
the 10 DA cycles-averaged covariance structure of EnKF (nD = 0, nN = 5000). Due to high computational cost, we have only 
performed 10 DA cycles with nN = 5000 ensembles. For this problem (≈ 36000 states), one can consider this covariance 
matrix to be close to the true covariance. It is clear that the H-EnKF covariance matrices are similar to the true covariance 
but at significantly lower computational cost.

5.4. Performance of free prediction with the numerical model of QG

Next, we compare the free prediction performance of the numerical model for the QG system with initial conditions that 
are obtained as the mean of the analysis states after 60 DA cycles (see Fig. 5). In Fig. 7(a) and (b), we demonstrate that the 
initial condition obtained from H-EnKF (nD = 1000, nN = 10) has prediction skill up to 3.8 days, while H-EnKF (nD = 2000, 
nN = 10) shows prediction skill up to 4.5 days.

Fig. 7(c) and (d) show the free prediction of the numerical model for QG with initial conditions that are obtained as the 
mean of the analysis states after 10 DA cycles. Here, the initial condition obtained from H-EnKF (nD = 1000, nN = 10) has 
prediction skill up to 4.1 days and H-EnKF (nD = 2000, nN = 10) has prediction skill up to 5.8 days.

We have not shown the free prediction performance of the initial condition from the standard EnKF because the analysis 
states obtained from the algorithm have too large of an error, as can be seen in Fig. 5, leading to no prediction skill at 
all.

An important point to notice in Fig. 7 is the difference between the prediction skill of the initial condition obtained 
from H-EnKF (nD = 1000, nN = 10) and H-EnKF (nD = 2000, nN = 10). Although the initial conditions from both the mod-
els qualitatively seem to be very close, as is evident from inspecting E1(t) in Fig. 5, they result in significant difference 
in prediction skill (≈ 0.7 days for the initial condition at 60 DA cycles and 1.7 days for the initial condition at 10 DA 
cycles). This shows that increasing nD (which is 200× cheaper than nN ) to compute PD leads to significant improve-
ment in the quality of the analysis states which in turn leads to an improvement in the prediction skill of the numerical 
model.
9
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Fig. 7. Performance of free prediction of the QG numerical solver with initial condition (as mean analysis state) from H-EnKF. (a) E1(t) with initial condition 
at the end of 60 DA cycles. (b) ACC1 with the same initial condition as (a). (c) E1(t) with initial condition at the end of 10 DA cycles. (d) ACC1 with 
the same initial condition as (c). Shading shows standard deviation over 30 random initial conditions. Performance of initial condition from EnKF (nD = 0, 
nN = 20) is not shown because it has no prediction skill at all.

5.5. Computational cost analysis and scaling

In this section, we discuss how the mean error over 10 DA cycles, 〈E1(t)〉, where 〈.〉 denotes mean over 10 DA cycles, 
scales with the computational cost associated with different EnKF and H-EnKF algorithms. To have a fair cost comparison, 
we have executed both the EnKF and H-EnKF algorithms on the same hardware. The computations of background error 
covariance matrix, Kalman gain, and analysis states have been performed on an AMD EPYC 7742 CPU with 64 cores for both 
EnKF and H-EnKF. The numerical model has been executed on the same CPU. However, the U-NET is run on a NVIDIA Tesla 
V100 GPU. We have not neglected the overhead cost of transferring data from GPU to CPU for H-EnKF. There are two things 
to note about the performance of the numerical simulation. First, one could have used a GPU-enabled numerical model as 
well, which would significantly improve its runtime performance. However, the overarching goal of this work is to facili-
tate DA in practical large-scale problems. In many practical problems, state-of-the-art simulation codes for fluid dynamics, 
combustion, weather prediction, etc., are CPU-based and would require enormous amounts of resources to refactor on GPUs. 
Second, one could have used a distributed-parallel numerical solver, which would also improve its runtime performance. 
However, one can also execute the U-NET on distributed GPUs as well, wherein the runtime performance gain due to dis-
tributed parallelism would be equivalent between the U-NET and the numerical solver. Owing to these careful observations 
and considerations, our computational cost analysis is fair.

Here, we define 1 computational cost unit as the “wall-clock” runtime of evolving nN = 1 ensemble member with the 
dynamical model over one 	t . Experimentally, we find that the runtime of nN = 1 ensemble member is the same as the 
runtime of nD = 200 ensemble members with the U-NET model over one 	t . To obtain a robust measure of runtime for 
the U-NET for one 	t , we had run the U-NET for 200	t and recorded the wall-clock time averaged over 100 independent 
runs as T D

200	t . From here, the runtime for the U-NET over 1	t is obtained as T D
200	t/200. For the numerical solver, we 

had followed the same procedure to obtain the runtime for evolving one numerical ensemble member over one 	t as 
T N
200	t/200.
In Fig. 8(a), EnKF (nD = 0, nN = 20) shown with red circle has 〈E1(t)〉 of 52.6% with computational cost of 20 units. 

H-EnKF (nD = 2000, nN = 10) shown with black circle has a factor of 5 smaller error at the same computational cost. By 
increasing the number of numerical ensemble members to nN = 90 and keeping the same number of data-driven ensemble 
members (nD = 2000), 〈E1(t)〉 goes down by a factor of 1.07 but at 5 times higher computational cost. With a further 
increase in cost to 2000 units, 〈E1(t)〉 of EnKF (nD = 0, nN = 2000) improves by a factor 1.5 in comparison to H-EnKF 
(nD = 2000, nN = 10). At the same cost, 〈E1(t)〉 of H-EnKF (nD = 2000, nN = 1990) improves by a factor of 4.0. From this 
analysis, it is quite clear that trading a small number of numerical ensemble members for a large number of data-driven 
ones leads to a significant improvement in performance without an increase in computational cost.

Fig. 8(b) shows the scaling of 〈E1(t)〉 for H-EnKF and EnKF having different levels of fixed computational cost. We see 
that the effect of the background forecast derived from nN is more pronounced when nN is large (nN = 2000) (given by the 
black squares). Keeping the cost fixed at 2000 units, adding more nD (nD = 0 to nD = 2000), decreases the error only very 
slightly (from 6.5% to 2.5%). For low nN (nN = 100 or nN = 20), adding more nD significantly improves the performance 
of H-EnKF, shown by the blue circles (from 29.5% to 9.46%) or red asterisk (from 48% to 9.40%). It must be noted that 
10
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Fig. 8. Computational cost and accuracy scaling for H-EnKF and EnKF algorithms. Here, we have shown 〈E1(t)〉, the mean of E1(t), over 10 DA cycles (instead 
of 60) because of the high computational cost associated with computing 60 DA cycles on EnKF models with large numerical ensembles (O (1000)). (a) 
〈E1(t)〉 of different H-EnKF and EnKF algorithms along with their computational cost. (b) Scaling of 〈E1(t)〉 at different levels of fixed computational cost 
for different H-EnKF and EnKF models. The unit for computational cost is the runtime for the numerical QG solver to evolve one numerical ensemble for 
one 	t , T N

200	t/200. See section 5.5 for more details.

H-EnKF (nD = 2000, nN = 10) at 5× smaller cost performs almost equally well as H-EnKF (nD = 2000, nN = 90). A further 
improvement in the error (about 4×) is seen only with a 100× increase in computational cost.

6. Discussion and summary

In this paper, we have proposed H-EnKF: a hybrid ensemble Kalman filter algorithm that leverages a deep learning-based 
data-driven model to efficiently evolve a large ensemble of states of a dynamical model to better estimate the background 
error covariance with low sampling error. The ensemble of background forecast states used in the H-EnKF algorithm is 
obtained from an accurate, high-resolution, numerical solver evolving a small ensemble of states (small owing to high 
computational cost). This combination allows one to obtain an accurate DA algorithm at low computational cost alleviating 
one of the major sources of error –sampling error in covariance due to low ensemble size– without the need for localization.

It should be clarified that there is a major difference between how the numerical ensembles are evolved throughout the 
DA cycles as compared to the data-driven ensembles in H-EnKF. In H-EnKF, after every DA cycle, the data-driven ensembles 
are regenerated with Gaussian noise added to the mean of the analysis states. This is due to a limitation of current data-
driven models for high-dimensional systems, which become unstable when evolved for a long period of time [44,50,49]. We 
acknowledge that in more complex systems, this approach can cause issues, as frequently perturbing the state can violate 
conservation laws, e.g., of mass (this is not a problem here as we are perturbing streamfunctions, ψ ). In such problems, the 
perturbation should be added such that they do not violate the conservation laws, e.g., see Zeng et al. [53].

We have shown that the H-EnKF algorithm achieves a stable filter without localization and has a factor of 5 smaller 
error at the same computational cost as that of standard EnKF for the two-layer QG system (Fig. 5). We have further shown 
that H-EnKF is most useful for situations where one can only afford small numerical ensembles (Fig. 8). In such situations, 
one can trade off a small number of numerical ensemble members for a larger number of data-driven ones and obtain 
a more accurate covariance estimation. In H-EnKF applied to the two-layer QG system, the runtime for the evolution of 
the data-driven ensembles is a factor 200 smaller than the numerical ones. However, in more practical problems, such as 
weather prediction, the difference in runtime between evolving data-driven and numerical ensembles can be much larger, 
e.g., in FourCastNet [47], the data-driven model is 45000× faster than the state-of-the-art operational weather forecasting 
models. We expect the H-EnKF algorithm to be most effective for high-dimensional problems such as these as well as for 
problems in constrained DA. Another advantage of the H-EnKF is that, by eliminating or reducing the need for localization, it 
could more easily assimilate non-local observations such as satellite radiances. Such non-local observations pose a challenge 
for localized EnKFs, especially when using domain localization [54]. Moreover, it must also be kept in mind that while we 
may need the number of ensemble members generated to be the same as the number of states of the system to remove 
rank deficiency of the covariance matrix, practically, that is not required. In fact, as shown in multiple studies [55,26], if the 
generated ensembles are aligned with the unstable and neutral Lyapunov vectors of the linearized dynamical system, then 
one can achieve a stable filter with an ensemble size that equals the number of unstable and neutral Lyapunov vectors. 
The number of unstable and neutral Lyapunov vectors, in practical systems, while less than the number of states in the 
11
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system, can still be too high, such that evolving that many ensemble members with a numerical model remains intractable. 
However, they can be generated and evolved with data-driven models at a very low computational cost.

As a test case, the proposed hybrid framework has been applied to EnKF, a specific ensemble-based DA algorithm that 
is used with Gaussian observation noise. However, one can readily extend this hybrid framework to other types of novel 
extensions of regular EnKF, e.g., multi-model EnKF [56] or other ensemble-based DA algorithms, e.g., particle filters. Particle 
filters are especially useful for systems with strong non-Gaussian observation noise. However, due to large computational 
cost, it has been difficult to use in high-dimensional systems such as geophysical flows [57,51]. For future work, we aim to 
explore how the H-EnKF algorithm can be used in particle filter-based DA.

The EnKF algorithms with small ensemble members are currently used in weather prediction by leveraging ad-hoc tech-
niques such as localization that removes spurious long-range correlations. Localization can also remove physical correlations 
in the flow fields as well, which would result in inaccuracies in the covariance [29]. Due to low computational cost dur-
ing inference, deep learning-based surrogates can generate a large ensemble of states that can better approximate the true 
background covariance as compared to artificially obtained covariance with localization. However, for applications where 
localization works well, one can use localization on the covariance matrix obtained from the data-driven ensembles in our 
hybrid framework. In such scenarios, we can bring down the computational cost even further by evolving only a small 
number of data-driven ensembles (which are already quite inexpensive to evolve). Moreover, localization may be difficult to 
perform on other ensemble-based DA algorithms, e.g., particle filters. For such algorithms, our hybrid approach, which does 
not require localization, would be useful as well.

One of the key aspects of the H-EnKF framework is the accurate data-driven surrogate which needs to be built for 
every application. However, building a fully data-driven surrogate for high-dimensional realistic systems, e.g., weather and 
climate, might appear to be challenging. However, recent successes in data-driven short-term weather modeling [58,32,47]
show that short-term accurate surrogates can be as accurate as operational numerical models if trained on observations 
[47]. Further improvement in data-driven surrogates can be achieved by conserving key physics as can be seen in many 
different applications in both fluids [59] and weather and climate [46] communities.
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Appendix A. Equations for error metrics

We define relative error as:

Ek(t) = ||ψ pred
k (t) − ψ true

k (t)||2
max

(
ψ true

k (t)
) . (A.1)

ψ
pred
k is the predicted streamfunction and ψ true

k is the true streamfunction obtained from numerical simulations.
We define ACCk as:
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Fig. B.9. Performance of EnKF for ψ1(t) over 10 DA cycles with large nN . Due to the computational cost of evolving large ensembles, we only report E1(t)
and ACC1. (a) E1(t) for EnKF (nD = 0, nN = 20), EnKF (nD = 0, nN = 1000), and EnKF (nD = 0, nN = 5000). (b) Same as (a) but for the ACC1. (c) Zoomed in 
view of (b) between 0.90 ≤ ACC1 ≤ 1.0. Shading shows standard deviation over 30 initial conditions. σb = 0.80 has been used for all the EnKF algorithms. 
The σb value has been chosen to minimize the average E1(t) over 10 DA cycles based on extensive trial and error.

Fig. C.10. Performance of EnKF for ψ1(t) over 10 DA cycles with localization. (a) E1(t) over 10 DA cycles for EnKF (nD = 0, nN = 20) and EnKF (nD = 0, 
nN = 20) with localization. (b) Same as (a) but for ACC1. Shading shows standard deviation over 30 initial conditions. σb = 0.80 has been used for both the 
EnKF algorithms. The σb value has been chosen to minimize the average E1(t) over 10 DA cycles based on extensive trial and error.

where 
〈
ψ true

k,m,p

〉
is the time-averaged value of ψ true

k,m,p(t) and the indices m and p refer to the latitudinal and longitudinal grid 
points on which ψk(t) is represented. Similar to Ek(t), ACC is also computed for each layer.

Appendix B. EnKF with large numerical ensembles

Here, we show that EnKF with a large number of numerical ensemble members (nN ) can have stable and divergence-free 
filters with low E1(t). However, in order to have performance comparable to H-EnKF, one needs to have O (1000) nN which 
comes at a high computational cost. Fig. B.9 shows that as nN increases, the performance of EnKF improves as well. This 
is expected since with large ensembles, the matrix, P, would not suffer from sampling error and spurious correlations, as 
shown in Fig. 6 as well.

Appendix C. EnKF with small numerical ensembles and localization

In Fig. C.10, we report E1(t) and ACC1 for EnKF (nD = 0, nN = 20) with and without localization. Here, we have used 
covariance localization [3]. The Gaspari-Cohn function is used to generate the regularizing correlation function. A radius 
of 5l, where l is the L2 distance between two consecutive grid points, has been used as the radius in the Gaspari-Cohn 
function. In this system, localization is an effective method to obtain divergence-free filters with similar performance as 
H-EnKF (nD = 2000, nN = 20). However, it must be noted that localization often removes long-range physical correlations as 
well and is required to be tuned for each application in more complex systems [29].
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