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A machine-learning tool to predict substrate-adaptive
conditions for Pd-catalyzed C-N couplings
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Machine-learning methods have great potential to accelerate the identification of reaction conditions for
chemical transformations. A tool that gives substrate-adaptive conditions for palladium (Pd)-catalyzed
carbon-nitrogen (C-N) couplings is presented. The design and construction of this tool required the
generation of an experimental dataset that explores a diverse network of reactant pairings across a set
of reaction conditions. A large scope of C-N couplings was actively learned by neural network models
by using a systematic process to design experiments. The models showed good performance in
experimental validation: Ten products were isolated in more than 85% yield from a range of couplings
with out-of-sample reactants designed to challenge the models. Importantly, the developed workflow
continually improves the prediction capability of the tool as the corpus of data grows.

he strategic value of carbon-nitrogen cou-
plings makes them important transforma-
tions in many domains of the chemical
enterprise. In particular, Buchwald-Hartwig
(B-H) couplings (7, 2) are among the most
important C-N bond-forming reactions and
have revolutionized the practice of modern
synthetic organic chemistry (3). In this process,
palladium complexes catalyze the cross-coupling
of (hetero)aryl electrophiles with various nitro-
gen nucleophiles. Experimentalists routinely
identify substrate-specific conditions for new
B-H couplings. The extensive scope of electro-
philes and nucleophiles competent in this trans-
formation required the development of many
catalysts and conditions to enable successful
couplings of diverse reaction partners (3, 4).
Selection of the appropriate palladium ligand
is particularly important because B-H couplings
are exceptionally sensitive to changes in ligand
structure (5).
Empirical guides with selected examples from
the literature and heuristics on the basis of re-
ported couplings are available to help experi-

pyrimidines, thiophenes, oxazoles, thiazoles,
and pyrazoles) on the basis of work from just
two references (9, 10) and otherwise focuses
on recommending ligands for specific nucleo-
phile types. For example, 2-amino oxazoles are
a challenging class of nucleophile that re-
quired a specific publication from Buchwald’s
group (71). More recently, high-throughput ex-
perimentation has been used to evaluate a
range of five-membered heteroaryl bromides
in B-H couplings, and that work highlights the
difficulty of couplings between five-membered
heteroaryl bromides and aliphatic heterocy-
cles (12). Even with these published reports, the
chemical literature does not come close to de-
scribing the enormous scope of possible B-H
reactant pairings; thus, when a new (hetero)aryl
halide is used, experimentalists must rely on
intuition.

The use of B-H couplings often creates a bot-
tleneck in routine synthesis campaigns in both
academia and industry. An experimentalist
begins with a specific chemistry problem: cou-
pling of a new pair of reactants (Fig. 1). They

ately provides predicted hits for a new ..
posed coupling (which could then be optimized
if necessary), offering more than empirical
guides and avoiding an experimental cam-
paign from an empirical approach, thereby
accelerating the routine application of B-H
couplings (Fig. 1). This goal is complementary
to optimization, and we foresee that the com-
bination of the two could potentially create an
end-to-end artificial intelligence-driven proc-
ess like that shown in Fig. 1.

From an ML standpoint, there are crucial
differences between an optimizer tool and the
tool proposed in this work. A visual illustra-
tion contrasting reaction optimization to a
tool based on substrate-adaptive models is
shown in Fig. 2. A three-dimensional plot rep-
resents a hypothetical reaction space where
any specific combination of reactant(s) and
condition(s) produce an unknown yield, and
the goal of using ML is to use relatively few
measured yields to predict the rest. After se-
lecting a specific coupling from all those pos-
sible [a slice of a hypothetical reaction space
along the reactant dimension(s); top of Fig. 2],
an optimizer directs the selection of experi-
ments within that slice of reaction space to
increase yield. Sophisticated optimizers are
still being developed to make iterative rounds
of experimentation as efficient as possible (74).
An optimizer could, in principle, be used on
multiple reactants at once, but the reactants
must have related reactivity trends (i.e., the
slices in reaction space are close enough that
similar conditions have similar reactivity). Be-
cause B-H couplings are so sensitive to reactant
structure (vide supra), a new slice—even close in
the reactant dimension(s)—frequently requires
a fresh start. A complementary approach to
the optimizer, shown on the right in Fig. 2,

New Reactant Pair with No

Published Conditions
mentalists select appropriate ligands and | then identify a subset of conditions on the basis . :
conditions for a given coupling (“prior expe- | of prior knowledge, amalgamating recommen- B @[o‘* ol e Q M1 This Work
rience” in Fig. 1) (6-8). Because these recom- | dations from the B-H user guides and B-H cheat i & Zi;i,”,»’m”i';’;’,
mendations are derived from literature data, | sheets described above (when recommendations Prior Experience User Guides Campatgr

they are limited to previous experience (i.e.,
retrospective). Specifically, Wuitschik’s guide
(7) recommends the same conditions for all
heteroaryl bromides, though more granular,
heteroarene-specific conditions are often re-
quired. Buchwald’s original user guide rec-

are available), as well as personal experience,
intuition, and specific literature precedent. Those
prior knowledge-based recommendations serve
as a starting point for an experimental cam-
paign to survey catalyst-solvent-base com-
binations for experimental hits. For many

Cheat Sheets

Expert-Selected
Reaction
Optimizer
Experimental
Campaign

Experimental
Campaign

1
1
1
1
1
1
1
1
r Conditions 1
1
1
1
1
1
1
1

ommends conditions for a limited range of | applications, a broad range of compounds must E’"ﬁﬁ,’;‘f"' -
heteroaryl bromides (pyridines, pyrazines, | be synthesized in a timely manner, and hits Jf  Appiications

are an end point. In practice, an experimen-
- : talist will invest time and resources into l B!
Roger Adams Laboratory, Department of Chemistry, an optimization campaign to fine-tune those
University of lllinois at Urbana-Champaign, Urbana, IL 61801, o . Optimized
USA. 2Pharmaceutical Division, Synthetic Molecules conditions only if necessary. Of note, the Doyle Conditions

Technical Development, Process Chemistry and Catalysis,

F. Hoffmann-La Roche, Ltd., Basel, Switzerland.
*Corresponding author. Email: sdenmark@illinois.edu (S.E.D.);
raphael bigler@roche.com (R.B.); serena_maria.fantasia@roche.com
(SF.)

Rinehart et al., Science 381, 965-972 (2023)

group recently published a machine learning
(ML)-based tool that accelerates the optimiza-
tion of yield from a user-defined reaction space
(“reaction optimizer” in Fig. 1) (Z3). Our goal
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Fig. 1. The goal of this work. |dentifying conditions
that furnish synthetically useful yields for new
couplings without experimental campaigns.
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Fig. 2. Defining substrate-adaptive models and contrasting them with ML-assisted optimization

models.

addresses this limitation because it involves train-
ing models on the entire reaction space before-
hand. Thus, when a new specific coupling is
selected, those models can immediately lever-
age prior learning to predict the yield patterns
of that new reaction without additional ex-
periments. This approach produces predicted
hits, which may still need validation, but cir-
cumvents an experimental campaign. That ap-
proach requires an appropriate experimental
dataset that provides sufficient prior experi-
ence to the substrate-adaptive models. Before

Rinehart et al., Science 381, 965-972 (2023)

embarking on this enterprise, it was prudent
to evaluate state-of-the-art applications of ML
to predict the outcome of new B-H coupling
reactions and related work.

In 2018, Doyle and co-workers trained ML
models to predict the yields of B-H couplings
between one nucleophile and several similar
electrophiles (75). By the introduction of is-
oxazole additives (catalyst poisons) (16), the
authors simulated the process of gathering
data for many different reactant pairs while
avoiding the analytical challenge of having

1 September 2023

many more distinct products. Models effec-
tively predicted the extent of catalyst poisoning
by the additives and were tested on out-of-
sample additives. Importantly, their models
were not applied to predicting couplings with
new nucleophiles or electrophiles and thus
do not address the problem outlined in Fig. 1.
Recent follow-up work using that same data-
set is subject to the same inherent limitations
and does not address the problem outlined
above (17, 18).

A year later, Li and Eastgate combined pro-
prietary and literature B-H data to create clas-
sification models to predict which ligand to
use for a specific B-H coupling for the desired
synthetic route (19). Although the models suc-
cessfully leveraged prior experiments to make
predictions, experimental validation is lim-
ited to reactants that furnish one specific di-
arylamine product. Wuitschik and co-workers
very recently reported their efforts using a
similar approach to that of Li and Eastgate
but with a robust experimental validation that
demonstrated poor model performance (20).
The authors attribute that to the limitations of
the dataset and suggest that new approaches
such as the workflow presented in this work
are needed for B-H couplings, citing the asso-
ciated preprint of this work (2I).

In 2022, Zimmerman and co-workers pub-
lished an interesting approach to transfer
learning on B-H couplings, wherein models
were trained on one type of reactant (i.e., benz-
amide) and used to predict effective condi-
tions for a new substrate (i.e., pyrazole or an
aniline) (22). Their goal was to maximize the
value of limited data from one reaction to as-
sist in the development of a new reaction, ef-
fectively learning one slice of a reaction space
from Fig. 2 and applying that knowledge to
another. When two slices show positive trans-
fer, this approach avoids training models on
the new reaction. In Zimmerman et al.’s work,
positive transfer was observed between ani-
line and benzamide, whereas pyrazole and
benzamide couplings showed poor transfer.
That observation supports the premise that
general conditions are unlikely to exist for B-H
couplings.

In a very recent disclosure, Burke, Grzybowski,
and co-workers reported general conditions
for Suzuki-Miyaura (S-M) cross-couplings (23).
Their approach bypasses using predictive
models that respond to substrate structure, as
described in Fig. 2. Instead, the goal of general
conditions is to work across the many slices of
the reaction space of S-M couplings, and their
work relies on the assumption that those exist.
Unfortunately, general conditions are unlike-
ly to exist for B-H couplings (vide supra). The
structural variation of diverse nitrogen nu-
cleophiles and resulting changes in reactivity
necessitate domain-specific conditions, and
decades of research have not solved all those
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challenges. Zimmerman et al.’s work demon-
strating poor transfer within B-H couplings
illustrates the distinct reactivity domains of
B-H coupling reaction space. As a case in point,
Burke, Grzybowski, and co-workers used their
workflow on a dataset of B-H couplings (24);
however, no model predictions or recommended
general conditions are presented.

Although also unrelated to B-H coupling re-
actions, Doyle and co-workers reported suc-
cessfully modeling of a noncatalytic functional
group interconversion of carbinols to alkyl
fluorides (25). The authors collected a dataset
capable of training ML models to learn the in-
herent reactivity patterns of many substrates
for that reaction. Those models then success-
fully predict substrate-specific conditions for
new reactants, as illustrated in Fig. 2. Doyle et al.’s
approach is proof of concept for designing a
prediction tool for substrate-adaptive con-
ditions. However, by virtue of having a single
reactant and no catalyst, that transformation
has a substantially lower complexity.

Research strategy

The reactant dimension for B-H coupling reac-
tion space like that in Fig. 2 actually comprises
multiple subdimensions, and the conditions
dimension also captures solvents, bases, and
catalysts. All those dimensions are indepen-
dent (nucleophile, electrophile, catalyst, solvent,
and base), and all affect yield. Importantly,
each reactant can show different preferences
with regard to catalysts, solvents, and bases
(6, 8). As a result, models must learn the pref-
erences of each reactant and the interaction
terms between various combinations of them
and then correctly weigh those to be useful.
The data used to train such models must ex-
plore these complex relationships, and no such
dataset of appropriate complexity exists. As a
case in point, Schwaller et al. show that mod-
eling on the US Patent and Trademark Office
(USPTO) dataset of B-H couplings, which ex-
plores a broad range of reactants in a noncom-

Fig. 3. Representative scope of
nitrogen nucleophiles for the

binatorial fashion, did not produce predictive
models (I7). A dataset with a similar reactant
diversity to that of the USPTO dataset is ideal,
but that exact dataset cannot support models
complex enough to address the problem out-
lined in Fig. 1.

To build such a dataset, the reactant dimen-
sions must be unbounded so that it is possible
to continue expanding to new reactant do-
mains without starting over. Zimmerman et al.’s
observation of poor transfer and good transfer
between different reactant domains of B-H
reaction space indicates that there may be types
of couplings that can be grouped and learned
together and others that must be separately
addressed. A new strategy for dataset design
that is founded on separating reactant domains
is proposed. By combining expert knowledge,
new chemical descriptors, and well-established
clustering techniques, representative neighbor-
hoods (subspaces) of the multidimensional B-H
coupling reaction space could be identified.
Then, in a subsequent experimental campaign,
new data in new subspaces could be iterative-
ly generated, and the applicability domain of
models expanded when models are updated
with that new data (vide infra).

Before running experiments, we had to de-
fine a starting point for exploring reactant
dimensions in B-H couplings. The reactivity
patterns and pitfalls of this important trans-
formation are immensely complex: Indoles
form constitutional isomers (8, 26), benzylic
and cyclic aliphatic amines are prone to an
unproductive electrophile reduction pathway
(8), and many heterocycles undergo unproduc-
tive, palladium-catalyzed C-H activation path-
ways, to name a few (27). The relative rates of
these unproductive pathways, catalyst deac-
tivation, and productive coupling all affect the
yield and vary from substrate to substrate. For
a model to predict useful conditions for new
B-H reactions, it must learn under which cir-
cumstances these side reactions appear as well
as the inherent structure-reactivity patterns
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b. Machine-
Guided Clustering
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out of 6 total

for each reactant, catalyst, and condition. Ac-
cordingly, to make this work as more than just
a proof of concept, problematic substrates like
those described above were included.

Figure 3 shows a representative list of 19 of
the 50 nitrogen nucleophiles used in this work.
In a similar manner, 50 (hetero)aryl bromides
were selected to broadly represent many build-
ing blocks of interest to pharmaceutical de-
velopment as well as a range of electronic and
steric properties [see supplementary mate-
rials (SM) for the full list]. The scope of both
Zimmerman et al.’s and Doyle et al.’s work on
B-H couplings is subsumed within and greatly
expanded upon by the scope of this study. The
boxed structures represent the good and poor
transfer learning, represented by colored ar-
rows, that was demonstrated by Zimmerman
and co-workers (22).

To realize effective couplings across such a
broad range of reactants, many catalysts were
necessary. Buchwald- and Beller-type phos-
phine ligands were identified because (i) they
share a similar backbone structure, and (ii)
more than 50 such ligands are commercially
available and were developed to address the
broad scope of C-N couplings (3, 28). To cap-
ture that range, 20 ligands were selected to
represent the crucial ligand dimension of the
reaction space with a combination of algorith-
mic selection and expert knowledge (see SM for
details). In the interest of practical applicabil-
ity, models were trained to make predictions
for solvents and bases used at the bench. Thus,
two inorganic bases—potassium carbonate and
sodium tert-butoxide—and one organic base—
1,8-diazabicyclo[5.4.0Jundec-7-ene (DBU)—were
selected. Finally, 1,4-dioxane, toluene, and tert-
amyl alcohol were selected as representative
solvents because they broadly represent cyclic
ethers, arenes, and alcoholic solvents regularly
used in B-H couplings (see SM for selection of
catalyst and conditions). Thus, the reaction
space for this study—with nucleophile, electro-
phile, ligand, solvent, and base dimensions—

Designing a Dataset for Substrate-Adaptive Models
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contains 450,000 possible reactions from 180
conditions (3 bases times 3 solvents times 20
ligands) and 2500 reactant pairs (50 amines
times 50 bromides). As mentioned, this space
already represents an intractable number of
experiments for combinatorial experimentation.

The first experiments were designed to rep-
resent the reaction space broadly with 23 dif-
ferent algorithmically selected reactant pairs
and a systematically varied set of conditions
for each (see SM). Extensive experimental de-
velopment identified reproducible conditions
on the 0.5-mmol scale in a 24-tube parallel re-
actor. Twenty-four conditions were evaluated
for each reactant pair out of the 180 possible
(20 catalysts times 3 solvents times 3 bases).
This approach balanced the need to rapidly
explore new reactant pairings (i.e., slices from
Fig. 2) with the need to explore enough condi-
tions to learn that slice of the reaction space
(i.e., points on each slice from Fig. 2). The data
showed 63% of experiments with 0% yield,
and 82% with less than 20% yield. The paucity
of hits from which models needed to learn was
a problem. To generate a higher fraction of
hits in the data, a new strategy was needed for
evaluating the condition component of the
B-H reaction space.

To increase the number of positive hits, ML
models were trained to recognize zero and
nonzero yield patterns. Deep feed-forward neu-
ral networks were trained to classify reactions
as zero- or nonzero-yielding using that first
dataset and showed an average accuracy of 87%.
Although unable to distinguish between a 1%-
yielding and a 99%-yielding reaction, such a
classifier could still increase the number of
nonzero-yielding reactions that are run. Eigh-
teen reactant pairs from the first 23 gave sig-
nificantly more nonzero data (the rest were
hypothesized to be chemically challenging using
expert knowledge). The initial results from those

5

Predicted Yield (%)

% on £
© Observed Yield (%) ‘°°\‘

NS
2 8
3 &

6 Experimentation
__ Machine Learning

5

New Data

Dataset

Experimentalist

18 reactant pairs showed 56% zero-yielding
reactions, and only 12% with a >80% yield.
Twenty-four new conditions were selected from
the 156 remaining conditions (180 total, with
24 already evaluated) using the classifier to
predict nonzero-yielding conditions. The new
results from those 24 classifier-selected con-
ditions contained just 22% zero-yielding reac-
tions, and 29% of the data showed >80% yield
across all 18 reactant pairs (see SM for details).
Thus, even a limited binary classifier could
be used to improve the yield distribution of
new data.

Those first models allowed us to connect
steps 1to 4 in a new workflow depicted in Fig. 4.
This workflow begins and ends with the ex-
perimentalist. Thus, (i) a new reactant pair is
selected by the experimentalist, (ii) the tool
calculates the corresponding chemical descrip-
tors, (iii) the tool then uses models to predict
the yield of all 180 conditions, and (iv) the
experimentalist can decide which conditions
to evaluate on the basis of both the predictions
and their expert knowledge. The second half
of the workflow, steps 5 to 8, describes the
process of domain expansion by (v) including
new data, (vi) retraining models with that new
data, (vii) testing those models in control ex-
periments, and (viii) having the experimental-
ist evaluate model performance. At this point
in the cycle, the experimentalist again inter-
venes with expert knowledge and their evalu-
ation of model performance to select the next
reactant pair to target.

To build the desired dataset, the experimen-
talist directs what the model learns by their
selection of the next reactant pairs. This pro-
cess relies on defined reaction subspaces to tar-
get for domain expansion (vide supra). Figure
5A depicts the map of reaction subspaces used
to select the next reactant pairs, which was
constructed from the output of the process in
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Fig. 4. New, experimentalist-driven, active-learning workflow for exploration of reaction space.
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Fig. 3. The B-H reactant space map is an array
with amines organized by cluster on the ver-
tical axis and bromides organized in the same
manner on the horizontal axis. Each small
square represents a coupling between a spe-
cific bromide and a specific amine; each rec-
tangular subdomain therefore represents a
set of couplings between a cluster of amines
and a cluster of bromides. The varying size of
the clusters is a consequence of the reactants
selected in Fig. 3A. The entire array is orga-
nized through the lens of new chemical de-
scriptors. The new descriptors combine a radial
distribution of atoms within each reactant
around the reaction center with various atomic
properties relevant to reactivity, producing
what we call a radial distribution function (see
SM). The initial algorithmically selected re-
actant pairings that were used to build the
first classifier model are shown in light green.
The workflow in Fig. 4 was then used, and re-
actant selections were made in an approach
similar to the transfer learning conducted by
Zimmerman and co-workers but on a larger
scale; many such transfer steps were made
to expand the domain of models (by moving
to a new subspace). Then, for each new sub-
space, multiple reactant pairs were evaluated
to enable learning of substrate-level trends,
making models robust in that subspace. The
results of those many selections are shown
in dark green.

The dataset can be described as a network,
and the goal of this work is to explore enough
connections (reactant pairings) to make infer-
ences about the missing connections that are
possible. To visualize this, a structured chord
diagram is depicted in Fig. 5B, showing amine
and bromide nodes on either side with edges
connecting reactants that were coupled in the
dataset. Similar to the map in Fig. 5A, reac-
tants are organized by cluster on either side,
and the edge bundling in the figure illustrates
that the data are distributed across exemplars
from each cluster. The first visualization em-
phasizes that 121 out of the possible 2500 com-
binations of substrates were evaluated in this
work. The sparsity of these data is a feature,
not a flaw; identifying 121 out of 2500 couplings
and 24 out of 180 conditions to evaluate re-
duced the experimental burden from 450,000
experiments (180 conditions and 2500 sub-
strate pairs) to about 3300 experiments. The
diversity of the dataset is best represented
by the reactants evaluated (see SM for the full
list). Using randomly partitioned data, models
achieved a mean absolute error (MAE) of 9%
in an external test set. However, the problem
outlined in Fig. 1 is best represented by a test
set of out-of-sample reactant pairs, which is a
more difficult test.

After evaluating multiple couplings in each
subspace, models predicted reactivity trends (but
not necessarily exact yields) for new reactants
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clusters in a two-dimensional grid. (B) A structured chord diagram showing the network connectivity of the
reactant pairs sampled in the dataset. One exemplar is shown from each cluster.

with the 180 conditions. For example, the
highest-yielding predictions may be about
50% and the lowest about 0%, whereas the
experimental data might range from 85 to 0%.
However, the linear correlation of predicted
and observed yields would be high, with a

Rinehart et al., Science 381, 965-972 (2023)

slope in the range of 0.5 to 0.75. Once models
could predict reactivity trends, much more data
was required to achieve accurate yields. Ulti-
mately, the trade-off between accurate pre-
dictions and solving the problem outlined in
Fig. 1 required that we accept this as an ex-

1 September 2023

perimental limitation and continue domain
expansion before reaching yield accuracy in
every subspace. Although models sometimes
showed limited accuracy, they were still able
to address the key problem because they could
identify the yield trends for the various reac-
tion conditions out of the 180 available. Ac-
cepting this limitation, a pragmatic, ordinal
ranking of predictions was used. Predictions
were divided into quartiles (25% of the total
predicted range), and these quartiles were
labeled as “high,” “moderate,” “low,” and “poor.”
In practice, multiclass classification models (in-
stead of regression models with this ordinal
ranking of predictions) were slightly less per-
formant. To test this system as a tool, models
trained on the resulting dataset were experi-
mentally evaluated with new B-H couplings.

Experimental validation

To evaluate the performance of these models,
the tool was tested in a typical use case: New
couplings were selected in which one or both
reactants were not seen by the model (out-of-
sample) and were tested using an experimen-
tally tractable number of conditions (one to
five in most cases) with the highest predicted
yields. To ensure that this test was rigorous, the
number of catalysts evaluated for each cou-
pling was limited to 3 out of the 20 available.
This precaution minimized the possibility that
a selected catalyst would work well by chance
instead of models learning meaningful chem-
ical structure and reactivity relationships. When
the experiments were carried out, predictions
were ranked into quartiles, and, as they were
available, a few conditions in the top quartile(s)
were evaluated. A complementary set of con-
ditions predicted to give low yields were also
evaluated to test whether the models were
correctly learning reactivity trends as described
above. Together, conditions with high and
low predicted yields bookend a representative
experimental yield range for each coupling (see
SM for details). Figure 6 presents the results of
experimental validation, including (i) a chem-
ical structure indicating out-of-sample reactants
in red, in-sample reactants in blue, and the
coupling locus highlighted by the bold bond;
(ii) the number of experiments evaluating dif-
ferent conditions; (iii) the subset of conditions
with a high predicted yield (hits) that were
tested, represented as circles; (iv) an indication
of success by the coloring of the circle (green,
experimental yield in the top quartile), failure
(red, experimental yield not in the top quar-
tile), or a special case (gray); (v) the highest
isolated yield obtained from those predicted
hits; and (vi) a heatmap showing all 180 pre-
dicted yields for use as a visual fingerprint of
the response of the models to changing re-
actant structure.

To interpret experimental validation re-
sults, success and failure must be defined. The
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Fig. 6. Experimental validation
of substrate-adaptive models
as condition recommenders.
Out-of-sample (red) and in-sample
(blue) reactant fragments are indi-
cated for all products. Circular
iconography indicates the number
of predicted hits that were tested:;
green indicates a success, and

red indicates a failure. Gray color is
explained in the text. The highest
isolated yield is indicated below o
the circular icons. The prediction
heatmaps share the legend
shown for compound m. The
scale indicates the highest yield
prediction for each coupling
(middle number) and color
scale. Cy, cyclohexyl; Ph, phenyl;
THP, tetrahydropyranyl.
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hypothesis behind the experimental validation
is that models can correctly recommend syn-
thetically useful hits for couplings with one
or more new reactants by predicting reactivity
trends. A successful experiment was defined as
one in which the predicted hit furnished a
yield in the top 25% of those observed for that
coupling (a top quartile yield). For practical
reasons, not all 2340 experiments (13 reactant
pairs in Fig. 6 times 180 conditions) were eval-
uated; instead, 187 experiments (both hits and
zero-yield predictions) were performed across
all 13 reactant pairs. Note that although this
experimental design does not test whether all
high-yielding conditions were identified, in
10 out of 13 cases, the highest observed yields
were >85%, and all three of the remaining
cases were expected to furnish a lower yield
(vide infra). The full details of predicted and
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Case

observed yields, correlations between them,
and common error metrics are provided in
the SM.

Our claim that yield trends are sufficient to
gauge performance is illustrated by the first
five validation experiments in Fig. 6. The cou-
plings to form the products a to e showed very
good predicted-observed correlations [0.93,
0.89, 0.91, 0.77, and 0.75 coefficient of deter-
mination (R?); see SM]. Poor residual errors
[>25% MAE, >34% root-mean-square error
(RMSE)] were observed for a, ¢, and e be-
cause the highest yield predictions of only
33, 49, and 57% led to the highest observed
yields of 98 to 99%. Moderate-to-good residual
errors were observed for b (14% MAE, 18%
RMSE) and d (9% MAE, 18% RMSE). Couplings
a to ¢ share the same nucleophile, and the best
conditions changed among those couplings,
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Catalysts

demonstrating that the models adapted to elec-
trophile structure.

Next, the coupling of azepane with a protected
2-bromobenzyl alcohol derivative (product f)
used two out-of-sample reactants. The results
showed very good accuracy, with 4% MAE and
7% RMSE and a good correlation of 0.80 R?
between predicted and observed yields. By
contrast, the coupling of piperidine with 3-
bromo-5-methylpyridine (product g) involves
two in-sample reactants (the only example here
of coupling two in-sample reactants) but the
combination was never tested in the dataset.
The results were satisfying, with an accuracy
of 12% MAE and 16% RMSE and a correla-
tion of 0.86 R%. Comparing prediction finger-
prints of f and g provides some insight into
the models’ ability to adapt predictions to
substrate structures: For the more sterically
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hindered bromide in coupling f; the less bulky
diarylphosphino-substituted ligand 4 (CPhos
hybrid) is predicted to be the best. For the un-
hindered bromide in coupling g, bulkier tri-
cyclohexylphosphine-substituted ligands 17,
20, and 21 (CPhos, RuPhos, and SPhos) are pre-
dicted to be superior.

In the coupling of indole and 2-bromothiazole
(product h), the bromide was new to the mod-
el. This simple coupling is reported using copper
catalysis only (29-32) and is a difficult cou-
pling for palladium catalysis. As a result, this
experiment tests the ability of the model to
identify couplings that will not work. Indeed,
the models predicted a maximum 23% yield,
with mostly near- and zero-yield predictions.
Experimental evaluation of the five-highest
predictions showed that one condition pro-
vided a 25% yield, and the rest furnished no
product. Within the confines of this experi-
mental design, it appears that the model suc-
cessfully identified a challenging coupling;
however, to fully substantiate that claim, all
180 conditions would need to be evaluated.
An experimentalist with those predictions
should pursue another synthetic method if it
is available.

By contrast, the coupling of ter¢-butyl pyro-
glutamate with 2-(3-bromophenyl)-1,3-dioxolane
(both of which are out-of-sample, product 1)
represents an extrapolation because the pyro-
glutamate (i.e., contains an ester group) is
substantially different from anything in the
dataset. As was seen with product h, the four
top predictions ranging from 59 to 68% yield
were evaluated, yet the highest observed yield
was 17%, a clear failure on the part of the models
to recognize a challenging, extrapolative cou-
pling. We observed that the nucleophile was
converted to the carboxylate in situ by 'H quan-
titative nuclear magnetic resonance (QNMR)
and hypothesized that this by-product pre-
vented coupling by coordinating Pd. Those
complications are excellent examples of real
challenges in generalizing this reaction that
prevent the tool from accurately identifying a
low-yielding reaction because it had not learned
to predict such complicated behavior.

2,6-Dimethylaniline derivatives represent a
class of nucleophile that is new to the models
because all other primary (hetero)aromatic
amines included in the dataset have no or-
tho substitution. Twenty-four conditions were
evaluated for three separate pairings of 2,6-
dimethylanilines with one out-of-sample bro-
mide (4-phenoxybromobenzene, product i)
and two in-sample bromides (3-bromoquinoline
and 3-bromonitrobenzene, products j and K).
The fractions of top-quartile predictions that
furnished yields in the top quartile of those
observed were 7/7, 7/9, and 7/9, respectively.
That i to K represent extrapolations is more
evident in their range of poor to moderate R>
of 0.70, 0.05, and 0.40, respectively. The ob-
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served yield ranges for the best predictions
evaluated were 76 to 99%, 83 to 99%, and 77
to 89% yields, respectively. These results sug-
gest that for a subclass of anilines not repres-
ented in the dataset, models were still able to
identify high-yielding conditions. Thus, a trac-
table number of experiments (7 to 9 out of the
24 evaluated) were predicted to furnish good
yields and seven did for each of the three
couplings.

Finally, 5-fluoroskatole was included as a
nucleophile for its similarity to indole but its
inability to undergo C(3) arylation (product
m). While acquiring the dataset, we regularly
observed the C(3) arylation products—often as
dominant species—effectively forcing models
to predict C-N couplings that are in competi-
tion with C(3) aryl coupling. As chemists with
an understanding of reaction mechanismes, it
is intuitive that a minor structural perturba-
tion such as adding a methyl group to the C(3)
position of indole will prevent competitive C(3)-
arylation. The models being evaluated do not
learn mechanisms or the implications of such
a minor structural change (and corresponding-
ly minor change in the descriptors) as adding
a methyl group to that position of an indole.
The experimental validation results show a poor
correlation between predicted and observed
yields and stochastic errors of predicting zero-
and nonzero-yielding conditions, suggesting a
different observed reactivity pattern than what
the models had learned. Despite this, out of
the four conditions with the highest predicted
yield (40 to 55%), two provided good yields of
84 and 85%. This example illustrates that the
tool can still be useful, even on a challenging
coupling that represents a substantial mecha-
nistic extrapolation.

Taken together, the results of the validation
experiments demonstrate that the performance
of the model exists on a gradient. For new re-
actants from a reaction subspace that is well
represented in the dataset, predictions are ro-
bust (i.e., a to ¢ and g to f). For cases in which
reactants represent structural permutations
from those in the dataset (i.e., d and e), the
models correctly learned reactivity trends and
could predict hits. For new types of structures
that may have different reactivity patterns
than those in the dataset, performance ranged
from moderate (i to K) to poor (I and m).
However, even the lowest model performance
demonstrated here provided good yields (de-
pending on the chemical limitations of the
coupling in question, e.g., 1). Most importantly,
poor model performance can be rescued by
domain expansion of the dataset (see fig. S22).
This approach to network exploration using
active learning has enabled us to create mod-
els that are useful over a broad applicability
domain by evaluating only 0.7% of the reaction
space. Although we will continue to explore this
space, more importantly, we have now created
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a transportable blueprint for domain expan-
sion of a dataset.

Outlook

The dataset described herein comprises >120
reactant pairs that systematically explore a
microcosm of B-H coupling space. Models
trained on these data simultaneously learned
nonlinear reactivity trends for many different
classes of reactants. These models could pre-
dict the yield of reactions with a mean absolute
error of 9% using randomly partitioned data
and were performant at reactant generaliza-
tion, as demonstrated by out-of-sample sub-
strate validation.

Key to achieving this goal was an informatics-
guided strategy that reduced the experimental
impossibility of exploring a 450,000-member
reaction space to an experimentally tractable
problem of acquiring a dataset comprising only
3300 experiments. We present both this val-
idated tool for Pd-catalyzed C-N couplings as
well as an active-learning workflow, which, un-
like prior work, was used to build an expansive
dataset for the chemical community. The chem-
istry community can engage with this work on
four different levels. An experimentalist with
no interest in ML can use the snapshot of the
tool presented in this work without expertise
in ML or programming and expect performance
similar to experimental validation. We invite
any practitioner with an interest in ML to take
the tool and resume the workflow in Fig. 4,
honing the tool to new reactant domains of in-
terest or steadily improving prediction accuracy
on existing dataset domains. Furthermore, we
invite any practitioner with expertise in ML to
use the new active-learning framework on other
important reactions with expansive multire-
actant spaces. Finally, we offer this dataset for
focused development on modeling noncombi-
natorial, diverse datasets, which are rare in the
chemistry domain.
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Editor’s summary

The palladium-catalyzed coupling of amines with aryl halides is one of the most widely used reactions in
pharmaceutical research and manufacturing. Nonetheless, it depends sensitively on the structure of the two coupling
partners and therefore often requires a trial-and-error process to identify pertinent optimal conditions. Rinehart et

al. trained and validated a machine learning model to predict appropriate ligand, solvent, and base for coupling of
particular reactant pairs. Ten products were isolated in more than 85% yield under the individualized conditions
predicted by the model. —Jake S. Yeston
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