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1. Introduction

The study of Minkowski-type problems and their associated isoperimetric inequalities
is at the core of convex geometric analysis. This line of research can be traced back to
the seminal work [54] of Minkowski and the celebrated Brunn-Minkowski inequality due
to Brunn and Minkowski in the 19th century. The comprehensive survey [23] by Gardner
explores the many connections between the Brunn-Minkowski inequality (and its various
generalizations) and other isoperimetric-type inequalities, both geometric and analytic.
The Brunn-Minkowski inequality is strongly connected to the classical Minkowski prob-
lem which asks for the existence and uniqueness of a convex body whose surface area
measure is prescribed by a given Borel measure p on S"~!. Here, by a convex body we
mean a compact convex subset of R™ with a nonempty interior, and if K is a convex
body, its surface area measure is given by

Sk(n) =H"" (vg' (n),

for each Borel set n C S"~! where 1/1_{1 is the inverse Gauss map. Surface area measure
can be viewed as the differential of the volume functional. The Minkowski problem is
equivalent to the following PDE on S™~1:

det(VZ._h+ hI) = p,

and it has motivated much of the development of Monge-Ampere equations in the
last century. See the works of Minkowski [54], Aleksandrov [1], Cheng-Yau [15],
Pogorelov [56], and Caffarelli [9-11]. In particular, in differential geometry, it is the
problem of prescribing Gauss curvature. To see intuitively why the Brunn-Minkowski
inequality and the Minkowski problem are naturally intertwined, note that the Brunn-
Minkowski inequality states roughly that the n-th root of the volume functional Vs
concave, whereas the Minkowski problem studies surface area measures—the “derivative”
of the volume functional.

Motivated by the success of the classical Brunn-Minkowski theory, in the last three
decades, there have been some crucial types of variants of the classical Minkowski
problem—all of them involving prescribing certain geometric measures generated by
“differentiating” geometric invariants in ways similar to the one leading to surface area
measure. These Minkowski problems can be viewed as the problem of prescribing dif-
ferent curvature functions in the smooth case, and lead to many new (and challenging)
Monge-Ampere equations. Some of the most prominent Minkowski-type problems in-
clude the L, Minkowski problem (see [16,33,48]), the logarithmic Minkowski problem
(see [8]), the dual Minkowski problem (see [31]), and most recently the chord Minkowski
problem [50] in integral geometry. More details will be provided.

It is natural to attempt to migrate this theory to other measurable spaces. Of partic-
ular interest is the Euclidean space R™ equipped with the Gaussian probability measure
Yn given by
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1 _1z)?
W (E) = (277)% /e 2 dx.
E

Note that a very distinct feature of the Gaussian probability measure, when compared

to the Lebesgue measure, is that it is not uniform, or even homogeneous. This makes
it conceptually extremely challenging to even believe the validity of a Brunn-Minkowski
inequality in (R™,~,)—mnote that the exponent % in the Brunn-Minkowski inequality
corresponds to how the volume scales when a convex body is rescaled. Instead, the
isoperimetric-type inequality in the Gaussian probability space is the Erhard inequality
(2.3) which does not make use of homogeneity. It is quite surprising to see that a dimen-
sional Brunn-Minkowski inequality holds in (R™,,,) for origin-symmetric convex bodies.
This was initially conjectured by Gardner-Zvavitch [21], with an important contribution
by Kolesnikov-Livshyts [36] followed by a complete resolution by Eskenazis-Moschidis
[18]. The dimensional Brunn-Minkowski inequality neither implies nor is implied by the
Ehrhard inequality (see [21]). Tt is also linked with the conjectured log-Brunn-Minkowski
inequality (planar case established in [7])—an inequality in the Lebesgue measure space
but with different addition—following a result by Livshyts-Marsiglietti-Nayar-Zvavitch
[44], which was very recently extended in [30].

Motivated by the rich theory regarding isoperimetric inequalities in (R™,~,,), Huang,
Xi, and the last author [32] studied the Minkowski problem in (R”,7,). Let K be a
convex body in R™ that contains the origin as an interior point. The Gaussian surface
area of K, denoted by S, k, is the unique Borel measure that satisfies

(K L) — v, (K
o Al + ) — ):/hLdS%K
Snfl

t—0 t

for each convex body L in R™. Here hj, is the support function of L, see (2.1). A more
explicit formula for S, k is given in (2.2).

The Gaussian Minkowski problem. Given a finite Borel measure p, what are the
necessary and sufficient conditions on p so that there exists a convex body K with
o € int K such that

p= 5y, k"’ (1.1)

If K exists, to what extent is it unique?
When the given measure p has a density du = fdv, (1.1) is equivalent to the following
PDE on S"~1:

1 |Vh|2+h?

@) em = det(V*h + hI) = f. (1.2)

w3

Due to the unique properties of the Gaussian density, in [32], results regarding the
Gaussian Minkowski problem are restricted to those convex bodies whose Gaussian vol-
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umes are no less than 1/2. This is where the Erhard inequality readily implies the unique-
ness part of the Gaussian Minkowski problem: if S, x = S, 1 and v, (K), v, (L) > 1/2,
then K = L. See Theorem 1.1 in [32]. We point out that without this restriction, the
Erhard inequality is of no use for the uniqueness part of the Gaussian Minkowski prob-
lem. In particular, when ~,(K) < 1, it is in fact possible that (1.1) has more than
one solution. This conceptually makes the existence part of the Gaussian Minkowski
problem more challenging as the possibility of multiple solutions often implies increasing
difficulties in providing C° estimates required in the solution of a Minkowski problem.

In the current work, we study the existence and the uniqueness part of the Gaussian
Minkowski problem in dimension 2, without the restriction that yo(K) > 1/2.

To fully appreciate the challenges in the Gaussian Minkowski problem, we provide the
background in other relatively more well-studied Minkowski-type problems for compari-
son.

There are two major variants of the classical Brunn-Minkowski theory.

One is the L, Brunn-Minkowski theory initiated by the two landmark papers [48,49]
by Lutwak in the early 1990s where he defined the L, surface area measure fundamental
in the now fruitful L, Brunn-Minkowski theory central in modern convex geometric anal-
ysis. It is crucial to point out that such an extension is highly nontrivial and often requires
new techniques. See, for example, [5,16,28,33,35,45,46,51,52,60,61,63,67] for a (not even
close to exhaustive) list of works in the L, Brunn-Minkowski theory. In particular, the
theory becomes significantly harder when p < 1. These include the critical centro-affine
case p = —n and the logarithmic case p = 0. Isoperimetric inequalities and Minkowski
problems in neither case have been fully addressed. In particular, the log Minkowski
problem (for the cone volume measure) has not yet been fully solved. See, for example,
Bianchi-Boroczky-Colesanti-Yang [4], Chou-Wang [16], Guang-Li-Wang [26], Zhu [66,67]
among many other works. In fact, the p = 0 case harbors the log Brunn-Minkowski
conjecture (see, for example, Béroczky-LYZ [7])—arguably the most crucial conjecture
in convex geometric analysis in the past decade. The log Brunn-Minkowski conjecture
has been verified in dimension 2 and in various special classes of convex bodies. See,
for example, Chen-Huang-Li-Liu [13], Colesanti-Livshyts-Marsiglietti [17], Kolesnikov-
Livshyts [38], Kolesnikov-Milman [37], Milman [53], Putterman [57], Saroglou [58]. If
proven correct, it is much stronger than the classical Brunn-Minkowski inequality.

The other is the dual Brunn-Minkowski theory initiated by Lutwak in the 1970s. Com-
pared to the classical theory which focuses more on projections and boundary shapes
of convex bodies, the dual Brunn-Minkowski theory focuses more on intersections and
interior properties of convex bodies. This explains the crucial role that the dual theory
played in the solution of the well-known and the then long-standing Busemann-Petty
problem in the 1990s. See, for example, [22,2547,64]. The counterparts for the quer-

3 Technically speaking, the Gaussian surface area in dimension 2 should be better referred to as the
Gaussian perimeter measure. However, we shall keep its original name, for consistency with the case in
higher dimensions.
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massintegrals in the dual theory are the dual quermassintegrals. However, it was not
until the groundbreaking work [31] of Huang-Lutwak-Yang-Zhang (Huang-LYZ) that
the geometric measures associated with dual quermassintegrals were revealed. This led
to dual curvature measures dual to Federer’s curvature measures. The Minkowski prob-
lem for dual curvature measures, now known as the dual Minkowski problem, has been
a heated topic in convex geometry and fully nonlinear elliptic PDEs for the last couple
of years and has already led to many works. See, for example, Boréczky-Henk-Pollehn
[6], Chen-Huang-Zhao [12], Chen-Li [14], Gardner-Hug-Weil-Xing-Ye [24], Henk-Pollehn
[29], Li-Sheng-Wang [41], Zhao [65]. It is important to note that the list is by no means
exhaustive.

Recently, Lutwak-Xi-Yang-Zhang [50] introduced the first Minkowski-type problem in
integral geometry, known as the chord Minkowski problem.

Despite many cases of the L, Minkowski problem and the (L,) dual Minkowski prob-
lem still being outstanding, one of the properties enjoyed across all these problems is
that the geometric measures involved always possess certain homogeneity. Thus, if the
prescribed measure p is proportional to the spherical Lebesgue measure, then there exists
one and only one constant solution (a unique centered ball). However, for the Gaussian
Minkowski problem, if f = C' > 0, depending on the values of C, equation (1.2) can have
a unique constant solution, or precisely two constant solutions, or no constant solution at
all. Roughly speaking, this is a result of the function t”fle’g being strictly increasing
and then strictly decreasing as t increases from 0 to oco.

The above observed phenomenon suggests that when |u| is sufficiently big, equation
(1.1) has no solution. This sets the Gaussian Minkowski problem apart from the afore-
mentioned Minkowski-type problems. In particular, by the works of Ball [3] and Nazarov
[55], the Gaussian surface area of a convex body K in dimension n is asymptotically
bounded by ni. Therefore, a completely new type of condition is needed if the Gaussian
Minkowski problem is to be solved fully. Additionally, Example 7.1 in the Appendix of
[32] suggests that such a condition should be nonlinear. This was not the case with the
L,, Minkowski problem or the (L,) dual Minkowski problem.

In the current work, we study the planar Gaussian Minkowski problem. Our first
result is regarding solutions to the case where p is proportional to the spherical Lebesgue
measure. In particular, we study nonnegative solutions h to

1 n24n?

2—6 = (" +h)=C, (1.3)
T
on St

Theorem 1.1. Let K be a convex body in R? that contains the origin. If the Gaussian
surface area measure of K is proportional to the spherical Lebesque measure; that is,
there exists C > 0 such that h = hx is a nonnegative solution to (1.3), then K has to be
a centered disk, or, equivalently, h has to be a constant solution. In particular,
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=2 /(27), then there are precisely two solutions;
(2) If C =e~

(1) If0< C <
(3) IfC > et

e
2 /(27), then there is a unique solution;
/(27), then there are no solutions.

Note that in Theorem 1.1, it is not assumed a priori that K is origin-symmetric.

The idea of the proof is to convert the existence of nonconstant solutions to a problem
involving the estimates of a carefully chosen integral. This is motivated by Andrews [2].
Recently, the approach of Andrews was adapted to consider the number of solutions to
the planar (L,) dual Minkowski problem, see Liu-Lu [43] and Li-Wan [40].

Using Theorem 1.1, a degree-theoretic approach is used to establish the existence of
solutions to the following planar Gaussian Minkowski problem in the origin symmetric
setting.

Theorem 1.2 (Existence of smooth, small solutions). Let 0 < o < 1 and f € C%*(S1) be
a positive even function with || f]zr < ﬁ Then, there exists a C*%, origin-symmetric

K with v (K) < % such that its support function h solves

1

LM W e h) =
2

Recall that the Erhard inequality in (R?, ;) is not particularly helpful outside the
class vo(K) > 1/2. This conceptually makes it much harder to obtain C° estimates. This
is precisely the reason that we need to assume that f is bounded both from above and
from below by a positive constant. In the setting of Theorem 1.2, this is guaranteed by
the fact that f € C*(S') is a positive function.

Using an approximation argument, in combination with [32, Theorem 1.4], we imme-
diately have

Theorem 1.3. Let f € LY(SY) be an even function such that || f||z: < 7= . If there exists
7 > 0 such that i < f < 1 almost everywhere on S, then there exzst at least two
origin-symmetric conver bodies Ky and Ko such that

dS“/z,Kl (’U) = dS’Yz,Kz (v) = f(v)dv

Finally, we remark that Minkowski problems for non-homogeneous measures are often
referred to as Orlicz-Minkowski-type problems, which have their origins in the work [27]
by Haberl-Lutwak-Yang-Zhang for the Orlicz Minkowski problem that generalizes both
the classical Minkowski problem and the L, Minkowski problem. See also [19,20,24,34,62]
for additional results and contributions in the Orlicz extension of the classical Brunn-
Minkowski theory. When the ambient space is equipped with log-concave measures, this
was considered recently in Kryvonos-Langharst [39]. However, in all these works, the
solution is obtained up to a constant. In the case of Gaussian probability space, for
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example, for a given finite Borel measure y on S"~!, one tries to find a pair of (¢, K)
where ¢ > 0 and K is a convex body such that

w=cSy, K. (1.4)

Note that with the introduction of this ¢, none of the challenges we mentioned regarding
the Gaussian Minkowski problem would appear. But, in general, one would also lose
the potential to prove any uniqueness result. In particular, Theorem 1.4 in [32] (or
Theorem 1.2 in the current work in dimension 2 and under certain restrictions on the
regularity of u) immediately implies that there are infinitely many pairs of (¢, K) that
solve (1.4). In fact, the number of solutions is as many as the cardinality of R!

In Section 3, we construct the integral connected to the proof of Theorem 1.1, esti-
mates of which leading to Theorem 1.1 will be provided in Section 4. Existence results
will be established in Section 5.

2. Preliminaries

Some basics, as well as notations, regarding convex bodies, will be provided in this
section. For a general reference on the theory of convex bodies, the readers are referred
to the book [59] by Schneider.

For a Borel measure u, we use the standard notation |u| to denote its total measure.
We will use ~,, for the Gaussian probability measure in R"; that is,

1 |2|?
W(E) = _ S dx.
n(E) (%)2/6 v
E

vex i W vex wi i ior.
By a convex body in R™, we mean a compact convex subset with a nonempty interior

Note that if the convex body is also origin-symmetric, then it necessarily contains the
origin as an interior point.

Let K be a compact convex subset in R™. The support function hx of K is defined
by

hg(y) =max{z -y:z € K}, (2.1)

for each y € R™. It is straightforward to show that hx is homogeneous of degree 1 and
is sublinear. On the other side, if f is a positive continuous function on S™~!, the Wulff
shape [f] of f is the convex body defined by

[fl={zeR":2-v< f(v), forall v € S"1}.

It is not hard to see that on S™~!, we have hipg < f. If f = hk, then [f] = K. If K
is origin-symmetric, by the definition of support function, we have the following useful
estimate:
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hi(v) > |z -v|,Yv € "1 Vo € K.

The space of convex bodies in R™ can be made into a metric space by considering the
Hausdorff metric. Suppose Kj; is a sequence of convex bodies in R™. We say K; converges
to a compact convex subset K C R™ in Hausdorff metric if

max{|hx, (v) — hg(v)] ;v € S" 1} =0,

as ¢ — 00.
For a compact convex subset K in R™ and v € S"~!, the supporting hyperplane
H(K,v) of K at v is given by

H(K,v)={ze€K:x-v=nhg()}

By its definition, the supporting hyperplane H(K,v) is non-empty and contains only
boundary points of K. For x € H(K,v), we say v is an outer unit normal of K at
x € 0K.

Since K is convex, for H"~! almost all € 0K, the outer unit normal of K at x is
unique. In this case, we use v to denote the Gauss map that takes x € 0K to its unique
outer unit normal. Therefore, the map vk is almost everywhere defined on K. We use
1/;(1 to denote the inverse Gauss map. Since K is not assumed to be strictly convex, the
map V;(I is set-valued map and for each set n C S"~!, we have

vt (n) = {z € OK : there exists v € 7 such that v is an outer unit normal at x}.

Let K be a convex body in R™ that contains the origin as an interior point. The

Gaussian surface area measure of K, denoted by S, x, is a Borel measure on S"~!

s

given by

1
(2)

S x(n) = / e 1), (2.2)

vict(n)

w3

for each Borel measurable  C S™~!. It can be shown that S, x is weakly continuous in

K (with respect to Hausdorff metric): if K;, K are convex bodies in R™ that contain the
origin as interior point and K; converges to K in Hausdorff metric, then S, k, converges
weakly to S, k. See, for example, Theorem 3.4 in [32].

By a simple calculation, it follows from the definition of Gaussian surface area measure
that if K € K is convex, then S, i is absolutely continuous with respect to surface
area measure and

1 _IVhg PRk
2

dsS,, k = e

(V2" o
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If, in addition, the body K is C? with everywhere positive Gauss curvature, then S,
is absolutely continuous with respect to the spherical Lebesgue measure and

1 _IVhgP+rE

dS,, k(v) = We 2 det(VQhK + hgI)dv.

When P € K7 is a polytope with unit normal vectors v; and the corresponding faces
F;, the Gaussian surface area measure S, p is a discrete measure given by

N
Sy, (1) = Z @iy, (+),

where «; is given by

o = ! /ef%d”r'-lnfl(x).

Let K, L be two convex bodies in R™. The Erhard inequality states that for 0 < t < 1,
we have

U (1 = K +tL)) > (1 = )0 (3 (K)) + tT 7 (a(L)). (2:3)

Here, (1 —t)K +¢tL = {(1—t)z +ty : * € K,y € L} is the Minkowski combination
between K and L, and

1 ’ 2

Moreover, equality holds if and only if K = L.
The Gaussian isoperimetric inequality in R™ states that for every convex body K in
R", we have

S, | 2 YT (9 (K))), (2.4)

2
where ¢(t) = \/%e_%. Note that the Gaussian isoperimetric inequality follows directly
from the Ehrhard inequality. In the current work, we require the following special case
of (2.4): if v,,(K) = 1, then |S,, x| > \/%
Sections 3 and 4 are devoted to studying the number of solutions to the equation

dS., ik = CdH',

on the set of convex bodies in R? that contain the origin, or equivalently, the number of
nonnegative solutions to the equation
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_h’2+h2

e 2 (W +h)=c, (2.5)

Ng)te that it is quite simple, by studying the monotonicity properties of the function
te™ 7, to see the number of constant solutions to (2.5). For easier reference, we state this
as a proposition.

Proposition 2.1. We have

(i) if0<c< e~ 2, there are precisely two constant solutions to (2.5);
(i) if ¢ = e~ 2, there is precisely one constant solution to (2.5);
(iii) if ¢ > e~ 2, there is no constant solution to (2.5).

We remark that if we denote hy = ri,hy = ro with 71 > ry to be the two constant
solutions to (2.5) when ¢ € (0,e~2), then it is simple to see that as ¢ — 0, we have
ry — oo and ro — 0.

3. An integral associated with the number of nonconstant solutions

In this section, we construct an integral with parameters, the value estimate of which
would lead to the number of nonconstant solutions to (1.3).
For sake of simplicity, we move the constant 27 in (1.3) and rewrite the equation as

o ! 2+h,2

e 2 (h"+h)=c, (3.1)

for some given ¢ > 0. Based on the regularity theory developed by Caffarelli [9-11], it is
immediate that if h is a nonnegative solution to (3.1), then h € C*°. Moreover,

_h’2+h2 , h’2+h2
2

Y =e 2 (W +h)(=h) =—cl,

(e

where in the second equality, we used the fact that h solves (3.1). Therefore, there exists
a constant F such that

B h,/2+h2

e” 2 +ch=E, on S'. (3.2)
Write
ho = 5161191} h(0), and hy= max h(8). (3.3)

Note that h being a constant function is equivalent to hg = h;. Consider the function

2

o(t) =ct+e 7.

By direct computation,
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The number of solutions to (3.1) when ¢ > e~ is immediate based on a simple
observation on the monotonicity of ¢ in this case.

Theorem 3.1. If ¢ € [e=2,00) and h is a nonnegative solution to (3.1), then h has to be
a constant solution. In particular,

(1) If ¢ = e_%, there is exactly one convex body K containing the origin such that
dS., k = cdH" ' and K is a centered disk;

(2) If ¢ > e_%, there exists no convex body K containing the origin with dS,, x =
cdH" L.

Proof. By (3.2), the definition of ¢, and the fact that hg and h; are extremal values, we
have

#(ho) = ¢(h1) = E.

A simple calculation yields that when ¢ > e’%, the function ¢ is strictly monotone on
[0, 00). Therefore hg = hy, which implies that h is a constant solution. The other claims
of this theorem follow from Proposition 2.1. O

For simplicity, we will write

+2

g(t) =te 7.

Note that g is strictly monotonically increasing on [0, 1] and strictly monotonically de-
creasing on [1,00). Moreover g(1) = maxe[o,o0) 9(t) = ez,

The rest of this section and Section 4 will focus on showing that there are no noncon-
stant solutions to (3.1) when ¢ € (0,e~2). Note that in this case, the equation

g(t) =c (3.4)

has exactly two nonnegative solutions, which we shall denote as mi; and meo, with m; <
1< mao.
Towards this end, we assume that h is a nonnegative, nonconstant solution to (3.1).

Lemma 3.2. If ¢ € (0,e~2) and h is a nonnegative, nonconstant solution to (3.1), then
the critical points of h are isolated.

Proof. Suppose the critical points of A have an accumulation point; that is, there exists
a sequence of distinct ; € S! converging to g € S* such that h’(6;) = 0. Since h is
smooth, we conclude that h'(6y) = 0. Moreover,



12 S. Chen et al. / Advances in Mathematics 435 (2023) 109351
n(6;) —h'(6
W' (00) = lim MO =) _
i—>00 97, — 90

Equation (3.1) now implies that

_r2%(00)
2

g(h(00)) = h(bo)e

= C.

Therefore h(6y) = my or h(fy) = ma, where m; and my are nonnegative solutions to
(3.4). Recall that h'(6p) = 0. Thus, h is a solution to the initial value problem
n'! 2+h2
= (W +h)=c,
e (k) =c (3.5)
h(oo) =1m, h/(eo) = O,

where m is either m; or mgy. Therefore, h = m is the unique solution to (3.5), which
contradicts the assumption that A is nonconstant. O

Lemma 3.3. If c € (0,e"2) and h is a nonnegative, nonconstant solution to (3.1), then
ho < mi < hy < mg, where my and msy are nonnegative solutions to (3.4) and hg, hy are
as given in (3.3).

Proof. Note that ¢'(t) = ¢ — g(¢). This implies that ¢ is strictly increasing on [0, mq]
and on [mg, 00), whereas strictly decreasing on [my,mso]. Argued in the same way as in
the proof of Theorem 3.1, we conclude that

¢(ho) = ¢(h1) = E, (3.6)

where hg < hy.
Let h € (ho,h1) be arbitrary. By the intermediate value theorem, there exists 6 € S*
such that h(f) = h. By (3.1) and (3.2), we have

h2(0) _h'2(0)+h%()
2

ch(f)+e "2 >ch(f)+e =FE.

=
>
~
Il
=
=
e
~
~
Il

This, when combined with the monotonicity of ¢, immediately gives us the desired
result. O

In particular, this suggests that
¢(ho) >0, and  ¢'(h1) < 0.
Motivated by this, we give the following definition.

Definition 3.4. A pair of constants a < b is called a good pair with respect to c, if it
satisfies p(a) = ¢(b) and ¢'(a) > 0, ¢’'(b) < 0.
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It is immediate that for ¢ € (a,b), we have ¢(t) > ¢(a) = ¢(b). In particular, if & is a
nonnegative, nonconstant solution to (3.1), then (hg, h1) is a good pair.

Lemma 3.5. If ¢ € (0,e2) and h is a nonnegative, nonconstant solution to (3.1), then
the critical points of h are either minimum or mazximum points.

Proof. If 6, is a critical point of h, then h'(fy) = 0 and therefore (3.2) implies that
@(h(6p)) = E. This, in combination with the fact that hg < h(6p) < hy and that (hg, k1)
is a good pair, implies that h(6p) is either hg or hy. In other words, it is either a minimum
or a maximum point. 0O

The following corollary is immediate from Lemmas 3.2 and 3.5.

Corollary 3.6. If ¢ € (0,e2) and h is a nonnegative, nonconstant solution to (3.1),
then minimum points and mazimum points of h alternate, and there are finitely many
of them. In addition, the number of critical points of h is an even number.

Let h be a nonnegative, nonconstant solution to (3.1). Assume 6y is a minimum point
of h; i.e., h(0p) = hg and 0; € [0, 27) be the nearest maximum point of h; i.e., h(61) = hy.
Without loss of generality, we assume 6; > 6y. Note that this implies h'() > 0 for
6 € (6p,61). By (3.2), we have

'(0) = /—h2(0) — 2log(E — ch(h)).

Making the change of variable u = h(f), we get

01 — 6 /d&—/ du—/ du.
P h' (6 V- u27210g —cu)

Note that this suggests that §; — 6y only depends on the values of hg and hy (in other
words, independent of the specific location of the minimum/maximum point). Let r =
hyi — ho and make the change of variable t = “=0 we have by (3.6) that

r

01 — 6y = / dt :== ©(c, ho,r). (3.7)
V-

0
2

2
tr + ho)? — 2log(e™ P ctr)

This, when combined with Corollary 3.6, immediately implies the following crucial
lemma.



14 S. Chen et al. / Advances in Mathematics 435 (2023) 109351

Lemma 3.7. Let ¢ € (0,e~2). If the set
{(ho,r) : O(c, ho,r) = % for some positive integer k and
(ho, ho + 1) is a good pair w.r.t. c}

is empty, then the only nonnegative solutions to (3.1) are constant solutions.

Proof. If h is a nonnegative, nonconstant solution to (3.1), then according to (3.7), the
difference in 6 between two consecutive critical points of h is the same, regardless of the
location of critical points. By Corollary 3.6, there exists a positive integer k such that
O(c, ho,r) = %. By definition of good pair, (ho, ho + 1) is a good pair with respect to c.
Therefore, the set is nonempty, yielding a contradiction. O

Remark 3.8. It can be shown that the cardinality of the set in Lemma 3.7 is precisely the
number of nonnegative, nonconstant solutions (up to rotation) to (3.1). But, this is not
necessary in the current work.

4. Estimating ©

The main purpose of this section is to provide estimates regarding the integral
O(c, ho,r) subject to the constraint that (hg,hg + ) is a good pair with respect to
c.

In the rest of this section, we will constantly fix one of the parameters ¢, hg, or 7.
The constraint that (hg, ho +7) is a good pair with respect to ¢ now suggests that one of
the remaining two parameters will uniquely determine the other. It is important to note
that when one of the parameters is fixed, one might not be able to arbitrarily pick the
other parameters. For example, when ¢ — 0%, hq also has to approach 0. Details such
as this will be provided when needed.

For now, we fix ¢ € (0, e_%) and view hg as a function of r. To see why this is possible,
recall that 0 < m; < 1 < my are the two nonnegative solutions of

12

te” 2 =c.

If ¢(ma) > ¢(0) = 1, then by monotonicity properties of ¢, there exists a unique 0 <
g < my such that ¢(q) = ¢(m2). Moreover, for every hg € [g, m1), there exists a unique
r > 0 such that hg + 7 € (mq,me] and @¢(ho + ) = ¢(hg). By definition, such a pair
(ho, ho + 1) is a good pair with respect to c¢. It is also simple to see that if hg ¢ [g,m1),
then there is no r > 0 such that (ho, ho + ) is a good pair.

On the other hand, if ¢(ms2) < ¢(0) = 1, using a similar argument, we conclude that
there exists a unique r > 0 such that (hg, hg + ) is a good pair with respect to ¢ if and
only if hg € [0,m1).



S. Chen et al. / Advances in Mathematics 435 (2023) 109351 15

Note that by the monotonicity properties of ¢, r decreases strictly as hg increases. Set

]H:{an,ﬁwmas¢m»
[g,m1), if ¢(m2) > ¢(0).

For hg € H, we write r as a function in hg; that is » = r(hg). It is simple to see that
r(hg) is continuous in hg and r — 0 as hg — m1. Now set

r. = {T(O)’ if ¢(m2) S ¢(0)7
), i g(ma) > ¢(0).

Thus r(hg) : H — (0,7.] is a bijection and consequently we may write hg = ho(r) for
r € (0,r.]. Note that since ¢ is smooth and hg,r are implicitly defined by ¢(hg + r) =
@(hg), the function ho(r) is also smooth.

We shall use the fact that ¢(ho + 1) = ¢(hg) is equivalent to

_ (hgtm)? _ 13
2

e —e 2 +er=0. (4.1)

Lemma 4.1. Let ¢ € (0,e~2) and ho(r) be such that (ho(r), ho(r) +7) is a good pair with
respect to ¢ for r € (0,r.]. Then

1
. / _ =
lim ho(r) = 35,

and
lim rhg (r) = 0.

r—0

Proof. Recall that ho(r) — my as r — 0. We therefore, define ho(0) = m; so that
ho(r) is continuous on [0,7.]. Since ¢ € (0,e~2), we have m; < 1 and consequently

" (m1) = (m2 — 1)e="5" + 0. Taylor’s theorem when applied to ¢ at m; gives
B(t) = 9(m1) + 58" (m) (¢ = 1m)? + o{(t — mn ).
Here we used the fact that ¢ (m;) = 0. Hence
Blho(r)) = Blma) + 56 (ma)(ho(r) = )2 + o{(ho(r) — mn)?)
and

Blho(r) +7) = o(ma) + 56" ma)(ho(r) +  — m1)? + o{(ho(r) + 7 —ma)?).
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By definition of good pair, we have ¢(ho(r)) = ¢(ho(r) +7) and ho(r) < mq < ho(r) +r.
Consequently, |ho(r) — ma], |ho(r) +7 —my| < r, and

56/ (m1)(ho(r) = ma)? = 56 ) (ho(r) 7 = 1 )? + 0(r?),
This implies
(ho(r) —ma)? = (ho(r) + 1 —ma)* + o(r?),

since ¢”(my) # 0. Therefore,

h()(’l") — ho(O) = ho(’]") —mi = —%7” + 0(7’).

Thus
, 1
o) = . (42)
Differentiating (4.1) in r, we have
0+m)> vo+r)2 n3
e T (hg 4 1) — e+ [e T (ho + 1) — e~ % holhh = 0. (4.3)

Note that the definition of m; and that ho(0) = my imply
c¢=g(ho(0)) and g’'(ho(0)) > 0. (4.4)

where g is given in (3.4). Hence,

= JUo(r) + 1) —gho()) - (45)

By the mean value theorem, there exists s; between hg(0) and ho(r), and sy between
ho(r) and ho(r) + r such that

9'(51)(ho(0) — ho(r))

hy(r) = —1.
0( ) g/(SQ)T
Let r — 0. By (4.2) and (4.4), we conclude
lim, i (r) = — = (4.6)
lim o (r) = =3 :

For the second equality in the statement of this lemma, a straightforward computation
shows that
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") = —g'(ho(r))ho(r)
0 g(ho(r) +7) — g(ho(r))

(a(ho(0)) — g(ho(r)) (g'<ho<r> L) (k) + 1) — g'<h0<r>>ha<r>)
e G '

By (4.5) and the mean value theorem, we have

—g'(ho(r))hy(r)
q'(s)

g'(ho(r) 4+ r)(ho(r) + 1) = g'(ho(r)) g (r)

rhi(r) = e ,

= (ho(r) +1)

for s € (ho(r), ho(r) + 7). Let r — 0. By (4.6), we have

limrhg(r) =0. O

r—0

Using Lemma 4.1 we can prove the following estimate.

Lemma 4.2. Let ¢ € (0,e~2) and ho(r) be such that (ho(r), ho(r) +r) is a good pair with
respect to ¢ for r € (0,r.]. Denote

O(r) = O(c, ho(r),r).

Then,
liminf ©(r) > ——t
r—0 1— m?
Proof. As in Lemma 4.1, we set hp(0) = mj.
By Fatou’s lemma,
; 2
liminf O(r) > /lim inf ! P dt
0 A 0 —(tr 4 ho)? — 2log(e~ 2 — ctr)

We claim that

r? -1
lim — = . . (4.7)
09 log(e_hUT() —ctr) — (tr + ho)? (1= hp(0))( — 1)

Therefore,
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1
2
/lim inf ! — dt
0 —(tr 4 ho)2? — 2log(e™ 2 — ctr)

/¢1_h2 Sk

1—h2 O/\/ t2+t
™

=0

The desired result follows immediately.
It remains to show (4.7), which follows from repeatedly applying L’Hopital’s rule. For

n3(r)

simplicity, Denote d(r,t) := e~ "2 — ert. By L’Hopital’s rule,

2

lim "
r—0t+ —2log(d(r,t)) — (tr + ho)?

. T
- 7“1~1>1’(r)1+ _hg)

— 2 Cholbr)zel (41 4 () (¢ + hi(r))

_hg —r

=€ 2 1

POt o= o () h(r) — et + (tr -+ ho(r))(E + hly(r)d(r, )

3
Since e~ "5 ho(0) = ¢, by Lemma 4.1, we have

t (57 (o)) =t + (o -+ o))+ ) )
1
—ct—c(t—§)

S Nlo

Thus, we may use L’Hopital’s rule again. By direct computation,

lim = <e B0 o ))hg(r)ct+(tr+ho(r))(t+hg(r))d(r,t)>

mmi(e*f@%+mam+w%w»dar+mw»@+%wmw)

RO) . .
—e 2 (12 + 2tlim b (r)) — ctho(0)(2lim b (r) + )

_ (e—hgém - ch0(0)> (t* - 1),
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where in the second and the third equalities, we used Lemma 4.1 and the fact that
_ h3()

e~z ho(0)=c
By L’Hopital’s rule,

-2
Y )
—2log(e="2 —ctr) — (tr + ho)?

REIO) -1

—e 2
h2(
<6—L2°> - chO(O)) (2 —t)
-1 1

2 —t1— hZ(0)’
h3(0)
where the last equality is due to e” "2 ho(0) =¢c. O

We now fix hg € [0,1) and use the fact that (hg, ho + 7) is a good pair with respect
to ¢ to represent ¢ as a function in r. Note that ¢ is determined by r via (4.1). However,
it is not always true that for any r > 0, the ¢ determined by (4.1) will make it true that
(ho, ho + ) is a good pair with respect to c. We need several lemmas to determine the
allowable values of r.

Lemma 4.3. Let ho € [0,1). If 7. > 0 and ¢, € (0,e~2) is such that (ho,ho + ) is a
good pair with respect to c., then for every 0 < r < r,, there exists ¢ € (0, e*%) such that
(ho, ho + 1) is a good pair with respect to c.

Proof. Since ¢ here is changing, we write ¢ as ¢. to emphasize its dependence on c.
Similarly, we also write m1(c) and ma(c).
2

Note that for each ¢ € (hge™ 3 , Cx), by definition of ¢. and m;(c), we have hg < my(c).

2
Here, the fact that hoe*hTO < ¢, follows from that (hg, ho+74) is a good pair with respect
to c.. We claim that ¢.(hg) > ¢.(m2(c)). Indeed,

hd
(bc(h,o) =chy+e 2

= ¢c, (ho) + (¢ — cx)ho

> e, (m2(cx)) + (¢ = c)ho

= @c(ma(ci)) + [e, (ma(cr)) — de(ma(cx)) + (¢ — ¢x)ho]
= ¢c(ma(cs)) + (¢ — ¢x)(ho — ma(cy))

> ¢e(ma(c.))

= ¢e(ma(c))
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Here, in the second to last inequality, we used the fact that hg < 1 < ma(c,). In the last
inequality, we used the fact that ma(c) > ma(c.) and that ¢.(¢) is strictly decreasing for

t € [ma(cs), ma(c)]. .
h
Hence, by monotonicity properties of ¢., for every ¢ € (hoe*TO,c*), there exists a
unique r > 0 such that the pair (hg, ho + ) is a good pair with respect to c¢. Note that

h
when ¢ — hge™ 2, we have r — 0. Also note that r depends continuously on c¢. The
desired result now follows from the intermediate value theorem. 0O

Lemma 4.4. Let hg € [0,1). Denote
The = sup{r > 0: there exists c € (0, eié) such that (ho, ho + 1) is a good pair
with respect to c}.

Then
0< The < 00.

Proof. We first claim that the set is nonempty. Indeed, for hy € (0, 1), choose rg > 0
such that hg + r¢g < 1. Let

_ (hgtrg)? hg
3

Co —
To

N

Note that when » — 0, we have cg — hge™ g <e s, Therefore, by choosing sufficiently
small rg > 0, we have ¢y € (0, e_%). By the choice of ¢g, we have ¢, (ho) = Pc, (ho + 70)-
Note that hg +ro < 1 < ma(cg). Now the monotonicity properties of ¢., guarantee that
(ho, ho + 10) is a good pair with respect to c¢. Hence, rp, > 0.

To see why 15, < 00, note that the fact that (hg, ho + ) is a good pair with respect

to ¢ implies
d)i,(ho) >0, and ¢Ic(h0 + 7") <0.

Consequently, we have

_ (hgtm)? h3

(ho+m)e” 2 > hge 2

This implies that 7 is bounded from above and therefore r,, < co. O

Lemmas 4.3 and 4.4 imply that for each fixed hg € [0,1), if € (0,74,), the pair
(ho, ho + r) is a good pair with respect to ¢ = ¢(r) where

_ (hgtn)? pe hd
—e 2 e 2
c(r) = . . (4.8)
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It is simple to compute

2y = Bt ) o) (49)
r r - '

where the last inequality is due to the fact that (ho, ho + r) is a good pair with respect
to c.

Lemma 4.5. Let hg € [0,1). The integral

is increasing in (0,7h,).
Proof. Denote

n(r,t) = —210g(e_%hg —c(r)rt) — (rt + hg)*.

By the definition of ©(r) (see (3.7)), it suffices to show that ;; . is increasing in r for
n2(r,
every fixed ¢ € (0,1). Since

0 r 1 1,
5 (orss) = oy o0 = o), (4.0

(MY

where the derivative here and in the rest of the proof is always taken with respect to 7.
Denote

ng
wr,t)=e 2 —c¢(r)rt.

Note that w(r,t) > 0 for t € [0,1]. By (4.9) and (4.8),

, ()t 4 ce(r)t
n'(r,t) = QW —2(rt + ho)t
=2 [(ho + r)e_mo_;mz —c(r)]t+e(r)t 2rt + ho)t
w(r,t)
Mo+ (e~ F _wc(:);;) —c(n)]t+e(r)t 2(rt + ho)t,

and consequently,
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1
77(7"7 t) - 57"77,(7"7 t)

= — 2logw(r, t) — (rt + hg)? (4.11)
h2

~ [(ho + (e 2 — Z((rrrt)) —c(r)]tr + c(r)tr T+ (rt 4+ ho)tr.

Denote G(r,t) = [n(r,t) — 2ry/(r,t)]w(r,t). Since w(r,t) > 0, by (4.10) and (4.11), to
prove the desired result, it suffices to show G(r,¢) > 0. Note that

G(r,t) = —2w(r, t)log(w(r,t)) — w(r, t)(rt + hg)?

— [(ho+ ) F = e(r)r) = e(r)ltr — clr)tr + (1t + ho)tro(r, )
= —2w(r, t) log(w(r, t)) + t*r*c(r)ho
+ t[e(r)rhg + e(r)r?ho + rie(r) — 2Th06_§ - 7‘26_@] - h%e‘é.
Thus,
OrG (r,t) =2c(r)rlog(w(r,t)) + 2¢(r)r + 2tr2c(r)ho + c(r)rhi
+ c(r)r?ho + rPc(r) — 27°ho.e_ﬂ;i 2o
and

atQ (U(’ﬁ t) + 2 C(T‘)h
! 2 o _ 2, 2
= Sy 2 e ho(eT — elryrt) = 2e(r)?r]
= wé —[2re(r)(hoe™ ¥ — (1)) — 2r7c(r)?hot]
<0

h2
where in the last inequality, we used the fact that ¢'(hg) = ¢ — hoe™ 2 > 0 due to that
(ho, ho + ) is a good pair. Hence, G(r,t) is a concave function in t.

Now, it is straightforward to compute

2

G(r,0) = —2w(r,0) log(w(r, 0)) — h2e~ 3 =0,

and by (4.8),
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_ (hgtn)? h3

G(r,1) =e= = (hog+7)* +c(r)r(r + ho)? — (ho +7)%e 2

S

MIO:

_ (hg+n)?

=(r 4 ho)?(e T tc(r)r—e”
=0.

Since G is concave in t, this implies G(r,t) > 0 for all ¢t € [0,1]. O

We now fix r > 0 and consider the dependence between ¢ and hg. Recall that m(c)
and ma(c) are two nonnegative solutions to (3.4) and that mj(c) < 1 < ma(c), when
ce(0,e72).

Suppose h,,r € (0,1) and ¢, € (0,e~2) are such that h, +7 < 1 and (h., h, +7) is a
good pair with respect to ¢.. For every hg € (0, h,], set

e_é - (hotn)?

C(ho) = , . (4.12)

Note that by definition of ¢ = ¢(hg), we have ¢.(hg) = ¢.(ho + ). This implies that
c € (0, ez ), as otherwise, the function ¢.(t) is strictly increasing, which contradicts with
¢c(ho) = ¢pc(ho + 7). Therefore, we have hg + 1 < h, + 7 < 1 < mz(c). By monotonicity
properties of ¢., the pair (hg, ho + ) is a good pair with respect to ¢(hg). Consequently,
2 hg+r)?2

—hoe=F + (ho +1)e= "FE _ $elho) — ¢L(ho +1)

Cl(hO) - r r

>0, (4.13)

where the last inequality follows from the definition of good pair. Since

r2

1—e7

lim c(hg) =

= 4.14
ho—0 Crs ( )

the function c(hg) : (0,hs] — (cr,cs] is a bijection and we may write hg = hg(c) :
(cry ] = (0, hy] as the inverse function. Note that

hi(c) > 0, for every c € (¢, cy).

Lemma 4.6. Let h,,r € (0,1) and ¢, € (0,e~2) be such that hy +1 < 1 and (hy, hy + 1)
s a good pair with respect to c.. The integral

@(C) = G(Ca hO(C)7 T)a
is increasing on (Cp, Cil.

Proof. Set

f(c) = —(tr + ho(c))* — 210g(e_i02_ — ctr).
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By (3.7), it suffices to show that for every fixed ¢ € (0,1), the function f is increasing in
c. We have
2rt _ ke
f(e)= T[l — hy(e)(e B ort — cho(c))].

e” "2 —ecrt
Note that by (4.12) and (4.13),

hZ(c) hZ(c)

d(hg) =€ "2z —cr—cho(c)<e 2z —crt——chole),

for each t € (0,1).
Thus,
2rt
J'(€) € —g——[1 = k() (ho)] = 0. ©
e~z —crt

Finally, we are ready to show the desired estimate for ©(c, ho,r) when (hg, ho + 7) is
a good pair with respect to c.

Lemma 4.7. Let ¢ € (0,e~2). If ho,r > 0 are such that (hg,ho + 1) is a good pair with
respect to c, then

O(c, ho,r) > 7.

Proof. Note that by definition of good pair, we have hg < mi(c) < 1. By Lemma 4.5,
we have

O(c, ho,r) > O(c(t), ho, t), (4.15)

for each v € (0,r). Let ¢/ = e‘ﬂ;lho. Since lim, g ¢, = 0 where ¢, is given in (4.14),
there exists dg > 0 such that ¢, < ¢ for every v € (0,dp). We also require that dy > 0 is
sufficiently small so that hg + §p < 1.

Since (hg, ho + t) is a good pair with respect to ¢(t), we have 0 < ¢’C(t)(ho) =c(r) —

12
hoe’%o = ¢(vr) — /. Therefore ¢(r) > ¢’. By Lemma 4.6, for every fixed v € (0,d¢), we
have

O(c(t), ho,t) > O(c, ho(c),¢). (4.16)
Combining (4.15) and (4.16), we have
O(c, ho,r) > O(c', ho(c), 1)

for every v € (0,dp). Note that since ¢’ is fixed, ho(c') depends on t as t varies. Therefore,
by Lemma 4.2,
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©(c, ho,r) > limiglf@(c’,ho(t),t) >——" > O
T—

= VI

Theorem 1.1 now follows directly from Lemmas 3.7 and 4.7, and Proposition 2.1.
5. Existence of symmetric solutions to the planar Gaussian Minkowski problem

This section is dedicated to solving the planar, even Gaussian Minkowski problem in
dimension 2, in the smooth setting. Suppose o € (0,1) and f € C?%(S') is a positive
even function, we will solve the equation

1 n'24p2
—e 2z (W +h)= 5.1
., (W 1) = 1, (5.1)
on S'. In fact, when combining with the existence result shown in [32], we show that
(5.1) has at least two solutions.
The following C° a priori estimate is critically needed.

Lemma 5.1. Suppose f : St — R is an even positive function and h = hy € C?(S?'), for
some origin-symmetric convex body K in R?, is an even solution to (5.1). If there exists
7> 0 such that

1/r< f<m,

then there exists T > 0, dependent only on T, such that

1
—/<h<7’l.
T

Proof. We first show that h is bounded from above. Assume that h achieves its maximum
at vg € St and h(vg) = hmax. Evaluating (5.1) gives us
1 hmax?

1
—e 2 hpax > f(vo) > —.
2 T

2
Note that the function %e*%t goes to 0 as t — oo. Therefore, there exists 7, > 0 such
that

hmax <Ti. (52)

We now show hpmayx is also bounded from below. Observe that on S', we have

n'24n2

1 1
h'+h)>—e" R +h)=f>-.
(W 1) 2 e W ) = f >

Note also that the total integral of A" 4+ h over S! is the perimeter of the convex body
K (whose support function is h). Therefore, we have
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H'(OK) > 2777 > 0.

On the other side, since perimeter is a monotone functional on the set of convex bodies
(with respect to set inclusion), we have

HY(OK) < 2Thmax.
Combining the above two inequalities, we can find some 75 > 0, such that
hmax > Ta.

Finally, we show that & is bounded from below. Assume that i achieves its minimum
at up € S* and h(ug) = hmin. Note that by (5.1), we have

+h?

1 ’2
Sh(" +h) = whe = f > rwhf > wh/T,

where we used the fact h is nonnegative, which follows from the fact that A is an even
function (or, equivalently, K is origin-symmetric). Observe the total integral of %h(h’ "+h)
on S' is the area of K. Therefore, we have

HE(K) > g/hdv.
Sl

By definition of support function, we have
h(v) > hmax|v - vol.

As a consequence, there exists 73 > 0 such that

HA(K) > ghm/w vo|dv = T3hmax > T3To. (5.3)
gl

Note that on the other hand,
K C (hmaxB1) N {z € R? : |z - ug| < humin},
which implies
HA(K) < Ahmaxhimin < 471 hin- (5.4)
Combining (5.3) and (5.4) immediately gives 74 > 0 such that
huin > T4 (5.5)

The existence of 7/ > 0 now readily follows from (5.2) and (5.5). O
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Once we obtain the critical C? estimate, higher order estimates follow in the same way
as in [32]. Note that in [32], the higher order estimates ([32, Lemma 6.5]) only depend
on the CY estimate ([32, Lemma 6.4]). We therefore state the following higher order
estimates without duplicating the same proof as presented in [32].

Lemma 5.2 (a priori estimates). Let 0 < a < 1. Suppose f € C%%(SY) is an even function
and there exists T > 0 such that % < f <7 and | f|lc2e < 7. If the support function of
K € K is C*® and satisfies

1 24 B2
—e (W h) =],
2

then there exists 7' > 0 dependent only on T such that

(1) L <VZ+nz<r
2 L <h +h<7
(3) Ihllcse <7

We are now ready to state the main existence result.

Theorem 5.3 (Existence of smooth, small solutions). Let 0 < a < 1 and f € C**(S*) be
a positive even function with || f||p1 < \/% Then, there exists a CH, origin-symmetric

K with v(K) < % such that its support function h solves

1 ’2 2
—e "2 (W 4+ h) = f. (5.6)
2

Proof. We prove the existence of a solution using the degree theory for second-order
nonlinear elliptic operators developed in Li [42].
By Theorem 1.1, for sufficiently small ¢y > 0, the equation

1 72 2
—ef%ﬂz” +h)=c¢co
2T
admits two constant solutions. Let Ay = 1 > 0 and hy = r9 > 0 be the two constant

solutions, with r; > r9. Then, for i = 1,2, we have

oo

"

vl

1
%6 T: = Co.

A quick analysis of the function et /2¢ yields that when ¢y is sufficiently small, we
have ~o(r1B) > % and y,(raB) < % We also require that ¢y > 0 is small enough

so that |lcollpr < \/% We also require that ¢y > 0 is chosen so that the operator

Lo = ¢" + (1 —r3)¢ is invertible.
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Let F(;t) : CH*(S1) — C%%(S!) be defined as

+h

F(h;t) =h'+h —27e It

for ¢ € [0, 1], where

ft = (]. — t)CO + tf

Note that since f > 0 is C%2 there exists 7 > 0 such that 1 < fe <7 and || fi|lcze < T.
It is also simple to see ||ft||L1 < \/— We choose 7/ > 0 accordmg to Lemmas 5.1 and
5.2. Define O C C*<(S*) by

1 1 1
0= {h € C**(S1) is even : = < h <71, = < B +h <7 ||hl|lcre < 7' 72(h) < 5} .

Here y2(h) = v2(K) where K is the origin-symmetric convex body whose support func-
tion is h. This can be done since h € O is strictly convex. Note that he =19 € O, while
hi=r ¢ 0.

We claim now that for each t € [0, 1], if h € 9O, then

F(h;t) #0.

Indeed, if F(h;t) =0, then by Lemmas 5.1 and 5.2, it must be the case that 'yg(h) =1
However, by Gaussian isoperimetric inequality, thls implies that [S,, x| > \/_ This is

a contradiction to the fact that F'(h;t) = 0 and that ||f;]| < \/%
As a consequence, the degree of the map F(-,t) is well defined on O. Moreover, by
Proposition 2.2 in Li [42],

deg(F(-;0),0,0) = deg(F(-;1),0,0). (5.7)

Let us now compute deg(F'(-;0),0,0). For simplicity, write F(-) = F(-;0). Recall that
f = co is so chosen that h = rs is the only solution in O to (5.6). It is simple to compute
the linearized operator of F' at the constant function ro:

Lry¢ = ¢ + (1= 13)¢,
which is invertible by our choice of ¢g. By Proposition 2.3 in Li [42], this implies
deg(F,0,0) = deg(L.,,0,0) # 0, (5.8)
where the last inequality follows from Proposition 2.4* in Li [42]. Equations (5.7) and

(5.8) now immediately imply that deg(F'(-;1),0,0) # 0, which in turn implies the exis-
tence of a solution. O

4 Proposition 2.4 in Li [42] contains some typos, which were corrected by Li on his personal webpage.
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We remark that through a simple approximation argument, the regularity assumption
on f may be dropped.

Theorem 5.4. Let f € L'(S') be an even function such that | f|p: < \/% If there

exists T > 0 such that % < f < 7 almost everywhere on S, then there exists an origin-
symmetric K with y2(K) < 5 such that

dS+, k(v) = f(v)dv.

Proof. We may approximate f by a sequence of smooth functions f; such that p; = f;dv
converges weakly to y = fdv, and % < f; < 7 on S'. Because of weak convergence, we

may (by discarding the first finitely many terms) assume |u;| < %

By Theorem 5.3, there exists C*?, origin-symmetric K; with vo(K;) < % such that
Sy, K, = i, or, equivalently, their support functions h; solves the equation
1 _ni2+n?

0t (h 4+ hi) = fi

By Lemma 5.1, there exists 7/ > 0, independent of 4, such that
1 /
—BCK; C1'B. (5.9)
-

Using Blaschke’s selection theorem, we may assume (by possibly taking a subsequence)
that K; converges in Hausdorff metric to an origin-symmetric convex body K. By (5.9),

1
—BCKC1'B.
-

The weak continuity of S,, x in K now implies that

S’Yz,K = Q.

Note that by continuity of 75, we have vo(K) < % That the inequality is strict follows
from the Gaussian isoperimetric inequality and the fact that ||f||p: < \/% O

We remark that the a priori estimates, Lemmas 5.1 and 5.2, work in higher dimensions
with no essential change in the proof. Therefore, the ability to extend the existence
results—Theorems 5.3, 5.4—depends on our ability to establish uniqueness result for
constant f (Theorem 1.1) to higher dimensions.

Conjecture 5.5. Let n > 3. If h is a nonnegative solution to the equation

1 | Vh|24+h2
2

—— ¢ 2 det(Vh+hI)=c>0,
(vV2m)™

then h must be a constant solution.
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