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1. Introduction

The study of Minkowski-type problems and their associated isoperimetric inequalities 
is at the core of convex geometric analysis. This line of research can be traced back to 
the seminal work [54] of Minkowski and the celebrated Brunn-Minkowski inequality due 
to Brunn and Minkowski in the 19th century. The comprehensive survey [23] by Gardner 
explores the many connections between the Brunn-Minkowski inequality (and its various 
generalizations) and other isoperimetric-type inequalities, both geometric and analytic. 
The Brunn-Minkowski inequality is strongly connected to the classical Minkowski prob-
lem which asks for the existence and uniqueness of a convex body whose surface area 
measure is prescribed by a given Borel measure μ on Sn−1. Here, by a convex body we 
mean a compact convex subset of Rn with a nonempty interior, and if K is a convex 
body, its surface area measure is given by

SK(η) = Hn−1(ν−1
K (η)),

for each Borel set η ⊂ Sn−1 where ν−1
K is the inverse Gauss map. Surface area measure 

can be viewed as the differential of the volume functional. The Minkowski problem is 
equivalent to the following PDE on Sn−1:

det(∇2
Sn−1h + hI) = μ,

and it has motivated much of the development of Monge-Ampère equations in the 
last century. See the works of Minkowski [54], Aleksandrov [1], Cheng-Yau [15], 
Pogorelov [56], and Caffarelli [9–11]. In particular, in differential geometry, it is the 
problem of prescribing Gauss curvature. To see intuitively why the Brunn-Minkowski 
inequality and the Minkowski problem are naturally intertwined, note that the Brunn-
Minkowski inequality states roughly that the n-th root of the volume functional V 1

n is 
concave, whereas the Minkowski problem studies surface area measures—the “derivative” 
of the volume functional.

Motivated by the success of the classical Brunn-Minkowski theory, in the last three 
decades, there have been some crucial types of variants of the classical Minkowski 
problem—all of them involving prescribing certain geometric measures generated by 
“differentiating” geometric invariants in ways similar to the one leading to surface area 
measure. These Minkowski problems can be viewed as the problem of prescribing dif-
ferent curvature functions in the smooth case, and lead to many new (and challenging) 
Monge-Ampère equations. Some of the most prominent Minkowski-type problems in-
clude the Lp Minkowski problem (see [16,33,48]), the logarithmic Minkowski problem 
(see [8]), the dual Minkowski problem (see [31]), and most recently the chord Minkowski 
problem [50] in integral geometry. More details will be provided.

It is natural to attempt to migrate this theory to other measurable spaces. Of partic-
ular interest is the Euclidean space Rn equipped with the Gaussian probability measure 
γn given by
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γn(E) = 1
(2π) n

2

∫
E

e− |x|2
2 dx.

Note that a very distinct feature of the Gaussian probability measure, when compared 
to the Lebesgue measure, is that it is not uniform, or even homogeneous. This makes 
it conceptually extremely challenging to even believe the validity of a Brunn-Minkowski 
inequality in (Rn, γn)—note that the exponent 1

n in the Brunn-Minkowski inequality 
corresponds to how the volume scales when a convex body is rescaled. Instead, the 
isoperimetric-type inequality in the Gaussian probability space is the Erhard inequality 
(2.3) which does not make use of homogeneity. It is quite surprising to see that a dimen-
sional Brunn-Minkowski inequality holds in (Rn, γn) for origin-symmetric convex bodies. 
This was initially conjectured by Gardner-Zvavitch [21], with an important contribution 
by Kolesnikov-Livshyts [36] followed by a complete resolution by Eskenazis-Moschidis 
[18]. The dimensional Brunn-Minkowski inequality neither implies nor is implied by the 
Ehrhard inequality (see [21]). It is also linked with the conjectured log-Brunn-Minkowski 
inequality (planar case established in [7])—an inequality in the Lebesgue measure space 
but with different addition—following a result by Livshyts-Marsiglietti-Nayar-Zvavitch 
[44], which was very recently extended in [30].

Motivated by the rich theory regarding isoperimetric inequalities in (Rn, γn), Huang, 
Xi, and the last author [32] studied the Minkowski problem in (Rn, γn). Let K be a 
convex body in Rn that contains the origin as an interior point. The Gaussian surface 
area of K, denoted by Sγn,K , is the unique Borel measure that satisfies

lim
t→0

γn(K + tL) − γn(K)
t

=
∫

Sn−1

hLdSγn,K

for each convex body L in Rn. Here hL is the support function of L, see (2.1). A more 
explicit formula for Sγn,K is given in (2.2).

The Gaussian Minkowski problem. Given a finite Borel measure μ, what are the 
necessary and sufficient conditions on μ so that there exists a convex body K with 
o ∈ int K such that

μ = Sγn,K? (1.1)

If K exists, to what extent is it unique?
When the given measure μ has a density dμ = fdv, (1.1) is equivalent to the following 

PDE on Sn−1:

1
(2π) n

2
e− |∇h|2+h2

2 det(∇2h + hI) = f. (1.2)

Due to the unique properties of the Gaussian density, in [32], results regarding the 
Gaussian Minkowski problem are restricted to those convex bodies whose Gaussian vol-
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umes are no less than 1/2. This is where the Erhard inequality readily implies the unique-
ness part of the Gaussian Minkowski problem: if Sγn,K = Sγn,L and γn(K), γn(L) ≥ 1/2, 
then K = L. See Theorem 1.1 in [32]. We point out that without this restriction, the 
Erhard inequality is of no use for the uniqueness part of the Gaussian Minkowski prob-
lem. In particular, when γn(K) < 1

2 , it is in fact possible that (1.1) has more than 
one solution. This conceptually makes the existence part of the Gaussian Minkowski 
problem more challenging as the possibility of multiple solutions often implies increasing 
difficulties in providing C0 estimates required in the solution of a Minkowski problem.

In the current work, we study the existence and the uniqueness part of the Gaussian 
Minkowski problem in dimension 2,3 without the restriction that γ2(K) ≥ 1/2.

To fully appreciate the challenges in the Gaussian Minkowski problem, we provide the 
background in other relatively more well-studied Minkowski-type problems for compari-
son.

There are two major variants of the classical Brunn-Minkowski theory.
One is the Lp Brunn-Minkowski theory initiated by the two landmark papers [48,49]

by Lutwak in the early 1990s where he defined the Lp surface area measure fundamental 
in the now fruitful Lp Brunn-Minkowski theory central in modern convex geometric anal-
ysis. It is crucial to point out that such an extension is highly nontrivial and often requires 
new techniques. See, for example, [5,16,28,33,35,45,46,51,52,60,61,63,67] for a (not even 
close to exhaustive) list of works in the Lp Brunn-Minkowski theory. In particular, the 
theory becomes significantly harder when p < 1. These include the critical centro-affine 
case p = −n and the logarithmic case p = 0. Isoperimetric inequalities and Minkowski 
problems in neither case have been fully addressed. In particular, the log Minkowski 
problem (for the cone volume measure) has not yet been fully solved. See, for example, 
Bianchi-Böröczky-Colesanti-Yang [4], Chou-Wang [16], Guang-Li-Wang [26], Zhu [66,67]
among many other works. In fact, the p = 0 case harbors the log Brunn-Minkowski 
conjecture (see, for example, Böröczky-LYZ [7])—arguably the most crucial conjecture 
in convex geometric analysis in the past decade. The log Brunn-Minkowski conjecture 
has been verified in dimension 2 and in various special classes of convex bodies. See, 
for example, Chen-Huang-Li-Liu [13], Colesanti-Livshyts-Marsiglietti [17], Kolesnikov-
Livshyts [38], Kolesnikov-Milman [37], Milman [53], Putterman [57], Saroglou [58]. If 
proven correct, it is much stronger than the classical Brunn-Minkowski inequality.

The other is the dual Brunn-Minkowski theory initiated by Lutwak in the 1970s. Com-
pared to the classical theory which focuses more on projections and boundary shapes 
of convex bodies, the dual Brunn-Minkowski theory focuses more on intersections and 
interior properties of convex bodies. This explains the crucial role that the dual theory 
played in the solution of the well-known and the then long-standing Busemann-Petty 
problem in the 1990s. See, for example, [22,25,47,64]. The counterparts for the quer-

3 Technically speaking, the Gaussian surface area in dimension 2 should be better referred to as the 
Gaussian perimeter measure. However, we shall keep its original name, for consistency with the case in 
higher dimensions.
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massintegrals in the dual theory are the dual quermassintegrals. However, it was not 
until the groundbreaking work [31] of Huang-Lutwak-Yang-Zhang (Huang-LYZ) that 
the geometric measures associated with dual quermassintegrals were revealed. This led 
to dual curvature measures dual to Federer’s curvature measures. The Minkowski prob-
lem for dual curvature measures, now known as the dual Minkowski problem, has been 
a heated topic in convex geometry and fully nonlinear elliptic PDEs for the last couple 
of years and has already led to many works. See, for example, Böröczky-Henk-Pollehn 
[6], Chen-Huang-Zhao [12], Chen-Li [14], Gardner-Hug-Weil-Xing-Ye [24], Henk-Pollehn 
[29], Li-Sheng-Wang [41], Zhao [65]. It is important to note that the list is by no means 
exhaustive.

Recently, Lutwak-Xi-Yang-Zhang [50] introduced the first Minkowski-type problem in 
integral geometry, known as the chord Minkowski problem.

Despite many cases of the Lp Minkowski problem and the (Lp) dual Minkowski prob-
lem still being outstanding, one of the properties enjoyed across all these problems is 
that the geometric measures involved always possess certain homogeneity. Thus, if the 
prescribed measure μ is proportional to the spherical Lebesgue measure, then there exists 
one and only one constant solution (a unique centered ball). However, for the Gaussian 
Minkowski problem, if f ≡ C > 0, depending on the values of C, equation (1.2) can have 
a unique constant solution, or precisely two constant solutions, or no constant solution at 
all. Roughly speaking, this is a result of the function tn−1e− t2

2 being strictly increasing 
and then strictly decreasing as t increases from 0 to ∞.

The above observed phenomenon suggests that when |μ| is sufficiently big, equation 
(1.1) has no solution. This sets the Gaussian Minkowski problem apart from the afore-
mentioned Minkowski-type problems. In particular, by the works of Ball [3] and Nazarov 
[55], the Gaussian surface area of a convex body K in dimension n is asymptotically 
bounded by n

1
4 . Therefore, a completely new type of condition is needed if the Gaussian 

Minkowski problem is to be solved fully. Additionally, Example 7.1 in the Appendix of 
[32] suggests that such a condition should be nonlinear. This was not the case with the 
Lp Minkowski problem or the (Lp) dual Minkowski problem.

In the current work, we study the planar Gaussian Minkowski problem. Our first 
result is regarding solutions to the case where μ is proportional to the spherical Lebesgue 
measure. In particular, we study nonnegative solutions h to

1
2π

e− h′ 2+h2
2 (h′′ + h) = C, (1.3)

on S1.

Theorem 1.1. Let K be a convex body in R2 that contains the origin. If the Gaussian 
surface area measure of K is proportional to the spherical Lebesgue measure; that is, 
there exists C > 0 such that h = hK is a nonnegative solution to (1.3), then K has to be 
a centered disk, or, equivalently, h has to be a constant solution. In particular,
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(1) If 0 < C < e− 1
2 /(2π), then there are precisely two solutions;

(2) If C = e− 1
2 /(2π), then there is a unique solution;

(3) If C > e− 1
2 /(2π), then there are no solutions.

Note that in Theorem 1.1, it is not assumed a priori that K is origin-symmetric.
The idea of the proof is to convert the existence of nonconstant solutions to a problem 

involving the estimates of a carefully chosen integral. This is motivated by Andrews [2]. 
Recently, the approach of Andrews was adapted to consider the number of solutions to 
the planar (Lp) dual Minkowski problem, see Liu-Lu [43] and Li-Wan [40].

Using Theorem 1.1, a degree-theoretic approach is used to establish the existence of 
solutions to the following planar Gaussian Minkowski problem in the origin symmetric 
setting.

Theorem 1.2 (Existence of smooth, small solutions). Let 0 < α < 1 and f ∈ C2,α(S1) be 
a positive even function with ‖f‖L1 < 1√

2π
. Then, there exists a C4,α, origin-symmetric 

K with γ2(K) < 1
2 such that its support function h solves

1
2π

e− h′ 2+h2
2 (h′′ + h) = f.

Recall that the Erhard inequality in (R2, γ2) is not particularly helpful outside the 
class γ2(K) ≥ 1/2. This conceptually makes it much harder to obtain C0 estimates. This 
is precisely the reason that we need to assume that f is bounded both from above and 
from below by a positive constant. In the setting of Theorem 1.2, this is guaranteed by 
the fact that f ∈ C2,α(S1) is a positive function.

Using an approximation argument, in combination with [32, Theorem 1.4], we imme-
diately have

Theorem 1.3. Let f ∈ L1(S1) be an even function such that ‖f‖L1 < 1√
2π

. If there exists 
τ > 0 such that 1

τ < f < τ almost everywhere on S1, then there exist at least two 
origin-symmetric convex bodies K1 and K2 such that

dSγ2,K1(v) = dSγ2,K2(v) = f(v)dv.

Finally, we remark that Minkowski problems for non-homogeneous measures are often 
referred to as Orlicz-Minkowski-type problems, which have their origins in the work [27]
by Haberl-Lutwak-Yang-Zhang for the Orlicz Minkowski problem that generalizes both 
the classical Minkowski problem and the Lp Minkowski problem. See also [19,20,24,34,62]
for additional results and contributions in the Orlicz extension of the classical Brunn-
Minkowski theory. When the ambient space is equipped with log-concave measures, this 
was considered recently in Kryvonos-Langharst [39]. However, in all these works, the 
solution is obtained up to a constant. In the case of Gaussian probability space, for 
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example, for a given finite Borel measure μ on Sn−1, one tries to find a pair of (c, K)
where c > 0 and K is a convex body such that

μ = cSγn,K . (1.4)

Note that with the introduction of this c, none of the challenges we mentioned regarding 
the Gaussian Minkowski problem would appear. But, in general, one would also lose 
the potential to prove any uniqueness result. In particular, Theorem 1.4 in [32] (or 
Theorem 1.2 in the current work in dimension 2 and under certain restrictions on the 
regularity of μ) immediately implies that there are infinitely many pairs of (c, K) that 
solve (1.4). In fact, the number of solutions is as many as the cardinality of R!

In Section 3, we construct the integral connected to the proof of Theorem 1.1, esti-
mates of which leading to Theorem 1.1 will be provided in Section 4. Existence results 
will be established in Section 5.

2. Preliminaries

Some basics, as well as notations, regarding convex bodies, will be provided in this 
section. For a general reference on the theory of convex bodies, the readers are referred 
to the book [59] by Schneider.

For a Borel measure μ, we use the standard notation |μ| to denote its total measure. 
We will use γn for the Gaussian probability measure in Rn; that is,

γn(E) = 1
(2π) n

2

∫
E

e− |x|2
2 dx.

By a convex body in Rn, we mean a compact convex subset with a nonempty interior. 
Note that if the convex body is also origin-symmetric, then it necessarily contains the 
origin as an interior point.

Let K be a compact convex subset in Rn. The support function hK of K is defined 
by

hK(y) = max{x · y : x ∈ K}, (2.1)

for each y ∈ Rn. It is straightforward to show that hK is homogeneous of degree 1 and 
is sublinear. On the other side, if f is a positive continuous function on Sn−1, the Wulff 
shape [f ] of f is the convex body defined by

[f ] = {x ∈ Rn : x · v ≤ f(v), for all v ∈ Sn−1}.

It is not hard to see that on Sn−1, we have h[f ] ≤ f . If f = hK , then [f ] = K. If K
is origin-symmetric, by the definition of support function, we have the following useful 
estimate:
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hK(v) ≥ |x · v|, ∀v ∈ Sn−1, ∀x ∈ K.

The space of convex bodies in Rn can be made into a metric space by considering the 
Hausdorff metric. Suppose Ki is a sequence of convex bodies in Rn. We say Ki converges 
to a compact convex subset K ⊂ Rn in Hausdorff metric if

max{|hKi
(v) − hK(v)| : v ∈ Sn−1} → 0,

as i → ∞.
For a compact convex subset K in Rn and v ∈ Sn−1, the supporting hyperplane 

H(K, v) of K at v is given by

H(K, v) = {x ∈ K : x · v = hK(v)}.

By its definition, the supporting hyperplane H(K, v) is non-empty and contains only 
boundary points of K. For x ∈ H(K, v), we say v is an outer unit normal of K at 
x ∈ ∂K.

Since K is convex, for Hn−1 almost all x ∈ ∂K, the outer unit normal of K at x is 
unique. In this case, we use νK to denote the Gauss map that takes x ∈ ∂K to its unique 
outer unit normal. Therefore, the map νK is almost everywhere defined on ∂K. We use 
ν−1

K to denote the inverse Gauss map. Since K is not assumed to be strictly convex, the 
map ν−1

K is set-valued map and for each set η ⊂ Sn−1, we have

ν−1
K (η) = {x ∈ ∂K : there exists v ∈ η such that v is an outer unit normal at x}.

Let K be a convex body in Rn that contains the origin as an interior point. The 
Gaussian surface area measure of K, denoted by Sγn,K , is a Borel measure on Sn−1

given by

Sγn,K(η) = 1
(2π) n

2

∫
ν−1

K (η)

e− |x|2
2 dHn−1(x), (2.2)

for each Borel measurable η ⊂ Sn−1. It can be shown that Sγn,K is weakly continuous in 
K (with respect to Hausdorff metric): if Ki, K are convex bodies in Rn that contain the 
origin as interior point and Ki converges to K in Hausdorff metric, then Sγn,Ki

converges 
weakly to Sγn,K . See, for example, Theorem 3.4 in [32].

By a simple calculation, it follows from the definition of Gaussian surface area measure 
that if K ∈ Kn

o is convex, then Sγn,K is absolutely continuous with respect to surface 
area measure and

dSγn,K = 1√
n

e− |∇hK |2+h2
K

2 dSK .

( 2π)
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If, in addition, the body K is C2 with everywhere positive Gauss curvature, then Sγn,K

is absolutely continuous with respect to the spherical Lebesgue measure and

dSγn,K(v) = 1
(
√

2π)n
e− |∇hK |2+h2

K
2 det(∇2hK + hKI)dv.

When P ∈ Kn
o is a polytope with unit normal vectors vi and the corresponding faces 

Fi, the Gaussian surface area measure Sγn,P is a discrete measure given by

Sγn,P (·) =
N∑

i=1
αiδvi

(·),

where αi is given by

αi = 1
(
√

2π)n

∫
Fi

e− |x|2
2 dHn−1(x).

Let K, L be two convex bodies in Rn. The Erhard inequality states that for 0 < t < 1, 
we have

Ψ−1(γn((1 − t)K + tL)) ≥ (1 − t)Ψ−1(γn(K)) + tΨ−1(γn(L)). (2.3)

Here, (1 − t)K + tL = {(1 − t)x + ty : x ∈ K, y ∈ L} is the Minkowski combination 
between K and L, and

Ψ(x) = 1√
2π

x∫
−∞

e− t2
2 dt.

Moreover, equality holds if and only if K = L.
The Gaussian isoperimetric inequality in Rn states that for every convex body K in 

Rn, we have

|Sγn,K | ≥ ψ(Ψ−1(γn(K))), (2.4)

where ψ(t) = 1√
2π

e− t2
2 . Note that the Gaussian isoperimetric inequality follows directly 

from the Ehrhard inequality. In the current work, we require the following special case 
of (2.4): if γn(K) = 1

2 , then |Sγn,K | ≥ 1√
2π

.
Sections 3 and 4 are devoted to studying the number of solutions to the equation

dSγ2,K = CdH1,

on the set of convex bodies in R2 that contain the origin, or equivalently, the number of 
nonnegative solutions to the equation
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e− h′ 2+h2
2 (h′′ + h) = c, (2.5)

Note that it is quite simple, by studying the monotonicity properties of the function 
te− t2

2 , to see the number of constant solutions to (2.5). For easier reference, we state this 
as a proposition.

Proposition 2.1. We have

(i) if 0 < c < e− 1
2 , there are precisely two constant solutions to (2.5);

(ii) if c = e− 1
2 , there is precisely one constant solution to (2.5);

(iii) if c > e− 1
2 , there is no constant solution to (2.5).

We remark that if we denote h1 ≡ r1, h2 ≡ r2 with r1 > r2 to be the two constant 
solutions to (2.5) when c ∈ (0, e− 1

2 ), then it is simple to see that as c → 0, we have 
r1 → ∞ and r2 → 0.

3. An integral associated with the number of nonconstant solutions

In this section, we construct an integral with parameters, the value estimate of which 
would lead to the number of nonconstant solutions to (1.3).

For sake of simplicity, we move the constant 2π in (1.3) and rewrite the equation as

e− h′ 2+h2
2 (h′′ + h) = c, (3.1)

for some given c > 0. Based on the regularity theory developed by Caffarelli [9–11], it is 
immediate that if h is a nonnegative solution to (3.1), then h ∈ C∞. Moreover,

(e− h′ 2+h2
2 )′ = e− h′ 2+h2

2 (h′′ + h)(−h′) = −ch′,

where in the second equality, we used the fact that h solves (3.1). Therefore, there exists 
a constant E such that

e− h′ 2+h2
2 + ch ≡ E, on S1. (3.2)

Write

h0 = min
θ∈S1

h(θ), and h1 = max
θ∈S1

h(θ). (3.3)

Note that h being a constant function is equivalent to h0 = h1. Consider the function

φ(t) = ct + e− t2
2 .

By direct computation,
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φ′(t) = c − te− t2
2 .

The number of solutions to (3.1) when c ≥ e− 1
2 is immediate based on a simple 

observation on the monotonicity of φ in this case.

Theorem 3.1. If c ∈ [e− 1
2 , ∞) and h is a nonnegative solution to (3.1), then h has to be 

a constant solution. In particular,

(1) If c = e− 1
2 , there is exactly one convex body K containing the origin such that 

dSγ2,K = cdHn−1 and K is a centered disk;
(2) If c > e− 1

2 , there exists no convex body K containing the origin with dSγ2,K =
cdHn−1.

Proof. By (3.2), the definition of φ, and the fact that h0 and h1 are extremal values, we 
have

φ(h0) = φ(h1) = E.

A simple calculation yields that when c ≥ e− 1
2 , the function φ is strictly monotone on 

[0, ∞). Therefore h0 = h1, which implies that h is a constant solution. The other claims 
of this theorem follow from Proposition 2.1. �

For simplicity, we will write

g(t) = te− t2
2 .

Note that g is strictly monotonically increasing on [0, 1] and strictly monotonically de-
creasing on [1, ∞). Moreover g(1) = maxt∈[0,∞) g(t) = e− 1

2 .
The rest of this section and Section 4 will focus on showing that there are no noncon-

stant solutions to (3.1) when c ∈ (0, e− 1
2 ). Note that in this case, the equation

g(t) = c (3.4)

has exactly two nonnegative solutions, which we shall denote as m1 and m2, with m1 <

1 < m2.
Towards this end, we assume that h is a nonnegative, nonconstant solution to (3.1).

Lemma 3.2. If c ∈ (0, e− 1
2 ) and h is a nonnegative, nonconstant solution to (3.1), then 

the critical points of h are isolated.

Proof. Suppose the critical points of h have an accumulation point; that is, there exists 
a sequence of distinct θi ∈ S1 converging to θ0 ∈ S1 such that h′(θi) = 0. Since h is 
smooth, we conclude that h′(θ0) = 0. Moreover,
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h′′(θ0) = lim
i→∞

h′(θi) − h′(θ0)
θi − θ0

= 0.

Equation (3.1) now implies that

g(h(θ0)) = h(θ0)e− h2(θ0)
2 = c.

Therefore h(θ0) = m1 or h(θ0) = m2, where m1 and m2 are nonnegative solutions to 
(3.4). Recall that h′(θ0) = 0. Thus, h is a solution to the initial value problem

{
e− h′ 2+h2

2 (h′′ + h) = c,

h(θ0) = m, h′(θ0) = 0,
(3.5)

where m is either m1 or m2. Therefore, h ≡ m is the unique solution to (3.5), which 
contradicts the assumption that h is nonconstant. �
Lemma 3.3. If c ∈ (0, e− 1

2 ) and h is a nonnegative, nonconstant solution to (3.1), then 
h0 < m1 < h1 ≤ m2, where m1 and m2 are nonnegative solutions to (3.4) and h0, h1 are 
as given in (3.3).

Proof. Note that φ′(t) = c − g(t). This implies that φ is strictly increasing on [0, m1]
and on [m2, ∞), whereas strictly decreasing on [m1, m2]. Argued in the same way as in 
the proof of Theorem 3.1, we conclude that

φ(h0) = φ(h1) = E, (3.6)

where h0 < h1.
Let h ∈ (h0, h1) be arbitrary. By the intermediate value theorem, there exists θ ∈ S1

such that h(θ) = h. By (3.1) and (3.2), we have

φ(h) = φ(h(θ)) = ch(θ) + e− h2(θ)
2 ≥ ch(θ) + e− h′ 2(θ)+h2(θ)

2 = E.

This, when combined with the monotonicity of φ, immediately gives us the desired 
result. �

In particular, this suggests that

φ′(h0) > 0, and φ′(h1) ≤ 0.

Motivated by this, we give the following definition.

Definition 3.4. A pair of constants a < b is called a good pair with respect to c, if it 
satisfies φ(a) = φ(b) and φ′(a) > 0, φ′(b) ≤ 0.
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It is immediate that for t ∈ (a, b), we have φ(t) > φ(a) = φ(b). In particular, if h is a 
nonnegative, nonconstant solution to (3.1), then (h0, h1) is a good pair.

Lemma 3.5. If c ∈ (0, e− 1
2 ) and h is a nonnegative, nonconstant solution to (3.1), then 

the critical points of h are either minimum or maximum points.

Proof. If θ0 is a critical point of h, then h′(θ0) = 0 and therefore (3.2) implies that 
φ(h(θ0)) = E. This, in combination with the fact that h0 ≤ h(θ0) ≤ h1 and that (h0, h1)
is a good pair, implies that h(θ0) is either h0 or h1. In other words, it is either a minimum 
or a maximum point. �

The following corollary is immediate from Lemmas 3.2 and 3.5.

Corollary 3.6. If c ∈ (0, e− 1
2 ) and h is a nonnegative, nonconstant solution to (3.1), 

then minimum points and maximum points of h alternate, and there are finitely many 
of them. In addition, the number of critical points of h is an even number.

Let h be a nonnegative, nonconstant solution to (3.1). Assume θ0 is a minimum point 
of h; i.e., h(θ0) = h0 and θ1 ∈ [0, 2π) be the nearest maximum point of h; i.e., h(θ1) = h1. 
Without loss of generality, we assume θ1 > θ0. Note that this implies h′(θ) > 0 for 
θ ∈ (θ0, θ1). By (3.2), we have

h′(θ) =
√

−h2(θ) − 2 log(E − ch(θ)).

Making the change of variable u = h(θ), we get

θ1 − θ0 =
θ1∫

θ0

dθ =
h1∫

h0

1
h′(θ(u))du =

h1∫
h0

1√
−u2 − 2 log(E − cu)

du.

Note that this suggests that θ1 − θ0 only depends on the values of h0 and h1 (in other 
words, independent of the specific location of the minimum/maximum point). Let r =
h1 − h0 and make the change of variable t = u−h0

r , we have by (3.6) that

θ1 − θ0 =
1∫

0

r√
−(tr + h0)2 − 2 log(e− h2

0
2 − ctr)

dt := Θ(c, h0, r). (3.7)

This, when combined with Corollary 3.6, immediately implies the following crucial 
lemma.
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Lemma 3.7. Let c ∈ (0, e− 1
2 ). If the set

{
(h0, r) : Θ(c, h0, r) = π

k
for some positive integer k and

(h0, h0 + r) is a good pair w.r.t. c

}

is empty, then the only nonnegative solutions to (3.1) are constant solutions.

Proof. If h is a nonnegative, nonconstant solution to (3.1), then according to (3.7), the 
difference in θ between two consecutive critical points of h is the same, regardless of the 
location of critical points. By Corollary 3.6, there exists a positive integer k such that 
Θ(c, h0, r) = π

k . By definition of good pair, (h0, h0 + r) is a good pair with respect to c. 
Therefore, the set is nonempty, yielding a contradiction. �
Remark 3.8. It can be shown that the cardinality of the set in Lemma 3.7 is precisely the 
number of nonnegative, nonconstant solutions (up to rotation) to (3.1). But, this is not 
necessary in the current work.

4. Estimating Θ

The main purpose of this section is to provide estimates regarding the integral 
Θ(c, h0, r) subject to the constraint that (h0, h0 + r) is a good pair with respect to 
c.

In the rest of this section, we will constantly fix one of the parameters c, h0, or r. 
The constraint that (h0, h0 + r) is a good pair with respect to c now suggests that one of 
the remaining two parameters will uniquely determine the other. It is important to note 
that when one of the parameters is fixed, one might not be able to arbitrarily pick the 
other parameters. For example, when c → 0+, h0 also has to approach 0. Details such 
as this will be provided when needed.

For now, we fix c ∈ (0, e− 1
2 ) and view h0 as a function of r. To see why this is possible, 

recall that 0 < m1 < 1 < m2 are the two nonnegative solutions of

te− t2
2 = c.

If φ(m2) > φ(0) = 1, then by monotonicity properties of φ, there exists a unique 0 <
q < m1 such that φ(q) = φ(m2). Moreover, for every h0 ∈ [q, m1), there exists a unique 
r > 0 such that h0 + r ∈ (m1, m2] and φ(h0 + r) = φ(h0). By definition, such a pair 
(h0, h0 + r) is a good pair with respect to c. It is also simple to see that if h0 /∈ [q, m1), 
then there is no r > 0 such that (h0, h0 + r) is a good pair.

On the other hand, if φ(m2) ≤ φ(0) = 1, using a similar argument, we conclude that 
there exists a unique r > 0 such that (h0, h0 + r) is a good pair with respect to c if and 
only if h0 ∈ [0, m1).



S. Chen et al. / Advances in Mathematics 435 (2023) 109351 15
Note that by the monotonicity properties of φ, r decreases strictly as h0 increases. Set

H =
{

[0, m1), if φ(m2) ≤ φ(0),
[q, m1), if φ(m2) > φ(0).

For h0 ∈ H, we write r as a function in h0; that is r = r(h0). It is simple to see that 
r(h0) is continuous in h0 and r → 0 as h0 → m1. Now set

rc =
{

r(0), if φ(m2) ≤ φ(0),
r(q), if φ(m2) > φ(0).

Thus r(h0) : H → (0, rc] is a bijection and consequently we may write h0 = h0(r) for 
r ∈ (0, rc]. Note that since φ is smooth and h0, r are implicitly defined by φ(h0 + r) =
φ(h0), the function h0(r) is also smooth.

We shall use the fact that φ(h0 + r) = φ(h0) is equivalent to

e− (h0+r)2
2 − e− h2

0
2 + cr = 0. (4.1)

Lemma 4.1. Let c ∈ (0, e− 1
2 ) and h0(r) be such that (h0(r), h0(r) + r) is a good pair with 

respect to c for r ∈ (0, rc]. Then

lim
r→0

h′
0(r) = −1

2 ,

and

lim
r→0

rh′′
0(r) = 0.

Proof. Recall that h0(r) → m1 as r → 0. We therefore, define h0(0) = m1 so that 
h0(r) is continuous on [0, rc]. Since c ∈ (0, e− 1

2 ), we have m1 < 1 and consequently 

φ′′(m1) = (m2
1 − 1)e− m2

1
2 
= 0. Taylor’s theorem when applied to φ at m1 gives

φ(t) = φ(m1) + 1
2φ′′(m1)(t − m1)2 + o((t − m1)2).

Here we used the fact that φ′(m1) = 0. Hence

φ(h0(r)) = φ(m1) + 1
2φ′′(m1)(h0(r) − m1)2 + o((h0(r) − m1)2)

and

φ(h0(r) + r) = φ(m1) + 1
φ′′(m1)(h0(r) + r − m1)2 + o((h0(r) + r − m1)2).
2
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By definition of good pair, we have φ(h0(r)) = φ(h0(r) + r) and h0(r) < m1 < h0(r) + r. 
Consequently, |h0(r) − m1|, |h0(r) + r − m1| ≤ r, and

1
2φ′′(m1)(h0(r) − m1)2 = 1

2φ′′(m1)(h0(r) + r − m1)2 + o(r2),

This implies

(h0(r) − m1)2 = (h0(r) + r − m1)2 + o(r2),

since φ′′(m1) 
= 0. Therefore,

h0(r) − h0(0) = h0(r) − m1 = −1
2r + o(r).

Thus

h′
0(0) = −1

2 . (4.2)

Differentiating (4.1) in r, we have

e− (h0+r)2
2 (h0 + r) − c + [e− (h0+r)2

2 (h0 + r) − e− h2
0

2 h0]h′
0 = 0. (4.3)

Note that the definition of m1 and that h0(0) = m1 imply

c = g(h0(0)) and g′(h0(0)) > 0. (4.4)

where g is given in (3.4). Hence,

h′
0(r) = g(h0(0)) − g(h0(r))

g(h0(r) + r) − g(h0(r)) − 1. (4.5)

By the mean value theorem, there exists s1 between h0(0) and h0(r), and s2 between 
h0(r) and h0(r) + r such that

h′
0(r) = g′(s1)(h0(0) − h0(r))

g′(s2)r − 1.

Let r → 0. By (4.2) and (4.4), we conclude

lim
r→0

h′
0(r) = −1

2 . (4.6)

For the second equality in the statement of this lemma, a straightforward computation 
shows that
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h′′
0(r) = −g′(h0(r))h′

0(r)
g(h0(r) + r) − g(h0(r))

−
(g(h0(0)) − g(h0(r)))

(
g′(h0(r) + r)(h′

0(r) + 1) − g′(h0(r))h′
0(r)

)
(g(h0(r) + r) − g(h0(r)))2 .

By (4.5) and the mean value theorem, we have

rh′′
0(r) = −g′(h0(r))h′

0(r)
g′(s) − (h′

0(r) + 1)g′(h0(r) + r)(h′
0(r) + 1) − g′(h0(r))h′

0(r)
g′(s) ,

for s ∈ (h0(r), h0(r) + r). Let r → 0. By (4.6), we have

lim
r→0

rh′′
0(r) = 0. �

Using Lemma 4.1 we can prove the following estimate.

Lemma 4.2. Let c ∈ (0, e− 1
2 ) and h0(r) be such that (h0(r), h0(r) + r) is a good pair with 

respect to c for r ∈ (0, rc]. Denote

Θ(r) = Θ(c, h0(r), r).

Then,

lim inf
r→0

Θ(r) ≥ π√
1 − m2

1

Proof. As in Lemma 4.1, we set h0(0) = m1.
By Fatou’s lemma,

lim inf
r→0

Θ(r) ≥
1∫

0

lim inf
r→0

√√√√ r2

−(tr + h0)2 − 2 log(e− h2
0

2 − ctr)
dt

We claim that

lim
r→0

r2

−2 log(e− h2
0(r)
2 − ctr) − (tr + h0)2

= −1
(1 − h2

0(0))(t2 − t) . (4.7)

Therefore,
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1∫
0

lim inf
r→0

√√√√ r2

−(tr + h0)2 − 2 log(e− h2
0

2 − ctr)
dt

=
1∫

0

√
−1

(1 − h2
0(0))(t2 − t)dt

= 1√
(1 − h2

0(0))

1∫
0

1√
(−t2 + t)

dt

= π√
1 − h2

0(0)
.

The desired result follows immediately.
It remains to show (4.7), which follows from repeatedly applying L’Hôpital’s rule. For 

simplicity, Denote d(r, t) := e− h2
0(r)
2 − crt. By L’Hôpital’s rule,

lim
r→0+

r2

−2 log(d(r, t)) − (tr + h0)2

= lim
r→0+

r

− e−
h2

0(r)
2 (−h0(r))h′

0(r)−ct
d(r,t) − (tr + h0(r))(t + h′

0(r))

= e− h2
0(0)
2 lim

r→0+

−r

e− h2
0(r)
2 (−h0(r))h′

0(r) − ct + (tr + h0(r))(t + h′
0(r))d(r, t)

Since e− h2
0(0)
2 h0(0) = c, by Lemma 4.1, we have

lim
r→0

(
e− h2

0(r)
2 (−h0(r))h′

0(r) − ct + (tr + h0(r))(t + h′
0(r))d(r, t)

)

= c

2 − ct − c(t − 1
2)

= 0.

Thus, we may use L’Hôpital’s rule again. By direct computation,

lim
r→0

d

dr

(
e− h2

0(r)
2 (−h0(r))h′

0(r) − ct + (tr + h0(r))(t + h′
0(r))d(r, t)

)

=lim
r→0

d

dr

(
e− h2

0(r)
2 (t2r + th0(r) + trh′

0(r)) − ct − (tr + h0(r))(t + h′
0(r))ctr

)

=e− h2
0(0)
2 (t2 + 2t lim

r→0
h′

0(r)) − cth0(0)(2lim
r→0

h′
0(r) + t)

=
(

e− h2
0(0)
2 − ch0(0)

)
(t2 − t),
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where in the second and the third equalities, we used Lemma 4.1 and the fact that 
e− h2

0(0)
2 h0(0) = c.

By L’Hôpital’s rule,

lim
r→0

r2

−2 log(e− h2
0(r)
2 − ctr) − (tr + h0)2

=e− h2
0(0)
2

−1(
e− h2

0(0)
2 − ch0(0)

)
(t2 − t)

= −1
t2 − t

1
1 − h2

0(0) ,

where the last equality is due to e− h2
0(0)
2 h0(0) = c. �

We now fix h0 ∈ [0, 1) and use the fact that (h0, h0 + r) is a good pair with respect 
to c to represent c as a function in r. Note that c is determined by r via (4.1). However, 
it is not always true that for any r > 0, the c determined by (4.1) will make it true that 
(h0, h0 + r) is a good pair with respect to c. We need several lemmas to determine the 
allowable values of r.

Lemma 4.3. Let h0 ∈ [0, 1). If r∗ > 0 and c∗ ∈ (0, e− 1
2 ) is such that (h0, h0 + r∗) is a 

good pair with respect to c∗, then for every 0 < r < r∗, there exists c ∈ (0, e− 1
2 ) such that 

(h0, h0 + r) is a good pair with respect to c.

Proof. Since c here is changing, we write φ as φc to emphasize its dependence on c. 
Similarly, we also write m1(c) and m2(c).

Note that for each c ∈ (h0e− h2
0

2 , c∗), by definition of φc and m1(c), we have h0 < m1(c). 
Here, the fact that h0e− h2

0
2 < c∗ follows from that (h0, h0 +r∗) is a good pair with respect 

to c∗. We claim that φc(h0) ≥ φc(m2(c)). Indeed,

φc(h0) = ch0 + e− h2
0

2

= φc∗(h0) + (c − c∗)h0

≥ φc∗(m2(c∗)) + (c − c∗)h0

= φc(m2(c∗)) + [φc∗(m2(c∗)) − φc(m2(c∗)) + (c − c∗)h0]

= φc(m2(c∗)) + (c − c∗)(h0 − m2(c∗))

> φc(m2(c∗))

≥ φ (m (c)).
c 2
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Here, in the second to last inequality, we used the fact that h0 < 1 < m2(c∗). In the last 
inequality, we used the fact that m2(c) > m2(c∗) and that φc(t) is strictly decreasing for 
t ∈ [m2(c∗), m2(c)].

Hence, by monotonicity properties of φc, for every c ∈ (h0e− h2
0

2 , c∗), there exists a 
unique r > 0 such that the pair (h0, h0 + r) is a good pair with respect to c. Note that 
when c → h0e− h2

0
2 , we have r → 0. Also note that r depends continuously on c. The 

desired result now follows from the intermediate value theorem. �
Lemma 4.4. Let h0 ∈ [0, 1). Denote

rh0 = sup{r > 0 : there exists c ∈ (0, e− 1
2 ) such that (h0, h0 + r) is a good pair

with respect to c}.

Then

0 < rh0 < ∞.

Proof. We first claim that the set is nonempty. Indeed, for h0 ∈ (0, 1), choose r0 > 0
such that h0 + r0 < 1. Let

c0 = −e− (h0+r0)2
2 + e− h2

0
2

r0
.

Note that when r → 0, we have c0 → h0e− h2
0

2 < e− 1
2 . Therefore, by choosing sufficiently 

small r0 > 0, we have c0 ∈ (0, e− 1
2 ). By the choice of c0, we have φc0(h0) = φc0(h0 + r0). 

Note that h0 + r0 < 1 < m2(c0). Now the monotonicity properties of φc0 guarantee that 
(h0, h0 + r0) is a good pair with respect to c. Hence, rh0 > 0.

To see why rh0 < ∞, note that the fact that (h0, h0 + r) is a good pair with respect 
to c implies

φ′
c(h0) > 0, and φ′

c(h0 + r) ≤ 0.

Consequently, we have

(h0 + r)e− (h0+r)2
2 > h0e− h2

0
2 .

This implies that r is bounded from above and therefore rh0 < ∞. �
Lemmas 4.3 and 4.4 imply that for each fixed h0 ∈ [0, 1), if r ∈ (0, rh0), the pair 

(h0, h0 + r) is a good pair with respect to c = c(r) where

c(r) = −e− (h0+r)2
2 + e− h2

0
2

. (4.8)

r
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It is simple to compute

c′(r) = (h0 + r)e− (h0+r)2
2 − c(r)

r
= −φ′(h0 + r)

r
≥ 0, (4.9)

where the last inequality is due to the fact that (h0, h0 + r) is a good pair with respect 
to c.

Lemma 4.5. Let h0 ∈ [0, 1). The integral

Θ(r) = Θ(c(r), h0, r)

is increasing in (0, rh0).

Proof. Denote

η(r, t) = −2 log(e− 1
2 h2

0 − c(r)rt) − (rt + h0)2.

By the definition of Θ(r) (see (3.7)), it suffices to show that r

η
1
2 (r,t)

is increasing in r for 
every fixed t ∈ (0, 1). Since

∂

∂r

(
r

η
1
2 (r, t)

)
= 1

η
3
2 (r, t)

[η(r, t) − 1
2rη′(r, t)], (4.10)

where the derivative here and in the rest of the proof is always taken with respect to r.
Denote

ω(r, t) = e− h2
0

2 − c(r)rt.

Note that ω(r, t) > 0 for t ∈ [0, 1]. By (4.9) and (4.8),

η′(r, t) = 2c′(r)rt + c(r)t
ω(r, t) − 2(rt + h0)t

= 2[(h0 + r)e− (h0+r)2
2 − c(r)]t + c(r)t
ω(r, t) − 2(rt + h0)t

= 2[(h0 + r)(e− h2
0

2 − c(r)r) − c(r)]t + c(r)t
ω(r, t) − 2(rt + h0)t,

and consequently,
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η(r, t) − 1
2rη′(r, t)

= − 2 log ω(r, t) − (rt + h0)2

− [(h0 + r)(e− h2
0

2 − c(r)r) − c(r)]tr + c(r)tr
ω(r, t) + (rt + h0)tr.

(4.11)

Denote G(r, t) = [η(r, t) − 1
2rη′(r, t)]ω(r, t). Since ω(r, t) > 0, by (4.10) and (4.11), to 

prove the desired result, it suffices to show G(r, t) ≥ 0. Note that

G(r, t) = −2ω(r, t) log(ω(r, t)) − ω(r, t)(rt + h0)2

− [(h0 + r)(e− h2
0

2 − c(r)r) − c(r)]tr − c(r)tr + (rt + h0)trω(r, t)

= −2ω(r, t) log(ω(r, t)) + t2r2c(r)h0

+ t[c(r)rh2
0 + c(r)r2h0 + r3c(r) − 2rh0e− h2

0
2 − r2e− h2

0
2 ] − h2

0e− h2
0

2 .

Thus,

∂tG(r, t) =2c(r)r log(ω(r, t)) + 2c(r)r + 2tr2c(r)h0 + c(r)rh2
0

+ c(r)r2h0 + r3c(r) − 2rh0e− h2
0

2 − r2e− h2
0

2

and

∂2G(r, t)
∂t2 = −2c(r)2r2

ω(r, t) + 2r2c(r)h0

= 1
ω(r, t) [2r2c(r)h0(e− h2

0
2 − c(r)rt) − 2c(r)2r2]

= 1
ω(r, t) [2r2c(r)(h0e− h2

0
2 − c(r)) − 2r3c(r)2h0t]

≤ 0,

where in the last inequality, we used the fact that φ′(h0) = c − h0e− h2
0

2 > 0 due to that 
(h0, h0 + r) is a good pair. Hence, G(r, t) is a concave function in t.

Now, it is straightforward to compute

G(r, 0) = −2ω(r, 0) log(ω(r, 0)) − h2
0e− h2

0
2 = 0,

and by (4.8),
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G(r, 1) =e− (h0+r)2
2 (h0 + r)2 + c(r)r(r + h0)2 − (h0 + r)2e− h2

0
2

=(r + h0)2(e− (h0+r)2
2 + c(r)r − e− h2

0
2 )

=0.

Since G is concave in t, this implies G(r, t) ≥ 0 for all t ∈ [0, 1]. �
We now fix r > 0 and consider the dependence between c and h0. Recall that m1(c)

and m2(c) are two nonnegative solutions to (3.4) and that m1(c) < 1 < m2(c), when 
c ∈ (0, e− 1

2 ).
Suppose h∗, r ∈ (0, 1) and c∗ ∈ (0, e− 1

2 ) are such that h∗ + r < 1 and (h∗, h∗ + r) is a 
good pair with respect to c∗. For every h0 ∈ (0, h∗], set

c(h0) = e− h2
0

2 − e− (h0+r)2
2

r
. (4.12)

Note that by definition of c = c(h0), we have φc(h0) = φc(h0 + r). This implies that 
c ∈ (0, e− 1

2 ), as otherwise, the function φc(t) is strictly increasing, which contradicts with 
φc(h0) = φc(h0 + r). Therefore, we have h0 + r < h∗ + r < 1 < m2(c). By monotonicity 
properties of φc, the pair (h0, h0 + r) is a good pair with respect to c(h0). Consequently,

c′(h0) = −h0e− h2
0

2 + (h0 + r)e− (h0+r)2
2

r
= φ′

c(h0) − φ′
c(h0 + r)

r
> 0, (4.13)

where the last inequality follows from the definition of good pair. Since

lim
h0→0

c(h0) = 1 − e
r2
2

r
:= cr, (4.14)

the function c(h0) : (0, h∗] → (cr, c∗] is a bijection and we may write h0 = h0(c) :
(cr, c∗] → (0, h∗] as the inverse function. Note that

h′
0(c) > 0, for every c ∈ (cr, c∗).

Lemma 4.6. Let h∗, r ∈ (0, 1) and c∗ ∈ (0, e− 1
2 ) be such that h∗ + r < 1 and (h∗, h∗ + r)

is a good pair with respect to c∗. The integral

Θ(c) = Θ(c, h0(c), r),

is increasing on (cr, c∗].

Proof. Set

f(c) = −(tr + h (c))2 − 2 log(e− h2
0(c)
2 − ctr).
0
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By (3.7), it suffices to show that for every fixed t ∈ (0, 1), the function f is increasing in 
c. We have

f ′(c) = 2rt

e− h2
0(c)
2 − crt

[1 − h′
0(c)(e− h2

0(c)
2 − crt − ch0(c))].

Note that by (4.12) and (4.13),

c′(h0) = e− h2
0(c)
2 − cr − ch0(c) ≤ e− h2

0(c)
2 − crt − ch0(c),

for each t ∈ (0, 1).
Thus,

f ′(c) ≤ 2rt

e− h2
0(c)
2 − crt

[1 − h′
0(c)c′(h0)] = 0. �

Finally, we are ready to show the desired estimate for Θ(c, h0, r) when (h0, h0 + r) is 
a good pair with respect to c.

Lemma 4.7. Let c ∈ (0, e− 1
2 ). If h0, r > 0 are such that (h0, h0 + r) is a good pair with 

respect to c, then

Θ(c, h0, r) > π.

Proof. Note that by definition of good pair, we have h0 < m1(c) < 1. By Lemma 4.5, 
we have

Θ(c, h0, r) ≥ Θ(c(r), h0, r), (4.15)

for each r ∈ (0, r). Let c′ = e− h2
0

2 h0. Since limr→0 cr = 0 where cr is given in (4.14), 
there exists δ0 > 0 such that cr < c′ for every r ∈ (0, δ0). We also require that δ0 > 0 is 
sufficiently small so that h0 + δ0 < 1.

Since (h0, h0 + r) is a good pair with respect to c(r), we have 0 < φ′
c(r)(h0) = c(r) −

h0e− h2
0

2 = c(r) − c′. Therefore c(r) > c′. By Lemma 4.6, for every fixed r ∈ (0, δ0), we 
have

Θ(c(r), h0, r) ≥ Θ(c′, h0(c′), r). (4.16)

Combining (4.15) and (4.16), we have

Θ(c, h0, r) ≥ Θ(c′, h0(c′), r)

for every r ∈ (0, δ0). Note that since c′ is fixed, h0(c′) depends on r as r varies. Therefore, 
by Lemma 4.2,
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Θ(c, h0, r) ≥ lim inf
r→0

Θ(c′, h0(r), r) ≥ π√
1 − m2

1(c′)
> π. �

Theorem 1.1 now follows directly from Lemmas 3.7 and 4.7, and Proposition 2.1.

5. Existence of symmetric solutions to the planar Gaussian Minkowski problem

This section is dedicated to solving the planar, even Gaussian Minkowski problem in 
dimension 2, in the smooth setting. Suppose α ∈ (0, 1) and f ∈ C2,α(S1) is a positive 
even function, we will solve the equation

1
2π

e− h′ 2+h2
2 (h′′ + h) = f, (5.1)

on S1. In fact, when combining with the existence result shown in [32], we show that 
(5.1) has at least two solutions.

The following C0 a priori estimate is critically needed.

Lemma 5.1. Suppose f : S1 → R is an even positive function and h = hK ∈ C2(S1), for 
some origin-symmetric convex body K in R2, is an even solution to (5.1). If there exists 
τ > 0 such that

1/τ < f < τ,

then there exists τ ′ > 0, dependent only on τ , such that

1
τ ′ < h < τ ′.

Proof. We first show that h is bounded from above. Assume that h achieves its maximum 
at v0 ∈ S1 and h(v0) = hmax. Evaluating (5.1) gives us

1
2π

e− hmax2
2 hmax ≥ f(v0) >

1
τ

.

Note that the function 1
2π e− t2

2 t goes to 0 as t → ∞. Therefore, there exists τ1 > 0 such 
that

hmax < τ1. (5.2)

We now show hmax is also bounded from below. Observe that on S1, we have

(h′′ + h) ≥ 1
2π

e− h′ 2+h2
2 (h′′ + h) = f >

1
τ

.

Note also that the total integral of h′′ + h over S1 is the perimeter of the convex body 
K (whose support function is h). Therefore, we have
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H1(∂K) >
2π

τ
> 0.

On the other side, since perimeter is a monotone functional on the set of convex bodies 
(with respect to set inclusion), we have

H1(∂K) ≤ 2πhmax.

Combining the above two inequalities, we can find some τ2 > 0, such that

hmax > τ2.

Finally, we show that h is bounded from below. Assume that h achieves its minimum 
at u0 ∈ S1 and h(u0) = hmin. Note that by (5.1), we have

1
2h(h′′ + h) = πhe

h′ 2+h2
2 f ≥ πhf > πh/τ,

where we used the fact h is nonnegative, which follows from the fact that h is an even 
function (or, equivalently, K is origin-symmetric). Observe the total integral of 1

2h(h′′+h)
on S1 is the area of K. Therefore, we have

H2(K) >
π

τ

∫
S1

hdv.

By definition of support function, we have

h(v) ≥ hmax|v · v0|.

As a consequence, there exists τ3 > 0 such that

H2(K) >
π

τ
hmax

∫
S1

|v · v0|dv = τ3hmax > τ3τ2. (5.3)

Note that on the other hand,

K ⊂ (hmaxB1) ∩ {x ∈ R2 : |x · u0| ≤ hmin},

which implies

H2(K) ≤ 4hmaxhmin < 4τ1hmin. (5.4)

Combining (5.3) and (5.4) immediately gives τ4 > 0 such that

hmin > τ4. (5.5)

The existence of τ ′ > 0 now readily follows from (5.2) and (5.5). �
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Once we obtain the critical C0 estimate, higher order estimates follow in the same way 
as in [32]. Note that in [32], the higher order estimates ([32, Lemma 6.5]) only depend
on the C0 estimate ([32, Lemma 6.4]). We therefore state the following higher order 
estimates without duplicating the same proof as presented in [32].

Lemma 5.2 (a priori estimates). Let 0 < α < 1. Suppose f ∈ C2,α(S1) is an even function 
and there exists τ > 0 such that 1

τ < f < τ and ‖f‖C2,α < τ . If the support function of 
K ∈ Kn

e is C4,α and satisfies

1
2π

e− h′ 2+h2
2 (h′′ + h) = f,

then there exists τ ′ > 0 dependent only on τ such that

(1) 1
τ ′ <

√
h′ 2 + h2 < τ ′

(2) 1
τ ′ < h′′ + h < τ ′

(3) ‖h‖C4,α < τ ′.

We are now ready to state the main existence result.

Theorem 5.3 (Existence of smooth, small solutions). Let 0 < α < 1 and f ∈ C2,α(S1) be 
a positive even function with ‖f‖L1 < 1√

2π
. Then, there exists a C4,α, origin-symmetric 

K with γ2(K) < 1
2 such that its support function h solves

1
2π

e− h′ 2+h2
2 (h′′ + h) = f. (5.6)

Proof. We prove the existence of a solution using the degree theory for second-order 
nonlinear elliptic operators developed in Li [42].

By Theorem 1.1, for sufficiently small c0 > 0, the equation

1
2π

e− h′ 2+h2
2 (h′′ + h) = c0

admits two constant solutions. Let h1 ≡ r1 > 0 and h2 ≡ r2 > 0 be the two constant 
solutions, with r1 > r2. Then, for i = 1, 2, we have

1
2π

e− r2
i
2 ri = c0.

A quick analysis of the function e−t2/2t yields that when c0 is sufficiently small, we 
have γ2(r1B) > 1

2 and γ2(r2B) < 1
2 . We also require that c0 > 0 is small enough 

so that ‖c0‖L1 < 1√
2π

. We also require that c0 > 0 is chosen so that the operator 
Lφ = φ′′ + (1 − r2

2)φ is invertible.
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Let F (·; t) : C4,α(S1) → C2,α(S1) be defined as

F (h; t) = h′′ + h − 2πe
h′ 2+h2

2 ft,

for t ∈ [0, 1], where

ft = (1 − t)c0 + tf.

Note that since f > 0 is C2,α, there exists τ > 0 such that 1
τ < ft < τ and ‖ft‖C2,α < τ . 

It is also simple to see ‖ft‖L1 < 1√
2π

. We choose τ ′ > 0 according to Lemmas 5.1 and 

5.2. Define O ⊂ C4,α(S1) by

O =
{

h ∈ C4,α(S1) is even : 1
τ ′ < h < τ ′,

1
τ ′ < h′′ + h < τ ′, ‖h‖C4,α < τ ′, γ2(h) <

1
2

}
.

Here γ2(h) = γ2(K) where K is the origin-symmetric convex body whose support func-
tion is h. This can be done since h ∈ O is strictly convex. Note that h2 ≡ r2 ∈ O, while 
h1 ≡ r1 /∈ O.

We claim now that for each t ∈ [0, 1], if h ∈ ∂O, then

F (h; t) 
= 0.

Indeed, if F (h; t) = 0, then by Lemmas 5.1 and 5.2, it must be the case that γ2(h) = 1
2 . 

However, by Gaussian isoperimetric inequality, this implies that |Sγ2,K | ≥ 1√
2π

. This is 
a contradiction to the fact that F (h; t) = 0 and that ‖ft‖ < 1√

2π
.

As a consequence, the degree of the map F (·, t) is well defined on O. Moreover, by 
Proposition 2.2 in Li [42],

deg(F (·; 0), O, 0) = deg(F (·; 1), O, 0). (5.7)

Let us now compute deg(F (·; 0), O, 0). For simplicity, write F (·) = F (·; 0). Recall that 
f = c0 is so chosen that h ≡ r2 is the only solution in O to (5.6). It is simple to compute 
the linearized operator of F at the constant function r2:

Lr2φ = φ′′ + (1 − r2
2)φ,

which is invertible by our choice of c0. By Proposition 2.3 in Li [42], this implies

deg(F, O, 0) = deg(Lr2 , O, 0) 
= 0, (5.8)

where the last inequality follows from Proposition 2.44 in Li [42]. Equations (5.7) and 
(5.8) now immediately imply that deg(F (·; 1), O, 0) 
= 0, which in turn implies the exis-
tence of a solution. �

4 Proposition 2.4 in Li [42] contains some typos, which were corrected by Li on his personal webpage.
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We remark that through a simple approximation argument, the regularity assumption 
on f may be dropped.

Theorem 5.4. Let f ∈ L1(S1) be an even function such that ‖f‖L1 < 1√
2π

. If there 

exists τ > 0 such that 1
τ < f < τ almost everywhere on S1, then there exists an origin-

symmetric K with γ2(K) < 1
2 such that

dSγ2,K(v) = f(v)dv.

Proof. We may approximate f by a sequence of smooth functions fi such that μi = fidv

converges weakly to μ = fdv, and 1
τ < fi < τ on S1. Because of weak convergence, we 

may (by discarding the first finitely many terms) assume |μi| < 1√
2π

.
By Theorem 5.3, there exists C4,α, origin-symmetric Ki with γ2(Ki) < 1

2 such that 
Sγ2,Ki

= μi, or, equivalently, their support functions hi solves the equation

1
2π

e− h′ 2
i +h2

i
2 (h′′

i + hi) = fi

By Lemma 5.1, there exists τ ′ > 0, independent of i, such that

1
τ ′ B ⊂ Ki ⊂ τ ′B. (5.9)

Using Blaschke’s selection theorem, we may assume (by possibly taking a subsequence) 
that Ki converges in Hausdorff metric to an origin-symmetric convex body K. By (5.9),

1
τ ′ B ⊂ K ⊂ τ ′B.

The weak continuity of Sγ2,K in K now implies that

Sγ2,K = μ.

Note that by continuity of γ2, we have γ2(K) ≤ 1
2 . That the inequality is strict follows 

from the Gaussian isoperimetric inequality and the fact that ‖f‖L1 < 1√
2π

. �
We remark that the a priori estimates, Lemmas 5.1 and 5.2, work in higher dimensions 

with no essential change in the proof. Therefore, the ability to extend the existence 
results—Theorems 5.3, 5.4—depends on our ability to establish uniqueness result for 
constant f (Theorem 1.1) to higher dimensions.

Conjecture 5.5. Let n ≥ 3. If h is a nonnegative solution to the equation

1
(
√

2π)n
e− |∇h|2+h2

2 det(∇2h + hI) = c > 0,

then h must be a constant solution.
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