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We investigate and clarify the mathematical properties of linear poro-elastic systems 
in the presence of classical (linear, Kelvin-Voigt) visco-elasticity. In particular, 
we quantify the time-regularizing and dissipative effects of visco-elasticity in the 
context of the quasi-static Biot equations. The full, coupled pressure-displacement 
presentation of the system is utilized, as well as the framework of implicit, degenerate 
evolution equations, to demonstrate such effects and characterize linear poro-visco-
elastic systems. We consider a simple presentation of the dynamics (with convenient 
boundary conditions, etc.) for clarity in exposition across several relevant parameter 
ranges. Clear well-posedness results are provided, with associated a priori estimates 
on the solutions. In addition, precise statements of admissible initial conditions in 
each scenario are given.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In the past 10 years, there has been an intense growth of work in theoretical and numerical studies 
invoking equations of poro-elasticity [3,6,12,16,17,23,26,28,33,42,43,51] (to name just a few). While the 
initial development of the mathematical theory of poro-elasticity was driven by geophysical applications 
[4,21,38,44,49,50], some of the recent interest in this field seems due to the fact that deformable porous 
media models describe biological tissues; these include organs, cartilages, bones and engineered tissue scaf-
folds [9–11,13,31,39,40,45]. The mechanics of biological tissues typically exhibit both elastic and visco-elastic 
behaviors, resulting from the combined action of elastin and collagen [36,39,40]. These effects can change 
over time, and the loss of tissue visco-elasticity is relevant to the study of several age-related diseases such 
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as: glaucoma, atherosclerosis, and Alzheimer’s disease [45]. Several mathematically-oriented studies have in-
voked or utilized visco-elastic effects in the dynamics, owing to their analytically and numerically regularizing 
and dissipative properties, e.g., [8,10,43]. Thus, there is both mathematically-driven and application-driven 
motivation to consider a comprehensive investigation of poro-visco-elastic systems. Poro-visco-elastic solids 
were considered by Biot himself in [5]; the seminal poro-elasticity reference [20] contains a discussion of the 
modeling of poro-visco-elastic solids, and we also point to [22,46] in this regard.

The field of visco-elastic solids is vast, but we note that for purely hyperbolic-like dynamics (bulk, 
plate/shell, or beam elasticity), the effects of classical, linear visco-elasticity are well-understood and fully 
characterized at the abstract level [2,18,30]. And, for classical Biot-type systems of porous-elastic dynamics, 
the abstract theory of solutions is established, with clear estimates on solutions (and we recap this in detail 
below). Yet, for linear poro-visco-elastic models there seems to be no comprehensive presentation in the 
literature demarcating which parabolic behaviors are present, with clear estimates on solutions, quantifying 
solution regularity and dissipation. There have been recent numerical investigations into the effects of visco-
elasticity in Biot-type models involving the first author here [11,52], as well as studies where poro-visco-
elastic systems are studied numerically [7,24,43]. In this article, we investigate the general linear quasi-
static poro-visco-elastic system, and clarify the time-regularizing and dissipative effects of structural visco-
elasticity. We focus on perhaps the simplest inclusion of visco-elasticity: Kelvin-Voigt type. This is precisely 
what was considered in [10]. Here, we build on that mathematical framework, where weak solutions were 
constructed in a particular 3D case, and subsequent 1D investigations [11,52]. In the present context, we 
provide clear well-posedness results with estimates, and a discussion of the construction of solutions (when 
illustrative). In addition, we make precise an appropriate notion of initial conditions in each relevant scenario. 
When it is appropriate, we relate the system abstractly to an associated semigroup framework [30,41]. We 
do not attempt to describe or invoke more sophisticated or recent theories of visco-elasticity here. Indeed, 
there does not yet seem to be a comprehensive PDE theory of poro-visco-elasticity in the simple, linear case 
of Kelvin-Voigt structural viscosity.

The popular quasi-static formulation (neglecting elastic inertia) of Biot’s equations is utilized here. On 
the other hand, the “full” inertial Biot system is formally equivalent [49] to thermo-elasticity, which is well-
studied [27,30]. Foundational works for the PDE theory of linear poro-elasticity can be found in [1,47,54], 
and culminating in the more modern works [48,49]. In this traditional framework, visco-elastic effects were 
considered in the displacement dynamics by invoking the so called secondary consolidation [24,38,49], typical 
for studies of clays. More recently, as described above, a growing interest in biologically-based Biot systems 
can also be observed. In these bio-Biot models, linear visco-elastic effects can be incorporated into traditional 
linear Biot dynamics by taking into account the visco-elastic strain, and possibly adjusting the formula 
for the local fluid content accordingly (depending on the specific scenario considered, either focusing on 
incompressible or compressible constituents). We address several parameter regimes of physical interest here. 
We do this in the spirit of the well-known reference [49]; we also include some comments on the PDE effects of 
secondary consolidation (considered as a partial visco-elasticity) at the end of the work in Section 4. Although 
we focus on linear models with constant coefficients, recent applications—which inspired the consideration of 
models here—are in fact nonlinear or taken with time-dependent coefficients [9,10,12,15,51]. The work here 
can be seen as a foundation for extending such considerations to the visco-elastic case; additionally, this work 
provides a clear and precise framework for researchers utilizing visco-elastic terms as model-regularizations, 
as is common in fluid-structure interactions, e.g. [29,32,37].

A main focus of this work is to introduce the appropriate constituent operators and spaces into the context 
of visco-elastic dynamics, which have been used in abstractly describing the quasi-static Biot dynamics for 
some time [1,10,15,16,47,49]. Following this, we can “reduce” or frame the poro-visco-elastic dynamics in 
the context of these operators to apply, when possible, existing theory; to the knowledge of the authors, this 
has not been done. Interestingly, in some cases below, the abstract presentation of these systems reveals 
central features of poro-visco-elastic dynamics which are not immediately obvious in the full presentation. 
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This is particularly true in considering which type of initial conditions are warranted for each configuration 
of interest, and connects the analysis thereof to appropriate ODE or semigroup frameworks.

2. Quasi-static poro-visco-elastic dynamics

Let Ω ⊂ Rn for n = 2, 3 be a bounded, smooth domain. For the dynamics, we follow the notational 
conventions of [49]. In the traditional fully-saturated Biot system we have a pressure equation and a mo-
mentum equation; these are given in the variable u, describing the displacements of the solid matrix, and 
the homogenized pore pressure p. The pressure equation, resulting from mass balance, reads:

ζt −∇ · [K∇p] = S. (2.1)

The quantity ζ is the fluid-content, and in the standard Biot model of poro-elasticity it is given by

ζ = c0p + α∇ · u. (2.2)

The constant c0 ≥ 0 represents compressibility of the constituents, and will be considered in two regimes 
here: c0 = 0 (incompressible constituents) and c0 > 0 (compressible constituents).1 The coupling constant 
α > 0 is referred to as the Biot-Willis constant, and, in the case of incompressible constituents c0 = 0, 
we generally have that α = 1 [21]. The quantity K(x, t) is the permeability tensor of the porous-elastic 
structure. We present it generally here (as in [12]), but for the analysis below, we will take k = const. 
This will provide clarity as we demonstrate the mathematical structures of poro-visco-elastic systems, and 
is in-line with the central mathematical references for the PDE analysis of Biot’s equations, [1,47,49]. The 
fluid source function S is permitted to depend on x and t.

The momentum equation for the fluid-solid mixture is given as an elliptic (µ, λ)-Lamé system, as driven 
by the pressure gradient and a source F:

−µ∆u − (λ + µ)∇∇ · u + α∇p = F. (2.3)

Below, we will consider the body force F to be spatially and temporally dependent.
For reference, we recall that the primal, inertial form of the elasticity equation is

ρutt − µ∆u − (λ + µ)∇∇ · u + ∇p = F. (2.4)

It is instructive to remember that the Biot dynamics begin with (2.4), and then take ρutt ≈ 0 to obtain the 
standard quasi-static equations of poro-elasticity in (2.1)-(2.3) [20,49].

2.1. Inclusion of visco-elasticity: δ1 > 0

In the most straight-forward manner, the incorporation of visco-elasticity may be achieved through the 
momentum equation. We shall refer to this here as full, linear visco-elasticity, and follow the Kelvin-Voigt 
approach of including strong (or “structural”) damping [2,18,19,30]. This entails adding a strain rate term 
to the global stress, including a “strength” coefficient, δ1 ≥ 0, which captures the viscous structural effects. 
Denoting the symmetric gradient (linearized strain) as ε and standard linear elastic stress as σ, we have

ε(v) = 1
2[∇v + ∇vT ], σ(v) = 2µε(v) + λ(∇ · v)I. (2.5)

1 We recall here that incompressibility of each component means that the volumetric deformation of the solid constituent corre-
sponds to the variation of fluid volume per unit volume of porous material, i.e., ζ = ∇ · u.
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This yields the structural term

−div σ(u + δ1ut) = −[µ∆ + (λ + µ)∇div](u + δ1ut) (2.6)

in the system, where δ1 > 0 indicates the presence of visco-elasticity (i.e., δ1 = 0 represents the standard, 
elastic Biot dynamics). We note that the inclusion of this term is referred to as visco-elasticity, since the 
full inertial Biot dynamics in (2.4) would constitute a linear, visco-elastic system of elasticity (a strongly 
damped structural equation) with the inclusion of δ1 > 0. This straight-forward inclusion of viscous effects 
in the solid can be obtained as a limiting case of the poro-visco-elastic modeling in [20].

Remark 2.1. There are many ways to incorporate visco-elastic effects into the modeling of poro-elastic sys-
tems. See, for example, [7], where a viscoelastic strain is considered in the case of compressible constituents; 
the other components of the system are also updated there, including the formula for the fluid content. In 
general, the field of visco-elasticity is broad, and we do not claim to be exhaustive. Here, our focus on the 
specific case of linear, quasi-static Biot in the presence of linear, Kelvin-Voigt structural viscosity. Other 
pertinent references for poro-visco-elastic systems are: [22,34,35,46,53]. The aforementioned references in-
clude aspects of homogenization theory, detailing when and how visco-elasticity can arise in solids, and, in 
some cases existence results for weak solutions.

A central point here is that we permit the presence of visco-elasticity to affect the definition of the fluid 
content ζ. In the established reference [20], compressible constituents and viscous effects are considered, 
with modified fluid content. There are two choices for ζ considered here, encapsulated by δ2 = 0 or δ2 > 0:

ζ = c0p + α∇ · u + δ2∇ · ut. (2.7)

When δ2 = 0, this represents the standard Biot definition of the fluid content, which prevalently appears 
in the literature for linearized poro-elastic systems with and without visco-elastic effects, e.g., [10,14,49]. A 
derivation of the model, obtained by heterogeneous mixture approach, can be found in [45, Section 12.2], 
for instance. In the present consideration, we take the approach of classifying the system and its solutions in 
two regimes: δ2 = 0 and δ2 > 0, noting that the application of interest can inform which selection is made.

To conclude this section, we re-state the linear poro-visco-elastic system as it is studied herein. We fix 
α, λ, µ, k > 0, and consider the following with δ1 > 0:

{
−div σ(u + δ1ut) + α∇p = F
[c0p + α∇ · u + δ2∇ · ut]t −∇ · [k∇p] = S,

(2.8)

where we accommodate all possible regimes dependent on c0 ≥ 0 and δ2 ≥ 0. To (2.8) we associate the 
following boundary conditions:

u = 0, and k∇p · n = 0 on Γ ≡ ∂Ω, (2.9)

namely, homogeneous Dirichlet conditions for the displacement and homogeneous Neumann conditions for 
the pressure.

At this juncture, we suggest that the natural initial conditions to be specified are those quantities ap-
pearing under the time derivatives above, namely:

δ1u(0) = u0 and [c0p + α∇ · u + δ2∇ · ut](0) = d0.
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It is immediately clear that the regime of interest and the parameter values affect the relative independence 
of these quantities. In what follows, we will precisely specify the initial quantities, their relationships, and 
their spatial regularities, as each depend on the regime under consideration and the type of solution sought.

Lastly, we mention a model of partial visco-elasticity, known as secondary consolidation (for certain soils, 
such as clays [24,38,49]), which has appeared in the literature. In this case, for λ∗ > 0, the displacement 
equation reads:

−(µ + λ)∇∇ · u − µ∆u − λ∗∇∇ · ut + α∇p = F (2.10)

We remark on secondary consolidation briefly in Section 4 at the end of this article.

2.2. Notation and conventions

For the remainder of the paper, we consider α, µ, λ, k > 0 to be fixed and do not explicitly name them 
in theorems and subsequent discussions.

The Sobolev space of order s defined on a domain D will be denoted by Hs(D), with Hs
0(D) denoting 

the closure of test functions C∞
0 (D) := D(D) in the standard Hs(D) norm (which we denote by ‖ · ‖Hs(D)

or ‖ · ‖s,D). When s = 0 we may further abbreviate the notation to ‖ · ‖ denoting ‖ · ‖L2(D). Vector-valued 
spaces will be denoted as L2(Ω) ≡ [L2(Ω)]n and Hs(Ω) = [Hs(Ω)]n. We make use of the standard notation 
for the trace of a function w as γ[w], namely γ[·] as the map from H1(D) to H1/2(∂D). We will make use of 
the spaces L2(0, T ; U) and Hs(0, T ; U), when U is a Hilbert space. Associated norms (and inner products) 
will be denoted with the appropriate subscript, e.g., || · ||L2(0,T ;U), though we will simply denote L2-inner 
products by (·, ·) when the context is clear. For estimates on solutions, we utilize the notation that A ! B

means there exists a constant c > 0 not depending on critical constants (made clear by context) so that 
A ≤ cB.

2.3. Operators, spaces, and solutions

Let V = H1
0(Ω) and V = H1(Ω) ∩ L2

0(Ω).2 We will topologize V through the inner-product

a(p, q) = (k∇p,∇q)L2(Ω),

which gives rise to the gradient norm on V ; by the Poincaré-Wirtinger inequality, the norm

|| · ||V = ||k1/2∇ · ||,

is equivalent to the standard H1(Ω). Through Korn’s inequality, as well as Poincaré’s inequality, we may 
topologize V through the bilinear form:

e(u,v) = (σ(u), ε(v))L2(Ω),

with σ, ε defined as above, leading to the H1(Ω)-equivalent norm

|| · ||V = e(·, ·)1/2.

We define two linear differential operator associated to the bilinear forms e(·, ·) and a(·, ·), with (respec-
tively) actions given by

2 L2
0(Ω) ≡ {f ∈ L2(Ω) :

∫
Ω f = 0} which is topologically isomorphic to L2(Ω)/R.
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Eu = −µ∆u − (λ + µ)∇∇ · u; Ap = −∇ · [k∇p] = −k∆p. (2.11)

Invoking the smoothness of the domain Ω (and standard elliptic regularity), we characterize the domain

D(E) ≡ H2(Ω) ∩ V,

which corresponds to homogeneous Dirichlet conditions for the elastic displacements. Similarly, we take

D(A) ≡ {p ∈ H2(Ω) ∩ L2
0(Ω) : γ[∇p · n] = 0}.

Here, E realizes an isomorphism in two contexts: D(E) → L2(Ω) and V → V′, where E−1 is interpreted 
respectively (i.e., through its natural coercive bilinear form e(·, ·)) [49]. Similarly, A : D(A) → L2(Ω) or 
V → V ′ is an isomorphism. See [12] for more discussion.

Lastly, we define the nonlocal, zeroth order pressure-to-dilation mapping as follows:

B ≡ −∇ · E−1∇. (2.12)

As a mapping on L2(Ω), B is central to many abstract analyses of Biot dynamics [10,15,16]. We state its 
relevant properties as a lemma (from [12]) in the specific context of L2

0(Ω) and V = H1(Ω) ∩ L2
0(Ω):

Lemma 2.1. The operator B ∈ L (L2
0(Ω)) ∩ L (V ). B is an isomorphism on L2

0(Ω) and is injective on V . 
Finally, we have that B is a self-adjoint, monotone operator when considered on L2

0(Ω).

Finally, we conclude with a definition of weak solutions for (2.8) which will be valid in all parameter 
regimes, and is consistent with the abstract definition given in the Appendix for (7.1). We note that such 
a definition encompassing all regimes does not seem to have appeared in the literature to date. Recall that 
the fluid content is given by ζ ≡ c0p + α∇ · u + δ2∇ · ut, which depends on the nonnegative parameters c0
and δ2.

Definition 1. Let c0, δ1, δ2 ≥ 0. We say that (u, p) ∈ L2(0, T ; V × V ), such that δ1u ∈ H1(0, T ; V) and 
ζt ∈ L2(0, T ; V ′), is a weak solution to problem (2.8) if:

• For every pair of test functions (v, q) ∈ V × V , the following equality holds in the sense of D′(0, T ):

e(u,v) + δ1
d

dt
e(u,v) + (α∇p,v)L2(Ω) + d

dt
(ζ, q)L2(Ω) + a(p, q) = 〈F,v〉V′×V + 〈S, q〉V ′×V . (2.13)

• The initial conditions ζ(0) = d0 and δ1u(0) = u0 are satisfied in the sense of C([0, T ]; V ′) and 
C([0, T ]; V′), respectively.

There are many notions of “stronger” solutions to Biot-type systems in the literature (see [49], for 
instance). To avoid confusion with notions of strong or classical solutions coming from other references, 
any notion of a stronger solution will be discussed here in the sense of weak solutions with additional 
regularity. Depending on the regularity of the sources in given cases, we will comment on when PDEs hold 
in a point-wise sense.

2.4. Review of Biot solutions: δ1 = δ2 = 0

We begin with a discussion of classical Biot dynamics in order to establish a baseline for comparison 
with our results below on poro-visco-elastic dynamics. Consider now the quasi-static Biot dynamics—in the 
absence of visco-elastic effects—given in the operator-theoretic form by
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




Eu + α∇p = F ∈ H1(0, T ;V′)
[c0p + α∇ · u]t + Ap = S ∈ L2(0, T ;V ′)
[c0p + α∇ · u](0) = d0 ∈ V ′.

(2.14)

Although there are established references (such as [48,49]) that discuss linear Biot solutions, as well as more 
recent papers (such as [12]), we provide here a direct discussion of Biot solutions. Namely, we present the 
regularity of solutions as a function of the data, and clearly state the associated a priori estimates. While 
Theorems 2.2 and 2.3 are not novel results, it is valuable to present them in this way to provide context with 
our visco-elastic results for δ1 > 0 below; we also provide brief proof sketches for δ1 = 0 for completeness.

From the established theory for implicit, degenerate equations (discussed in the Appendix), one seeks 
weak solutions in the class

(u, p) ∈ L2(0, T ;V × V ).

Formally solving the elasticity equation a.e. t as u = −αE−1∇p + E−1F, and relabeling the source

S /→ S −∇ · E−1Ft ≡ S̃,

we obtain the reduced, implicit equation:

[Bp]t + Ap = S̃ ∈ L2(0, T ;V ′), [Bp](0) = d0 ∈ V ′, where B = (c0I + α2B). (2.15)

The above system can, in principle, degenerate if c0 = 0 and B has a non-trivial kernel [12]—though this 
will not be the case here. Indeed, in this work, B is invertible on L2

0(Ω) independent of c0 ≥ 0.

Remark 2.2. We note that the temporal regularity of F is directly invoked in the reduction step. Namely, 
to consider S̃ as a given RHS for the abstract degenerate equation, we must require that

∇ · E−1Ft ∈ L2(0, T ;V′);

this provides consistency with the original source, S. Additionally, to “solve” the elasticity equation for u
(given p and F) we will require F ∈ V′ a.e. t to obtain u ∈ V. Smoother considerations below will require 
additional spatial regularity for F and Ft. Regularity of Ft is at issue for the analysis of Biot’s dynamics 
[12] and the analysis below.

To obtain the results below, one applies the general theory developed in [1] and [49] for Biot’s dynamics, 
and adapted recently in [12,15].

Theorem 2.2. Let d0 ∈ L2
0(Ω), F ∈ H1(0, T ; V′), S ∈ L2(0, T ; V ′), and c0 ≥ 0. Then there exists a unique 

weak solution with (u, p) ∈ C([0, T ]; V) × L2(0, T ; V ) to (2.14). Moreover, any weak solution satisfies the 
following energy estimate:

||u||2L∞(0,T ;V) + c0||p||2L∞(0,T ;L2(Ω)) + ‖p‖2
L2(0,T ;V ) (2.16)

! ||d0||2L2(Ω) + ‖S‖2
L2(0,T ;V ′) + C(T )||F||2H1(0,T ;V′).

In all cases (c0 ≥ 0) the dynamics are parabolic in the sense that if S ≡ 0 and F ≡ 0, we have:

||Ap||L∞(0,T ;L2(Ω)) + ||Eu||L∞(0,T ;L2(Ω)) + ||∇ · [Eu] ||L∞(0,T ;L2(Ω)) !
||d0||L2(Ω)

T
, (2.17)

to which elliptic regularity for A and E can then be applied (as in [49]).
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Proof Sketch of Theorem 2.2. The theorem above can be obtained in two steps: First, weak solutions can 
be constructed directly (for instance through Galerkin method or by the theory in the Appendix, e.g., 
[12,15,16,49].) The particular constructed solution will satisfy the energy identity [12,48]. Then, using a 
classical argument involving the test function 

∫
t p ds in the reduced pressure equation (2.15) (see [48, 

pp.116–117]), one concludes that weak solutions are unique. !

We mention that the issue of uniqueness is much more subtle in the case of time-dependent coefficients. 
See the detailed discussion in [12].

Remark 2.3. Above, we have the ability to specify only the quantity d0 ∈ L2
0(Ω)—rather than a pair (u0, d0)

or (p0, d0), so that c0p0 + ∇ · u0 = d0. Indeed, given d0 ∈ L2
0(Ω) in this framework and recalling that

Bp(0) = [(c0I + B)p](0) = c0p0 + ∇ · u0

we have that

d0 ∈ L2
0(Ω) =⇒ Bp(0) ∈ L2

0(Ω) =⇒ p(0) ∈ L2
0(Ω) =⇒ Eu(0) ∈ V′ =⇒ u(0) ∈ V.

In the case when the operator B is not invertible on a chosen state space and c0 = 0 (e.g. L2(Ω)), the issue 
can be more subtle. (See [12] for more discussion, as well as the original papers [1,49].) The equivalence 
of specifying p0 and d0 will not necessarily be available when δ1 > 0 and an additional time derivative is 
present in the equations.

We now briefly describe the notion of a smooth solution for the classical Biot dynamics above, when 
the data are smooth. These results can be obtained through elliptic regularity for E and A on L2(Ω), and 
formal a priori estimates via the weak form, or via the implicit semigroup formulation as applied to Biot’s 
dynamics in [49, Theorems 3.1 and 4.1]. We first invoke the properties of B in the context of (2.14) to obtain 
the chain:

d0 ∈ V =⇒ Bp(0) ∈ V =⇒ p(0) ∈ V =⇒ Eu(0) ∈ L2(Ω) =⇒ u(0) ∈ D(E).

Via the standard methodology for parabolic dynamics equation, choosing stronger initial data yields addi-
tional regularity.

Theorem 2.3. If d0 ∈ V , with S ∈ H1(0, T ; V ′) and F ∈ H2(0, T ; V ′), there exists a unique weak solution 
with the regularity:

p ∈ H1(0, T ;L2
0(Ω)) ∩ L∞(0, T ;V ) and u ∈ H1(0, T ;V).

If, in addition, S ∈ L2(0, T ; L2
0(Ω)) and F ∈ H1(0, T ; L2(Ω)), the above solution also satisfies (2.14) a.e. 

t and a.e. x and we obtain the additional regularity:

u ∈ L2(0, T ;D(E)), p ∈ L∞(0, T ;D(A)).

Lastly, if we also assume F ∈ L∞(0, T ; L2(Ω)), then u ∈ L∞(0, T ; D(E)).

We note that, solutions of higher regularity—for instance considering d0 or p0 ∈ D(A)—can be considered; 
however, one must address commutators associated to boundary conditions encoded in A and B. This can 
be seen, for instance, in attempting to test (2.15) with Apt.

For completeness, we provide the formal identities which give rise to the smooth solutions above.
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Proof Sketch of Theorem 2.3. Consider the reduced form of the Biot equation,

[Bp]t + Ap = S̃ ∈ H1(0, T ;V ′),

with B = [c0I + α2B], as defined in Section 2.3 and

S̃ ≡ S −∇ · E−1Ft ∈ H1(0, T ;V ′).

Consider a smooth solution (as, for instance, for finite dimensional approximants) and test with pt to 
obtain:

k

2 ||∇p(T )||2 +
T∫

0

(Bpt, pt)dt = k

2 ||∇p(0)||2 + 〈S̃(0), p(0)〉V ′×V (2.18)

+ 〈S̃(T ), p(T )〉V ′×V +
T∫

0

〈S̃t, p〉V ′×V dt.

Alternatively, if we assume that S̃ ∈ L2(0, T ; L2
0(Ω)) (which follows from the additional assumptions above), 

then the identity is similar:

k

2 ||∇p(T )||2 +
T∫

0

(Bpt, pt)dt = k

2 ||∇p(0)||2 +
T∫

0

(S̃, pt)dt (2.19)

In both situations, the assumed regularity of the data is sufficient to estimate the RHS and obtain an 
estimate on p.

With regularity of the pressure p in hand, we consider the full system in (2.14) and formally differentiate 
the elasticity equation (2.14)1. This yields:

{
Eut + α∇pt = Ft ∈ L2(0, T ;V′)
[c0p + α∇ · u]t + Ap = S ∈ L2(0, T ;L2

0(Ω)) or H1(0, T ;V ′)
(2.20)

We can test the first equation by ut and the second by pt and add to obtain the identity:

e(ut,ut) + c0||pt||2 + k

2
d

dt
||∇p||2 = 〈Ft,ut〉V′×V + (S, pt)L2(Ω), (2.21)

where we have assumed the case S ∈ L2(0, T ; L2
0(Ω))—the appropriate modifications are clear for the other 

case, as in (2.18) and (2.19) above. The RHS can be estimated, with the assumed regularities of Ft and 
S. The additional regularities stated in the theorem are then read-off from the individual equations in 
(2.14). !

2.5. Visco-elastic cases of interest

In considering full, linear poro-visco-elasticity, we will take δ1 > 0, and retain the parameter to track 
terms which depend on it. We consider the independent cases:

• compressible constituents c0 > 0 and incompressible constituents c0 = 0;
• standard fluid content δ2 = 0 and adjusted fluid content δ2 > 1.
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This yields four cases of interest for:
{
Eu + δ1Eut + α∇p = F ∈ H1(0, T ;V′)
[c0p + α∇ · u + δ2∇ · ut]t + Ap = S ∈ H1(0, T ;V ′).

(2.22)

In the sequel, we will often require additional temporal regularity on the volumetric source S and addi-
tional regularity for F beyond what is specified above. It is natural, and analogous to (2.14), to take initial 
conditions of the form

[c0p + α∇ · u + δ2∇ · ut](0) = d0 ∈ V ′, and δ1E(u(0)) ∈ V′. (2.23)

However, we will discuss initial conditions more precisely on a case by case basis. In fact, a main feature of 
our subsequent analysis is in addressing this point. Which initial quantities can be specified depends on the 
specific parameter regime (δ1, δ2, c0 ≥ 0), of course being mindful of possible over-specification. Owing to 
the time-derivatives present in both equations—in contrast to Biot’s traditional equations (2.14)—we are 
unable to circumvent the need to specify two initial quantities; however the relationship between them will 
be an interesting question to be addressed.

Summary of Initial Conditions: We now provide a summary of proper specifications of initial conditions, with 
justifications to follow in the appropriate sections. Of course, there are questions of scaling and regularity 
of these conditions. Such matters will translate into the sought-after notion of solution. Though a natural 
quantity is the fluid content, we relegate our summary to the two primal variables: (p, u) with possible 
initial conditions (p(0), u(0)). Of course these are possibly related through the quantity

d0 = [c0p + α∇ · u + δ2∇ · ut](0).

The proper initial conditions for (2.22) are given in the table below. We take δ1 > 0 and consider c0 ≥
0, δ2 ≥ 0.

c0 = 0 c0 > 0
δ2 = 0 p(0) or (p(0),u(0)) (p(0),u(0)) or (p(0), pt(0))
δ2 > 0 p(0) or (p(0),u(0)) p(0) or (p(0),u(0))

Remark 2.4. There may be physical restrictions about the permissibility of certain parameter combinations. 
For instance, in the application to biological tissues, when it is standard to take α = 1 and c0 = 0 [45], 
the parameter δ2 should be nullified [11,52]. This is to say, the combination δ1, δ2 > 0, c0 = 0 may 
not be physically relevant, however, in this mathematically-oriented work we accommodate all parameter 
combinations and describe the features of the resulting dynamics.

3. Poro-visco-elastic system, reduction, and solutions

Section 3 constitutes the main thrust of the paper. We will now consider the linear poro-visco-elastic 
system, as presented in (2.22), with δ1 > 0. We note that the boundary conditions are embedded in the 
operators A and E .

3.1. Outline and discussion of main results

Section 3 is divided as follows: First, we consider the traditional fluid content in the model (taking δ2 = 0) 
in Section 3.2 and conditioning on the values of the storage coefficient c0 ≥ 0 in the contained subsections. 
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Subsequently, in Section 3.3, we consider the model with modified fluid content (δ2 > 0). In addition to 
analyzing the full system, we will reformulate the model abstractly to apply established results and obtain 
well-posedness of the dynamics in a variety of functional frameworks. In each case described in Section 3, 
we provide:

• a discussion of the dynamics,
• a state reduction,
• a discussion of initial conditions,
• and a well-posedness theorem with estimates.

When it is instructive, we provide corresponding estimates on solutions and describe the resulting con-
structions of solutions. While the abstract results and main techniques that we employ are not novel to 
this paper, (i) the abstract problem formulation is, as well as (ii) the application of these abstract results 
to the linear poro-visco-elastic model. Such results on poro-visco-elastic systems have not appeared in the 
literature to the knowledge of the authors.

The novel results we obtain here are now briefly described.

• Theorem 3.1 utilizes the full formulation of the linear poro-visco-elastic dynamics and provides clear a 
priori estimates on solutions, not distinguishing between cases with the storage coefficient c0 ≥ 0.

• Theorem 3.2 gives a well-posedness result when c0 > 0 that is obtained through a priori estimates 
without the use of the semigroup framework. Theorem 3.3 obtains a well-posedness result and utilizes 
the semigroup framework. Different assumptions on initial conditions provide different outcomes in these 
aforementioned results. Subsequently, a semigroup decay result is presented in Theorem 3.4.

• A similar sequence is repeated, on different spaces, when c0 = 0; this case is referred to as the ODE case, 
for reasons explained below. Theorem 3.6 provides well-posedness of solutions, Theorem 3.7 provides 
a detailed description of the regularity of solutions, and Theorem 3.8 gives explicit exponential decay, 
even in this ODE setting, obtained through direct estimates.

• In the case where δ2 > 0 (modified fluid content), we have only one new theorem, Theorem 3.9. This is 
owing to the fact that the abstract structure of this problem reduces to that of the traditional elastic 
Biot system, to which the previous results are then applied. The novel contribution here, then, is to 
demonstrate how the system is reduced in this fashion.

3.2. Case 1: Traditional fluid content, δ2=0

Take δ2 = 0 in (2.22). We begin with a formal discussion of weak solutions for the full system, and 
then proceed to the abstract system reduction. After these discussions, we proceed to rigorous statements 
concerning solutions.

3.2.1. Motivating discussion
Let us begin by describing the energy identity for the full dynamics, before any system reduction is made. 

Recall the system full dynamics under consideration:
{
Eu + δ1Eut + α∇p = F ∈ H1(0, T ;V′)
[c0p + α∇ · u]t + Ap = S ∈ H1(0, T ;V ′).

(3.1)

From this, we will have (following from [10]) the a priori estimate on solutions:

||u||2L∞(0,T ;V) + c0||p||2L∞(0,T ;L2(Ω)) + δ1||ut||2L2(0,T ;V) + ||p||2L2(0,T ;V )
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! c0||p0||2 + ||u0||2V + ||S||2L2(0,T ;V ′) + ||F||2L2(0,T ;L2(Ω)). (3.2)

Several comments are in order:

• We need not invoke any additional regularity of the sources S or F beyond those appearing in (3.1) and 
(3.2); indeed we will do this later.

• Even in the estimate above, one can replace the norm on F as follows: ||F||2L2(0,T ;L2(Ω)) /→ ||F||H1(0,T ;V′). 
In this case, the constant on the RHS corresponding to ! becomes dependent on time, i.e.,

LHS ≤ C(T )RHS in (3.2).

• Note, from the RHS, d0 = [∇ ·u + c0p](0) does not explicitly appear; on the other hand, any two of the 
three of u(0) = u0, p(0) = p0, or d0 may be specified, with the third obtained immediately thereafter.

Now, we proceed to obtain an abstract reduction of (3.1), in line with what was done for (2.15) for the 
purely elastic dynamics (δ1 = δ2 = 0). This is the central insight in the analysis of these poro-visco-elastic 
dynamics.

From the displacement equation (3.1)1, we have:

δ1ut + u = E−1F − αE−1(∇p). (3.3)

This equation can be explicitly solved for u as an ODE in t for a.e. x (see Lemma 3.5 below). We may then 
differentiate the pressure equation in time:

c0ptt + α∇ · utt + Apt = St ∈ L2(0, T ;V ′).

We then rewrite ∇ · utt through the time derivative of (2.22)1:

δ1∇ · utt = −∇ · ut + ∇ · E−1(Ft) + αBpt = α−1[c0pt + Ap] − α−1S + ∇ · E−1(Ft) + αBpt.

Recalling the definition B = −∇ · E−1∇, and taking

Ŝ = δ−1
1 [S − α∇ · E−1(Ft)] + St, (3.4)

we have obtained a reduced pressure equation in this case:

c0ptt +
[
A + δ−1

1 (c0I + α2B)
]
pt + δ−1

1 Ap = Ŝ. (3.5)

We are now in a position to make several salient observations about linear poro-visco-elastic dynamics:

• When c0 > 0, we observe a strongly damped hyperbolic-type equation [25,30] (and references therein). 
The damping operator D is given by

D ≡ A + δ−1
1 (c0I + α2B) = A + δ−1

1 B. (3.6)

It can be interpreted as D : V → V ′ or from D(A) → L2(Ω). This operator is nonlocal but has the 
property of being A-bounded in the sense of [18, p.17] (see also [30]). Roughly, D being A-bounded 
means that D acts as A does in its dissipative properties.

• We provide an explicit definition for weak solutions below for the reduced problem (3.5).
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• There is clear singular behavior in the equation in the visco-elastic parameter δ1 ↘ 0.
• To obtain the reduced equation, we have differentiated the fluid source, S. We then inherit the re-

quirement that S ∈ H1(0, T ; V ′) to make use of the reduced formulation. Consequently, we again need 
F ∈ H1(0, T ; V′) when invoking the abstract reduced form in (3.5).

• It is not obvious at this stage what the connection is between the primally specified initial quantities, 
u(0) and d0, and those standard ones for the strongly damped wave equation, p(0) and pt(0); we resolve 
this below, with distinct theorems for these two different frameworks.

• The formal energy identity for the reduced dynamics on t ∈ [0, T ] can be written:

1
2

[
c0‖pt(T )‖2 + 1

δ1
a(p(T ), p(T ))

]
+

T∫

0

[
a(pt, pt) + δ−1

1
(
Bpt, pt

)
L2(Ω)

]
dt

= 1
2

[
c0‖pt(0)‖2 + 1

δ1
a(p(0), p(0))

]
+

T∫

0

〈Ŝ, pt〉V ′×V dt. (3.7)

We shall reference this later.

In the next subsection, we present a well-posedness and regularity theorem (in two parts) which is 
independent of c0 ≥ 0. In Theorem 3.1 we approach the problem through the full formulation and provide 
a priori estimates and various regularity assumptions on the data. Secondly, in the subsections that follow, 
we will consider c0 > 0 and c0 = 0 separately. For the full system with c0 > 0, we have Theorem 3.2. For 
the reduced formulation, we provide Theorem 3.3, which is achieved through the second-order semigroup 
theory, and requires specification of both (p(0), pt(0)); from the obtained solution, we infer regularity about 
the “natural” initial quantities. Following these theorems, we may compare the resulting regularity of the 
produced solutions.

3.2.2. General well-posedness result: c0 ≥ 0

Theorem 3.1. Consider c0 ≥ 0 in (3.1). Let S ∈ L2(0, T ; V ′), F ∈ H1(0, T ; V′) ∪ L2(0, T ; L2(Ω)). Take 
u0 ∈ V and c0p0 ∈ L2

0(Ω).
[Part 1] Then there exists unique weak solution, p ∈ L2(0, T ; V ), u ∈ H1(0, T ; V), and [c0p + α∇ · u]t ∈
L2(0, T ; V ′), as in Definition 1. This solution is of finite energy, i.e., the identity (3.2) holds.

From the above facts, we also infer:

• u ∈ C([0, T ]; V)),
• c0pt ∈ L2(0, T ; V ′),
• c0p ∈ C([0, T ]; L2

0(Ω)).

[Part 2] In addition to the previous assumptions, take p0 ∈ V and u0 ∈ D(E), and assume that F ∈
H1(0, T ; L2(Ω)) and S ∈ H1(0, T ; V ′) ∩ L2(0, T ; L2

0(Ω)). Then the above weak solution has the additional 
regularity that

p ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;V ) ∩ L2(0, T ;D(A)) and ut ∈ L∞(0, T ;V).

The resulting solutions satisfy system (3.1) a.e. x a.e. t. Furthermore, if F ∈ L2(0, T ; V) also, then we have 
Eu ∈ H1(0, T ; V) and u ∈ H2(0, T ; V) in addition.
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In Part 1 of the Theorem above, there is not enough regularity to infer any spatial regularity of pt(0)
from the equation. In Part 2, however, we can read-off the regularity of pt(0) ∈ V ′ (when c0 > 0) from the 
pressure equation, a posteriori, as follows: since S(0) ∈ V ′ is defined for S ∈ H1(0, T ; V ′):

c0pt(0) = S(0) −Ap(0) − α∇ · ut(0) ∈ V ′.

We also obtain an initial condition for ut(0) ∈ D(E) in Part 2 of the theorem via the elasticity equation and 
the regularity of p0, u0, and F.

Proof of Theorem 3.1. The construction of solutions in Part 1 of the theorem follows a standard approach 
via the a priori estimate (the baseline energy inequality) in (3.2). (For instance, see the construction given 
through full spatio-temporal discretization given in [10].) Uniqueness is obtained straightforwardly, as, for a 
weak solution, the function ut ∈ L2(0, T ; V) is a permissible test function in the elasticity equation (3.1)1. 
(See the analysis in [10].) This implies that any weak solution satisfies the energy inequality (3.2). As the 
problem is linear, uniqueness then follows.

To obtain Part 2, we point to the requisite a priori estimate for higher regularity. This estimate can be 
obtained in the discrete or semi-discrete framework (i.e., on Galerkin approximants, as in [15]), and the 
constructed solution satisfies the resulting estimate. Uniqueness at the level of weak solutions remains. To 
obtain the a priori estimate, differentiate (3.1)1 in time and test with ut, then test (3.1)2 with pt. This 
produces the formal identities

δ1
2

d

dt
e(ut,ut) + e(ut,ut) + α(∇pt,ut) = (Ft,ut) (3.8)

c0||pt||2 + α(∇ · ut, pt) + k

2
d

dt
||∇p||2 = (S, pt). (3.9)

We note that, from the second identity above, we can treat the term (S, pt) as an inner product (and absorb 
pt on the LHS) when c0 > 0. However, to have a result which is independent of c0 ≥ 0, we relax the 
regularity below. Doing so, adding the two identities, and integrating in time, we obtain:

δ1
2 e(ut(T ),ut(T )) + k

2 ||∇p(T )||2 +
T∫

0

[e(ut,ut) + c0||pt||2]dt

= δ1
2 e(ut(0),ut(0)) + k

2 ||∇p0||2 +
T∫

0

(Ft,ut)dt−
T∫

0

〈S, p〉V ′×V dt + 〈S, p〉V ′×V

∣∣∣
t=T

t=0
.

The RHS and the data S, F, and p0 have appropriate regularity to control the LHS. We note, of course, 
that at t = 0 we have:

E(ut(0)) = −α∇p0 − E(u0) + F(0);

which is bounded in V′. Since E : V → V′ is identified by the Riesz Isomorphism, this gives that

||ut(0)||2V ! ||p0||2V + ||u0||2V + ||F||2H1(0,T ;V′).

From the above, we obtain that solutions are bounded in the sense of ut ∈ L∞(0, T ; V) and p ∈ L∞(0, T ; V ) ∩
H1(0, T ; L2

0(Ω)). The remaining statements on regularity are read-off from the equations (3.1) for the data 
as prescribed respectively in the statement of Theorem 3.1. !
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Remark 3.1. An alternative way to obtain the same result for more regular solutions is to invoke the test 
function E(ut) in the displacement equation (3.1)1. Noting that the divergence operator commutes with 
the Laplacian, we observe u ∈ H1(0, T ; D(E)), p ∈ L∞(0, T ; V ) ∩ L2(0, T ; D(A)), having specified initial 
conditions p0 ∈ V , u0 ∈ D(E).

3.2.3. Compressible constituents, c0 > 0
Equation (3.5) above, with c0 > 0, is hyperbolic-like with strong damping; this renders the entire system 

parabolic [18,30], with associated parabolic estimates. The damping operator D defined in (3.6) is A-bounded 
in the sense of [18]. Equations of such type can also arise in acoustics—see e.g. [25]. We elaborate below 
through several additional theorems. Before doing so, let us provide a clear definition of weak solutions to 
the reduced wave equation (3.5). Namely, when c0 > 0, we define p to be a weak solution to

c0ptt +
[
A + δ−1

1 B
]
pt + δ−1

1 Ap = Ŝ,

with Ŝ = δ−1
1 [S − α∇ · E−1(Ft)] + St and B = c0I + α2B, to mean:

Definition 2 (Weak Solution of Reduced, Strongly-Damped Wave). Let Ŝ ∈ L2(0, T ; V ′). A weak solution of 
(3.5) is a function p ∈ H1(0, T ; V ) ∩H2(0, T ; V ′) such that for a.e. t > 0 and all q ∈ V , one has

〈c0ptt, q〉V ′×V + 〈Dpt, q〉V ′×V + δ−1
1 a(p, q) = 〈Ŝ, q〉V ′×V , (3.10)

where we interpret D = A + δ−1
1 (c0I + α2B) : V → V ′ through the properties of the operators A and B

given in Section 2.3.

We point out that the requirements that S ∈ H1(0, T ; V ′) and F ∈ H1(0, T ; V′) are sufficient to guarantee 
that Ŝ ∈ L2(0, T ; V ′).

In anticipation of the use of semigroup theory applied to the abstract presentation of the dynamics in 
(3.5) as a wave-type equation, we now address the following question:

What regularity can be obtained from the system when specifying, as an initial state, pt(0) = p1?

The next theorem addresses this through a priori estimates on the full system (3.1), before we move to the 
semigroup theory for (3.5) in the later Theorem 3.3.

Theorem 3.2. Let S ∈ H1(0, T ; L2
0(Ω)) and F ∈ H1(0, T ; V′). Consider initial data of the form p(0) = p0 ∈

V and pt(0) = p1 ∈ L2
0(Ω).

Then there exists unique, finite energy weak solution p, i.e., in the sense of Definition 2 to (3.5), with 
the identity (3.7) holding in D ′(0, T ).

Assuming, in addition, that u0 ∈ D(E) and F ∈ L2(0, T ; L2(Ω)), one obtains a unique weak solution to 
the full system (3.1) in the sense of Definition 1. The following additional statements hold:

• The unique solution u to (3.3) has u ∈ H1(0, T ; D(E)).
• p ∈ L∞(0, T ; D(A)).
• S ∈ L2(0, T ; V ) =⇒ Ap ∈ L2(0, T ; V ).

Proof of Theorem 3.2. Since (3.5) has the form of the strongly damped wave equation, the construction 
of solutions is standard and we omit those details. We suffice to say, solutions can be constructed via the 
Galerkin method, and approximants satisfy energy identity (3.7). Therefore, one obtains a weak solution as 
weak/weak-∗ limits of the approximations. Moreover, uniqueness follows directly from the energy identity 
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and linearity of the system—the regularity of pt is sufficient for it to be used as a test function for an 
arbitrary weak solution (unlike the case for the undamped wave equation).

The displacement u is recovered by using obtained regularity of p and solving ODE (3.3) in time, in the 
space D(E) (see Lemma 3.5 below). Additional regularity of p is obtained by using equation (3.1)2:

Ap = S − c0pt − α∇ · ut ∈ L∞(0, T ;L2(Ω)).

The last statement of the theorem also follows by noticing pt ∈ L2(0, T ; V ) and ∇ · ut ∈ L2(0, T ; V ). !

Here we emphasize that, in the original formulation, our main poro-visco-elastic equations, (2.22), it is 
not necessary to specify pt(0). However, pt(0) can be formally obtained from u0 and d0 as we now describe. 
Let us consider

d0 = c0p(0) + ∇ · u(0) ∈ V.

And, correspondingly, assume that F ∈ H1(0, T ; L2(Ω)) and take Eu(0) ∈ L2(Ω) to be fully specified. As 
E : D(E) → L2(Ω) is an isomorphism, this provides u(0) ∈ H2(Ω) ∩ V, and we can back-solve from d0 ∈ V

to obtain p(0) ∈ V , providing ∇p(0) ∈ L2(Ω). Then, again from (2.22)1, we read-off E [u+ δ1ut](0) ∈ L2(Ω)
and infer that ut(0) ∈ H2(Ω) ∩ V since

δ1Eut(0) = F(0) − α∇p(0) − Eu(0) ∈ L2(Ω).

Finally, pt(0) can be read-off from the pressure equation, when the time trace S(0) ∈ L2(Ω) is well-defined:

c0pt(0) = S(0) −Ap(0) − α∇ · ut(0) ∈ V ′. (3.11)

Thus, we observe that the energy methods (and standard solutions, as in Theorem 3.1 Part 2) applied 
to the original system gives a different (lower) regularity of solutions than that obtained in Theorem 3.2. 
Thus, by prescribing pt(0) ∈ L2

0(Ω) (instead of prescribing u0) and invoking the wave structure, we obtain 
an improved regularity result in Theorem 3.2.

Now, we proceed to invoke the semigroup theory for second-order abstract equations with strong damping. 
Our primary semigroup reference will be [41], and for the strongly damped wave equation [2,18]. In this 
case, our damper D is A-bounded. This is typically written as A ≤ D ≤ A, which we rewrite here as: There 
exists appropriate constants such that

(Aq, q)L2(Ω) ! (Dq, q)L2(Ω) ! (Aq, q)L2(Ω), ∀q ∈ D(A).

We do not provide an in-depth discussion of the correspondence of the existence of a C0-semigroup on a 
given state space and associated solutions, instead referring to the [41, Chapter 4].

We now provide the framework for Theorem 3.3.

• The strongly damped wave equation in (3.5) has a first order formulation considering the state

y = [p, pt]T ∈ Y ≡ V × L2
0(Ω)

written as

ẏ =
[

0 I
−[δ1c0]−1A −c−1

0 D

]
y + F , y(0) = [p0, p1]T . (3.12)
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• The operator A ≡
[

0 I
−[c0δ1]−1A −c−1

0 D

]
is taken with domain

D(A) ≡ D(A) ×D(A), (3.13)

and D as given in (3.6) with F ≡ [0, c−1
0 Ŝ]T .

The theorem below will provide the existence of a semigroup eAt ∈ L (Y ). In this context, we will obtain 
a solution y(t) = eAty0 to the first order formulation in two standard contexts:

• When y0 ∈ D(A), the resulting homogeneous solution lies in C1((0, T ]; Y ) ∩C0([0, T ]; D(A)) and satisfies 
(3.12) pointwise.

• When y0 ∈ Y , the resulting solution is C0([0, T ]; Y ) and satisfies a time-integrated version of (3.12); 
these solutions are sometimes called generalized or mild [41], and are, in fact, C0([0, T ]; Y )-limits of 
solutions from the previous bullet. Namely, we can approximate the data y0 ∈ Y by yn0 ∈ D(A), and 
obtain the generalized solution as a C0([0, T ]; Y )-limit of the solutions emanating from the yn0 .

• It is standard (in this linear context) to obtain weak solutions (in the sense of Definition 2) by considering 
smooth solutions emanating from yn0 ∈ D(A) as approximants.

Theorem 3.3 (Damped Semigroup Theorem). In the framework of (3.12)–(3.13), with δ1, c0 > 0, the operator 
A generates a C0-semigroup of contractions eAt ∈ L (Y ), which is analytic (in the sense of [41, Chapter 
2.5]) on Y ≡ V × L2

0(Ω). This is to say:

• For [p0, p1]T ∈ Y and Ŝ ∈ L2(0, T ; L2
0(Ω)), we obtain a unique (generalized) solution [p(·), pt(·)]T ∈

C([0, T ]; Y ) (as described above).
• For [p0, p1]T ∈ D(A) × D(A) and Ŝ ∈ H1(0, T ; L2

0(Ω)), we obtain a unique solution [p(·), pt(·)]T ∈
C([0, T ]; D(A) ×D(A)) ∩ C1((0, T ]; Y )) that satisfies the system in a point-wise sense.

Lastly, one may select the state space Z = L2
0(Ω) ×L2

0(Ω) with D(A) the same as before. In this context, A
again generates a C0-semigroup eAt ∈ L (Z). This semigroup is again analytic, though it is not a contraction 
semigroup. In this case, with [p0, p1]T ∈ (L2

0(Ω))2 we obtain solutions in the sense of C0([0, T ]; Z).

Proof of Theorem 3.3. The proof of this theorem follows immediately from the application of [30, 
pp.292–293] to the present framework to obtain the semigroup. For the case of taking the state space 
Z, see also [2]. In passing from the semigroup to solutions—taking into account the inhomogeneity F—we 
invoke [41, Chapter 4.2]. !

We note that S ∈ H1(0, T ; L2
0(Ω)) and F ∈ H1(0, T ; V′) implies Ŝ ∈ L2(0, T ; L2

0(Ω)). Moreover, stronger 
assumptions S ∈ H2(0, T ; L2

0(Ω)) and F ∈ H2(0, T ; V′) imply Ŝ ∈ H1(0, T ; L2
0(Ω)).

We can say more, since the strongly damped wave equation is known to be exponentially stable.

Theorem 3.4 (Exponential Decay of Solutions). Consider the above framework in (3.12)–(3.13), and take 
F ≡ 0 and S ≡ 0 in (3.1) (so F ≡ [0, 0]T ). Consider c0, δ1 > 0. Then the analytic semigroup eAt generated 
by A : Y ⊃ D(A) → Y is uniformly exponentially stable. That is, there exists γ, M0, Mk > 0 (each depending 
on c0, δ1 > 0) so that:

||eAt||L ≤ M0e
−γt, and, more generally, ||AkeAt||L ≤ Mkt

−ke−γt, t ≥ 0, k ∈ N. (3.14)

Proof of Theorem 3.4. As the above semigroup is analytic, and the requisite spectral criteria are satisfied 
by the operator A, exponential decay is inferred immediately from the [2, Theorem 1.1(b), pp.20–21]. !
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In the above semigroup approach, we have constructed solutions in the variable p via the semigroup 
approach. We now describe how to pass from the variable p to u via the ODE in (3.1)1. This observation is 
central to subsequent sections: When a given pressure function p is obtained in a regularity class for which 
the ODE

δ1ut + u = E−1F − αE−1(∇p)

can be readily interpreted, we obtain a mapping ∇p /→ u. When one has decay estimates as above in 
Theorem 3.4 these can be pushed from p to u in the solution to the full system (3.1).

Lemma 3.5. Consider the ODE in (3.3). Letting

Q = δ−1[−αE−1(∇p) + E−1(F)],

we have ut + δ−1
1 u = Q, which can be solved as:

u(x, t) = e−t/δ1u(x, 0) +
t∫

0

e[τ−t]/δ1Q(x, τ)dτ. (3.15)

From Lemma 3.5, one can pass the decay in Theorems 3.3 and 3.4 (as well as Theorem 3.2) from the 
variables p to u (and ut). We provide an example for the state space norm below.

Take F ≡ 0 and S = 0. We will obtain a decay result for the displacement u through the ODE. From 
(3.14) we have that

‖y(t)‖Y ≤ M0e
−γt‖y0‖Y =⇒ ‖∇p(t)‖L2(Ω) ≤ M0e

−γt‖y0‖Y =⇒ ‖E−1(∇p(t))‖D(E) ≤ M0e
−γt‖y0‖Y .

(3.16)
Using (3.15) we obtain

‖u(t)‖D(E) ≤ e−
t
δ1 ‖u0‖D(E) + M0

1 − γδ1
(e−tγ − e−

t
δ1 )‖y0‖Y

Of course, the estimate above can be readily adjusted to accommodate the space in which u0 is specified.

3.2.4. Incompressible constituents
We now take c0 = δ2 = 0 in (2.22), which, following the calculations of Section 3.2, yields the abstract 

dynamics:

[
δ1A + α2B

]
pt + Ap = S, with S = S − α∇ · E−1(Ft) + δ1St. (3.17)

Note that S = δ1Ŝ from the previous section. In this case, we make a change of variable:

q = [α2B + δ1A]p (3.18)

and proceed in the variable q. In this scenario, the operator α2B + δ1A ∈ L (V, V ′) and is boundedly 
invertible in this sense, following the properties of A and B in Section 2.3. Indeed, this follows immediately 
from: (i) Lax-Millgram on the strength of A and (ii) the continuity and self-adjointness of B on L2

0(Ω).
Under the change of variable, our abstract equation (3.17) can be written as an ODE in the variable q

as:
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qt + A[(α2B + δ1A)−1]q = S ∈ L2(0, T ;V ′); q(0) = q0 ∈ V ′. (3.19)

The operator R has that

R ≡ A[(α2B + δ1A)−1] ∈ L (V ′) ∩ L (L2
0(Ω));

it is zeroth-order with L2(Ω)-adjoint

R∗ = [(α2B + δ1A)−1]A.

The ODE in (3.19) can be interpreted either in the sense of C(0, T ; V ′) or C(0, T ; L2
0(Ω)), depending on 

the regularity of the data which comprise S—namely, whether we require S, St and Ft to take values in L2

or H1 type spaces. In either case, the ODE can thus be solved in the context of a uniformly continuous 
semigroup [41]. Here, the semigroup is e−Rt ∈ L (X), where X can be chosen to be V ′ or L2

0(Ω).
For S ∈ L2(0, T ; V ′) and q0 ∈ V ′, the classical variation of parameters formula [41] yields that q ∈

H1(0, T ; V ′). However, p ∈ H1(0, T ; V ) is immediately obtained through inversion of the change of variables 
(3.18) a.e. t. Then, the elasticity ODE can be explicitly solved in time as in Lemma 3.5, providing u ∈
H1(0, T ; V). From this, we observe that p(0) = p0 ∈ V must be specified at the outset in order to possess 
an initial condition of the form q(0) = q0 ∈ V ′. This reflects the fact that, since this cases reduces to an 
ODE, there is no spatial regularization provided by the pressure dynamics. In this case, one only needs to 
specify p(0) to obtain a solution to the abstract ODE in (3.19). This comes through the appearance of the 
combination δ1ut+u in the elasticity equation and the structure of the solution to the ODE in u. To recover 
the displacement variable u from p, one must additionally specify u(0). Lastly, after solving the ODE in q
(and therefore for p), one can revert back to the ODE for u to obtain additional temporal regularity (as a 
function of the regularity of F), since both sides of the equality below can be time-differentiated

δ1ut + u = E−1[F − α∇p].

Through this discussion, we have arrived at the following theorems.

Theorem 3.6 (ODE Theorem). Let S ∈ H1(0, T ; V ′) and F ∈ H1(0, T ; V′) (so that S = S −α∇ · E−1(Ft) +
δ1St ∈ L2(0, T ; V ′)) and take p0 ∈ V .

Then there exists a unique (ODE) solution p ∈ H1(0, T ; V ) to (3.19), given by

p(t) = [α2B + δ1A]−1e−Rt[α2B + δ1A]p0.

• If S ∈ L2(0, T ; L2
0(Ω)), then p ∈ L2(0, T ; D(A)).

• If u0 ∈ D(E) and F ∈ L2(0, T ; L2(Ω)), then there exists a unique weak solution (p, u) to (2.22), with p
as before and u ∈ H1(0, T ; D(E)). In this case, the formal energy equality in (3.7) holds for the weak 
solution (p, u) with c0 = 0.

Theorem 3.7 (Regularity for ODE ). Let m ∈ N, S ∈ H1(0, T ; Hm(Ω) ∩L2
0(Ω)) and F ∈ H1(0, T ; Hm−1(Ω))

(so that S = S − α∇ · E−1(Ft) + δ1St ∈ L2(0, T ; Hm(Ω))), and take p(0) ∈ Hm+2(Ω) ∩ V .
Then the ODE solution p to (3.19) has p ∈ H1(0, T ; Hm+2(Ω)).

• If S ∈ L2(0, T ; Hm+1(Ω)), then p ∈ L2(0, T ; Hm+3(Ω))).
• If u0 ∈ Hm+1 ∩ V, then the weak solution (p, u) to (2.22), satisfies an additional regularity property 

u ∈ H1(0, T ; Hm+1(Ω)).
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• If u(0) ∈ Hm+3 ∩ V and F ∈ L2(0, T ; Hm+1(Ω)), then the weak solution (p, u) to (2.22), satisfies an 
additional regularity property u ∈ H1(0, T ; Hm+3(Ω)).

We note that these theorems are obtained through the reduced formulation in (3.17), which itself is 
obtained by time-differentiating the original equations (and the data). In some sense, then, we are lowering 
the regularity of the solution. However, some additional regularity is obtained a posteriori through elliptic 
regularity.

Finally, we discuss decay in the incompressible constituents case, which is not immediate. First, by 
Theorem 3.1, the energy estimate (3.2) holds for c0 = 0 solutions:

||u||2L∞(0,T ;V) + δ1||ut||2L2(0,T ;V) + ||p||2L2(0,T ;V ) ! ||u0||2V + ||S||2L2(0,T ;V ′) + ||F||2L2(0,T ;L2(Ω)).

The above, of course, indicates dissipation in both variables p and u, yet the pointwise-in-time quantity, 
||p(t)||2L2

0(Ω), has disappeared. As this case considers an ODE for q (on either V ′ or L2
0(Ω)), the spectral 

properties of the operator R—on the respective space—would dictate decay in q. From that point of view, 
we only remark that: (i) the operator R : V ′ → V ′ is non-negative, and (ii) 0 is not an eigenvalue of R.

However, we can directly observe exponential decay in this case through a multiplier method for the whole 
system. Indeed, with solutions in hand from Theorems 3.6 and 3.7, we can reconstruct the weak solution 
to (2.22) and then selectively test the equations using wave-type stabilization arguments. We present this 
argument here.

Theorem 3.8 (Exponential ODE Stability). Consider S ≡ 0 and F ≡ 0 in (2.22) (so S ≡ 0 in (3.17)). Then, 
there exists C > 0 and γ > 0 so that we have the estimate for any u0, ut(0) ∈ V and p0 ∈ V , and all t ≥ 0:

||u(t)||2V + ||ut(t)||2V + ||p(t)||2V ≤ C[||u0||2V + ||ut(0)||2V + ||p0||2V ]e−γt. (3.20)

Proof of Theorem 3.8. We will consider smooth solutions for formal calculations, which can then be ex-
tended by density in the standard way to obtain the final estimate on generalized (semigroup) solutions. 
The full system in strong form is:

{
Eu + δ1Eut + α∇p = 0
α∇ · ut + Ap = 0.

(3.21)

First, we recall the standard energy estimate (as quoted above) which is obtained by testing the elasticity 
equation with ut and the pressure equation with p:

1
2
d

dt
||u(t)||2V + δ1||ut(t)||2V + k||p||2V = 0. (3.22)

Next, we differentiate the displacement equation in time, and test again with ut, while testing the pressure 
equation with pt and adding:

1
2 ||ut(t)||2V + δ1

2
d

dt
||ut(t)||2V + k

2
d

dt
||p||2V = 0. (3.23)

Finally, we use the so called equipartition multiplier associated with the wave equation—namely, testing 
with u. (Note: This was in fact done in the energy estimates in [10], but stability was not pursued there.) 
This yields the identity:

||u(t)||2V + δ1
2

d

dt
||u(t)||2V = −α(∇p,u). (3.24)
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From this we obtain the estimate by Young’s inequality:

||u(t)||2V + δ1
2

d

dt
||u(t)||2V ≤ α2CP

2 ||∇p(t)||2 + 1
2 ||u(t)||2V, (3.25)

where CP is a constant such that ||u||2L2(Ω) ≤ CP ||u||2V, which exists by virtue of Poincaré and Korn. Now, 
absorbing the last term and then multiplying the resulting inequality by k[α2CP ]−1, we obtain:

1
2

k

α2CP
||u(t)||2V + δ1k

2α2CP

d

dt
||u(t)||2V ≤ k

2 ||∇p(t)||2. (3.26)

Adding (3.22), (3.23), and (3.26), and absorbing the final RHS term, we obtain the estimate:

1
2
d

dt

[(
1 + δ1k

α2CP

)
||u(t)||2V + δ1||ut(t)||2V + k||p||2V

]

+
(
δ1 + 1

2

)
||ut||2V + k

2 ||p||
2
V + k

2α2CP
||u(t)||2V ≤ 0 (3.27)

Finally, if we define the quantity

E(t) ≡ 1
2

[(
1 + δ1k

α2CP

)
||u(t)||2V + δ1||ut(t)||2V + k||p||2V

]
,

then, we observe that there exists an γ = γ(k, δ1, α, CP ) with 0 < γ < min
{

1,
(

k

δ1k + α2CP

)}
so that we 

have the Grönwall type estimate:

d

dt
E(t) + γE(t) ≤ 0.

This implies the exponential decay:

E(t) ≤ E(0)e−γt.

From this, the final result of the theorem follows. !

Remark 3.2. At the cost of scaling the RHS in the final estimate above, one can work with the more natural 
quantity

Ẽ(t) ≡ 1
2
[
||u(t)||2V + δ1||ut(t)||2V + k||∇p||2

]
,

and obtain the analogous theorem.

3.3. Case 2: Adjusted fluid content, δ2 > 0

We now consider δ1, δ2 > 0 in (2.22), which is to say, we allow for visco-elastic effects in the structural 
equation and we modify the definition of the fluid content of (2.22). Thus, in this section, the fluid content 
will be given by

ζ = c0p + α∇ · u + δ2∇ · ut, (3.28)
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where again we retain the coefficients δ2, δ1 to observe their presence in the reduced dynamics. We note 
that, for the dynamics to admit energy estimates, we must observe the identity

αδ1 = δ2. (3.29)

Alternatively, one obtains the above coefficient relation by formally mapping u /→ u+δ1ut in the derivation 
of the original Biot dynamics (2.14).

Note that we will not make a distinction between c0 ≥ 0 in this section. Indeed, as we will see, upon 
making the abstract reduction, we will obtain precisely the same system (under different state variables) as 
the original Biot dynamics. The one distinction is that it will not be adequate to only specify d0 or p0 in 
the initial conditions. Indeed, we will require u0 and one of p0, d0. Even considering the pressure equation 
alone, it will not be adequate to specify d0 alone, as we will see.

Now, invoking the elasticity equation as in (3.3), we can write (like before):

δ1ut + u = E−1F − αE−1(∇p).

Taking the divergence of this equation, enforcing the condition αδ1 = δ2, and plugging into the fluid content 
expression in (3.28), we obtain a pressure equation from (2.22)2 of the form:

[c0p + α2Bp + ∇ · E−1F]t + Ap = S,

which is rewritten as

[(c0I + α2B)p]t + Ap = S̃, (3.30)

where S̃ is as before in Section 2.4. We note that this pressure equation, with δ1, δ2 > 0, has the exact same 
structure as the original implicit degenerate system without visco-elasticity, as presented in (2.15). Thus, the 
inclusion of viscous effects in both the fluid content and displacement equation recovers the same implicit, 
degenerate (parabolic) dynamics given by Biot’s poro-elastic dynamics. Although we have the same system 
abstractly, it is worth it to describe the resulting estimates and relevant quantities in this case.

We note explicitly that, for the above dynamics in p, it is sufficient to specify either p(0) = p0 or 
Bp(0) = [(c0I + α2B)p](0) in L2

0(Ω)—indeed, these are equivalent by the invertibility of B in that context. 
However, unlike the case of pure Biot dynamics (δ1 = δ2 = 0), we cannot move from d0 = ζ(0) = [c0p +
α∇ · u + δ2∇ · ut](0) to p0 directly, as we must pass through the ODE for u in (3.3). Said differently: by 
moving to the abstract framework for the δ1, δ2 > 0 dynamics, we can solve for p in (3.30). Then, solving 
the ODE in (3.3)—with a given initial condition u0—we obtain the corresponding displacement solution u. 
As in previous cases, it is clear that given p0 and u0 the quantity ut(0) can be recovered through

δ1ut(0) = −u0 − αE−1∇p0 + E−1F(0) ∈ V.

This produces associated a priori estimates, albeit in an indirect way. One can immediately obtain energy 
estimates through the multiplier method, as in previous sections. However, to obtain a priori estimates (e.g., 
on approximants), one will test the pressure equation with p in (2.22)2 and the displacement equation (2.22)1
with δ1utt + ut. In this step, one again observes the necessary requirement that αδ1 = δ2. The resulting 
identities are:

1
2
d

dt
e
(
δ1ut + ut, δ1ut + u

)
− α(p, δ1∇ · utt + ∇ · ut)

=
〈
F(τ), [δ1ut(τ) + u(τ)]

〉
V′×V

∣∣∣
τ=t

τ=0
−

〈
Ft, [δ1ut + u]

〉
V′×V
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(∇ · [δ2utt + αut], p) + c0
2

d

dt
||p||2 + a(p, p) = 〈S, p〉V ′×V .

These identities, along with the application of the abstract theorem in Section 2.4, yield the central theorem 
for this case. We refer to the Appendix for the definition of weak solutions in the case of the reduced, implicit 
formulation in (3.30).

Theorem 3.9 (Visco-elastic Solutions with Modified Fluid Content). Suppose that S ∈ L2(0, T ; V ′) and 
F ∈ H1(0, T ; V′). Take p0 ∈ L2

0(Ω). Suppose δ2 > 0 with c0 ≥ 0 and enforce the condition that δ2 = αδ1. 
Then there exists a unique weak solution p ∈ L2(0, T ; V ) satisfying the reduced, implicit formulation (3.30).

If u0 ∈ V, then (with p the same as above) there exists a unique weak solution (u, p) ∈ C([0, T ]; V) ×
L2(0, T ; V ) to (2.22) satisfying the energy inequality

||δ1ut + u||2L∞(0,T ;V) + c0||p||2L∞(0,T ;L2
0(Ω)) + ||p||2L2(0,T ;V )

! ||u0||2V + c0||p0||2L2
0(Ω) + ||S||2L2(0,T ;V ′) + C(T )||F||2H1(0,T ;V′). (3.31)

In this above framework—as we have reduced to the same abstract theory for classical Biot with δ1 = δ2 =
0—we can accordingly discuss parabolic estimates and smooth solutions. We do not repeat the statements 
here, but refer back to Theorem 2.2 and Theorem 2.3, which can be analogously adopted here.

Remark 3.3. If one allows for the possibility that the coefficient δ2 is fully independent, renaming δ2 as α̃, 
one obtains the system:

{
Eu + δ1Eut + α∇p = F
[c0p + α∇ · u + α̃∇ · ut]t + Ap = S.

(3.32)

Accordingly, we can obtain a reduced equation which is not closed in p:

[c0p + αα̃

δ1
Bp]t +

(
α− α̃

δ1

)
α

δ1
Bp−

(
α− α̃

δ1

)
δ−1
1 ∇ · u + Ap

= S − α̃

δ1
∇ · E−1Ft − δ−1

1

(
α− α̃

δ1

)
∇ · E−1F

The ODE for u can be solved as before, which produces the equation:

[(
c0I + αα̃

δ1
B

)
p

]

t

+
[
A +

(
α2

δ1
− α

α̃

)
B

]
p−

(
α2

δ2
1
− αα̃

δ3
1

) t∫

0

e−(t−τ)/δ1Bp(τ)dτ

= S − α̃

δ1
∇ · E−1F +

(
α̃

δ2
1
− α

δ1

)
e−t/δ1∇ · u0 +

(
α̃

δ2
1
− α

δ1

)
∇ · E−1F

−
(
α̃

δ3
1
− α

δ2
1

) t∫

0

e−(t−τ)/δ1∇ · E−1F(τ)dτ (3.33)

This is also a visco-elastic equation which can be solved by the methods in this paper, but we do not pursue 
this here. In this case we note the emergence of additional terms which vanish when we enforce the condition 
α̃ = δ1α.
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4. Remarks on secondary consolidation

In some sense, the effects of secondary consolidation of soils (i.e., creep) can be thought of as partial 
visco-elasticity [38]. Therefore, for completeness, we add some remarks here on the nature of associated 
solutions and estimates. In the case of secondary consolidation, as it is described in [49], we “regularize” 
only the divergence term in the momentum equation (omitting ∆ut from the full visco-elastic terms). Thus, 
we consider the Biot system with secondary consolidation effects, and, as before, we allow both definitions 
of the fluid content based strictly on mathematical grounds. So we have:

{
−λ∗∇∇ · ut − µ∆u − (λ + µ)∇∇ · u + α∇p = F
[c0p + α∇ · u + δ2∇ · ut]t + Ap = S

(4.1)

In these short sections, we will track the impact of this “partial viscoelastic” λ∗ term. We note that there 
is no need to consider the case with full visco-elasticity δ1 > 0 and secondary consolidation, as the latter 
would be redundant.

4.1. Traditional fluid content: δ2 = 0

This is the secondary consolidation model as explicitly discussed in [38,49].

{
−λ∗∇∇ · ut − µ∆u − (λ + µ)∇∇ · u + α∇p = F
[c0p + α∇ · u]t + Ap = S

(4.2)

The well-posedness of weak solutions is given in [49]. We mention here that, using the standard multipliers 
for weak solutions (justified by the approach in [12]) one obtains the following estimate on solutions:

||u||2L∞(0,T ;V) + c0||p||2L∞(0,T ;L2(Ω)) + λ∗||∇ · ut||2L2(0,T ;L2(Ω)) + ||p||2L2(0,T ;V )

! ||u0||2V + ||S||2L2(0,T ;V ′) + ||F||2H1(0,T ;V′) (4.3)

A partial “visco-elastic” effect of secondary consolidation is immediate obviated: the additional damping/dis-
sipation term above for ∇ · ut. Upon temporal integration, we will obtain the additional property of weak 
solutions that ∇ · ut ∈ L2(0, T ; L2(Ω)). This term represents a certain “smoothing” as well, as ∇ · ut has 
been boosted from L2(0, T ; V ′) /→ L2(0, T ; L2(Ω)) by the presence of λ∗ > 0. We note that since the fluid 
content c0p + ∇ · u lies in H1(0, T ; V ′) (via the pressure equation), we can now extract c0p ∈ L2(0, T ; V ′), 
which is not obvious when λ∗ = 0, since we cannot decouple the two terms in the sum for the fluid content.

4.1.1. Incompressible constituents
In the case of c0 = 0, we observe some partial regularization of the dynamics for λ∗ > 0; this is explicitly 

mentioned in [49], and we expand upon it here.
Note that from the pressure equation, we can write:

Ap = S − α∇ · ut,

from which elliptic regularity can be applied—for weak solutions—when Ω is sufficiently regular and 
S ∈ L2(0, T ; L2(Ω)). Then, with ∇ · ut ∈ L2(0, T ; L2(Ω)) as described above, we observe a “boost” 
p ∈ L2(0, T ; V ) /→ p ∈ L2(0, T ; D(A)) through elliptic regularity applied a.e. t. But this cannot be pushed 
on the momentum equation, owing to the addition of the secondary consolidation term:
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E(u) = F − α∇p + λ∗∇∇ · ut.

This is to say that the regularity gain in p is not realized for the displacement u through the momentum 
equation.

One further observation, in this case, is a particular representation of the system which is not available 
in other cases. Noting that p = A−1[S − α∇ · ut], one can plug this into the elasticity equation to obtain:

−
[
α2∇A−1div + λ∗∇div

]
ut + E(u) = F − α∇A−1S.

This is an implicit equation directly in u which can be analyzed in the framework of implicit, degenerate 
equations [1,47,49]; we do not pursue this line of investigation here.

4.1.2. Compressible constitutents
In the case of c0 > 0, [49] observes that the effect secondary consolidation is de-regularizing. This is 

observed in hindering the discussion in the previous section, namely the pressure equation now reads as:

Ap = S − α∇ · ut − c0pt.

The effect of secondary consolidation through λ∗ (the boosting of ∇ · u to L2(0, T ; L2(Ω)) is lost, since we 
can only conclude that c0pt ∈ L2(0, T ; V ′) rather than L2(0, T ; L2(Ω)). Thus there is neither smoothing in 
p nor u in this case.

4.2. Adjusted fluid content

Finally, we observe that in the case of adjusted fluid content, we obtain the natural analog to our earlier 
discussions. Taking δ2 > 0, we consider the system:

{
−λ∗∇∇ · ut + Eu + α∇p = F
[c0p + α∇ · u + δ2∇ · ut]t + Ap = S

(4.4)

As above, we invoke (as before) the test function δ2utt +ut in the elasticity equation, and p in the pressure 
equation. This provides an identical estimate as that in Theorem 3.9 with the additional property that 
∇ · ut ∈ L2(0, T ; L2(Ω)), and the associated term λ∗||∇ · ut||2L2(0,T ;L2(Ω)) appears on the LHS of (3.31) in 
Theorem 3.9. Again, then, we see the effect of secondary consolidation as that of partial damping.

5. Summary and conclusions

In this note, we characterized linear poro-visco-elastic systems across several parameter regimes:
{
Eu + δ1Eut + α∇p = F
[c0p + α∇ · u + δ2∇ · ut]t + Ap = S.

(5.1)

We began with the traditional Biot system (δ1 = δ2 = 0), i.e., no Kelvin-Voigt visco-elastic effects, and 
recapitulated existence results and estimates for weak solutions, as well as solutions with higher regularity 
in Section 2.4. Using this as a jumping-off point, we considered the addition of linear Kelvin-Voigt type 
(strong) dissipation in the Lamé system (5.1). Our central focuses were in the well-posedness and regularity 
of solutions across all parameter regimes, as well as the clear determination of the abstract structure of the 
problem, including the discernment of the appropriate initial quantities. Our approach included providing 
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clear a priori estimates on solutions, where they were illuminating. We employed an operator-theoretic 
framework inspired by [1,49] and developed in [12] which we introduced in Section 2.3. The central operators 
were A (a Neumann Laplacian) and B (a zeroth order, nonlocal pressure-to-divergence operator).

We then considered the model with δ1 > 0 and δ2 = 0, which is to say we left the fluid-content unaltered in 
our addition of strong damping. We first gave a well-posedness result which was valid for both compressible 
constituents c0 > 0 and incompressible constituents c0 = 0 in Section 3.2. We then distinguished between 
these two cases. We determined that for c0 > 0, the system constitutes a strongly damped hyperbolic-
type system. It was important, in this case, to distinguish results based on which initial quantities were 
specified. Regardless, the regularity of solutions was made clear, and the parabolicity of the system was 
detailed in several ways. In the case when c0 = 0, we observed that the abstract, reduced version of 
the dynamics constituted an ODE in a Hilbert space of our choosing (either L2

0(Ω) or an H−1(Ω) type 
space, V ′). We exploited the ODE nature of the dynamics to produce a clear well-posedness and regularity 
result.

In the case when δ1, δ2 > 0 (i.e., the adjusted fluid content), we observed that the abstract reduction 
of the system brings the dynamics back to the traditional Biot-structure. In other words, by adding visco-
elasticity to the displacement equation (δ1 > 0), as well as adjusting the fluid content (δ2 > 0), we do not 
observe additional effects from the visco-elastic damping—rather, we obtain the same qualitative results 
for the solution as we had for Biot’s original dynamics. Noting a small difference in which initial quantities 
must be prescribed, we presented a well-posedness theorem, with relevant a priori estimates.

Finally, in Section 4, we provide some small remarks on partial visco-elasticity, known in soil mechanics as 
secondary consolidation. The main focus of this section was to provide clear a priori estimates on solutions, 
indicating precisely how dissipation is introduced into the system through secondary consolidation effects. 
Additionally, we corroborate remarks in [49] concerning the extent to which this sort of partial visco-elasticity 
can be, in fact, partially regularizing (when c0 = 0) and de-regularizing (c0 > 0).

The Appendix serves to provide a small overview of the standard theory of weak solutions for implicit, 
degenerate evolution equations [1,12,47], and is taken from [48].

We believe that the work presented here, as it is in the spirit of [1,47,49], will be of interest to researchers 
working on applied problems in poro-elasticity. In particular, as the effects of visco-elasticity are prominent 
in biological sciences, those who work on biologically-motivated Biot models may find the results presented 
herein useful. Indeed, to the best of our knowledge, we have provided the first elucidation of the mathematical 
effects of linear visco-elasticity, when included in linear poro-elastic dynamics.
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7. Appendix: Abstract framework for weak solutions

Let V be a separable Hilbert space with dual V ′ (not identified with V ). Assume V densely and contin-
uously includes into another Hilbert space H, which is identified with its dual: V ↪→ H ≡ H ′ ↪→ V ′. We 
denote the inner-product in H simply as (·, ·), with (h, h) = ||h||2H for each h ∈ H. Similarly, we denote the 
V ′ × V duality pairing as 〈·, ·〉. (For h ∈ H, we identify 〈h, h〉 = ||h||2H as well.) Assume that A ∈ L (V, V ′)
and B ∈ L (H). Finally, suppose that d0 ∈ V ′ and S ∈ L2(0, T ; V ′) are the specified data.
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In this setup, we can define the weak (implicit-degenerate) Cauchy problem to be solved as:

Find w ∈ L2(0, T ; V ) such that






d

dt
[Bw] + Aw = S ∈ L2(0, T ;V ′)

lim
t↘0

[Bw(t)] = d0 ∈ V ′.
(7.1)

The time derivative above is taken in the sense of D ′(0, T ), and since such a solution would have Bu ∈
H1(0, T ; V ′) (with the natural inclusion V ↪→ V ′ holding), Bu has point-wise (in time) values into V ′ and 
the initial conditions makes sense through the boundedness of B with H ↪→ V ′.

The following generation theorem is adapted from [48, III.3, p.114–116] for weak solutions, and produces 
weak solvability of (7.1) in a straight-forward way:

Theorem 7.1. Let A, B be as above, and assume additionally that they are self-adjoint and monotone (in the 
respective sense, A : V → V ′ and B : H → H). Assume further that there exists λ, c > 0 so that

2〈Av, v〉 + λ(Bv, v) ≥ c||v||2V , ∀ v ∈ V.

Then, given Bw(0) = d0 ∈ H and S ∈ L2(0, T ; V ′), there exists a unique weak solution to (7.1) satisfying

||w||2L2(0,T ;V ) ≤ C(λ, c)
[
||S||2L2(0,T ;V ′) + (d0, w(0))H

]
. (7.2)

The assumption in this theorem is that there exists a w(0) ∈ V so that Bw(0) = d0, the given initial 
data. In more recent work applying this theorem [12], we need not assume the existence of such w(0). See 
Theorem 2.2.

One may also consult the implicit semigroup theory presented in [49, Section 5] and [48, IV.6], in particular 
for a discussion of smoother solutions.
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