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Abstract

Bacteria frequently encounter nutrient fluctuations in natural environments, yet we
understand little about their ability to maintain physiological memory of previous food
sources. Starvation is a particularly acute case, in which cells must balance adaptation
to stresses with limited nutrient supply. Here, we show that Escherichia coli cells
immediately accelerate and decelerate in growth upon transitions from spent to fresh
media and vice versa, respectively, and memory of rapid growth can be maintained for
many hours under constant flow of spent medium. However, after transient exposure
of stationary-phase cells to fresh medium, subsequent aerobic incubation in increasingly
spent medium led to lysis and limited growth when rejuvenated in fresh medium.
Growth defects were avoided by incubation in anaerobic spent medium or water,
suggesting that defects were caused by respiration during the process of nutrient
depletion in spent medium. These findings highlight the importance of respiration for
stationary phase survival and underscore the broad range of starvation outcomes

depending on environmental history.
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Introduction

Natural environments are constantly in flux, hence bacteria face changes in many
variables of physiological importance such as pH, osmolarity, and nutrients. Nutrient
fluctuations are an omnipresent part of life in a host gut for enteric bacteria such as
Escherichia coli. Decades of research have investigated how bacteria adapt to nutrient
depletion and restoration, with specific transcriptional (Sharma and Chatterji, 2010) and
post-transcriptional (Iyer et al., 2018) responses in stationary phase. Recent studies have
revealed physiological and morphological changes associated with stationary phase
(Shi et al., 2021b;Cesar et al., 2022), and that the lag phase associated with rejuvenation
from stationary phase upon exposure to fresh nutrients can be heterogeneous and
associated with large-scale remodeling of cell shape (Shi et al., 2021a). However, most
studies of lag and stationary phase have focused on single transitions, despite the fact
that nutrient concentrations can fluctuate on a variety of time scales due to
environmental factors such as diurnal cycles and host factors such as feeding and

circadian rhythms.

During any transition between nutrient conditions, there is an inevitable period of
adaptation. Growth kinetics can be suboptimal due to issues addressing metabolic
bottlenecks (Erickson et al., 2017). A recent metabolomics study revealed that the long

lags resulting from switches between certain carbon sources are due to the depletion of
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key metabolites that follows sudden reversal in central carbon flux (Basan et al., 2020).
Thus, cells can be trapped in suboptimal growth states depending on their proteomic
and metabolic history. A separate study repeatedly switched E. coli between glucose
and lactose to investigate how long the memory of lactose persists in its absence, using
growth rate to determine the extent of adaptation because growth rate transiently
decreased when cells were maladapted to utilization of lactose (Lambert and Kussell,
2014). The extent and duration of memory was related to the abundance of the lactose
permease LacY, and loss of memory resulted simply from dilution (Lambert and
Kussell, 2014). These experiments suggest that proteome reallocation is important for
adapting to nutrient shifts, and that the ability of cells to reprogram may be dependent
on their ability to dilute certain components through growth. Consistent with this
picture, during emergence from stationary phase, a model incorporating a time delay
between the synthesis of cytoplasmic and surface-related proteins quantitatively
predicted the dynamics of cellular dimensions, and inhibition of translation
(presumably delaying proteome reallocation) increased the delay (Shi et al., 2021a).
During repeated fluctuations between environments with different nutrient qualities, E.
coli cells adapted to respond to the nutrient shifts at the cost of the overall growth rate
(Nguyen et al., 2021). Switching to fully nutrient-depleted conditions in which growth

rate is at or near zero has not been interrogated in these contexts.
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Most investigations into physiology during starvation have focused on long time scales
after gradual entry into stationary phase. E. coli cells remain metabolically active for
long periods of time in stationary phase (Gefen et al., 2014), and Bacillus subtilis cells
exhibit very slow growth and division long after entry into stationary phase (Gray et al.,
2019). E. coli cells kept in stationary phase for many days acquired mutations,
particularly in rpoS, that allowed them to survive harsh conditions that would
otherwise cause death (Zambrano and Kolter, 1996;Farrell and Finkel, 2003) but resulted
in maladaptation to growth in fresh medium (Zambrano and Kolter, 1996). Populations
kept in stationary phase for shorter periods (such as a typical overnight laboratory
culture) exhibit lag times on the scale of hours before reaching maximal growth rate. At
the cellular level, it was recently discovered that rejuvenation is heterogeneous, such
that the lag times of single-cell growth were distributed with a very long tail (Simsek
and Kim, 2019). The distribution of single-cell lag times was dependent on the time
spent in stationary phase (Cesar et al., 2022), and was due to the progressive
accumulation of damage (Pu et al., 2019;Cesar et al., 2022). Importantly, incubation in
stationary phase in an anaerobic chamber avoided delays in growth unless cells were
provided nitrate as a source of respiration (Cesar et al., 2022), indicating that the
relevant damage was induced by respiration (Pu et al., 2019). When exponentially
growing E. coli cells are rapidly switched to nutrient-depleted conditions such as M9

salts or spent medium, a variety of phenotypes can emerge. In wild-type E. coli, the
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cytoplasm gradually shrank away from the cell wall, with a commensurate increase in
the size of the periplasm (Shi et al., 2021b). In a dominant-negative mutant allele of
mlaA, which encodes a component of the anterograde phospholipid transport
machinery (Malinverni and Silhavy, 2009), a rapid switch to spent medium led to
cytoplasmic shrinkage and subsequent cell lysis (Sutterlin et al., 2016;Grimm et al.,
2020). This diverse range of cellular behaviors makes it challenging to predict the extent
to which bacterial cells can survive and/or robustly regrow after exposure to spent

medium, particularly over the course of multiple transitions.

Here, we show that the instantaneous growth rate of E. coli cells responds immediately
to a switch from spent to fresh media, or vice versa. During repeated transitions
between spent and fresh media, we demonstrate that cells can retain memory of their
growth state in the most recent exposure to fresh nutrients. In microfluidic flow cells,
memory was eventually lost during incubation in spent medium, but only after many
hours. In stark contrast, transient exposure of stationary-phase cells to fresh medium in
test tubes before resuspension in spent medium resulted in highly detrimental
consequences, with slower growth upon rejuvenation, cell lysis, and some cells
oscillating between growth and shrinkage. We discovered that growth defects did not
occur when cells were resuspended in anaerobic spent medium or in water, suggesting

that respiration as cells consume nutrients in spent medium is the cause of lysis. These



111  findings highlight the wide range of physiological states after starvation, implicating

112 complete nutrient depletion and respiration as major drivers of negative outcomes.
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Results

Switching between spent and fresh media results in an immediate growth-rate response
In previous studies, we showed that stationary-phase E. coli cells exhibit a rapid (within
minutes if not less) increase in growth rate when placed on an agarose pad with fresh
medium (Cesar et al., 2022), and that the growth of exponentially growing cells slows
dramatically on agarose pads with spent supernatant (Sutterlin et al., 2016). To more
precisely quantify the dynamics with which E. coli cells in either a fast-growing or
starved state equilibrate to nutrient-poor or nutrient-rich media, respectively, we used a
microfluidic flow cell (Fig. 1A, Methods) to track single cells during a nutrient
transition. Microfluidic flow cells have been used as novel probes of cellular
physiology, by enabling tracking of single-cell growth during rapid and repeated

switching between environments (Rojas et al., 2014).

First, we grew an overnight culture in LB for 17 h, then spun down the cells to filter the

supernatant. We incubated the starved cells in a microfluidic flow cell in spent medium
and observed little to no growth for 20 min, as expected (Fig. 1B). We then switched the

medium to fresh LB and observed a rapid increase in growth rate within 1 min (Fig. 1B).
Thereafter, the instantaneous growth rate (defined here as 1/A dA/dt, Methods)

gradually increased to a peak of ~0.025-0.03 min? (doubling time of ~23-28 min),
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consistent with bulk culturing (Atolia et al., 2020). These data indicate that even after

hours of starvation, cells are primed to restart growth.

Next, we used multiple 1:10 dilutions to establish cells in steady-state, exponential
growth (Shi et al., 2017). We incubated these cells in a microfluidic flow cell with fresh
LB and observed maintenance of rapid growth at a constant rate of ~0.03 min! (Fig. 1C).
After 20 min, we switched the cells into spent medium from a 17-h culture. Cells slowed
to near zero growth rate almost immediately, and mean instantaneous growth rate even
became slightly negative (Fig. 1C), corresponding to cells shrinking in volume.
Interestingly, after ~20 min, cell growth resumed, albeit at a very slow rate (Fig. 1C).
Therefore, the transition to spent medium has two phases: an immediate cessation of
growth and slow shrinkage, followed by adaptation to spent medium that allows for

slow cell expansion on longer (hour) time scales.

Cells can maintain memory of rapid growth during incubation in spent medium

Armed with knowledge of the baseline response of cells to the addition or removal of
nutrients, we next sought to determine how cells would respond to periodic switching
between rich and spent media (Fig. 2A). As before, we started by incubating stationary-
phase starved cells in spent medium, and then switched them to fresh LB for 20 min. As

expected, the growth rate trajectory (Fig. 2B) closely matched that of the single
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transition from spent to fresh medium (Fig. 1B). We then switched cells back to spent
medium, and observed rapid growth inhibition (Fig. 2B), again as expected (Fig. 1C).
Upon a second switch to fresh LB, cells now resumed growth at a faster rate than upon
the first switch to fresh LB, initially mirroring the growth rate achieved just before the
previous transition to spent medium (Fig. 2B). Growth acceleration continued for 20
min in fresh LB, and then rapidly halted upon switching back to spent medium (Fig.
2B). A third switch to fresh LB again resulted in growth resuming at the rate cells

achieved directly before the previous switch to spent LB (Fig. 2B).

During the periods of incubation in spent medium, cells exhibited a slightly negative
growth rate (Fig. 2B), similar to the single transition from exponential growth to spent
medium (Fig. 1C). To interrogate this shrinking behavior, we repeated the experiments
with a strain expressing cytoplasmic GFP and periplasmic mCherry. During switches
from fresh to spent LB, cells accumulated periplasmic mCherry near the poles (Fig.
2B,C, Movie S1, Methods), indicating that the cytoplasm had shrunk away from the cell
wall in these locations. During the switches from spent to fresh LB, the periplasmic
accumulation of mCherry quickly dissolved (Fig. 2C, Movie S1), which was coincident
with the short (<1 min) bursts of faster growth upon transitions to fresh LB (Fig. 2B).
Thus, we infer that shrinkage and the bursts of growth were due at least in part to water

efflux from and influx into, respectively, the cytoplasm.
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We computationally extracted and concatenated the periods of growth in LB (Fig. 2D)
and compared to our single-transition data (Fig. 1B). The growth rate trajectories were
virtually identical aside from the short bursts after the transitions from spent to fresh
LB, indicating that cells maintained near-perfect memory of the previous rapid growth

state while incubating in spent medium, at least on the 20-min time scale.

Memory of rapid growth decays slowly during microfluidic incubation in spent
medium

Since memory was maintained during 20 min of incubation in spent medium (Fig. 2D),
we next sought to determine the time scale over which memory would degrade. To
address this question, we diluted a stationary-phase culture into fresh LB for 1 h,
tiltered the cells from their supernatant, and resuspended them in spent supernatant
(Fig. 3A). We then incubated the cells in spent medium in a microfluidic flow cell for
intervals between 0 and 10 h before switching back to fresh LB (Fig. 3A). After 0 h
(continued growth in fresh LB), instantaneous growth rate was maintained at >0.03 min-
! (Fig. 3B). After 1 h in spent medium, growth rate lagged behind the 0 h trajectory for
the first 20 min, after which growth rate was >0.03 min (Fig. 3B,C). After 2-5 h in spent
medium, growth rate lagged ~10 min behind the 1 h trajectory and plateaued at a

slightly lower level after 60 min (Fig. 3B,C). While cells that had been incubated for 1-5
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h in spent medium exhibited little to no growth prior to the switch to fresh LB, after 7 or
10 h of incubation in spent medium instantaneous growth rate was ~0.01 min! (Fig.
3B,C), potentially due to adaptation to the low, steady supply of nutrients in the spent
medium (cannibalism could also contribute, although the constant perfusion of spent
medium would likely cause most of the contents of lysed cells to be washed away).
After the switch to fresh LB, cells that had been incubated for 7 h in spent medium
exhibited slower growth than those incubated for 2-5 h (Fig. 3B,C). Cells that had been
incubated for 10 h in spent medium exhibited comparable growth to those incubated for
2-5 h, potentially due to the higher growth rates supported prior to switching (Fig.
3B,C) that reduced the need for adaptation. Thus, cellular memory does eventually
degrade in spent LB, but only over several hours, and even after 10 h growth rate
acceleration was faster than after a transition of stationary-phase cells directly into fresh
LB (Fig. 1B), indicating that incubation in spent medium in a microfluidic flow cell did
not require the same adaptation as long periods in stationary phase and that memory

persists after very long exposure to low nutrient conditions.

Lack of continuous flow severely impacts memory of fast growth
The observation that cells could grow at a considerable rate after 10 h of incubation in
spent medium in a microfluidic flow cell was surprising, so we next sought to replicate

our microfluidic incubation experiments in bulk cultures. As before, we diluted a
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stationary-phase culture into fresh LB for 1 h, filtered cells from their supernatant, and
resuspended the cells in spent medium. We sampled cells from the test tube after
various intervals incubated in spent medium and imaged their growth on agarose pads
with fresh LB (Fig. 4A). Without resuspension in spent medium, cells quickly
accelerated to a growth rate of ~0.03 min! (Fig. 4B), as expected based on their
maximum growth rate in exponential phase (Fig. 1B). However, incubation in spent
medium in a test tube radically altered single-cell behaviors. After 1 h of resuspension
in spent medium, the growth rates of many cells were substantially (~3- to 4-fold) lower
than exponentially growing cells (Fig. 4C). Thus, resuspension in fresh medium in a test

tube results in deleterious effects on growth.

After 2 h in spent medium, many cells displayed marked signs of cytoplasmic shrinkage
at the start of imaging (Fig. 4D), suggesting full depletion of nutrients (Shi et al., 2021b),
unlike cells that had not been incubated in spent medium (Fig. 4B). Moreover, many
single-cell growth rates decreased drastically to nearly zero (Fig. 4D). After 3 h in spent
medium, most cells had lysed by the start of imaging and most of the remaining cells
exhibited almost no growth (Fig. 4E). To test whether cell lysis occurred prior to
imaging or when cells were introduced to fresh medium on the agarose pad, we placed
cells after 3 h in spent medium on agarose pads made with spent LB. We observed

similar proportions of lysed cells (data not shown), suggesting that lysis resulted during
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spent medium incubation (unless they lysed immediately upon contact with the pad).
Note that we rarely observed lysis in cells during stationary phase, even after 24 h,

indicating that the 1-h pulse of fresh medium was the cause of lysis.

Interestingly, of the few cells that remained viable after 3 h in spent medium, several
exhibited bizarre oscillations of growth and shrinking throughout the 55 min of
tracking (Fig. 4F, Movie S2). These data show that incubation in a test tube, which lacks
the continuous replacement of the contents of spent medium occurring in a microfluidic
flow cell, leads to a dramatic decrease in growth rate and viability. Moreover, these
tindings indicate that transient exposure to fresh medium can have negative impact on

growth potential.

Cell lysis and growth slowdown results from depletion of nutrients in spent medium
Our observation that cells adapted to grow very slowly in spent medium (Fig. 1C)
suggested that there are nutrients remaining in seemingly spent medium that can
enable growth. Thus, we hypothesized that the growth defects of cells exposed to a 1-h
pulse of fresh LB and then resuspended in spent medium in a test tube were due to cells
with the physiology of rapid growth depleting the remaining nutrients in spent
medium in the test tube and thus lacking the ability to deal with cellular damage. By

contrast, switching from fresh to spent medium in a microfluidic flow cell would lead to
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relatively benign consequences since the spent medium (and the nutrients therein) was
constantly being replenished. To test this hypothesis, we resuspended cells in ddH-O
rather than spent medium after a 1-h pulse in fresh LB (Fig. 5A); we did not observe any
growth on agarose pads made with water over 4 h (data not shown). After 3 h of
incubation in water following the 1-h pulse, cells did not exhibit any apparent lysis and
resumed rapid growth when placed on LB pads (Fig. 5B). Thus, we conclude that

growth in spent medium is ultimately detrimental if cells run out of resources.

Respiration may be the cause of growth defects after incubation in spent medium
Based on our previous discovery that cells no longer exhibit dormancy during
emergence from stationary phase when respiration in stationary phase is prevented
(Cesar et al., 2022), we hypothesized that the availability of oxygen caused growth
slowdown and lysis after a pulse of fresh medium and subsequent incubation in spent
medium. To specifically address the role of respiration in stationary phase (rather than
changes in log-phase growth aerobically versus anaerobically), we resuspended
aerobically grown cells in spent medium isolated from a culture grown aerobically the
day before that had been reduced in an anaerobic chamber for 24 h (Fig. 5A). Even after
3 h of incubation in an anaerobic chamber in this pre-reduced spent medium, cells were

able to regrow rapidly (Fig. 5C), similar to cells that had not been resuspended in spent



272 medium (Fig. 4B). These data suggest that respiration during transient growth and

273 subsequent nutrient depletion in spent medium is the cause of growth defects and lysis.



274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

Discussion

Our data show that cells eventually adapt and expand at a slow rate in spent medium in
a microfluidic flow cell (Fig. 1C). This growth is consistent with their ability to remain
metabolically active in stationary phase (Gefen et al., 2014) and remodel their proteome
in the absence of carbon sources (Shi et al., 2021b). In this study, we present a model
based on this growth potential that accounts for two dramatically different outcomes of
starvation. On one hand, the steady maintenance of low levels of nutrients in a
microfluidic flow cell that supports slow growth after growing cells are switched into
spent medium means that the physiological state of the cell can be largely maintained.
Cells are thus able to resume growth at approximately the same rate as prior to
exposure to spent medium (Fig. 2D), even after many hours (Fig. 3B,C). Similar
behavior results when growing cells are resuspended in water (Fig. 5B), likely because
the complete lack of nutrients in water preserves cellular physiology. On the other
hand, if growing cells are switched into a spent medium that provides limited capacity
for growth such as in a test tube, we propose that respiration produces damage during
growth that cells cannot repair after nutrients are fully depleted, resulting in extensive
cell lysis and growth slowdown (Fig. 4C-F). It is also possible that other factors
correlated with oxygen availability, such as the energy produced by electron transport
chain activity or the ability to sustain rapid growth, contribute to the development of

protein aggregates.
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By contrast with switching between carbon sources (Lambert and Kussell, 2014), a
switch to spent medium has much less potential for dilution, and hence cells need not
shift away from the optimal state for previous growth conditions. Indeed, when
restored to fresh medium in a microfluidic flow cell, growth restarted at quantitatively
the same level as if they had never experienced spent medium (Fig. 2D). Nonetheless,
the consequences of switches between spent and fresh media can be extensive, as
evidenced by the massive lysis due to transient exposure of stationary-phase cells to
fresh medium followed by resuspension in spent-medium in a test tube (Fig. 4E). In
particular, some cells exhibited puzzling oscillations between growth and shrinking
(Fig. 4F). Altogether, these findings indicate the necessity for cells to have adequate time
to prepare for starvation, consistent with the adaptations in growth rate (Atolia et al.,
2020), cell shape (Shi et al., 2021a), and gene expression (Magnusson et al., 2005) that

occur multiple doublings before cells reach saturation.

Our findings highlight fundamental but often overlooked differences between growth
in flow cells and in test tubes. In a microfluidic chamber, flow keeps the environment
relatively steady, whereas any resources are depleted over time in a test tube.
Furthermore, waste can accumulate in a test tube, whereas it is washed away in a

microfluidic device. This distinction may have relevance for survival in marine
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environments, which have low nutrient density and may behave more like a flow cell
due to fluid flow. Given the large differences between the physiological states of cells in
microfluidics versus test tubes, underscored by the differential effects of transient
exposure to fresh medium in the two contexts (Fig. 3-5), our results highlight the
importance of considering nutrient and energy depletion as a continuum rather than a
single state. Indeed, ATP depletion through dinitrophenol treatment caused
immobilization of large particles in the cytoplasm of E. coli (Parry et al., 2014) whereas
nutrient removal did not (Shi et al., 2021b). In the future, a more comprehensive
exploration of the transcriptomic, metabolomic, and physical state of cells that have
reached stationary phase in various manners may reveal the general and specific

features of starvation.

Complementing previous studies of osmotic-shock oscillations (Rojas et al., 2014;Zhou
et al., 2015;Rojas et al., 2017;Rojas et al., 2018), our work highlights the informative
nature of periodic fluctuations about cellular adaptation. Other relevant transitions of
variables that can be rapidly adjusted such as temperature, pH, and oxygen levels
should also be considered in the future. It is unknown whether most cells in microbial
ecosystems such as the mammalian intestine are growing quickly or in stationary phase;

likely they experience frequent oscillations in nutrient conditions, and hence studying



333  their response in the context of relatively constant environments and when cells can

334  modify the environment should help to reveal their robustness to such fluctuations.
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Methods

Strain culturing

All cultures were grown in 3 mL of filter-sterilized LB at 37 °C in glass test tubes with
constant shaking at 225 rpm, in aerobic conditions except where indicated. Cultures
were started at an OD of 0.1 with cells from a 5-7 h culture inoculated from a frozen
stock (Fig. 1,2,4,5), or were inoculated from a frozen stock and grown overnight before
being diluted 1:200 and grown for the specified interval (Fig. 3). Spent medium was
isolated by spinning down (at 4000g for 5 min) and filtering a culture that had been
grown for 17 h (Fig. 1,2,4,5) or 16 h (Fig. 3) with a 0.22-um polyethersulfone filter
(Millex-GP SLGP033RS). The time point (16 h or 17 h) was determined by imaging cells
on agarose pads made with fresh LB every hour starting at 12 h, and selecting the last
time point without substantial heterogeneity in regrowth due to the onset of dormancy

(Cesar et al., 2022). This time varied slightly between media batches.

Measurements of population growth

Growth curves were obtained using an Epoch 2 Microplate Spectrophotometer (Biotek
Instruments, Vermont). The plate reader went through 15-min cycles of incubation at 37
°C, shaking linearly for 145 s, and then absorbance measurements (wavelength 600 nm,

25 flashes, 2-ms settle between flashes).
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Single-cell imaging on agarose pads

One microliter of cells was diluted 1:200 with fresh medium and spotted onto a pad of
1% agarose with LB, spent medium, or water as indicated, and imaged on a Nikon
Eclipse Ti-E inverted fluorescence microscope with a 100X (NA 1.40) oil-immersion
objective (Nikon Instruments). Phase-contrast and epifluorescence images were
collected on a DU885 electron-multiplying CCD camera (Andor Technology) or a Neo
sCMOS camera (Andor Technology) using ptManager v. 1.4 (Edelstein et al., 2010). Cells
were maintained at 37 °C during imaging with an active-control environmental

chamber (Haison Technology).

Microfluidic flow cell experiments

For experiments initialized with stationary phase cells, cultures were grown for 17 h
before being loaded into a microfluidic flow cell (CellASIC). For experiments initialized
with exponentially growing cells, overnight cultures grown in LB were diluted 1,000-
fold into LB and incubated at 37 °C until the cells were in log phase. These cultures
were diluted 100-fold into pre-warmed medium and loaded into a microfluidic flow cell
(CellASIC). To ensure that cells were growing exponentially, the flow cell was
incubated for an additional 1 h in the microscope environmental chamber, which was

preheated to 37 °C, before cells were imaged. Before loading cells into the imaging
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chamber of the flow cell, the chamber was primed with growth medium using the
ONIX microfluidic perfusion platform (CellASIC). While imaging, fresh or spent

medium was perfused through the flow cell as indicated.

Image analysis

The MATLAB (MathWorks, Natick, MA, USA) image processing code Morphometrics
(Ursell et al., 2017) was used to segment cells and to identify cell outlines from phase-
contrast microscopy images. Cell area was used for growth rate measurements, as
follows. Segmented cell outlines were used to calculate area Ai at each time point t;, and
the instantaneous growth rate 1/A dA/dt at time ti was estimated as 1/4;(A4;+1 —
A;)/(tiz1 — t;). Occasionally growth rate increased or decreased in magnitude by several
fold for only a single time point due to focus issues; those time points were removed

from the dataset.

For Fig. 2C, mCherry fluorescence intensity was quantified for all pixels within a given

cell contour and the number of pixels above a threshold (350) was computed. The

threshold was determined via manual inspection.

Data availability
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405  All data are available upon request from the corresponding author.
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Figure 1: Switches between spent and fresh media result in almost immediate

growth-rate responses.

A) Schematic of protocol for time-lapse imaging of E. coli in microfluidic flow cells

during media-switching experiments.

B) Upon exposure to fresh LB, stationary-phase cells exhibited an initial increase in

growth rate followed by gradual acceleration up to a maximum of ~0.03 min'!

over ~120 min. Curve is the mean growth rate for n>80 cells, with similar

behavior in >5 replicate experiments.
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C) Exponentially growing cells halted their growth almost immediately after being
switched to spent supernatant from a stationary-phase culture. Instantaneous
growth rate was initially slightly negative but was slightly positive after ~30 min
(zoomed inset). Curve is the mean growth rate for #>80 cells, with similar

behavior in 25 replicate experiments.
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Figure 2: Cells can retain memory of their previous growth state during exposure to

spent medium.

A) Dynamics of periodic switching between spent and fresh media using a

microfluidic flow cell.

D) For switches every 20 min, growth accelerated during periods in fresh LB

(yellow), and rapidly halted in spent LB (blue). During shifts to spent LB, growth

rate was slightly negative (inset), and periplasmic mCherry accumulated at the
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poles. Curve is the mean growth rate for n>180 cells, with similar behavior in >5
replicate experiments.

mCherry accumulated in the periplasm during the interval in spent medium
(blue), and then immediately began to redistribute after switching to fresh LB
(yellow). Shown is the number of bright pixels, defined as having intensity >350,
with the frames of the time-lapse imaging dataset in (B); polar accumulation
corresponds to a larger number of bright pixels. The curve was smoothed over 5
time points.

Aside from the peaks directly after switching to fresh LB, the dynamics of
growth during intervals in fresh LB (blue, data from (B) with the intervals in
spent LB extracted computationally) followed a quantitatively similar trajectory
as cells that had not experienced switches back to spent LB (orange, data from

Fig. 1B).
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443 Figure 3: Memory of growth in fresh medium degrades slowly in perfusing spent

444  medium.



445 A) Schematic of protocol for quantifying the response to pulses of fresh and spent

446 medium. In a microfluidic flow cell, stationary-phase cells were diluted into

447 fresh medium for 1 h, then switched to spent medium. After various intervals,
448 cells were switched to fresh LB. Growth was monitored before and after the

449 switch back to fresh LB.

450 B,C) After 1 h of incubation in spent medium, growth trajectories upon switching to
451 fresh LB were slightly slower than with no exposure to spent medium (0 h). The
452 lag in regrowth increased by ~10 min for 2-5 h of incubation in spent medium.
453 After 7 or 10 h of incubation in spent medium, growth rate was substantially

454 increased in spent medium. While there was a further delay in rejuvenation after
455 7 h of incubation in spent medium, in all cases regrowth was faster than for a

456 switch from stationary phase to fresh medium (Fig. 1B). Curves in (B) are mean
457 values and shaded regions represent 1 standard deviation. Curves in (C) are the
458 same as in (B) except shifted to overlay the time at which cells were exposed to
459 fresh LB. Each curve is the mean of #>15 cells, and shading represents 1 standard

460 deviation.
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462  Figure 4: Continuous flow of spent medium is necessary for maintaining viability

463  after transient exposure to fresh medium.
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A) Schematic of experiment in which stationary-phase cells were diluted into fresh
LB for 1 h and resuspended in spent supernatant for various intervals. Growth
was then measured on agarose pads made with fresh LB via single-cell time-
lapse imaging.

B-E) Cells showed growth defects after incubation in spent medium in a test tube.
Left: images of cells at the start of imaging. Right: quantification of growth-rate
dynamics for a subset of cells. =35 cells were analyzed for each time point.
Results were similar in a replicate experiment.

B) After 0 h (no resuspension in spent medium), cells grew at their maximal growth
rate of ~0.03 min.

C) After 1 h of incubation in spent medium, growth rate for many cells was
substantially lower than in (B).

D) After 2 h of incubation in spent medium, growth rate was close to zero for most
cells, and many cells exhibited cytoplasmic shrinkage (arrowheads).

E) After 3 h of incubation in spent medium, most cells exhibited cytoplasmic
shrinkage (top cell) or had lysed at the start of imaging (bottom cell).

F) After 3 h of incubation in spent medium, one of the few cells that grew exhibited

fluctuations between growth and shrinking.
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Figure 5: Incubation in water or anaerobic incubation in spent medium does not lead

to growth defects.
A) Schematic of experiment in which stationary-phase cells were diluted into fresh

LB for 1 h and resuspended in either H2O or anaerobically in pre-reduced spent



487

488

489

490

491

492

493

494

495

496

497

498

499

500
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medium for 3 h. Growth was then measured via single-cell time-lapse imaging
on fresh LB agarose pads.

Top: After 3 h of incubation in water, when placed on agarose pads made with
fresh LB cells did not exhibit any lysis and resumed rapid growth. Shown are
growth-rate dynamics for a subset of cells. #n>50 cells were analyzed for each time
point, and similar results were observed in a replicate experiment. Bottom:
representative phase-contrast images illustrating growth.

Top: Aerobically grown stationary phase cells were exposed to a 1-h pulse of
fresh LB and then resuspended in pre-reduced spent medium isolated from an
aerobically grown culture. After 3 h of anaerobic incubation in the spent
medium, cells were able to regrow rapidly. Shown are growth-rate dynamics for
a subset of cells. n>50 cells were analyzed for each time point, and similar results
were observed in a replicate experiment. Bottom: representative phase-contrast

images illustrating growth.



501  Supplementary Tables

Strain Genotype Source/reference

E. coli MG1655 Escherichia coli K-12 wild-type CGSC #6300

KC1193 MG1655, attHK::Pia-dsbAss-mCherry, pZS21- (Sutterlin et al., 2016)
GFP

502  Table S1: Strains used in this study.
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