
Title: Within-host evolution of the gut microbiome 1 

 2 

Authors: Tanja Dapa1,*, Daniel Patrick Ga Heung Wong2,*, Kimberly S. Vasquez3, 3 

Karina B. Xavier1,†, Kerwyn Casey Huang3,4,5,†, Benjamin H. Good2,† 4 

 5 

Affiliations: 6 

1Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal 7 

2Department of Applied Physics, Stanford University, Stanford, CA 94305, USA 8 

3Department of Microbiology and Immunology, Stanford University School of 9 

Medicine, Stanford, CA 94305, USA 10 

4Department of Bioengineering, Stanford University, Stanford, CA 94305, USA 11 

5Chan Zuckerberg Biohub, San Francisco, CA 94158 12 

 13 

*: These authors contributed equally. 14 

†To whom correspondence should be addressed: kxavier@igc.gulbenkian.pt, 15 

kchuang@stanford.edu, bhgood@stanford.edu 16 

 17 

Keywords: gut microbiome; fitness; distribution of fitness effects; lineage tracking; 18 

DNA barcoding; evolution experiments; Escherichia coli; Bacteroides thetaiotaomicron  19 



Abstract 20 

Gut bacteria inhabit a complex environment that is shaped by interactions with 21 

their host and the other members of the community. While these ecological 22 

interactions have evolved over millions of years, mounting evidence suggests 23 

that gut commensals can evolve on much shorter timescales as well, by acquiring 24 

new mutations within individual hosts. In this review, we highlight recent 25 

progress in understanding the causes and consequences of short-term evolution 26 

in the mammalian gut, from experimental evolution in murine hosts to 27 

longitudinal tracking of human cohorts. We also discuss new opportunities for 28 

future progress by expanding the repertoire of focal species, hosts, and 29 

surrounding communities, and by combining deep-sequencing technologies with 30 

quantitative frameworks from population genetics.  31 



Introduction 32 

The microorganisms that inhabit a particular host, collectively known as the 33 

microbiota, are intimately intertwined with their environment and play an 34 

important role in influencing the health of their host. These host-associated 35 

communities are often noted for their high taxonomic diversity, particularly in 36 

the mammalian gut, where hundreds of species coexist with each other in close 37 

physical proximity [1]. Millions of years of evolution have shaped these 38 

symbiotic interactions [2], producing a diverse array of commensal gut species 39 

and vast amounts of strain-level variation at finer levels of genomic resolution [3-40 

5]. Many commensal strains appear to be particularly well-adapted to the 41 

environment of their host species [6-10], suggesting that long-term evolution has 42 

played an important role in producing and maintaining this specificity [11-13]. 43 

While these long-term effects of evolution are widely appreciated, it has only 44 

recently become apparent that gut commensals can evolve on host-relevant 45 

timescales as well. Time-resolved sequencing has started to illuminate this 46 

process, with a growing number of examples, first in mice [14-22] and more 47 

recently in humans [23-31], showing that genetic changes can sweep through 48 

resident populations of gut bacteria over years, months, and even days. This 49 

capacity for rapid evolution has underexplored relevance for the structure and 50 

function of the gut microbiota. 51 



 52 

These observations of ongoing evolution of commensal gut bacteria may initially 53 

seem surprising. Many of these species have inhabited their mammalian hosts 54 

for millions of years [12,13,32], and are not thought to engage in the 55 

immunological arms races that are common in bacterial pathogens [33]. Under 56 

these conditions, any strongly beneficial mutations should have already had an 57 

opportunity to fix long ago. Larger microbial communities also have the ability 58 

to adapt to changing environments through purely ecological means (e.g., 59 

shifting the abundances of the resident species, or acquiring a new strain from 60 

outside the host [23,34]), which could foreclose opportunities for additional 61 

within-host evolution. However, there is a growing recognition that some 62 

changes in the host environment (e.g., dietary shifts, the presence or absence of a 63 

particular community member) can create new opportunities for local adaptation 64 

that are not negated by shifts in the abundance of the resident strains. In these 65 

cases, mutations can create novel genotypes that are better adapted to the altered 66 

environment than their parent genotype, often involving subtle changes in 67 

metabolic capabilities [16-18,20,21]. The fitness advantages of these mutations are 68 

typically small by physiological standards (e.g., ≤10% change in growth rate), but 69 

these small advantages are more than sufficient to drive large shifts in frequency 70 

within a host over hundreds of bacterial generations (10-100 days). Given the 71 



large population sizes in the mammalian gut (>1011 cells), even a miniscule 72 

mutation rate for these locally adaptive mutations (>10-10 per generation) will 73 

generate multiple such mutations within a host each day. 74 

 75 

This ongoing evolution can have important functional consequences. Some 76 

genetic variants have been observed to alter metabolic phenotypes 77 

[15,17,18,21,35], the breakdown of drugs [36,37], the spread of antibiotic 78 

resistance phenotypes [38], or colonization resistance against pathogens [39]. 79 

Genetic modifications can also alter ecological interactions between species 80 

[40,41], driving broader shifts in the taxonomic composition of the host 81 

community. These dynamics could have important implications for probiotic 82 

therapies (e.g., fecal microbiome transplants), since they suggest that the 83 

ecological interactions between resident strains could strongly depend on their 84 

personalized history of co-evolution. More broadly, many microbiome 85 

experiments involving a controlled environmental shift typically focus on 86 

changes in taxonomic composition and gene expression, which are intrinsically 87 

dependent on the immune system, diet, and biophysical aspects of the host 88 

environment. Even though all of these factors are selection pressures, the 89 

potential for genetic adaptation over the same experimental timeframe is often 90 

ignored. Host factors that have previously been associated with microbiota 91 



dysbiosis (inflammation, obesity, behavior, and circadian rhythm) may also be 92 

influenced by the accumulation of new mutations during the experiment. In this 93 

manner, the capacity for rapid bacterial evolution could have far-ranging 94 

implications for how the microbiome influences host physiology. 95 

 96 

Despite the potential importance of these effects, the causes and consequences of 97 

within-host evolution in the gut microbiota are only starting to be explored. In 98 

this review, we highlight some of the key open questions, as well as new 99 

opportunities for progress using tools from genetics, sequencing, and systems 100 

biology. 101 

 102 

What factors determine the evolutionary selection pressures within the 103 

mammalian gut? 104 

Gut bacteria evolve in a complex environment, which is shaped by interactions 105 

with their host as well as other members of their local community. 106 

Understanding how these factors contribute to the evolutionary selection 107 

pressures within the gut has been a major focus of recent research (Fig.1). 108 

 109 

Experimental evolution in murine hosts has been a powerful tool for addressing 110 

these questions. Much of this work has utilized Escherichia coli as a “focal” 111 



species [15,20-22,43], due to its genetic tractability and ease of isolation. By 112 

sequencing evolved strains from one or more host populations, the targets of 113 

selection can be inferred from parallel mutations that repeatedly occur in the 114 

same genes or pathways (Fig. 2). These experiments have shown that E. coli 115 

evolution is remarkably predictable across hosts with the same diet and genetic 116 

background [15,21]. However, both the number and types of mutations can vary 117 

dramatically under different host conditions. For example, E. coli accumulate 118 

fewer mutations in immunocompromised mice compared to wild-type mice, and 119 

the fitness of reconstructed mutants differs between the two host genotypes [14]. 120 

The targets of adaptation can also vary with the age of the host [16,44], shifting 121 

from metabolic functions in young mice to stress-related functions in older mice, 122 

which could reflect their higher levels of gut inflammation [44]. These findings 123 

suggest that some of the selection pressures in the mouse gut are shaped by 124 

interactions with the immune system, either directly (through host-microbe 125 

interactions) or indirectly (through altered microbiota composition). 126 

 127 

Extrinsic host factors like diet can also shape the evolution of gut commensals. 128 

The model human commensal Bacteroides thetaiotaomicron acquires different 129 

mutations in mice with a diet high in plant polysaccharides and fiber versus a 130 

diet high in fat and simple sugars: the latter selects for mutants with enhanced 131 



ability to consume host-derived glycans [17], and that had increased fitness when 132 

plant polysaccharides and fiber are absent [45]. Moreover, weekly alternations 133 

between diets leads to oscillating frequencies of diet-selected mutations [17,46], 134 

indicating that even transient fluctuations in available nutrients can present a 135 

strong selection pressure. 136 

 137 

In addition to host factors, other members of the microbiota can play an 138 

important role in shaping the selection pressures experienced by a given focal 139 

species. The mutations acquired by E. coli can be altered by co-colonization with 140 

a single additional gut species (Blautia coccoides), shifting from mutations that 141 

increase E. coli’s ability to compete for amino acids to those involving anaerobic 142 

respiration [15]. Evolution is also affected by intra-species interactions: while E. 143 

coli evolve via de novo mutations in many mouse evolution experiments 144 

[15,16,21,22], the presence of a resident mouse E. coli strain can shift the evolution 145 

of invading strains toward horizontal acquisition of prophage elements from the 146 

resident [47,48]. These observations echo behavior of the human gut microbiota, 147 

for which horizontal gene transfer has been observed both within [23,29,49,50][ 148 

and between [31,50,51] resident gut species. 149 

 150 

Conceptual and quantitative frameworks for interpreting short-term evolution 151 



in the gut 152 

With this recent proliferation of experimental data, there is a growing need for 153 

modeling approaches that can synthesize these diverse observations of 154 

microbiota evolution into a common conceptual framework. 155 

 156 

Two contrasting models are often invoked to explain the rapid evolution of 157 

commensal gut bacteria. The first (known as “niche filling” [52]) proposes that 158 

evolution is mainly driven by mutations that allow species to exploit 159 

underutilized niches, which could arise from mismatches between bacteria and 160 

hosts (e.g., when human gut commensals are evolved in mice) or from the 161 

absence of normal competitors (e.g., during monocolonization). This model 162 

predicts that as more and better adapted species are added to a community, the 163 

space of open niches shrinks, producing fewer avenues for beneficial mutations 164 

[53,54]. However, an alternative view (known as “diversity begets diversity”) 165 

holds that more diverse communities provide more opportunities for adaptation 166 

to the functions of other community members, e.g. by exploiting metabolic 167 

interactions [55] or by resisting interspecies competition such as type VI killing 168 

[56] or phage [47,48,57]. 169 

 170 

Empirical support for these models is currently mixed. While a recent study of 171 



rainwater pools found that evolution was slower in more diverse communities 172 

[54], previous observations in the mouse gut showed that E. coli strains acquire 173 

similar numbers of mutations in monocolonized mice as they do with a diverse 174 

microbiota [15,48]. Similarly, observational data from humans suggests that the 175 

frequency of within-host sweeps is largely flat (or slightly increasing) over the 176 

diversity ranges typical of healthy human gut microbiotas [58]. 177 

 178 

These results highlight the challenges of defining the tempo of evolution in 179 

different community contexts. The qualitative models introduced above are often 180 

too simplistic (and hence too flexible) to explain evolutionary dynamics across 181 

experiments in which many variables change at once. Even well-defined genetic 182 

quantities, like the number and types of mutations that are observed in 183 

sequenced isolates (Fig. 2), depend on basic parameters such as population size 184 

and mutation rate [59-61], which can vary across hosts and in different 185 

community contexts. Inspired by population genetics theory and in vitro 186 

evolution experiments, we argue that a useful approach is to focus on the 187 

distribution of fitness effects (DFE) of new mutations (Fig. 3A,B), which 188 

summarizes the spectrum of mutations available to an organism in its current 189 

environment before they are amplified by natural selection. While environments 190 

are often defined in terms of abiotic factors such as growth medium, for the 191 



microbiota the concept of environment must be generalized to include both 192 

intrinsic and extrinsic host factors (e.g., diet) as well as the composition of the 193 

surrounding community (Fig. 3C,D). 194 

 195 

Together, the population size and the DFE control both the rate of adaptation 196 

and the number and types of mutations that reach high frequency within a 197 

population (Fig. 3E). By enumerating the spectrum of adaptive mutations before 198 

they are amplified by selection, the DFE provides a metric enabling quantitative 199 

comparisons of the adaptive landscape across environmental contexts. For 200 

example, the DFE can distinguish between scenarios in which the number of 201 

adaptive pathways increases or decreases as the surrounding community 202 

changes, as well as between scenarios in which the magnitude of fitness effects 203 

changes but the total number of adaptive mutations remains constant. This 204 

ability enables quantitative tests of the two qualitative hypotheses discussed 205 

above. Furthermore, by considering the joint distribution of fitness effects (JDFE) 206 

across multiple environments (Fig. 3F), this concept can be extended to predict 207 

the fitness tradeoffs that are likely to arise during evolution to conditions [62]. 208 

Such measurements are critical for understanding the contingency of the 209 

adaptive mutations that arise in different environmental contexts. 210 

 211 



DFEs have been enormously useful for understanding and quantifying 212 

evolutionary dynamics in laboratory evolution experiments [63-65], but their 213 

applications to gut microbiota evolution have so far been limited – largely due to 214 

difficulties in sampling the requisite number of adaptive mutations. The parallel 215 

mutations observed in isolate or metagenomic sequencing constitute a small and 216 

biased slice of the DFE, since they have already been filtered by natural selection 217 

[61]. Genome-wide transposon insertion sequencing (TnSeq) approaches have 218 

emerged as a promising tool for measuring the DFE of all single gene knockout 219 

mutations in vivo [66-69]. While existing TnSeq studies have largely provided 220 

information regarding deleterious mutations (i.e., genes whose presence is 221 

beneficial), recent work has shown that these libraries can also be used to 222 

identify spontaneous beneficial mutations that accumulate in these populations 223 

over time [46]. Thus, TnSeq could provide a scalable approach for quantifying 224 

the spectrum of adaptive mutations in vivo, and how it varies across focal species, 225 

diets, and community backgrounds. 226 

 227 

In addition to de novo mutations, resident populations can be outcompeted by 228 

other strains of the same species that invade from outside the host. These strain 229 

replacement events have been observed in mice [21] and humans [23,26,28,70-72], 230 

and depend on the migration rates between hosts, as well as the ability of the 231 



invading strains to expand to high frequencies in their new environment. The 232 

JDFE concept can also be extended to enumerate the fitness of circulating strains 233 

within the global strain pool (and the potential tradeoffs they encounter in their 234 

transmissibility). Such measurements will be critical for understanding the 235 

competition between local adaptation and transmission across multiple host 236 

communities. 237 

 238 

How does evolution influence ecological structure? 239 

While much work has focused on how community context influences evolution, 240 

a key related question is how short-term evolution impacts microbiota structure 241 

and function. If the niches of different species are relatively fixed and 242 

disconnected, then evolution would be expected to have a minimal effect on 243 

ecological structure, and then primarily on closely related species. However, if 244 

beneficial mutations can alter ecological interactions between species (e.g., by 245 

acquiring a new pathway via horizontal gene transfer, selection of mutations in 246 

transcriptional regulators resulting in increased expression of certain metabolic 247 

pathways and increased consumption of specific nutrients, or evolving resistance 248 

to a phage that was previously limiting population size), then fixation of these 249 

mutations could change the relative abundances of other species in the 250 

community – and potentially alter future selection pressures as well. 251 



 252 

While several studies have shown that specific genetic modifications of gut 253 

commensals can alter the relative abundances of other species [40,41,73], it is not 254 

known whether these variants are representative of the beneficial mutations that 255 

accumulate during within-host evolution. A recent meta-analysis of human gut 256 

metagenomes found that genetic changes within species are statistically 257 

associated with shifts in community composition over the same time intervals 258 

[58]. These shifts were primarily driven by the extinction of distantly related 259 

species, rather than expansion of the focal species itself. These observations are 260 

consistent with theoretical predictions from simple resource competition models, 261 

which suggest that small shifts in the resource uptake rates of a single species can 262 

produce large shifts in species abundances in communities with a high degree of 263 

metabolic overlap [58,74,75]. Future experiments are needed to establish the 264 

causal directions of these statistical associations, and to quantify the niche-265 

altering effects of beneficial mutations more generally. 266 

 267 

Roadmap for the future investigation of evolution in the gut 268 

Expanding the repertoire of focal species 269 

While the initial focus on E. coli was instrumental for identifying the selection 270 

pressures facing gut commensals, future work will need to focus on many other 271 



species to understand which discoveries generalize across gut commensals and 272 

which are specific. Bacteroides species provide a natural starting point, given their 273 

genetic tractability [68,76-78] and their high abundance and prevalence within 274 

the gut of Western individuals [79]. B. thetaiotaomicron is a generalist [80] that has 275 

long served as a model commensal due to its ability to consume host-derived 276 

glycans when its preferred nutrients (plant-derived complex polysaccharides) are 277 

not present in the diet [45]. Recent experiments have started to explore how this 278 

metabolic plasticity impacts how B. theta evolves with different host diets [17]. 279 

 280 

It will also be necessary to investigate other species with distinct lifestyles from 281 

B. thetaiotaomicron. Other Bacteroides species engage in interspecies cooperation 282 

through cross-feeding of extracellularly digested polysaccharides [40]. Bacteroides 283 

vulgatus is a natural candidate for exploring how these cooperative interactions 284 

impact evolution, due to its high abundance in the human gut [79], and its 285 

relevance for human health as a potential pathobiont [81] and ability to protect 286 

against E. coli-induced colitis [82]. Other Bacteroides species interact more 287 

strongly with the immune system (e.g., Bacteroides ovatus [83] or Bacteroides 288 

fragilis [84], which are both highly coated by IgA), and hence could be useful for 289 

understanding of the interplay between immune system and gut commensal 290 

evolution. The use of native mouse species like Bacteroides caecimuris could 291 



address questions about the role of host mismatch in driving within-host 292 

evolution [85]. 293 

 294 

Despite their importance, Bacteroides species represent only a fraction of the 295 

genetic and functional diversity in the mammalian gut. Additional biology may 296 

be uncovered by studying the evolution of more phylogenetically distant gut 297 

commensals such as mucus degradation specialists like Akkermansia muciniphila, 298 

or butyrate producers like Eubacterium rectale, which are essential for proper 299 

maturation of the immune system [86]. Enterococcus gallinarum, a model gut 300 

pathobiont, evolves into two lineages within mice, specialized in colonization of 301 

either the gut lumen or mucosal niches [42]. The strain evolved for mucosal 302 

colonization through altered gene expression and cell-wall architetcture and 303 

exhibited increased ability to translocate and survive within the mesenteric 304 

lymph nodes and liver, with a trade-off of reduced transmissibility [42]. 305 

 306 

A comprehensive understanding of the evolutionary potential of a given species 307 

may also require distinguishing between finer genetic backgrounds. Recent work 308 

has shown that different mutations accumulate in laboratory E. coli strains 309 

compared with natural isolates [20], and that the DFEs of two B. thetaiotaomicron 310 

strains can systematically differ even when they co-colonize the same mice [46]. 311 



Resolving these genetic interactions will likely require evolution experiments 312 

using isolates from a broad range of hosts and/or host species, which is becoming 313 

increasingly feasible with modern strain collections [26]. 314 

 315 

Systematic modulation of the surrounding community 316 

Further progress will also rely critically on our ability to systematically vary the 317 

biotic environment in which the focal species evolves. Comparing the evolution 318 

of focal species in monocolonized mice and simple synthetic communities has 319 

been a useful tool for uncovering host- and microbiota-dependent factors in 320 

adaptation [15]. These efforts will be facilitated by the development of larger 321 

defined communities that mimic the diversity, composition, and functionality of 322 

the full mammalian gut microbiota [85,87]. Combinatorial manipulation of these 323 

defined communities will be essential for understanding how the surrounding 324 

community influences evolutionary trajectories. 325 

 326 

A thorough understanding of these effects will likely require orders of 327 

magnitude more experiments than are currently feasible with existing germ-free 328 

mouse setups. While living hosts will remain essential for disentangling the role 329 

of some host-dependent features (e.g., the adaptive immune system), in vitro 330 

evolution of synthetic gut communities provides a promising way to achieve the 331 



required levels of replication while maintaining the complexity of the 332 

surrounding community. A future challenge is to determine to what extent in 333 

vivo conditions can be translated into a laboratory context; recent successes with 334 

in vitro passaging of stool suggest that certain rich media are reasonable mimics 335 

of the nutrient environment within a host [88]. Organoid systems and other 336 

animal models may serve as a bridge between in vitro and mouse evolution 337 

experiments. Insects such as fruit flies have lower diversity gut microbiotas with 338 

less complex nutrient supplies and more interspecies competition [89,90]. 339 

Hopefully, all of these models synergize to improve our understanding of 340 

general principles of evolution in the gut. 341 

 342 

Tools for quantifying evolutionary dynamics and phenotypes 343 

Advances in sequencing are enabling exploration of evolutionary dynamics at 344 

finer temporal resolution and at larger scale. Barcoding enables tracking of 345 

thousands of lineages across hundreds of time points from an experiment in a 346 

single sequencing run (Fig. 2B), which should facilitate the design of experiments 347 

to quantitatively evaluate the effects of host factors such as the immune system 348 

or diet, environmental factors such as housing, and community context on 349 

evolutionary dynamics. The main obstacle to barcoding is the requirement of 350 

high transformation efficiency in the species of interest, which has not yet been 351 



achieved for many gut commensals. 352 

 353 

While animal models provide a tractable system for controlled experiments, it is 354 

likely that some aspects of within-host evolution may ultimately be host-355 

dependent, given differences in gut anatomy and the potential for long-term 356 

adaptation between commensals and their hosts. The decreasing cost of 357 

sequencing should permit longitudinal sampling of humans more densely and 358 

over longer intervals to pin down evolutionary trajectories from metagenomics 359 

and isolate sequencing. Cost reductions in long-read sequencing [91] will also 360 

clarify the role that mobile genetic elements and other difficult-to-assemble 361 

structural variants play in driving short-term evolution within hosts. A broad 362 

range of existing longitudinal studies have already been processed for DNA 363 

extraction for 16S rRNA sequencing; revisiting these studies with metagenomic 364 

sequencing could serve to rapidly expand the sequencing database from which 365 

to detect adaptive mutations. 366 

 367 

Ultimately, the ability to successfully interpret the functional consequences of 368 

mutations will require other means of interrogation to gather phenotypic 369 

information associated with mutations. Advances in metabolomics [92] will 370 

reveal changes to the gut environment associated with enhanced metabolic 371 



activity. Quantifying the phenotypic landscape of gene knockout and 372 

overexpression libraries in gut commensals [66,67,93] will provide a baseline 373 

expectation for mutations in each gene. Genetic tools to reconstruct observed 374 

mutations in the species of interest will be critical to close the loop so that 375 

mutants can be studied in vivo and in competitive colonization experiments. 376 

Finally, a greater understanding of the biophysics of spatial structure in the gut 377 

[1,94,95] may be necessary to acquire a full picture of gut ecology and evolution.  378 
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Figures 387 

 388 

 389 

Figure 1: Connections between evolution and ecology in the mammalian gut. 390 

Host factors like aging, medication, diet, and immune status affect the gut 391 

microbiota through its composition. Focal species (green oval) can evolve due to 392 

selection pressures directly from the host factors or indirectly from the 393 

surrounding community. The evolved focal species (red oval) may differ from its 394 

ancestor through the ability to consume different nutrients or to survive and 395 

colonize different environments. Evolution of the focal species may in turn affect 396 

the surrounding community by perturbing the landscape of nutrient competition 397 

or providing nutrients through cross-feeding, and can affect the gut environment 398 

(e.g., by altering pH or colonizing distinct regions of the intestines).  399 



 400 

Figure 2: Sequencing approaches for quantifying within-host evolution of gut 401 

commensals. 402 

A) Whole genome sequencing-based studies infer adaptive evolution by 403 

tracking individual mutations that rise to substantial frequencies within a 404 

host. Top: metagenomic sequencing approaches track the frequencies of 405 

(linked) mutations within a host over time, providing information about 406 

the total fitness benefits of their corresponding haplotypes. Bottom: isolate 407 

sequencing can provide information about the targets of adaptation, by 408 

observing parallel mutations across multiple independent lineages. 409 

B) Barcode sequencing-based studies can simultaneously track tens of 410 

thousands of genetically tagged lineages within a single population with 411 

high frequency resolution, allowing high-throughput measurement of 412 

expanding lineages that acquire adaptive mutations.  413 



 414 

Figure 3: The distribution of fitness effects (DFE) provides a quantitative 415 

framework for evaluating qualitative models of microbiota evolution. 416 

A) The DFE captures the spectrum of mutations available to a focal species in 417 

a particular environment (e.g., a fiber-rich diet and a baseline microbiota). 418 

B-D) Each tile in the DFE represents a mutation with a given target size and 419 

fitness effect, which can be measured from the slope of the log ratio of 420 

mutant-to-parent genotypes over time. Since the fitness effect of a 421 

mutation may depend on host- or community-context, the same focal 422 

species will have different DFEs across different environments, which 423 

could include changes in host-extrinsic factors such as diet (C) or 424 

differences in the surrounding microbial community (D). 425 



E) The joint DFE (JDFE) generalizes the DFE across multiple environments, 426 

by enumerating the fitness effects of the same mutation across different 427 

environments. 428 

F) The DFE and JDFE determine the evolutionary dynamics within a single 429 

host (e.g., the rate of fitness increase or the parallel mutations observed in 430 

sequenced isolates) as well the evolutionary tradeoffs (pleiotropy) of 431 

mutations in other host conditions.  432 
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