

1 **Title: Within-host evolution of the gut microbiome**

2

3 **Authors:** Tanja Dapa^{1,*}, Daniel Patrick Ga Heung Wong^{2,*}, Kimberly S. Vasquez³,

4 Karina B. Xavier^{1,†}, Kerwyn Casey Huang^{3,4,5,†}, Benjamin H. Good^{2,†}

5

6 **Affiliations:**

7 ¹Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal

8 ²Department of Applied Physics, Stanford University, Stanford, CA 94305, USA

9 ³Department of Microbiology and Immunology, Stanford University School of

10 Medicine, Stanford, CA 94305, USA

11 ⁴Department of Bioengineering, Stanford University, Stanford, CA 94305, USA

12 ⁵Chan Zuckerberg Biohub, San Francisco, CA 94158

13

14 ^{*}: These authors contributed equally.

15 [†]To whom correspondence should be addressed: kxavier@igc.gulbenkian.pt,

16 kchuang@stanford.edu, bhgood@stanford.edu

17

18 **Keywords:** *gut microbiome; fitness; distribution of fitness effects; lineage tracking;*

19 *DNA barcoding; evolution experiments; Escherichia coli; Bacteroides thetaiotaomicron*

20 **Abstract**

21 Gut bacteria inhabit a complex environment that is shaped by interactions with
22 their host and the other members of the community. While these ecological
23 interactions have evolved over millions of years, mounting evidence suggests
24 that gut commensals can evolve on much shorter timescales as well, by acquiring
25 new mutations within individual hosts. In this review, we highlight recent
26 progress in understanding the causes and consequences of short-term evolution
27 in the mammalian gut, from experimental evolution in murine hosts to
28 longitudinal tracking of human cohorts. We also discuss new opportunities for
29 future progress by expanding the repertoire of focal species, hosts, and
30 surrounding communities, and by combining deep-sequencing technologies with
31 quantitative frameworks from population genetics.

32 **Introduction**

33 The microorganisms that inhabit a particular host, collectively known as the
34 microbiota, are intimately intertwined with their environment and play an
35 important role in influencing the health of their host. These host-associated
36 communities are often noted for their high taxonomic diversity, particularly in
37 the mammalian gut, where hundreds of species coexist with each other in close
38 physical proximity [1]. Millions of years of evolution have shaped these
39 symbiotic interactions [2], producing a diverse array of commensal gut species
40 and vast amounts of strain-level variation at finer levels of genomic resolution [3-
41 5]. Many commensal strains appear to be particularly well-adapted to the
42 environment of their host species [6-10], suggesting that long-term evolution has
43 played an important role in producing and maintaining this specificity [11-13].

44 While these long-term effects of evolution are widely appreciated, it has only
45 recently become apparent that gut commensals can evolve on host-relevant
46 timescales as well. Time-resolved sequencing has started to illuminate this
47 process, with a growing number of examples, first in mice [14-22] and more
48 recently in humans [23-31], showing that genetic changes can sweep through
49 resident populations of gut bacteria over years, months, and even days. This
50 capacity for rapid evolution has underexplored relevance for the structure and
51 function of the gut microbiota.

52

53 These observations of ongoing evolution of commensal gut bacteria may initially
54 seem surprising. Many of these species have inhabited their mammalian hosts
55 for millions of years [12,13,32], and are not thought to engage in the
56 immunological arms races that are common in bacterial pathogens [33]. Under
57 these conditions, any strongly beneficial mutations should have already had an
58 opportunity to fix long ago. Larger microbial communities also have the ability
59 to adapt to changing environments through purely ecological means (e.g.,
60 shifting the abundances of the resident species, or acquiring a new strain from
61 outside the host [23,34]), which could foreclose opportunities for additional
62 within-host evolution. However, there is a growing recognition that some
63 changes in the host environment (e.g., dietary shifts, the presence or absence of a
64 particular community member) can create new opportunities for local adaptation
65 that are not negated by shifts in the abundance of the resident strains. In these
66 cases, mutations can create novel genotypes that are better adapted to the altered
67 environment than their parent genotype, often involving subtle changes in
68 metabolic capabilities [16-18,20,21]. The fitness advantages of these mutations are
69 typically small by physiological standards (e.g., $\leq 10\%$ change in growth rate), but
70 these small advantages are more than sufficient to drive large shifts in frequency
71 within a host over hundreds of bacterial generations (10-100 days). Given the

72 large population sizes in the mammalian gut ($>10^{11}$ cells), even a minuscule
73 mutation rate for these locally adaptive mutations ($>10^{-10}$ per generation) will
74 generate multiple such mutations within a host each day.

75

76 This ongoing evolution can have important functional consequences. Some
77 genetic variants have been observed to alter metabolic phenotypes
78 [15,17,18,21,35], the breakdown of drugs [36,37], the spread of antibiotic
79 resistance phenotypes [38], or colonization resistance against pathogens [39].

80 Genetic modifications can also alter ecological interactions between species
81 [40,41], driving broader shifts in the taxonomic composition of the host
82 community. These dynamics could have important implications for probiotic
83 therapies (e.g., fecal microbiome transplants), since they suggest that the
84 ecological interactions between resident strains could strongly depend on their
85 personalized history of co-evolution. More broadly, many microbiome
86 experiments involving a controlled environmental shift typically focus on
87 changes in taxonomic composition and gene expression, which are intrinsically
88 dependent on the immune system, diet, and biophysical aspects of the host
89 environment. Even though all of these factors are selection pressures, the
90 potential for genetic adaptation over the same experimental timeframe is often
91 ignored. Host factors that have previously been associated with microbiota

92 dysbiosis (inflammation, obesity, behavior, and circadian rhythm) may also be
93 influenced by the accumulation of new mutations during the experiment. In this
94 manner, the capacity for rapid bacterial evolution could have far-ranging
95 implications for how the microbiome influences host physiology.

96

97 Despite the potential importance of these effects, the causes and consequences of
98 within-host evolution in the gut microbiota are only starting to be explored. In
99 this review, we highlight some of the key open questions, as well as new
100 opportunities for progress using tools from genetics, sequencing, and systems
101 biology.

102

103 **What factors determine the evolutionary selection pressures within the**
104 **mammalian gut?**

105 Gut bacteria evolve in a complex environment, which is shaped by interactions
106 with their host as well as other members of their local community.

107 Understanding how these factors contribute to the evolutionary selection
108 pressures within the gut has been a major focus of recent research (Fig.1).

109

110 Experimental evolution in murine hosts has been a powerful tool for addressing
111 these questions. Much of this work has utilized *Escherichia coli* as a “focal”

112 species [15,20-22,43], due to its genetic tractability and ease of isolation. By
113 sequencing evolved strains from one or more host populations, the targets of
114 selection can be inferred from parallel mutations that repeatedly occur in the
115 same genes or pathways (Fig. 2). These experiments have shown that *E. coli*
116 evolution is remarkably predictable across hosts with the same diet and genetic
117 background [15,21]. However, both the number and types of mutations can vary
118 dramatically under different host conditions. For example, *E. coli* accumulate
119 fewer mutations in immunocompromised mice compared to wild-type mice, and
120 the fitness of reconstructed mutants differs between the two host genotypes [14].

121 The targets of adaptation can also vary with the age of the host [16,44], shifting
122 from metabolic functions in young mice to stress-related functions in older mice,
123 which could reflect their higher levels of gut inflammation [44]. These findings
124 suggest that some of the selection pressures in the mouse gut are shaped by
125 interactions with the immune system, either directly (through host-microbe
126 interactions) or indirectly (through altered microbiota composition).

127
128 Extrinsic host factors like diet can also shape the evolution of gut commensals.
129 The model human commensal *Bacteroides thetaiotaomicron* acquires different
130 mutations in mice with a diet high in plant polysaccharides and fiber versus a
131 diet high in fat and simple sugars: the latter selects for mutants with enhanced

132 ability to consume host-derived glycans [17], and that had increased fitness when
133 plant polysaccharides and fiber are absent [45]. Moreover, weekly alternations
134 between diets leads to oscillating frequencies of diet-selected mutations [17,46],
135 indicating that even transient fluctuations in available nutrients can present a
136 strong selection pressure.

137

138 In addition to host factors, other members of the microbiota can play an
139 important role in shaping the selection pressures experienced by a given focal
140 species. The mutations acquired by *E. coli* can be altered by co-colonization with
141 a single additional gut species (*Blautia coccoides*), shifting from mutations that
142 increase *E. coli*'s ability to compete for amino acids to those involving anaerobic
143 respiration [15]. Evolution is also affected by intra-species interactions: while *E.*
144 *coli* evolve via *de novo* mutations in many mouse evolution experiments
145 [15,16,21,22], the presence of a resident mouse *E. coli* strain can shift the evolution
146 of invading strains toward horizontal acquisition of prophage elements from the
147 resident [47,48]. These observations echo behavior of the human gut microbiota,
148 for which horizontal gene transfer has been observed both within [23,29,49,50][
149 and between [31,50,51] resident gut species.

150

151 **Conceptual and quantitative frameworks for interpreting short-term evolution**

152 **in the gut**

153 With this recent proliferation of experimental data, there is a growing need for
154 modeling approaches that can synthesize these diverse observations of
155 microbiota evolution into a common conceptual framework.

156

157 Two contrasting models are often invoked to explain the rapid evolution of
158 commensal gut bacteria. The first (known as “niche filling” [52]) proposes that
159 evolution is mainly driven by mutations that allow species to exploit
160 underutilized niches, which could arise from mismatches between bacteria and
161 hosts (e.g., when human gut commensals are evolved in mice) or from the
162 absence of normal competitors (e.g., during monocolonization). This model
163 predicts that as more and better adapted species are added to a community, the
164 space of open niches shrinks, producing fewer avenues for beneficial mutations
165 [53,54]. However, an alternative view (known as “diversity begets diversity”)
166 holds that more diverse communities provide more opportunities for adaptation
167 to the functions of other community members, e.g. by exploiting metabolic
168 interactions [55] or by resisting interspecies competition such as type VI killing
169 [56] or phage [47,48,57].

170

171 Empirical support for these models is currently mixed. While a recent study of

172 rainwater pools found that evolution was slower in more diverse communities
173 [54], previous observations in the mouse gut showed that *E. coli* strains acquire
174 similar numbers of mutations in monocolonized mice as they do with a diverse
175 microbiota [15,48]. Similarly, observational data from humans suggests that the
176 frequency of within-host sweeps is largely flat (or slightly increasing) over the
177 diversity ranges typical of healthy human gut microbiotas [58].

178

179 These results highlight the challenges of defining the tempo of evolution in
180 different community contexts. The qualitative models introduced above are often
181 too simplistic (and hence too flexible) to explain evolutionary dynamics across
182 experiments in which many variables change at once. Even well-defined genetic
183 quantities, like the number and types of mutations that are observed in
184 sequenced isolates (Fig. 2), depend on basic parameters such as population size
185 and mutation rate [59-61], which can vary across hosts and in different
186 community contexts. Inspired by population genetics theory and *in vitro*
187 evolution experiments, we argue that a useful approach is to focus on the
188 distribution of fitness effects (DFE) of new mutations (Fig. 3A,B), which
189 summarizes the spectrum of mutations available to an organism in its current
190 environment before they are amplified by natural selection. While environments
191 are often defined in terms of abiotic factors such as growth medium, for the

192 microbiota the concept of environment must be generalized to include both
193 intrinsic and extrinsic host factors (e.g., diet) as well as the composition of the
194 surrounding community (Fig. 3C,D).

195

196 Together, the population size and the DFE control both the rate of adaptation
197 and the number and types of mutations that reach high frequency within a
198 population (Fig. 3E). By enumerating the spectrum of adaptive mutations before
199 they are amplified by selection, the DFE provides a metric enabling quantitative
200 comparisons of the adaptive landscape across environmental contexts. For
201 example, the DFE can distinguish between scenarios in which the number of
202 adaptive pathways increases or decreases as the surrounding community
203 changes, as well as between scenarios in which the magnitude of fitness effects
204 changes but the total number of adaptive mutations remains constant. This
205 ability enables quantitative tests of the two qualitative hypotheses discussed
206 above. Furthermore, by considering the joint distribution of fitness effects (JDFE)
207 across multiple environments (Fig. 3F), this concept can be extended to predict
208 the fitness tradeoffs that are likely to arise during evolution to conditions [62].
209 Such measurements are critical for understanding the contingency of the
210 adaptive mutations that arise in different environmental contexts.

211

212 DFEs have been enormously useful for understanding and quantifying
213 evolutionary dynamics in laboratory evolution experiments [63-65], but their
214 applications to gut microbiota evolution have so far been limited – largely due to
215 difficulties in sampling the requisite number of adaptive mutations. The parallel
216 mutations observed in isolate or metagenomic sequencing constitute a small and
217 biased slice of the DFE, since they have already been filtered by natural selection
218 [61]. Genome-wide transposon insertion sequencing (TnSeq) approaches have
219 emerged as a promising tool for measuring the DFE of all single gene knockout
220 mutations *in vivo* [66-69]. While existing TnSeq studies have largely provided
221 information regarding deleterious mutations (i.e., genes whose presence is
222 beneficial), recent work has shown that these libraries can also be used to
223 identify spontaneous beneficial mutations that accumulate in these populations
224 over time [46]. Thus, TnSeq could provide a scalable approach for quantifying
225 the spectrum of adaptive mutations *in vivo*, and how it varies across focal species,
226 diets, and community backgrounds.

227

228 In addition to *de novo* mutations, resident populations can be outcompeted by
229 other strains of the same species that invade from outside the host. These strain
230 replacement events have been observed in mice [21] and humans [23,26,28,70-72],
231 and depend on the migration rates between hosts, as well as the ability of the

232 invading strains to expand to high frequencies in their new environment. The
233 JDFE concept can also be extended to enumerate the fitness of circulating strains
234 within the global strain pool (and the potential tradeoffs they encounter in their
235 transmissibility). Such measurements will be critical for understanding the
236 competition between local adaptation and transmission across multiple host
237 communities.

238

239 **How does evolution influence ecological structure?**

240 While much work has focused on how community context influences evolution,
241 a key related question is how short-term evolution impacts microbiota structure
242 and function. If the niches of different species are relatively fixed and
243 disconnected, then evolution would be expected to have a minimal effect on
244 ecological structure, and then primarily on closely related species. However, if
245 beneficial mutations can alter ecological interactions between species (e.g., by
246 acquiring a new pathway via horizontal gene transfer, selection of mutations in
247 transcriptional regulators resulting in increased expression of certain metabolic
248 pathways and increased consumption of specific nutrients, or evolving resistance
249 to a phage that was previously limiting population size), then fixation of these
250 mutations could change the relative abundances of other species in the
251 community – and potentially alter future selection pressures as well.

252

253 While several studies have shown that specific genetic modifications of gut
254 commensals can alter the relative abundances of other species [40,41,73], it is not
255 known whether these variants are representative of the beneficial mutations that
256 accumulate during within-host evolution. A recent meta-analysis of human gut
257 metagenomes found that genetic changes within species are statistically
258 associated with shifts in community composition over the same time intervals
259 [58]. These shifts were primarily driven by the extinction of distantly related
260 species, rather than expansion of the focal species itself. These observations are
261 consistent with theoretical predictions from simple resource competition models,
262 which suggest that small shifts in the resource uptake rates of a single species can
263 produce large shifts in species abundances in communities with a high degree of
264 metabolic overlap [58,74,75]. Future experiments are needed to establish the
265 causal directions of these statistical associations, and to quantify the niche-
266 altering effects of beneficial mutations more generally.

267

268 **Roadmap for the future investigation of evolution in the gut**

269 *Expanding the repertoire of focal species*

270 While the initial focus on *E. coli* was instrumental for identifying the selection
271 pressures facing gut commensals, future work will need to focus on many other

272 species to understand which discoveries generalize across gut commensals and
273 which are specific. *Bacteroides* species provide a natural starting point, given their
274 genetic tractability [68,76-78] and their high abundance and prevalence within
275 the gut of Western individuals [79]. *B. thetaiotaomicron* is a generalist [80] that has
276 long served as a model commensal due to its ability to consume host-derived
277 glycans when its preferred nutrients (plant-derived complex polysaccharides) are
278 not present in the diet [45]. Recent experiments have started to explore how this
279 metabolic plasticity impacts how *B. theta* evolves with different host diets [17].

280

281 It will also be necessary to investigate other species with distinct lifestyles from
282 *B. thetaiotaomicron*. Other *Bacteroides* species engage in interspecies cooperation
283 through cross-feeding of extracellularly digested polysaccharides [40]. *Bacteroides*
284 *vulgaris* is a natural candidate for exploring how these cooperative interactions
285 impact evolution, due to its high abundance in the human gut [79], and its
286 relevance for human health as a potential pathobiont [81] and ability to protect
287 against *E. coli*-induced colitis [82]. Other *Bacteroides* species interact more
288 strongly with the immune system (e.g., *Bacteroides ovatus* [83] or *Bacteroides*
289 *fragilis* [84], which are both highly coated by IgA), and hence could be useful for
290 understanding of the interplay between immune system and gut commensal
291 evolution. The use of native mouse species like *Bacteroides caecimuris* could

292 address questions about the role of host mismatch in driving within-host
293 evolution [85].

294

295 Despite their importance, *Bacteroides* species represent only a fraction of the
296 genetic and functional diversity in the mammalian gut. Additional biology may
297 be uncovered by studying the evolution of more phylogenetically distant gut
298 commensals such as mucus degradation specialists like *Akkermansia muciniphila*,
299 or butyrate producers like *Eubacterium rectale*, which are essential for proper
300 maturation of the immune system [86]. *Enterococcus gallinarum*, a model gut
301 pathobiont, evolves into two lineages within mice, specialized in colonization of
302 either the gut lumen or mucosal niches [42]. The strain evolved for mucosal
303 colonization through altered gene expression and cell-wall architecture and
304 exhibited increased ability to translocate and survive within the mesenteric
305 lymph nodes and liver, with a trade-off of reduced transmissibility [42].

306

307 A comprehensive understanding of the evolutionary potential of a given species
308 may also require distinguishing between finer genetic backgrounds. Recent work
309 has shown that different mutations accumulate in laboratory *E. coli* strains
310 compared with natural isolates [20], and that the DFEs of two *B. thetaiotaomicron*
311 strains can systematically differ even when they co-colonize the same mice [46].

312 Resolving these genetic interactions will likely require evolution experiments
313 using isolates from a broad range of hosts and/or host species, which is becoming
314 increasingly feasible with modern strain collections [26].

315

316 ***Systematic modulation of the surrounding community***

317 Further progress will also rely critically on our ability to systematically vary the
318 biotic environment in which the focal species evolves. Comparing the evolution
319 of focal species in monocolonized mice and simple synthetic communities has
320 been a useful tool for uncovering host- and microbiota-dependent factors in
321 adaptation [15]. These efforts will be facilitated by the development of larger
322 defined communities that mimic the diversity, composition, and functionality of
323 the full mammalian gut microbiota [85,87]. Combinatorial manipulation of these
324 defined communities will be essential for understanding how the surrounding
325 community influences evolutionary trajectories.

326

327 A thorough understanding of these effects will likely require orders of
328 magnitude more experiments than are currently feasible with existing germ-free
329 mouse setups. While living hosts will remain essential for disentangling the role
330 of some host-dependent features (e.g., the adaptive immune system), *in vitro*
331 evolution of synthetic gut communities provides a promising way to achieve the

332 required levels of replication while maintaining the complexity of the
333 surrounding community. A future challenge is to determine to what extent *in*
334 *vivo* conditions can be translated into a laboratory context; recent successes with
335 *in vitro* passaging of stool suggest that certain rich media are reasonable mimics
336 of the nutrient environment within a host [88]. Organoid systems and other
337 animal models may serve as a bridge between *in vitro* and mouse evolution
338 experiments. Insects such as fruit flies have lower diversity gut microbiotas with
339 less complex nutrient supplies and more interspecies competition [89,90].
340 Hopefully, all of these models synergize to improve our understanding of
341 general principles of evolution in the gut.

342

343 ***Tools for quantifying evolutionary dynamics and phenotypes***

344 Advances in sequencing are enabling exploration of evolutionary dynamics at
345 finer temporal resolution and at larger scale. Barcoding enables tracking of
346 thousands of lineages across hundreds of time points from an experiment in a
347 single sequencing run (Fig. 2B), which should facilitate the design of experiments
348 to quantitatively evaluate the effects of host factors such as the immune system
349 or diet, environmental factors such as housing, and community context on
350 evolutionary dynamics. The main obstacle to barcoding is the requirement of
351 high transformation efficiency in the species of interest, which has not yet been

352 achieved for many gut commensals.

353

354 While animal models provide a tractable system for controlled experiments, it is
355 likely that some aspects of within-host evolution may ultimately be host-
356 dependent, given differences in gut anatomy and the potential for long-term
357 adaptation between commensals and their hosts. The decreasing cost of
358 sequencing should permit longitudinal sampling of humans more densely and
359 over longer intervals to pin down evolutionary trajectories from metagenomics
360 and isolate sequencing. Cost reductions in long-read sequencing [91] will also
361 clarify the role that mobile genetic elements and other difficult-to-assemble
362 structural variants play in driving short-term evolution within hosts. A broad
363 range of existing longitudinal studies have already been processed for DNA
364 extraction for 16S rRNA sequencing; revisiting these studies with metagenomic
365 sequencing could serve to rapidly expand the sequencing database from which
366 to detect adaptive mutations.

367

368 Ultimately, the ability to successfully interpret the functional consequences of
369 mutations will require other means of interrogation to gather phenotypic
370 information associated with mutations. Advances in metabolomics [92] will
371 reveal changes to the gut environment associated with enhanced metabolic

372 activity. Quantifying the phenotypic landscape of gene knockout and
373 overexpression libraries in gut commensals [66,67,93] will provide a baseline
374 expectation for mutations in each gene. Genetic tools to reconstruct observed
375 mutations in the species of interest will be critical to close the loop so that
376 mutants can be studied *in vivo* and in competitive colonization experiments.
377 Finally, a greater understanding of the biophysics of spatial structure in the gut
378 [1,94,95] may be necessary to acquire a full picture of gut ecology and evolution.

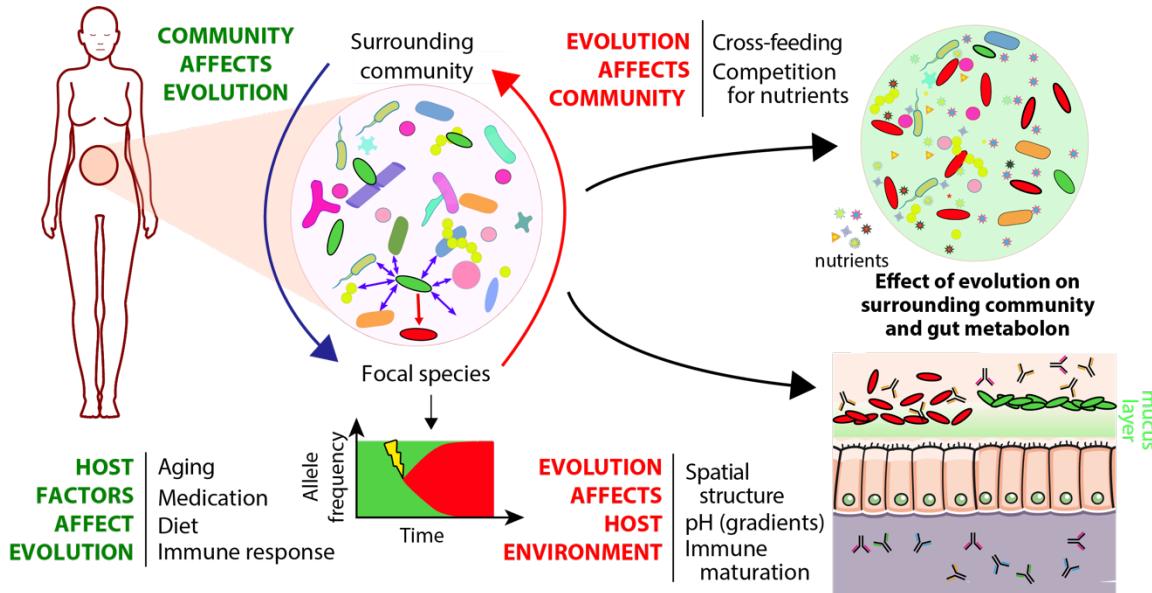
379 **Acknowledgements**

380 We thank members of the Huang, Good, and Xavier labs for helpful discussions.

381 This work was funded by a Stanford Interdisciplinary Graduate Fellowship (to

382 K.V.), Fundação para a Ciência e Tecnologia project PTDC/BIA-MIC/30487/2017

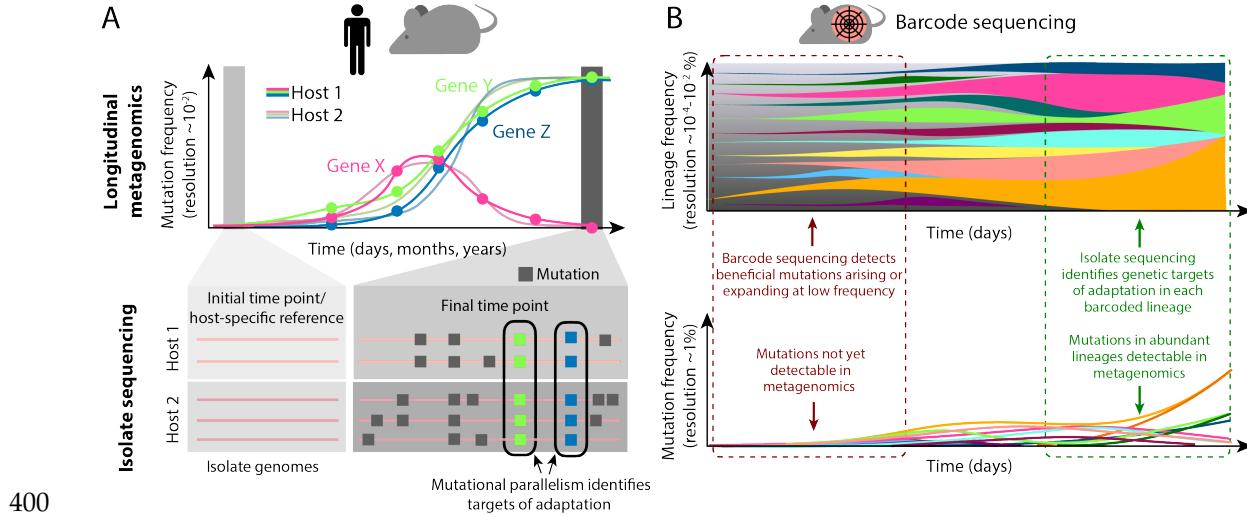
383 (to K.B.X), NSF Award EF-2125383 (to K.C.H.), NIH Award RM1 GM135102 (to

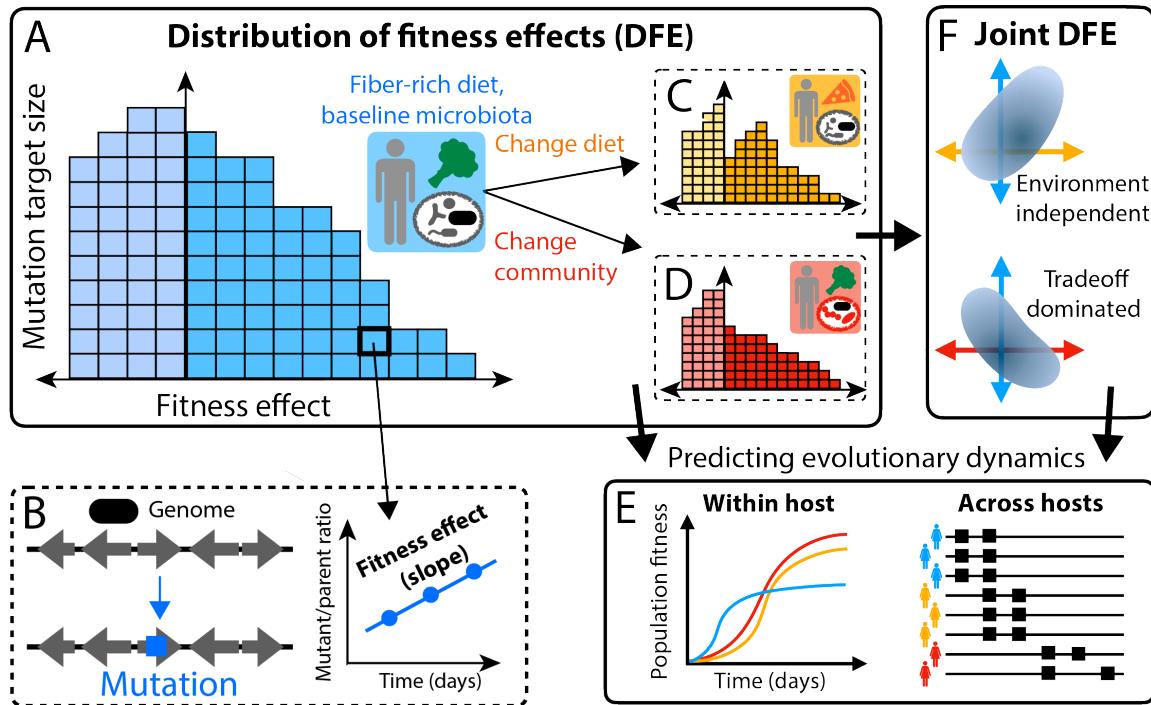

384 K.C.H.), Alfred P. Sloan Foundation grant FG-2021-15708 (to B.H.G.), and NIH

385 Award R35 GM146949 (to B.H.G.). K.C.H. and B.H.G. are Chan Zuckerberg

386 Biohub Investigators.

387 **Figures**


388


389

390 **Figure 1: Connections between evolution and ecology in the mammalian gut.**

391 Host factors like aging, medication, diet, and immune status affect the gut
392 microbiota through its composition. Focal species (green oval) can evolve due to
393 selection pressures directly from the host factors or indirectly from the
394 surrounding community. The evolved focal species (red oval) may differ from its
395 ancestor through the ability to consume different nutrients or to survive and
396 colonize different environments. Evolution of the focal species may in turn affect
397 the surrounding community by perturbing the landscape of nutrient competition
398 or providing nutrients through cross-feeding, and can affect the gut environment
399 (e.g., by altering pH or colonizing distinct regions of the intestines).

414

415 **Figure 3: The distribution of fitness effects (DFE) provides a quantitative
416 framework for evaluating qualitative models of microbiota evolution.**

417 A) The DFE captures the spectrum of mutations available to a focal species in
418 a particular environment (e.g., a fiber-rich diet and a baseline microbiota).
419 B-D) Each tile in the DFE represents a mutation with a given target size and
420 fitness effect, which can be measured from the slope of the log ratio of
421 mutant-to-parent genotypes over time. Since the fitness effect of a
422 mutation may depend on host- or community-context, the same focal
423 species will have different DFEs across different environments, which
424 could include changes in host-extrinsic factors such as diet (C) or
425 differences in the surrounding microbial community (D).

426 E) The joint DFE (JDFE) generalizes the DFE across multiple environments,
427 by enumerating the fitness effects of the same mutation across different
428 environments.

429 F) The DFE and JDFE determine the evolutionary dynamics within a single
430 host (e.g., the rate of fitness increase or the parallel mutations observed in
431 sequenced isolates) as well the evolutionary tradeoffs (pleiotropy) of
432 mutations in other host conditions.

References

434 1. Tropini C, Earle KA, Huang KC, Sonnenburg JL: **The Gut Microbiome:**
435 **Connecting Spatial Organization to Function.** *Cell Host Microbe* 2017,
436 **21:**433-442.

437 2. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S: **The evolution of the host**
438 **microbiome as an ecosystem on a leash.** *Nature* 2017, **548:**43-51.

439 3. Beresford-Jones BS, Forster SC, Stares MD, Notley G, Viciani E, Browne HP,
440 Boehmler DJ, Soderholm AT, Kumar N, Vervier K: **The Mouse**
441 **Gastrointestinal Bacteria Catalogue enables translation between the**
442 **mouse and human gut microbiotas via functional mapping.** *Cell host &*
443 *microbe* 2022, **30:**124-138. e128.

444 4. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard KS,
445 Sakharova E, Parks DH, Hugenholtz P: **A unified catalog of 204,938**
446 **reference genomes from the human gut microbiome.** *Nature biotechnology*
447 2021, **39:**105-114.

448 5. Merrill BD, Carter MM, Olm MR, Dahan D, Tripathi S, Spencer SP, Feiqiao BY,
449 Jain S, Neff N, Jha AR: **Ultra-deep Sequencing of Hadza Hunter-**
450 **Gatherers Recovers Vanishing Microbes.** *bioRxiv* 2022.

451 6. Bradley PH, Nayfach S, Pollard KS: **Phylogeny-corrected identification of**
452 **microbial gene families relevant to human gut colonization.** *PLoS*
453 *computational biology* 2018, **14:**e1006242.

454 ** 7. Pudlo NA, Pereira GV, Parnami J, Cid M, Markert S, Tingley JP, Unfried F,
455 Ali A, Varghese NJ, Kim KS: **Diverse events have transferred genes for**

457 **edible seaweed digestion from marine to human gut bacteria.** *Cell Host*
458 & *Microbe* 2022, **30**:314-328. e311.

459 This study provides an example of how microbiota can adapt to their host
460 environment over long evolutionary timescales, by horizontally acquiring
461 genes that allow them to digest polysaccharides from edible seaweed.

462

463 8. Sprockett DD, Price JD, Juritsch AF, Schmaltz RJ, Real MV, Goldman S,
464 Sheehan MJ, Ramer-Tait AE, Moeller AH: **Local adaptation of host-**
465 **species specific gut microbiota.** *bioRxiv* 2022.

466 9. Seedorf H, Griffin NW, Ridaura VK, Reyes A, Cheng J, Rey FE, Smith MI,
467 Simon GM, Scheffrahn RH, Woebken D: **Bacteria from diverse habitats**
468 **colonize and compete in the mouse gut.** *Cell* 2014, **159**:253-266.

469 10. Matamouros S, Hayden HS, Hager KR, Brittnacher MJ, Lachance K, Weiss EJ,
470 Pope CE, Imhaus A-F, McNally CP, Borenstein E: **Adaptation of**
471 **commensal proliferating *Escherichia coli* to the intestinal tract of young**
472 **children with cystic fibrosis.** *Proceedings of the National Academy of Sciences*
473 2018, **115**:1605-1610.

474 11. Groussin M, Mazel F, Alm EJ: **Co-evolution and co-speciation of host-gut**
475 **bacteria systems.** *Cell Host & Microbe* 2020, **28**:12-22.

476 12. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller
477 MN, Pusey AE, Peeters M, Hahn BH, Ochman H: **Cospeciation of gut**
478 **microbiota with hominids.** *Science* 2016, **353**:380-382.

479 13. Suzuki TA, Fitzstevens JL, Schmidt VT, Enav H, Huus KE, Mbong Ngwese M,
480 Grießhammer A, Pfleiderer A, Adegbite BR, Zinsou JF: **Codiversification**
481 **of gut microbiota with humans.** *Science* 2022, **377**:1328-1332.

482 14. Barroso-Batista J, Demengeot J, Gordo I: **Adaptive immunity increases the**
483 **pace and predictability of evolutionary change in commensal gut**
484 **bacteria.** *Nat Commun* 2015, **6**:8945.

485 **15. Barroso-Batista J, Pedro MF, Sales-Dias J, Pinto CJG, Thompson JA, Pereira
486 H, Demengeot J, Gordo I, Xavier KB: **Specific Eco-evolutionary Contexts**
487 **in the Mouse Gut Reveal *Escherichia coli* Metabolic Versatility.** *Curr Biol*
488 2020, **30**:1049-1062 e1047.

489 This study used experimental evolution to identify *E. coli*'s metabolic preferences
490 in the mouse gut, during monocolonization and cocolonization with
491 another gut commensal. This study highlights the importance of the
492 metabolic environment, shaped by the microbiota, in driving the ecology
493 and evolution of the gut ecosystem.

494

495 16. Barroso-Batista J, Sousa A, Lourenco M, Bergman ML, Sobral D, Demengeot J,
496 Xavier KB, Gordo I: **The first steps of adaptation of *Escherichia coli* to**
497 **the gut are dominated by soft sweeps.** *PLoS Genet* 2014, **10**:e1004182.

498 **17. Dapa T, Ramiro RS, Pedro MF, Gordo I, Xavier KB: **Diet leaves a genetic**
499 **signature in a keystone member of the gut microbiota.** *Cell Host Microbe*
500 2022, **30**:183-199 e110.

501 This study tracked the emergence of mutations in *B. thetaiotaomicron* for 3 months
502 after gut colonization in three dietary regimens. Through the integration
503 of genetic, metabolomics, and microbiota composition data, the authors
504 revealed that *B. thetaiotaomicron* undergoes rapid evolution upon
505 colonization and that diet leaves a genetic signature in *B. theta* such that

506 mutations arising under a Western-style diet favor consumption of
507 mucus-derived host glycans.

508

509 18. De Paepe M, Gaboriau-Routhiau V, Rainteau D, Rakotobe S, Taddei F, Cerf-
510 Bensussan N: **Trade-off between bile resistance and nutritional**
511 **competence drives *Escherichia coli* diversification in the mouse gut.**
512 *PLoS Genet* 2011, **7**:e1002107.

513 19. Giraud A, Arous S, Paepe MD, Gaboriau-Routhiau V, Bambou J-C, Rakotobe
514 S, Lindner AB, Taddei F, Cerf-Bensussan N: **Dissecting the genetic**
515 **components of adaptation of *Escherichia coli* to the mouse gut.** *PLoS*
516 *genetics* 2008, **4**:e2.

517 *20. Lescat M, Launay A, Ghalayini M, Magnan M, Glodt J, Pintard C, Dion S,
518 Denamur E, Tenaillon O: **Using long-term experimental evolution to**
519 **uncover the patterns and determinants of molecular evolution of an**
520 ***Escherichia coli* natural isolate in the streptomycin-treated mouse gut.**
521 *Mol Ecol* 2017, **26**:1802-1817.

522 This study followed the evolution of a natural human isolate of *E. coli* in mice,
523 and observed different sets of mutations compared to laboratory *E. coli*
524 evolving under similar conditions.

525

526 **21. Vasquez KS, Willis L, Cira NJ, Ng KM, Pedro MF, Aranda-Diaz A,
527 Rajendram M, Yu FB, Higginbottom SK, Neff N, et al.: **Quantifying rapid**
528 **bacterial evolution and transmission within the mouse intestine.** *Cell*
529 *Host Microbe* 2021, **29**:1454-1468 e1454.

530 This study used barcoded *E. coli* strains, sequencing of isolates, and population
531 genetics modeling to quantify the dynamics of selection and transmission
532 during monocolonization of germ-free mice. Migration accounted for
533 ~10% of the resident microbiota each day, which enforced similar barcode
534 distributions across co-housed mice.

535

536 22. Crook N, Ferreiro A, Gasparrini AJ, Pesesky MW, Gibson MK, Wang B, Sun
537 X, Condiotte Z, Dobrowolski S, Peterson D, et al.: **Adaptive Strategies of**
538 **the Candidate Probiotic *E. coli* Nissle in the Mammalian Gut.** *Cell Host*
539 *Microbe* 2019, **25**:499-512 e498.

540 **23. Garud NR, Good BH, Hallatschek O, Pollard KS: **Evolutionary dynamics of**
541 **bacteria in the gut microbiome within and across hosts.** *PLoS Biol* 2019,
542 **17**:e3000102.

543 This study used a metagenomic approach to show that native populations of
544 human gut bacteria can acquire genetic changes over a ~6 month period,
545 through a mixture of within-host evolution and replacement by distantly
546 related strains.

547

548 **24. Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM, Groussin M,
549 Xavier RJ, Alm EJ: **Adaptive evolution within gut microbiomes of**
550 **healthy people.** *Cell host & microbe* 2019, **25**:656-667. e658.

551 This study combined isolate sequencing and metagenomics to show that
552 *Bacteroides fragilis* populations acquire adaptive mutations within healthy
553 human hosts on monthly to yearly time scales.

554

555 *25. Ghalayini M, Launay A, Bridier-Nahmias A, Clermont O, Denamur E, Lescat
556 M, Tenaillon O: **Evolution of a dominant natural isolate of *Escherichia***
557 ***coli* in the human gut over the course of a year suggests a neutral**
558 **evolution with reduced effective population size.** *Applied and*
559 *environmental microbiology* 2018, **84**:e02377-02317.

560 This study used isolate sequencing to show that the resident *E. coli* populations
561 in a healthy human host acquire a small number of genetic changes over
562 approximately one year.

563

564 26. Poyet M, Groussin M, Gibbons SM, Avila-Pacheco J, Jiang X, Kearney SM,
565 Perrotta A, Berdy B, Zhao S, Lieberman T: **A library of human gut**
566 **bacterial isolates paired with longitudinal multiomics data enables**
567 **mechanistic microbiome research.** *Nature medicine* 2019, **25**:1442-1452.

568 *27. Zlitni S, Bishara A, Moss EL, Tkachenko E, Kang JB, Culver RN, Andermann
569 TM, Weng Z, Wood C, Handy C: **Strain-resolved microbiome**
570 **sequencing reveals mobile elements that drive bacterial competition on**
571 **a clinical timescale.** *Genome medicine* 2020, **12**:1-17.

572 This study used metagenomic sequencing to show that mobile element insertions
573 can provide a fitness advantage to *Bacteroides caccae* strains in a hospital
574 patient treated with multiple immunosuppressants and antimicrobials.

575

576 *28. Yaffe E, Relman DA: **Tracking microbial evolution in the human gut using**
577 **Hi-C reveals extensive horizontal gene transfer, persistence and**
578 **adaptation.** *Nature microbiology* 2020, **5**:343-353.

579 This study used chromosome conformation capture on human gut metagenomes
580 to track the spread of mobile elements within a pair of hosts over a 10 year
581 period.

582

583 *29. Roodgar M, Good BH, Garud NR, Martis S, Avula M, Zhou W, Lancaster
584 SM, Lee H, Babveyh A, Nesamoney S: **Longitudinal linked-read**
585 **sequencing reveals ecological and evolutionary responses of a human**
586 **gut microbiome during antibiotic treatment.** *Genome research* 2021,
587 31:1433-1446.

588 This study used dense longitudinal sequencing to analyze the trajectories of *de*
589 *novo* mutations and co-colonizing strains within multiple species of gut
590 bacteria from a single human host during antibiotic treatment.

591

592 30. Chen DW, Garud NR: **Rapid evolution and strain turnover in the infant gut**
593 **microbiome.** *Genome Research* 2022:gr. 276306.276121.

594 **31. Groussin M, Poyet M, Sistiaga A, Kearney SM, Moniz K, Noel M, Hooker J,
595 Gibbons SM, Segurel L, Froment A: **Elevated rates of horizontal gene**
596 **transfer in the industrialized human microbiome.** *Cell* 2021, **184**:2053-
597 2067. e2018.

598 This study used isolate sequencing of human gut commensals to show that
599 horizontal gene transfer can occur between co-colonizing species over the
600 lifetime of their hosts.

601

602 32. Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, Alm EJ:
603 **Unraveling the processes shaping mammalian gut microbiomes over**
604 **evolutionary time.** *Nature Communications* 2017, **8**:1-12.

605 33. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ: **Within-host evolution**
606 **of bacterial pathogens.** *Nature Reviews Microbiology* 2016, **14**:150-162.

607 34. Martinson JN, Pinkham NV, Peters GW, Cho H, Heng J, Rauch M,
608 Broadaway SC, Walk ST: **Rethinking gut microbiome residency and the**
609 **Enterobacteriaceae in healthy human adults.** *The ISME journal* 2019,
610 **13**:2306-2318.

611 35. Conway T, Cohen PS: **Commensal and pathogenic *Escherichia coli***
612 **metabolism in the gut.** *Metabolism and bacterial pathogenesis* 2015:343-362.

613 36. Maini Rekdal V, Bess E, Bisanz J, Turnbaugh P, Balskus E: **Discovery and**
614 **inhibition of an interspecies gut bacterial pathway for Levodopa**
615 **metabolism.** *Science* **364**: eaau6323. Edited by; 2019.

616 37. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ: **The microbial**
617 **pharmacists within us: a metagenomic view of xenobiotic metabolism.**
618 *Nature Reviews Microbiology* 2016, **14**:273-287.

619 38. Collins J, Robinson C, Danhof H, Knetsch C, Van Leeuwen H, Lawley T,
620 Auchtung J, Britton eR: **Dietary trehalose enhances virulence of**
621 **epidemic *Clostridium difficile*.** *Nature* 2018, **553**:291-294.

622 39. Kim SG, Becattini S, Moody TU, Shliaha PV, Littmann ER, Seok R, Gjonbalaj
623 M, Eaton V, Fontana E, Amoretti L: **Microbiota-derived lantibiotic**
624 **restores resistance against vancomycin-resistant *Enterococcus*.** *Nature*
625 2019, **572**:665-669.

626 40. Rakoff-Nahoum S, Foster KR, Comstock LE: **The evolution of cooperation**
627 **within the gut microbiota.** *Nature* 2016, **533**:255-259.

628 41. Feng J, Qian Y, Zhou Z, Ertmer S, Vivas EI, Lan F, Hamilton JJ, Rey FE,
629 Anantharaman K, Venturelli OS: **Polysaccharide utilization loci in**
630 ***Bacteroides* determine population fitness and community-level**
631 **interactions.** *Cell Host & Microbe* 2022, **30**:200-215. e212.

632 **42. Yang Y, Nguyen M, Khetrapal V, Sonnert ND, Martin AL, Chen H, Kriegel
633 MA, Palm NW: **Within-host evolution of a gut pathobiont facilitates**
634 **liver translocation.** *Nature* 2022, **607**:563-570.

635 This study showed that evolution facilitates translocation of the gut pathobiont
636 *Enterococcus galinarum* to the mesenteric lymph nodes and liver and
637 initiation of inflammation. Enhanced immune evasion was also observed
638 in *Lactobacillus reuteri*.

639

640 43. Ghalayini M, Magnan M, Dion S, Zatout O, Bourguignon L, Tenaillon O,
641 Lescat M: **Long-term evolution of the natural isolate of *Escherichia coli***
642 **536 in the mouse gut colonized after maternal transmission reveals**
643 **convergence in the constitutive expression of the lactose operon.** *Mol*
644 *Ecol* 2019, **28**:4470-4485.

645 44. Barreto HC, Sousa A, Gordo I: **The landscape of adaptive evolution of a gut**
646 **commensal bacteria in aging mice.** *Current Biology* 2020, **30**:1102-1109.
647 e1105.

648 45. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler
649 JD, Gordon JI: **Glycan foraging in vivo by an intestine-adapted bacterial**
650 **symbiont.** *Science* 2005, **307**:1955-1959.

651 *46. Wong DP, Good BH: **Quantifying the adaptive landscape of commensal**
652 **gut bacteria using high-resolution lineage tracking.** *bioRxiv* 2022.

653 This study showed that TnSeq libraries can be used to measure the accumulation
654 of spontaneous beneficial mutations in gnotobiotic mice. The authors used
655 this approach to measure DFEs and JDFEs for four human *Bacteroides*
656 strains in mice fed different diets.

657

658 *47. Frazão N, Sousa A, Lässig M, Gordo I: **Horizontal gene transfer overrides**
659 **mutation in *Escherichia coli* colonizing the mammalian gut.** *Proceedings*
660 *of the National Academy of Sciences* 2019, **116**:17906-17915.

661 This study highlights the importance of phage-driven horizontal gene transfer in
662 the eco-evolutionary dynamics of gut colonization by an invading *E. coli*
663 strain in the presence of a resident *E. coli* strain.

664

665 **48. Frazão N, Konrad A, Amicone M, Seixas E, Güleresi D, Lässig M, Gordo I:
666 **Two modes of evolution shape bacterial strain diversity in the**
667 **mammalian gut for thousands of generations.** *Nature communications*
668 2022, **13**:1-14.

669 This study introduced a fluorescently labelled *E. coli* K-12 strain into mice with
670 different native microbiotas for approximately one year to investigate how
671 the mode of evolution depends on the diversity of the surrounding
672 community and the presence of closely related strains.

673

674 49. Liu Z, Good BH: **Dynamics of bacterial recombination in the human gut**
675 **microbiome.** *bioRxiv* 2022.

676 50. García-Bayona L, Coyne MJ, Comstock LE: **Mobile Type VI secretion system**
677 **loci of the gut Bacteroidales display extensive intra-ecosystem transfer,**
678 **multi-species spread and geographical clustering.** *PLoS genetics* 2021,
679 17:e1009541.

680 51. Zheng W, Zhao S, Yin Y, Zhang H, Needham DM, Evans ED, Dai CL, Lu PJ,
681 Alm EJ, Weitz DA: **High-throughput, single-microbe genomics with**
682 **strain resolution, applied to a human gut microbiome.** *Science* 2022,
683 376:eabm1483.

684 52. Madi N, Vos M, Murall CL, Legendre P, Shapiro BJ: **Does diversity beget**
685 **diversity in microbiomes?** *Elife* 2020, 9:e58999.

686 53. Hall JP, Harrison E, Brockhurst MA: **Competitive species interactions**
687 **constrain abiotic adaptation in a bacterial soil community.** *Evolution*
688 *Letters* 2018, 2:580-589.

689 **54. Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T:
690 **Bacterial adaptation is constrained in complex communities.** *Nature*
691 *communications* 2020, 11:1-8.

692 This study used experimental evolution of rainwater pool microcosms to
693 examine how the rate of evolution of a focal species depends on the
694 diversity of the surrounding community.

695

696 55. Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T,
697 Barraclough TG: **Species interactions alter evolutionary responses to a**
698 **novel environment.** *PLoS biology* 2012, 10:e1001330.

699 56. Verster AJ, Ross BD, Radey MC, Bao Y, Goodman AL, Mougous JD,
700 Borenstein E: **The landscape of type VI secretion across human gut**

701 **microbiomes reveals its role in community composition.** *Cell host &*
702 *microbe* 2017, **22**:411-419. e414.

703 57. Federici S, Nobs SP, Elinav E: **Phages and their potential to modulate the**
704 **microbiome and immunity.** *Cellular & Molecular Immunology* 2021, **18**:889-
705 904.

706 **58. Good BH, Rosenfeld LB: **Eco-evolutionary feedbacks in the human gut**
707 **microbiome.** *bioRxiv* 2022.

708 This study combined ecological and evolutionary analyses of a large cohort of
709 human gut metagenomes to show that genetic changes within species are
710 associated with global shifts in the composition of the surrounding
711 community. The authors also showed that similar feedbacks can emerge
712 in simple resource competition models if mutations modify the metabolic
713 niches of the resident strains.

714

715 59. Couce A, Caudwell LV, Feinauer C, Hindré T, Feugeas J-P, Weigt M, Lenski
716 RE, Schneider D, Tenaillon O: **Mutator genomes decay, despite sustained**
717 **fitness gains, in a long-term experiment with bacteria.** *Proceedings of the*
718 *National Academy of Sciences* 2017, **114**:E9026-E9035.

719 60. Schenk MF, Zwart MP, Hwang S, Ruelens P, Severing E, Krug J, De Visser J:
720 **Population size mediates the contribution of high-rate and large-benefit**
721 **mutations to parallel evolution.** *Nature Ecology & Evolution* 2022, **6**:439-
722 447.

723 61. Good BH, Rouzine IM, Balick DJ, Hallatschek O, Desai MM: **Distribution of**
724 **fixed beneficial mutations and the rate of adaptation in asexual**
725 **populations.** *Proc Natl Acad Sci U S A* 2012, **109**:4950-4955.

726 62. Ardell SM, Kryazhimskiy S: **The population genetics of collateral resistance**
727 **and sensitivity.** *Elife* 2021, **10**.

728 63. Ascensao JA, Wetmore KM, Good BH, Arkin AP, Hallatschek O: **Quantifying**
729 **the Adaptive Potential of a Nascent Bacterial Community.** *bioRxiv* 2022.

730 64. Couce A, Magnan M, Lenski RE, Tenaillon O: **The evolution of fitness**
731 **effects during long-term adaptation in bacteria.** *bioRxiv* 2022.

732 65. Levy SF, Blundell JR, Venkataram S, Petrov DA, Fisher DS, Sherlock G:
733 **Quantitative evolutionary dynamics using high-resolution lineage**
734 **tracking.** *Nature* 2015, **519**:181-186.

735 66. Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, Knight
736 R, Gordon JI: **Identifying genetic determinants needed to establish a**
737 **human gut symbiont in its habitat.** *Cell Host Microbe* 2009, **6**:279-289.

738 67. Liu H, Shiver AL, Price MN, Carlson HK, Trotter VV, Chen Y, Escalante V,
739 Ray J, Hern KE, Petzold CJ, et al.: **Functional genetics of human gut**
740 **commensal *Bacteroides thetaiotaomicron* reveals metabolic**
741 **requirements for growth across environments.** *Cell Rep* 2021, **34**:108789.

742 68. Wu M, McNulty NP, Rodionov DA, Khoroshkin MS, Griffin NW, Cheng J,
743 Latreille P, Kerstetter RA, Terrapon N, Henrissat B, et al.: **Genetic**
744 **determinants of *in vivo* fitness and diet responsiveness in multiple**
745 **human gut *Bacteroides*.** *Science* 2015, **350**:aac5992.

746 69. Zhang M, Kennedy M, DeLeon O, Bissell J, Trigodet F, Lolans K, Temelkova
747 S, Carroll KT, Fiebig A, Deutschbauer A: **Dynamic genetic adaptation of**
748 ***Bacteroides thetaiotaomicron* murine gut colonization.** *bioRxiv* 2022.

749 70. Hildebrand F, Gossmann TI, Frioux C, Ozkurt E, Myers PN, Ferretti P, Kuhn
750 M, Bahram M, Nielsen HB, Bork P: **Dispersal strategies shape persistence**

751 and evolution of human gut bacteria. *Cell Host Microbe* 2021, **29**:1167-1176
752 e1169.

753 71. Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemse G, Boomsma
754 DI, Segata N, Bork P: **Selective maternal seeding and environment shape**
755 **the human gut microbiome.** *Genome Res* 2018, **28**:561-568.

756 72. Siranosian BA, Brooks EF, Andermann T, Rezvani AR, Banaei N, Tang H,
757 Bhatt AS: **Rare transmission of commensal and pathogenic bacteria in**
758 **the gut microbiome of hospitalized adults.** *Nature communications* 2022,
759 **13**:1-17.

760 73. Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL: **An**
761 **exclusive metabolic niche enables strain engraftment in the gut**
762 **microbiota.** *Nature* 2018, **557**:434-438.

763 *74. Good BH, Martis S, Hallatschek O: **Adaptation limits ecological**
764 **diversification and promotes ecological tinkering during the**
765 **competition for substitutable resources.** *Proceedings of the National*
766 *Academy of Sciences* 2018, **115**:E10407-E10416.

767 This study developed a theoretical framework for modeling heritable mutations
768 in a simple class of resource competition models, which provides a
769 starting point for modeling evolution in multi-species communities like
770 the gut microbiota.

771
772 75. Amicone M, Gordo I: **Molecular signatures of resource competition: Clonal**
773 **interference favors ecological diversification and can lead to incipient**
774 **speciation.** *Evolution* 2021, **75**:2641-2657.

775 76. Lim B, Zimmermann M, Barry NA, Goodman AL: **Engineered regulatory**
776 **systems modulate gene expression of human commensals in the gut.**
777 *Cell* 2017, **169**:547-558. e515.

778 77. Whitaker WR, Shepherd ES, Sonnenburg JL: **Tunable Expression Tools**
779 **Enable Single-Cell Strain Distinction in the Gut Microbiome.** *Cell* 2017,
780 **169**:538-546 e512.

781 78. Bencivenga-Barry NA, Lim B, Herrera CM, Trent MS, Goodman AL: **Genetic**
782 **manipulation of wild human gut *Bacteroides*.** *Journal of bacteriology* 2020,
783 **202**:e00544-00519.

784 79. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady
785 A, Creasy HH, McCracken C, Giglio MG: **Strains, functions and**
786 **dynamics in the expanded Human Microbiome Project.** *Nature* 2017,
787 **550**:61-66.

788 80. Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott
789 DW, Henrissat B, Gilbert HJ, Bolam DN: **Recognition and degradation of**
790 **plant cell wall polysaccharides by two human gut symbionts.** *PLoS*
791 *biology* 2011, **9**:e1001221.

792 81. Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP, Donermeyer DL, Dunne
793 WM, Jr., Allen PM, Stappenbeck TS: **Commensal *Bacteroides* species**
794 **induce colitis in host-genotype-specific fashion in a mouse model of**
795 **inflammatory bowel disease.** *Cell Host Microbe* 2011, **9**:390-403.

796 82. Waidmann M, Bechtold O, Frick JS, Lehr HA, Schubert S, Dobrindt U,
797 Loeffler J, Bohn E, Autenrieth IB: ***Bacteroides vulgatus* protects against**
798 ***Escherichia coli*-induced colitis in gnotobiotic interleukin-2-deficient**
799 **mice.** *Gastroenterology* 2003, **125**:162-177.

800 83. Yang C, Mogno I, Contijoch EJ, Borgerding JN, Aggarwala V, Li Z, Siu S,
801 Grasset EK, Helmus DS, Dubinsky MC, et al.: **Fecal IgA Levels Are**
802 **Determined by Strain-Level Differences in *Bacteroides ovatus* and Are**
803 **Modifiable by Gut Microbiota Manipulation.** *Cell Host Microbe* 2020,
804 **27:467-475 e466.**

805 84. Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, Conner
806 ME, Earl AM, Knight R, Bjorkman PJ, et al.: **Gut microbiota utilize**
807 **immunoglobulin A for mucosal colonization.** *Science* 2018, **360**:795-800.

808 **85. Yilmaz B, Mooser C, Keller I, Li H, Zimmermann J, Bosshard L, Fuhrer T,
809 Gomez de Aguero M, Trigo NF, Tschanz-Lischer H, et al.: **Long-term**
810 **evolution and short-term adaptation of microbiota strains and sub-**
811 **strains in mice.** *Cell Host Microbe* 2021, **29**:650-663 e659.

812 This study followed a colony of mice colonized with a defined community of 12
813 phylogenetically diverse murine commensals for 6 years. While mice
814 remain stably colonized with this community over multiple generations,
815 substrains emerged within individual taxa, highlighting the need to
816 consider evolution when interpreting microbiota-related phenomena.

817

818 86. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D,
819 Nakanishi Y, Uetake C, Kato K, Kato T: **Commensal microbe-derived**
820 **butyrate induces the differentiation of colonic regulatory T cells.** *Nature*
821 2013, **504**:446-450.

822 *87. Cheng AG, Ho P-Y, Aranda-Díaz A, Jain S, Feiqiao BY, Meng X, Wang M,
823 Iakiviak M, Nagashima K, Zhao A: **Design, construction, and in vivo**
824 **augmentation of a complex gut microbiome.** *Cell* 2022.

825 This study showed that a defined community of ~120 human gut strains can
826 stably coexist in mice over >8 weeks, providing a platform for systematic
827 interrogation of community interactions in microbiota with near native
828 complexity.

829

830 *88. Aranda-Diaz A, Ng KM, Thomsen T, Real-Ramirez I, Dahan D, Dittmar S,
831 Gonzalez CG, Chavez T, Vasquez KS, Nguyen TH, et al.: **Establishment**
832 **and characterization of stable, diverse, fecal-derived *in vitro* microbial**
833 **communities that model the intestinal microbiota.** *Cell Host Microbe* 2022,
834 **30**:260-272 e265.

835 This study established an *in vitro* platform for culturing highly diverse
836 communities from human fecal samples, which are stable over several
837 weeks and mimic key features of *in vivo* microbiota.

838

839 89. Newell PD, Douglas AE: **Interspecies interactions determine the impact of**
840 **the gut microbiota on nutrient allocation in *Drosophila melanogaster*.**
841 *Appl Environ Microbiol* 2014, **80**:788-796.

842 90. Pais IS, Valente RS, Sporniak M, Teixeira L: ***Drosophila melanogaster***
843 **establishes a species-specific mutualistic interaction with stable gut-**
844 **colonizing bacteria.** *PLoS biology* 2018, **16**:e2005710.

845 91. Moss EL, Maghini DG, Bhatt AS: **Complete, closed bacterial genomes from**
846 **microbiomes using nanopore sequencing.** *Nature Biotechnology* 2020,
847 **38**:701-707.

848 92. Han S, Van Treuren W, Fischer CR, Merrill BD, DeFelice BC, Sanchez JM,
849 Higginbottom SK, Guthrie L, Fall LA, Dodd D, et al.: **A metabolomics**

850 **pipeline for the mechanistic interrogation of the gut microbiome.** *Nature*
851 2021, **595**:415-420.

852 93. Huang YY, Price MN, Hung A, Gal-Oz O, Ho D, Carion H, Deutschbauer
853 AM, Arkin AP: **Functional screens of barcoded expression libraries**
854 **uncover new gene functions in carbon utilization among gut**
855 **Bacteroidales.** *bioRxiv* 2022.

856 94. Shalon D, Culver RN, Grembi JA, Folz J, Treit P, Dethlefsen L, Meng X, Yaffe
857 E, Spencer S, Shi H: **Profiling of the human intestinal microbiome and**
858 **bile acids under physiologic conditions using an ingestible sampling**
859 **device.** *bioRxiv* 2022.

860 95. Ghosh OM, Good BH: **Emergent evolutionary forces in spatial models of**
861 **luminal growth and their application to the human gut microbiota.**
862 *Proceedings of the National Academy of Sciences* 2022, **119**:e2114931119.

863