10

11

12

13

14

15

16

17

18

19

Title: Within-host evolution of the gut microbiome

Authors: Tanja Dapa!”, Daniel Patrick Ga Heung Wong?’, Kimberly S. Vasquez?,

Karina B. Xavier'!, Kerwyn Casey Huang?**>', Benjamin H. Good>*

Affiliations:

Instituto Gulbenkian de Ciéncia, 2780-156 Oeiras, Portugal

’Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
SDepartment of Microbiology and Immunology, Stanford University School of
Medicine, Stanford, CA 94305, USA

‘Department of Bioengineering, Stanford University, Stanford, CA 94305, USA

5Chan Zuckerberg Biohub, San Francisco, CA 94158

": These authors contributed equally.

*To whom correspondence should be addressed: kxavier@igc.gulbenkian.pt,

kchuang@stanford.edu, bhgood@stanford.edu

Keywords: gut microbiome; fitness; distribution of fitness effects; lineage tracking;

DNA barcoding; evolution experiments; Escherichia coli; Bacteroides thetaiotaomicron



20

21

22

23

24

25

26

27

28

29

30

31

Abstract

Gut bacteria inhabit a complex environment that is shaped by interactions with
their host and the other members of the community. While these ecological
interactions have evolved over millions of years, mounting evidence suggests
that gut commensals can evolve on much shorter timescales as well, by acquiring
new mutations within individual hosts. In this review, we highlight recent
progress in understanding the causes and consequences of short-term evolution
in the mammalian gut, from experimental evolution in murine hosts to
longitudinal tracking of human cohorts. We also discuss new opportunities for
future progress by expanding the repertoire of focal species, hosts, and
surrounding communities, and by combining deep-sequencing technologies with

quantitative frameworks from population genetics.
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Introduction

The microorganisms that inhabit a particular host, collectively known as the
microbiota, are intimately intertwined with their environment and play an
important role in influencing the health of their host. These host-associated
communities are often noted for their high taxonomic diversity, particularly in
the mammalian gut, where hundreds of species coexist with each other in close
physical proximity [1]. Millions of years of evolution have shaped these
symbiotic interactions [2], producing a diverse array of commensal gut species
and vast amounts of strain-level variation at finer levels of genomic resolution [3-
5]. Many commensal strains appear to be particularly well-adapted to the
environment of their host species [6-10], suggesting that long-term evolution has
played an important role in producing and maintaining this specificity [11-13].
While these long-term effects of evolution are widely appreciated, it has only
recently become apparent that gut commensals can evolve on host-relevant
timescales as well. Time-resolved sequencing has started to illuminate this
process, with a growing number of examples, first in mice [14-22] and more
recently in humans [23-31], showing that genetic changes can sweep through
resident populations of gut bacteria over years, months, and even days. This
capacity for rapid evolution has underexplored relevance for the structure and

function of the gut microbiota.
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These observations of ongoing evolution of commensal gut bacteria may initially
seem surprising. Many of these species have inhabited their mammalian hosts
for millions of years [12,13,32], and are not thought to engage in the
immunological arms races that are common in bacterial pathogens [33]. Under
these conditions, any strongly beneficial mutations should have already had an
opportunity to fix long ago. Larger microbial communities also have the ability
to adapt to changing environments through purely ecological means (e.g.,
shifting the abundances of the resident species, or acquiring a new strain from
outside the host [23,34]), which could foreclose opportunities for additional
within-host evolution. However, there is a growing recognition that some
changes in the host environment (e.g., dietary shifts, the presence or absence of a
particular community member) can create new opportunities for local adaptation
that are not negated by shifts in the abundance of the resident strains. In these
cases, mutations can create novel genotypes that are better adapted to the altered
environment than their parent genotype, often involving subtle changes in
metabolic capabilities [16-18,20,21]. The fitness advantages of these mutations are
typically small by physiological standards (e.g., <10% change in growth rate), but
these small advantages are more than sufficient to drive large shifts in frequency

within a host over hundreds of bacterial generations (10-100 days). Given the
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large population sizes in the mammalian gut (>10" cells), even a miniscule
mutation rate for these locally adaptive mutations (>10'° per generation) will

generate multiple such mutations within a host each day.

This ongoing evolution can have important functional consequences. Some
genetic variants have been observed to alter metabolic phenotypes
[15,17,18,21,35], the breakdown of drugs [36,37], the spread of antibiotic
resistance phenotypes [38], or colonization resistance against pathogens [39].
Genetic modifications can also alter ecological interactions between species
[40,41], driving broader shifts in the taxonomic composition of the host
community. These dynamics could have important implications for probiotic
therapies (e.g., fecal microbiome transplants), since they suggest that the
ecological interactions between resident strains could strongly depend on their
personalized history of co-evolution. More broadly, many microbiome
experiments involving a controlled environmental shift typically focus on
changes in taxonomic composition and gene expression, which are intrinsically
dependent on the immune system, diet, and biophysical aspects of the host
environment. Even though all of these factors are selection pressures, the
potential for genetic adaptation over the same experimental timeframe is often

ignored. Host factors that have previously been associated with microbiota
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dysbiosis (inflammation, obesity, behavior, and circadian rhythm) may also be
influenced by the accumulation of new mutations during the experiment. In this
manner, the capacity for rapid bacterial evolution could have far-ranging

implications for how the microbiome influences host physiology.

Despite the potential importance of these effects, the causes and consequences of
within-host evolution in the gut microbiota are only starting to be explored. In
this review, we highlight some of the key open questions, as well as new
opportunities for progress using tools from genetics, sequencing, and systems

biology.

What factors determine the evolutionary selection pressures within the
mammalian gut?

Gut bacteria evolve in a complex environment, which is shaped by interactions
with their host as well as other members of their local community.
Understanding how these factors contribute to the evolutionary selection

pressures within the gut has been a major focus of recent research (Fig.1).

Experimental evolution in murine hosts has been a powerful tool for addressing

these questions. Much of this work has utilized Escherichia coli as a “focal”
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species [15,20-22,43], due to its genetic tractability and ease of isolation. By
sequencing evolved strains from one or more host populations, the targets of
selection can be inferred from parallel mutations that repeatedly occur in the
same genes or pathways (Fig. 2). These experiments have shown that E. coli
evolution is remarkably predictable across hosts with the same diet and genetic
background [15,21]. However, both the number and types of mutations can vary
dramatically under different host conditions. For example, E. coli accumulate
fewer mutations in immunocompromised mice compared to wild-type mice, and
the fitness of reconstructed mutants differs between the two host genotypes [14].
The targets of adaptation can also vary with the age of the host [16,44], shifting
from metabolic functions in young mice to stress-related functions in older mice,
which could reflect their higher levels of gut inflammation [44]. These findings
suggest that some of the selection pressures in the mouse gut are shaped by
interactions with the immune system, either directly (through host-microbe

interactions) or indirectly (through altered microbiota composition).

Extrinsic host factors like diet can also shape the evolution of gut commensals.
The model human commensal Bacteroides thetaiotaomicron acquires different
mutations in mice with a diet high in plant polysaccharides and fiber versus a

diet high in fat and simple sugars: the latter selects for mutants with enhanced
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ability to consume host-derived glycans [17], and that had increased fitness when
plant polysaccharides and fiber are absent [45]. Moreover, weekly alternations
between diets leads to oscillating frequencies of diet-selected mutations [17,46],
indicating that even transient fluctuations in available nutrients can present a

strong selection pressure.

In addition to host factors, other members of the microbiota can play an
important role in shaping the selection pressures experienced by a given focal
species. The mutations acquired by E. coli can be altered by co-colonization with
a single additional gut species (Blautia coccoides), shifting from mutations that
increase E. coli’s ability to compete for amino acids to those involving anaerobic
respiration [15]. Evolution is also affected by intra-species interactions: while E.
coli evolve via de novo mutations in many mouse evolution experiments
[15,16,21,22], the presence of a resident mouse E. coli strain can shift the evolution
of invading strains toward horizontal acquisition of prophage elements from the
resident [47,48]. These observations echo behavior of the human gut microbiota,
for which horizontal gene transfer has been observed both within [23,29,49,50][

and between [31,50,51] resident gut species.

Conceptual and quantitative frameworks for interpreting short-term evolution
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in the gut
With this recent proliferation of experimental data, there is a growing need for
modeling approaches that can synthesize these diverse observations of

microbiota evolution into a common conceptual framework.

Two contrasting models are often invoked to explain the rapid evolution of
commensal gut bacteria. The first (known as “niche filling” [52]) proposes that
evolution is mainly driven by mutations that allow species to exploit
underutilized niches, which could arise from mismatches between bacteria and
hosts (e.g., when human gut commensals are evolved in mice) or from the
absence of normal competitors (e.g., during monocolonization). This model
predicts that as more and better adapted species are added to a community, the
space of open niches shrinks, producing fewer avenues for beneficial mutations
[53,54]. However, an alternative view (known as “diversity begets diversity”)
holds that more diverse communities provide more opportunities for adaptation
to the functions of other community members, e.g. by exploiting metabolic
interactions [55] or by resisting interspecies competition such as type VI killing

[56] or phage [47,48,57].

Empirical support for these models is currently mixed. While a recent study of
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rainwater pools found that evolution was slower in more diverse communities
[54], previous observations in the mouse gut showed that E. coli strains acquire
similar numbers of mutations in monocolonized mice as they do with a diverse
microbiota [15,48]. Similarly, observational data from humans suggests that the
frequency of within-host sweeps is largely flat (or slightly increasing) over the

diversity ranges typical of healthy human gut microbiotas [58].

These results highlight the challenges of defining the tempo of evolution in
different community contexts. The qualitative models introduced above are often
too simplistic (and hence too flexible) to explain evolutionary dynamics across
experiments in which many variables change at once. Even well-defined genetic
quantities, like the number and types of mutations that are observed in
sequenced isolates (Fig. 2), depend on basic parameters such as population size
and mutation rate [59-61], which can vary across hosts and in different
community contexts. Inspired by population genetics theory and in vitro
evolution experiments, we argue that a useful approach is to focus on the
distribution of fitness effects (DFE) of new mutations (Fig. 3A,B), which
summarizes the spectrum of mutations available to an organism in its current
environment before they are amplified by natural selection. While environments

are often defined in terms of abiotic factors such as growth medium, for the
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microbiota the concept of environment must be generalized to include both
intrinsic and extrinsic host factors (e.g., diet) as well as the composition of the

surrounding community (Fig. 3C,D).

Together, the population size and the DFE control both the rate of adaptation
and the number and types of mutations that reach high frequency within a
population (Fig. 3E). By enumerating the spectrum of adaptive mutations before
they are amplified by selection, the DFE provides a metric enabling quantitative
comparisons of the adaptive landscape across environmental contexts. For
example, the DFE can distinguish between scenarios in which the number of
adaptive pathways increases or decreases as the surrounding community
changes, as well as between scenarios in which the magnitude of fitness effects
changes but the total number of adaptive mutations remains constant. This
ability enables quantitative tests of the two qualitative hypotheses discussed
above. Furthermore, by considering the joint distribution of fitness effects (JDFE)
across multiple environments (Fig. 3F), this concept can be extended to predict
the fitness tradeoffs that are likely to arise during evolution to conditions [62].
Such measurements are critical for understanding the contingency of the

adaptive mutations that arise in different environmental contexts.
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DFEs have been enormously useful for understanding and quantifying
evolutionary dynamics in laboratory evolution experiments [63-65], but their
applications to gut microbiota evolution have so far been limited — largely due to
difficulties in sampling the requisite number of adaptive mutations. The parallel
mutations observed in isolate or metagenomic sequencing constitute a small and
biased slice of the DFE, since they have already been filtered by natural selection
[61]. Genome-wide transposon insertion sequencing (TnSeq) approaches have
emerged as a promising tool for measuring the DFE of all single gene knockout
mutations in vivo [66-69]. While existing TnSeq studies have largely provided
information regarding deleterious mutations (i.e., genes whose presence is
beneficial), recent work has shown that these libraries can also be used to
identify spontaneous beneficial mutations that accumulate in these populations
over time [46]. Thus, TnSeq could provide a scalable approach for quantifying
the spectrum of adaptive mutations in vivo, and how it varies across focal species,

diets, and community backgrounds.

In addition to de novo mutations, resident populations can be outcompeted by
other strains of the same species that invade from outside the host. These strain
replacement events have been observed in mice [21] and humans [23,26,28,70-72],

and depend on the migration rates between hosts, as well as the ability of the
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invading strains to expand to high frequencies in their new environment. The
JDFE concept can also be extended to enumerate the fitness of circulating strains
within the global strain pool (and the potential tradeoffs they encounter in their
transmissibility). Such measurements will be critical for understanding the
competition between local adaptation and transmission across multiple host

communities.

How does evolution influence ecological structure?

While much work has focused on how community context influences evolution,
a key related question is how short-term evolution impacts microbiota structure
and function. If the niches of different species are relatively fixed and
disconnected, then evolution would be expected to have a minimal effect on
ecological structure, and then primarily on closely related species. However, if
beneficial mutations can alter ecological interactions between species (e.g., by
acquiring a new pathway via horizontal gene transfer, selection of mutations in
transcriptional regulators resulting in increased expression of certain metabolic
pathways and increased consumption of specific nutrients, or evolving resistance
to a phage that was previously limiting population size), then fixation of these
mutations could change the relative abundances of other species in the

community — and potentially alter future selection pressures as well.



252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

While several studies have shown that specific genetic modifications of gut
commensals can alter the relative abundances of other species [40,41,73], it is not
known whether these variants are representative of the beneficial mutations that
accumulate during within-host evolution. A recent meta-analysis of human gut
metagenomes found that genetic changes within species are statistically
associated with shifts in community composition over the same time intervals
[58]. These shifts were primarily driven by the extinction of distantly related
species, rather than expansion of the focal species itself. These observations are
consistent with theoretical predictions from simple resource competition models,
which suggest that small shifts in the resource uptake rates of a single species can
produce large shifts in species abundances in communities with a high degree of
metabolic overlap [58,74,75]. Future experiments are needed to establish the
causal directions of these statistical associations, and to quantify the niche-

altering effects of beneficial mutations more generally.

Roadmap for the future investigation of evolution in the gut
Expanding the repertoire of focal species
While the initial focus on E. coli was instrumental for identifying the selection

pressures facing gut commensals, future work will need to focus on many other
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species to understand which discoveries generalize across gut commensals and
which are specific. Bacteroides species provide a natural starting point, given their
genetic tractability [68,76-78] and their high abundance and prevalence within
the gut of Western individuals [79]. B. thetaiotaomicron is a generalist [80] that has
long served as a model commensal due to its ability to consume host-derived
glycans when its preferred nutrients (plant-derived complex polysaccharides) are
not present in the diet [45]. Recent experiments have started to explore how this

metabolic plasticity impacts how B. theta evolves with different host diets [17].

It will also be necessary to investigate other species with distinct lifestyles from
B. thetaiotaomicron. Other Bacteroides species engage in interspecies cooperation
through cross-feeding of extracellularly digested polysaccharides [40]. Bacteroides
vulgatus is a natural candidate for exploring how these cooperative interactions
impact evolution, due to its high abundance in the human gut [79], and its
relevance for human health as a potential pathobiont [81] and ability to protect
against E. coli-induced colitis [82]. Other Bacteroides species interact more
strongly with the immune system (e.g., Bacteroides ovatus [83] or Bacteroides
fragilis [84], which are both highly coated by IgA), and hence could be useful for
understanding of the interplay between immune system and gut commensal

evolution. The use of native mouse species like Bacteroides caecimuris could
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address questions about the role of host mismatch in driving within-host

evolution [85].

Despite their importance, Bacteroides species represent only a fraction of the
genetic and functional diversity in the mammalian gut. Additional biology may
be uncovered by studying the evolution of more phylogenetically distant gut
commensals such as mucus degradation specialists like Akkermansia muciniphila,
or butyrate producers like Eubacterium rectale, which are essential for proper
maturation of the immune system [86]. Enterococcus gallinarum, a model gut
pathobiont, evolves into two lineages within mice, specialized in colonization of
either the gut lumen or mucosal niches [42]. The strain evolved for mucosal
colonization through altered gene expression and cell-wall architetcture and
exhibited increased ability to translocate and survive within the mesenteric

lymph nodes and liver, with a trade-off of reduced transmissibility [42].

A comprehensive understanding of the evolutionary potential of a given species
may also require distinguishing between finer genetic backgrounds. Recent work
has shown that different mutations accumulate in laboratory E. coli strains
compared with natural isolates [20], and that the DFEs of two B. thetaiotaomicron

strains can systematically differ even when they co-colonize the same mice [46].
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Resolving these genetic interactions will likely require evolution experiments
using isolates from a broad range of hosts and/or host species, which is becoming

increasingly feasible with modern strain collections [26].

Systematic modulation of the surrounding community

Further progress will also rely critically on our ability to systematically vary the
biotic environment in which the focal species evolves. Comparing the evolution
of focal species in monocolonized mice and simple synthetic communities has
been a useful tool for uncovering host- and microbiota-dependent factors in
adaptation [15]. These efforts will be facilitated by the development of larger
defined communities that mimic the diversity, composition, and functionality of
the full mammalian gut microbiota [85,87]. Combinatorial manipulation of these
defined communities will be essential for understanding how the surrounding

community influences evolutionary trajectories.

A thorough understanding of these effects will likely require orders of
magnitude more experiments than are currently feasible with existing germ-free
mouse setups. While living hosts will remain essential for disentangling the role
of some host-dependent features (e.g., the adaptive immune system), in vitro

evolution of synthetic gut communities provides a promising way to achieve the
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required levels of replication while maintaining the complexity of the
surrounding community. A future challenge is to determine to what extent in
vivo conditions can be translated into a laboratory context; recent successes with
in vitro passaging of stool suggest that certain rich media are reasonable mimics
of the nutrient environment within a host [88]. Organoid systems and other
animal models may serve as a bridge between in vitro and mouse evolution
experiments. Insects such as fruit flies have lower diversity gut microbiotas with
less complex nutrient supplies and more interspecies competition [89,90].
Hopefully, all of these models synergize to improve our understanding of

general principles of evolution in the gut.

Tools for quantifying evolutionary dynamics and phenotypes

Advances in sequencing are enabling exploration of evolutionary dynamics at
tiner temporal resolution and at larger scale. Barcoding enables tracking of
thousands of lineages across hundreds of time points from an experiment in a
single sequencing run (Fig. 2B), which should facilitate the design of experiments
to quantitatively evaluate the effects of host factors such as the immune system
or diet, environmental factors such as housing, and community context on
evolutionary dynamics. The main obstacle to barcoding is the requirement of

high transformation efficiency in the species of interest, which has not yet been
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achieved for many gut commensals.

While animal models provide a tractable system for controlled experiments, it is
likely that some aspects of within-host evolution may ultimately be host-
dependent, given differences in gut anatomy and the potential for long-term
adaptation between commensals and their hosts. The decreasing cost of
sequencing should permit longitudinal sampling of humans more densely and
over longer intervals to pin down evolutionary trajectories from metagenomics
and isolate sequencing. Cost reductions in long-read sequencing [91] will also
clarify the role that mobile genetic elements and other difficult-to-assemble
structural variants play in driving short-term evolution within hosts. A broad
range of existing longitudinal studies have already been processed for DNA
extraction for 165 rRNA sequencing; revisiting these studies with metagenomic
sequencing could serve to rapidly expand the sequencing database from which

to detect adaptive mutations.

Ultimately, the ability to successfully interpret the functional consequences of
mutations will require other means of interrogation to gather phenotypic
information associated with mutations. Advances in metabolomics [92] will

reveal changes to the gut environment associated with enhanced metabolic
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activity. Quantifying the phenotypic landscape of gene knockout and
overexpression libraries in gut commensals [66,67,93] will provide a baseline
expectation for mutations in each gene. Genetic tools to reconstruct observed
mutations in the species of interest will be critical to close the loop so that
mutants can be studied in vivo and in competitive colonization experiments.
Finally, a greater understanding of the biophysics of spatial structure in the gut

[1,94,95] may be necessary to acquire a full picture of gut ecology and evolution.
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390 Figure 1: Connections between evolution and ecology in the mammalian gut.
391  Host factors like aging, medication, diet, and immune status affect the gut

392  microbiota through its composition. Focal species (green oval) can evolve due to
393  selection pressures directly from the host factors or indirectly from the

394  surrounding community. The evolved focal species (red oval) may differ from its
395 ancestor through the ability to consume different nutrients or to survive and

396  colonize different environments. Evolution of the focal species may in turn affect
397  the surrounding community by perturbing the landscape of nutrient competition
398  or providing nutrients through cross-feeding, and can affect the gut environment

399  (e.g., by altering pH or colonizing distinct regions of the intestines).
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Figure 2: Sequencing approaches for quantifying within-host evolution of gut

commensals.

A)

B)

Whole genome sequencing-based studies infer adaptive evolution by
tracking individual mutations that rise to substantial frequencies within a
host. Top: metagenomic sequencing approaches track the frequencies of
(linked) mutations within a host over time, providing information about
the total fitness benefits of their corresponding haplotypes. Bottom: isolate
sequencing can provide information about the targets of adaptation, by
observing parallel mutations across multiple independent lineages.
Barcode sequencing-based studies can simultaneously track tens of
thousands of genetically tagged lineages within a single population with
high frequency resolution, allowing high-throughput measurement of

expanding lineages that acquire adaptive mutations.
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Figure 3: The distribution of fitness effects (DFE) provides a quantitative

framework for evaluating qualitative models of microbiota evolution.

A) The DFE captures the spectrum of mutations available to a focal species in

a particular environment (e.g., a fiber-rich diet and a baseline microbiota).

B-D) Each tile in the DFE represents a mutation with a given target size and
titness effect, which can be measured from the slope of the log ratio of
mutant-to-parent genotypes over time. Since the fitness effect of a
mutation may depend on host- or community-context, the same focal
species will have different DFEs across different environments, which
could include changes in host-extrinsic factors such as diet (C) or

differences in the surrounding microbial community (D).
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E) The joint DFE (JDFE) generalizes the DFE across multiple environments,

F)

by enumerating the fitness effects of the same mutation across different
environments.

The DFE and JDFE determine the evolutionary dynamics within a single
host (e.g., the rate of fitness increase or the parallel mutations observed in
sequenced isolates) as well the evolutionary tradeoffs (pleiotropy) of

mutations in other host conditions.
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