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ABSTRACT

Much remains to be explored regarding the diversity of uncultured, host-associated
microbes. Here, we describe rectangular bacterial structures (RBSs) in the mouths of
bottlenose dolphins. DNA staining revealed multiple paired bands within RBSs,
suggesting the presence of cells dividing along the longitudinal axis. Cryogenic
transmission electron microscopy and tomography showed parallel membrane-bound
segments that are likely cells, encapsulated by an S-layer-like periodic surface covering.
RBSs displayed unusual pilus-like appendages with bundles of threads splayed at the
tips. We present multiple lines of evidence, including genomic DNA sequencing of
micromanipulated RBSs, 16S rRNA gene sequencing, and fluorescence in situ
hybridization, suggesting that RBSs are bacterial and distinct from the genera Simonsiella
and Conchiformibius (family Neisseriaceae), with which they share similar morphology
and division patterning. Our findings highlight the diversity of novel microbial forms and
lifestyles that await characterization using tools complementary to genomics such as

microscopy.
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INTRODUCTION

The earliest descriptions of the microbial world centered around the morphology and
motility patterns of “animalcules™. In the centuries since Leeuwenhoek’s revolutionary
discovery, a vast diversity of microbial forms have been described, ranging from star-
shaped bacteria in the genus Stella®? to the multicellular fruiting bodies characteristic of
order Myxobacterales*®. Morphology is a biologically important characteristic, often highly
conserved and molded over time by selective pressures resulting from an organism’s
lifestyle and environmental context®. Indeed, cell morphology plays an important role in
motility, nutrient acquisition, cell division, and interactions with other cells, including
symbioses with hosts, all of which are strong determinants of survival’. As such,
morphological and structural studies offer an appealing route by which to glean insight
into microbial life forms and the mechanisms by which species function and affect their
environments. Moreover, characterizing the structures and functions of the diverse range
of microbes in uncharted branches of the tree of life provides an opportunity to broaden
our understanding of evolution and may result in myriad applications in biotechnology and
medicine, exemplified by the development of optogenetics® and CRISPR-based gene

editing®.

Genomics serves as a powerful lens through which to describe the microbial world. In
recent years, metagenomic and single-cell genomic analyses have substantially
increased the number of known microbial phylum-level lineages by a factor of nearly four
in the bacterial domain'®'3. Sequencing the genomes of newly discovered organisms has
led to the discovery of new functional systems, types of protein variants, and lifestyles'4-
7 illustrating the correlation between phylogenetic diversity and functional potential®.

However, the applicability of such approaches is mostly limited to proteins and regulatory
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systems homologous to those of well-characterized organisms; the prediction of
phenotypes and functions that are truly novel and/or whose genetic basis is unknown
generally requires complementary knowledge. Given the recalcitrance of most microbial
species on Earth to laboratory culturing (in 2016, 72% of approximately phylum-level
lineages lacked any cultured representative)'®, methods that do not require cultivated
isolates, such as microscopy, offer an appealing, complementary route by which to study
novel morphological and functional properties of uncultured lineages. For example, recent
advances in cryogenic electron microscopy (cryoEM) and tomography (cryoET) have
allowed three dimensional (3D) imaging of intact bacterial cells at a resolution in the range
of nanometers?’, leading to important advances in the discovery and characterization of
new microbial structures?'-22. At present, our knowledge of cell biology has been largely
limited to observation of and experimentation on bacteria that can be cultured, and thus
there exists a severe bias in our understanding toward organisms conducive to growth in
laboratory conditions. The use of microscopy and non-sequencing-based techniques for
studying “the uncultured majority” will be essential for characterizing the full diversity of
bacterial lifestyles that have evolved, particularly efforts at characterizing bacteria in
relatively unstudied environments such as the mouths of bottlenose dolphins (Tursiops

truncatus) that host a rich collection of novel microbes and functional potential’¢-23,

Despite the diversity of microbial cell shapes, rectangular structures are a rarity, with a
poorly understood genetic basis. Such structures are of two types: individual cells that
are rectangular, and cell aggregates that form rectangles. To the best of our knowledge,
the discovery of non-eukaryotic rectangular cells has thus far been restricted to the family
Halobacteriaceae, which consists of halophilic Archaea. Known rectangular cells from this

family include Haloquadratum walsbyi?*, Haloarcula quadrata®®, and members of the
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pleomorphic genus Natronrubrum?®. FtsZ-based fission has recently been observed in
the cube-shaped nematode symbiont Candidatus Thiosymbion cuboideus®” and
additional rectangular cells believed to be bacterial or archaeal have been discovered in
high salinity environments but not taxonomically identified?®. Among eukaryotic
microorganisms, diatoms can have a rectangular appearance when visualized in two
dimensions, although these cells are cylindrical rather than rectangular prisms?°. A variety
of bacteria form rectangular cell clusters, such as sheets of coccoid bacteria (for example,
Thiopedia rosea and the genus Merismopedia®®), and cuboidal structures of coccoid
bacteria (for example, the genera Sarcina and Eucapsis®®), and rectangular trichomes
formed by disc-shaped bacteria (for example, Oscillatoria limosa and other

cyanobacteria®®).

Also rare in the microbial world are cells that diverge from the typical pattern of cell
division along a transverse axis. Two spectacular examples are Candidatus Thiosymbion
oneisti and Candidatus Thiosymbion hypermnestrae®!-33, which have been exclusively
found on the surface of marine nematodes. This division patterning is thought to preserve
attachment to the host3'32. Similarly, members of the family Neisseriaceae genera
Alysiella, Simonsiella, and Conchiformibius divide longitudinally, which is thought to help
with adherence to human epithelial cells in the oral cavity®*. These taxa are further striking
in that they can be regarded as multicellular bacteria. Additional examples of bacteria that
undergo longitudinal division include Spiroplasma poulsonii®® and genus Candidatus
Kentron, a clade of symbionts hosted by the marine ciliate Kentrophoros¢-3’. Such insight
into the reproductive methods of diverse bacteria is essential for building a

comprehensive understanding of cell biology.
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Here, we discover unusual rectangular bacterial structures (RBSs) in dolphin oral
samples and characterize their cellular dimensions and DNA patterning using phase-
contrast and fluorescence microscopy. Regular bands of DNA suggest that the units are
sheets of individual cells, each of which is encapsulated by an inner and outer membrane,
while fluorescence in situ hybridization (FISH) experiments and metagenomic sequencing
strongly suggest that they are bacterial, and potential members of the class
Betaproteobacteria. Using cryogenic transmission electron microscopy (cryoTEM) and
tomography (cryoET), we characterize the envelope structure of RBSs and discover
previously unobserved surface features such as heterogeneous bundles of appendages
that protrude from the ends of RBSs and splay out at the tips. These findings highlight the

power of high-resolution microscopy for exploring the nature of uncultivated microbes.

RESULTS

Rectangular bacterial structures in the dolphin oral cavity are Gram-negative and
contain multiple bands of DNA

Oral swab samples were collected from the mouths of eight bottlenose dolphins (Tursiops
truncatus) under the purview of the U.S. Navy Marine Mammal Program in San Diego
Bay, California, USA, during three distinct intervals in 2012, 2018, and 2022 (Methods).
Rectangular bacterial structures (RBSs) were readily apparent in phase contrast
microscopy images (Fig. 1a-e). The RBSs resembled rectangular prisms; they were not
cylindrical (Supplementary Movie 1). They exhibited Gram-negative characteristics
following Gram staining (Fig. 1f). Attempts at membrane staining using FM4-64 were
unsuccessful, as the FM4-64 dye did not stain any part of the RBSs. RBSs contained

multiple parallel bands of fluorescence with DAPI staining (Fig. 1b-e). In some RBSs, the
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neighboring DNA band pairs appeared “H”-like (Fig. 1g, white arrow), suggesting two rod-
shaped cells in the process of division along a longitudinal axis with the DNA bands
undergoing segregation?’. RBSs clustered into two morphotypes based on the
dimensions of the rectangular units (Fig. 1h). Using materials from a single dolphin oral
swab sample, we quantified the length and width of 23 RBSs. Morphotype A exhibited a
median length of 3.95 + 2.89 ym median absolute deviation (MAD) and median width of
5.08 £ 0.10 ym MAD (n=15 RBSs). Morphotype B had a median length of 3.08 + 0.93 ym
MAD and a median width of 2.21 + 0.56 ym MAD (n=8 RBSs). The dimensions for both
length and width were significantly different between the two morphotypes (for length,
p=0.02; for width, p=10"9; two-sided Welch’s t-test). The different morphotypes may
represent different cell types or taxonomic groups (for example, strains or species), cells
in different stages of development, or cells with altered shape in response to

environmental conditions.

We assessed the prevalence of RBSs of each morphotype in a set of 73 oral swab
samples collected from eight dolphins (Supplementary Data 1), using a high-throughput,
automated phase contrast microscopy workflow that collected imaging data for 226 fields
of view per sample®®. RBSs of morphotype A, henceforth referred to as RBS-As, were
detected in 39/73 samples from 7/8 dolphins (note that the number of samples per dolphin
is not constant and that different oral locations were swabbed in different years). RBSs of
morphotype B, henceforth referred to as RBS-Bs, were detected in 42/73 samples from
6/8 dolphins. Of 25 of these 73 samples that were collected from distinct oral sites, RBSs
were detected in palatal (RBS-A = 5/5; RBS-B = 4/5) and gingival samples (RBS-A =

12/15; RBS-B = 14/15), but less frequently in buccal samples (RBS-A = 0/5; RBS-B =
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2/5). Thus, we infer that the RBSs are stable colonizers in the dolphin oral cavity and

have preferred colonization locations.

In this study, we focused on RBS-A, as this morphotype had a higher abundance in the

dolphin oral samples and is more morphologically distinct from other, known microbes.

RBSs are likely bacterial and not Neisseriaceae

Given the intriguing morphology of RBSs, we next sought to determine their taxonomic
affiliation. RBSs morphologically resemble members of the genera Simonsiella and
Conchiformibius (family Neisseriaceae), which are rod-shaped oral commensals in
mammals®. In a re-analysis of the Sanger clone library and 454 pyrosequencing data
from a previous 16S rRNA gene amplicon survey of gingival swab samples from 38
dolphins from the same population?®, no S. muelleri (the sole species of the genus
Simonsiella) or genus Conchiformibius amplicons were detected in any of these samples,
although other members of the family Neisseriaceae were detected in these dolphin oral
samples. A putative S. muelleri sequence type was detected in the Sanger library from
the mouth and gastric fluid of one sea lion examined in the same amplicon study?® (NCBI
accession number JQ205404.1); this partial 16S rRNA gene sequence has 94.6% identity
over 99% query coverage to the partial S. muelleri ATCC 29453 16S rRNA gene
sequence (NCBI accession number NR_025144.1). The former study detected five other
family Neisseriaceae sequence types in the Sanger library from sea lions (mouth and
stomach), water, and fish species fed to marine mammals?3. Meanwhile, there were four
family Neisseriaceae sequence types recovered in the 454 pyrosequencing survey, from
dolphins (stomach, respiratory system), sea lions (mouth, stomach), fish, and seawater.

These positive identifications indicate that S. muelleri and family Neisseriaceae DNA
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could be extracted successfully in the previous study, although they were not detected in

any dolphin oral samples?3.

We then performed 16S rRNA gene amplicon sequencing on 54 dolphin oral samples
(Methods), resulting in the detection of 1,116,394 amplified sequence variants (ASVs)
from 5,339,751 sequence reads. Of these 54 samples, 48 were screened in a high-
throughput manner for RBSs via phase contrast microscopy (Methods). RBS-As and
RBS-Bs were each detected in 22/48 samples (45.8%), but not the same 22 samples.
One or the other morphotype was detected in 30/48 samples (62.5%). Rarefaction curves
suggested that the depth of sequencing was sufficient for results to be near saturation for
ASV richness (Figure 2a). No family Neisseriaceae amplicons were detected in these
samples (Figure 2b), despite our ability to recover S. muelleri sequences from previously
negative oral swab samples after deliberately spiking aliquots of these samples with S.
muelleri. ASVs common to the RBS-A and RSB-B positive samples can be seen in

Supplementary Tables 1 and 2, respectively.

The marine origin and rectangular nature of the RBSs also gave rise to speculation that
they may be marine diatoms (for example, Skeletonema costatum), as cylindrical marine
diatoms can appear rectangular in two dimensions. Thus, we next evaluated a potential
eukaryotic origin of RBSs. We performed fluorescence in situ hybridization (FISH) using
labeled eukaryotic (Euk-1209) and bacterial (Eub-338) probes, the latter of which is
known to hybridize with both bacteria and archaea. As controls, we cultured and included
S. costatum and the bacterium Escherichia coli. The Eub-338 probe hybridized to both E.

coli and the RBSs, while the Euk-1209 eukaryotic probe hybridized to S. costatum cells
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alone (Supplementary Fig. 1), indicating that RBSs are not eukaryotic and thus not

diatoms.

With no further a priori hypotheses as to the specific nature of the RBSs, we pursued a
variety of general approaches to shed light on their identity. First, we cultured oral
samples under aerobic and anaerobic conditions in three different media used to grow
diverse bacteria (Methods), hoping to enrich for RBSs. Unfortunately, RBSs were not
visible upon inspection of cultures under a microscope, indicating that the growth
requirements for RBSs are distinct from those of typical bacteria isolated from mammalian

microbiotas.

We further explored the potential for culturing RBSs directly on solid surfaces. Among the
swab samples from 2022, we stored five in 20% glycerol immediately after collection to
maximize the chances of maintaining RBS viability. Single-cell microscopy identified two
glycerol stocks containing samples with numerous RBSs. These stocks were inoculated
on agar plates containing either BSTSY-FBS or BHI-blood medium (Methods). BSTSY-
FBS plates enable growth of S. muelleri and were incubated aerobically at 37 °C. BHI-
blood plates are typically used to grow a variety of bacterial commensals from mammals;
these plates were incubated anaerobically at 37 °C. After 3 weeks of extended incubation,
no colonies were visible on the BSTSY-FBS plates, while a control sample of S. muelleri
formed large colonies after 1-2 days. The BHI-blood plates collectively contained ~300
colonies, of which we examined 288 using high-throughput single-cell microscopy?8.
None of the colonies contained cells with morphology similar to RBSs. Taken together,

while disappointing from the point of view of enabling genomics approaches, our inability
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to successfully culture RBSs provides further support that they are not S. muelleri, which

is readily cultivatable using such approaches.

Our next strategy employed mini-metagenomics, an approach in which a small number
of cells are subsampled from a complex community and their DNA is amplified using
multiple displacement amplification. Notably, this approach largely avoids preconceived
biases about possible identity, since metagenomic analyses should reveal DNA from any
cell from any domain of life, assuming successful cell lysis. We used three techniques to
capture RBS-As for genomic sequencing: laser capture microdissection, microfluidics,
and cell micromanipulation. Due to their large size compared with other bacteria, low
density, and the propensity of RBS-As to stick to other cells and to abiotic surfaces, only
micromanipulation led to successful RBS-A capture (Supplementary Fig. 1). In addition
to four collection tubes each containing ~1-3 RBS-As, four negative-control tubes of
sample fluid were collected with the micropipette without any cells visible at the resolution
of our microscope. Cell-free DNA and small non-target cells were also likely collected
along with the RBS-As, given the frequent close proximity of RBS-As to other cells. DNA
from RBS-A-positive and RBS-negative samples was amplified using multiple
displacement amplification (MDA), co-assembled, and sorted into 18 genome bins (Fig.
4; Supplementary Fig. 3; Supplementary Tables 3, 4; Methods). Notably, no S. muelleri,
family Neisseriaceae, or diatom genomes were recovered, although positive controls for
these taxa were not included in the experimental design. The eukaryotic bins matched
the human genome or the fungal class Malasseziomycetes, members of which are known
commensals of human skin“?, and hence likely represent contaminants. No archaeal bins

were recovered.
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As half of the candidate bacterial bins recovered from the mini-metagenomics experiment
were members of the phylum Proteobacteria, we next performed FISH experiments using
a set of class-specific probes targeting Alpha-, Beta-, and Gammaproteobacteria. The

RBSs exhibited positive binding only to class Betaproteobacteria probes (Fig. 3).

We synthesized insights into RBS-A taxonomic identity from each experimental line of
evidence (Fig. 4). While no conclusive insights can be drawn about RBS-A identity, FISH
results suggested a class Betaproteobacteria partial genome from the family
Alcaligenaceae was recovered from the mini-metagenomics experiment; the affiliation of
this bin (humber 16) with family Alcaligenaceae was confirmed via phylogenetic analysis
of the 16S rRNA and ribosomal protein S3 genes (Supplementary Fig. 4, 5,
Supplementary Methods). An ASV consistent with the 16S rRNA gene of that bin is
present in 11/13 of samples in which RBS-As were visually confirmed to be present and

for which amplicon sequencing data are available.

The evolutionary path towards multicellularity and longitudinal division is poorly
understood. Recent efforts to identify the genetic basis of these bacterial characteristics
in the family Neisseriaceae found that the acquisition of the amidase-encoding gene
amiC2, along with modifications to key regulatory genes (e.g., mreB, ftsA), likely plays an
important role. We searched the bins recovered from the mini-metagenomics experiment
for putative AmiC2 proteins (those encoding Amidase_3, PF01520); candidates were
identified in bins 4, 7, 9, 10, 11, 12, and 16 (the last of which is affiliated with
Alcaligenaceae). Upon confirmation of the identity of the RBSs, future work should

examine the significance of amiC2 in conferring their unusual morphology.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

CryoEM and cryoET reveal nanoscale surface and internal structures of RBS-As

To gain high-resolution structural insight into RBS-As, we imaged dolphin oral samples
containing high densities of RBS-As using cryogenic transmission electron microscopy
(cryoTEM). Low-magnification cryoTEM images revealed that each RBS-A consists of
seemingly paired segments organized in parallel (Fig. 5a,b). These segments were
oriented similar to the DAPI-stained bands seen in fluorescence microscopy images (Fig.
1c,e). Some groups of segments appeared to be in the act of separating from other
groups, although our static data cannot definitively say whether these observations were
reflective of cell division. Segments were surrounded by a dense, membrane-like layer

under a low-density layer (Fig. 6a,b (right) and Fig. 7a; Supplementary Movies 2, 3).

We hypothesized that RBSs are most likely aggregates of cells, with each DNA-
containing segment corresponding to an individual cell. The following observations
support this hypothesis: 1) each individual segment appeared to be surrounded by an
inner and outer membrane, reminiscent of the plasma and outer membrane seen in other
Gram-negative bacteria (Fig. 5a, 6a,b (right) and Fig. 7a); 2) segments are arranged in
the same geometry (Fig. 5a,b) as the DAPI-stained bands and FISH probe-hybridized
bands (Fig. 1c,e,g); 3) appendages protruded from the surface of individual segments
(Fig. 5c,d); 4) RBS-As often consisted of variable numbers of segments that appeared to
be separating from one another (Fig. 1d,e and Fig. 6b), suggesting that the rectangular
structures do not reflect individual cells; 5) neighboring segments appeared H-shaped
(Fig. 1g), reminiscent of nucleoids segregating in a bacterial cell undergoing longitudinal
division; and 6) while a recent report describes the first discovery of a bacterium in which
DNA is stored in a membrane-bound compartment*!, the number of known bacterial

species in which DNA is physically segregated from the cytoplasm, let alone organelle-
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bound, is extremely low. By contrast, multicellularity has been documented in diverse

bacterial species (reviewed in ref. 42),

Dark, spherical structures were visible in the body of RBSs in cryoTEM images (Fig. 5c).
In one tomogram, two dense spheroidal objects were prominently visible and measured
192 nm x 200 nm x 192 nm (volume 3.1x10” nm3) and 215 nm x 220 nm x 220 nm
(volume 4.4x10” nm3). Vesicle-like structures were also apparent. Notably, a surface
covering with a periodicity of ~7-9 nm encapsulated the RBS-As (mean 7.83+0.86 nm
SD) (Fig. 6 and Fig. 7; Supplementary Movies 2, 3). This feature was measured from the
high-resolution 2D micrographs of two RBS-As from a single dolphin oral sample by
generating line-density plots of segments (2 from each image) and manually measuring

the distance between intensity peaks for 6-7 peaks (Fig. 7d,e).

To obtain more detailed three-dimensional reconstructions of RBS-A features, we
conducted cryoET experiments. Tilt-series acquisitions were limited to the RBS-A
periphery since the thickness of the RBS-A bodies occluded the electron beam almost
completely at high tilt angles. The thickness at the RBS-A periphery (<1 ym from the
edge) ranged from ~323-751 nm, with an average value of ~509+132.4 nm SD (n=15),
(above the ~500 nm threshold commonly regarded as the upper limit for productive
cryoET imaging®3). Attempts to image the RBS-A body with cryoET failed because gold
fiducials and cellular features quickly became indiscernible upon tilting, suggesting the
specimen’s thickness induced too many multiple scattering events to yield usable

images*4.
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Appendages that resembled pili*®>#¢ protruded from RBS-As; these appendages often
consisted of hair-like structures that formed bundles and splayed out at the tips,
sometimes intertwining and/or crossing over one another (Fig. 6b and Fig. 7b,c). The
bundles of appendages were structurally heterogeneous, with variable lengths, bundle
widths, and numbers of tips. Notably, in examining the various features within the
tomograms, we did not observe any membrane-bound organelles reminiscent of a

nucleus, in line with a non-eukaryotic identity.

For both the appendages and periodic surface covering, subtomogram averaging*’ did
not yield consistent maps, likely due to the thickness of the RBS-A periphery (often >500-
600 nm thick), low signal-to-noise ratio of the tomograms, and limiting characteristics of
the features in question, such as the variable curvature of the regions with stretches of
continuous periodic surface covering. Successful subtomogram averaging typically relies
on averaging identical structures, for example, repeated copies of a macromolecular
complex, such as ribosomes in the same functional state. One can compensate for
structural variability in the form of conformational and compositional heterogeneity with
large datasets composed of thousands of subtomograms in combination with advanced
classification methods. However, in our datasets, both the pilus-like appendages (Fig. 7a-
c) and the S-layer-like surface feature (Fig 7a,d,e) were structurally heterogenous and
sparsely distributed in the RBS-As (e.g., the S-layer-like surface feature is not continuous
along the entire membrane of the RBS-As, and in the stretches where it is, it exhibits

differential curvature) and thus were observed only in a fraction of our tomograms.

To address sample thickness, we used cryogenic focused ion beam (FIB) scanning

electron microscopy (SEM)* to mill thinner lamellae of RBS samples*®. However, we



369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

could not locate any RBS-As under the ice, for two possible reasons: 1) with an inferred
thickness between ~0.6-1.7 ym, RBS-As may not form “mounds” under the ice that are
protuberant enough to suggest where to mill; and 2) other larger cells in the samples
(such as dolphin epithelial cells) formed more prominent mounds that obscured the RBS-
As. Indeed, none of the lamella we produced from candidate locations contained RBS-
As. The data from this experiment suggest that cryo-correlative light and electron
microscopy (cryoCLEM) will be necessary in future studies to locate candidate regions in
cryoEM grids with vitrified RBS-As from which to produce thin lamellae using cryoFIB-
SEM. Nonetheless, the cell surface exhibited features similar to those we observed on
the RBS-A periphery, namely pili and S-layers. We suggest that the pilus-like appendages

and the S-layer-like periodic surface covering of RBS-As merit future investigation.

DISCUSSION

Here, we used optical microscopy, cryoTEM, and cryoET to search for novel
morphological diversity within the microbiota of dolphin oral samples. Morphological
diversity was predicted based on previous findings of novel phylogenetic diversity and
functional potential in the dolphin mouth via sequencing-based studies'®23, Interestingly,
we discovered unusual RBSs. We infer that both RBS morphotypes are indigenous to the
dolphin mouth given that they were consistently present in this environment: RBS-As and
RBS-Bs were identified in 39/73 and 42/73 samples, respectively, that were surveyed
using high-throughput microscopy imaging, including in 7/8 and 6/8 dolphins included in
this study, and were present in samples collected during intervals ten years apart.
Previous studies have found that the microbiota of marine mammals is distinct from that
of seawater (even that of skin, which is constantly in direct contact with seawater)?350,

and thus it is unlikely that RBSs are simply contaminants from seawater.
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The taxonomic identification of specific cell morphotypes from complex communities can
be extremely difficult, to the point that it often remains unresolved?®5'.52, Results collected
here strongly suggest that the RBS-As are not affiliated with the multicellular longitudinally
dividing family Neisseriaceae genus Conchiformibius, whose members also form
rectangularly shaped clusters of rod-like cells®®. First, the marker gene amplicon
sequencing workflow employed here did not detect any family Neisseriaceae amplicons
in 54 dolphin oral samples that underwent deep 16S rRNA gene amplicon sequencing,
although this workflow did detect S. muelleri after cells from this taxon were intentionally
spiked into aliquots of dolphin oral samples. Second, attempts to culture RBS-As using
techniques that were employed successfully in our laboratory to culture S. muelleri failed,
suggesting that the RBS-As have different physiological requirements for growth than
those required by S. muelleri. Third, no family Neisseriaceae genomes were recovered
from the mini-metagenomics experiment. Fourth, visual comparisons of RBS-A images
presented here with the TEM and fluorescence microscopy images of multicellular
longitudinally dividing family Neisseriaceae (genera Alysiella, Simonsiella, and
Conchiformibius) in ref. 3 suggest that they are different taxa. For example, RBSs appear
to contain segments (cells) that are embedded in a matrix-like material and fully
encapsulated by an S-layer-like structure, whereas multicellular longitudinally dividing
family Neisseriaceae belonging to the same filament only appeared to share their outer

membrane®3.

FISH experiments indicated that the RBS-As are bacterial and likely members of the class
Betaproteobacteria. A class Betaproteobacteria genome was recovered from the mini-

metagenomics experiment, from the family Alcaligenaceae. An ASV matching the 16S
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rRNA gene of this bin was detected in 11/13 samples that underwent amplicon
sequencing and were visually confirmed to contain RBS-As via phase contrast
microscopy. Taken together, the RBS-As may be members of the family Alcaligenaceae,
although the finding that this ASV was absent in 2/13 samples confirmed to contain RBS-
As via microscopy challenges this hypothesis. One possibility is that the RBS-As were
present in sufficiently low relative abundance in those two samples as to not be detected,
despite deep amplicon sequencing. Another possibility is that RBS-As are not this
Alcaligenaceae taxon, and rather the Alcaligenaceae taxon is a ubiquitous member of the
dolphin oral microbiota and therefore showed up frequently in our sequencing-based
analyses. In such a case, it would suggest that either the RBS-As are class
Betaproteobacteria that did not lyse in the sequencing-based experiments or that the
FISH results were a false positive, despite the stringent and controlled conditions under

which the experiment was performed.

Obtaining a species-level identification for RBSs via sequencing-based methods will be
extremely challenging for numerous reasons, such as the frequent close proximity of
RBSs with other small cells that were likely mixed with RBSs during micromanipulation or
recalcitrance to laboratory lysis. Importantly, we are hesitant to exclude candidate
identities based on not being present in the mini-metagenomics experiment in all positive
RBS samples, since technical limitations could have resulted in false negatives. For
example, a thick cell wall or obstruction preventing reagents from reaching the RBS by
the micropipette needle could have interfered with lysis of the cell membrane and
impeded DNA extraction. Conversely, a positive result in a negative control may have
arisen due to non-specific read mapping, contamination of genome bins with material

from true contaminants, or cell-free DNA. Culturing-based approaches may ultimately be
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the most promising route forward for identifying RBSs, although many combinations of
parameters will likely need to be tested to find satisfactory conditions for RBS growth.
Regardless of the taxonomic identity of the RBSs, the novel structural features that have
evolved in these microorganisms are intriguing and highlight the discovery potential for

further study.

The paired nature of segments in RBSs can likely be ascribed to their longitudinal mode
of binary fission, as seen in the family Neisseriaceae genera Alysiella, Simonsiella, and
Conchiformibius, as well as S. poulsonii, Ca. T. oneisti and Ca. T.
hypermnestrae®'32:3%54 |In the family Neisseriaceae member S. muelleri, sheets are
thought to help cells remain physically anchored in the oral cavity when rapidly shedding
epithelial cells slough off**. We hypothesize that the same may be true for RBSs, which
inhabit a similar environment and whose morphology may have undergone convergent
evolution due to similar evolutionary pressures. Longitudinal binary fission may be an
even more general characteristic that is selected in response to the need to form a secure
attachment to a substrate. The segments at the ends of RBSs are often shorter than those
closer to the center, suggesting that there may be a mechanism by which the growth of
segments is determined by their spatial positioning within an RBS. The RBSs present
another case example for future evolutionary studies focused on understanding the

drivers and genetic basis of bacterial multicellularity and longitudinal division.

CryoTEM images suggested that RBS-As are encapsulated by a periodic surface
covering, which may be an S-layer or a new crystalline structure. S-layers are self-
assembling, crystalline arrays of single proteins or glycoproteins that coat the exterior of

some bacteria and archaea®%¢. While their exact function varies widely across
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microorganisms and is often unknown, S-layers are hypothesized to confer beneficial
functions given their high metabolic cost (the S-layer comprises up to ~20% of the total
protein synthesized by cells), their ubiquity across microbes, and their multiple
evolutionary origins®-%¢. If segments in RBS-As correspond to individual cells, production
of the periodic surface covering may represent cooperation between cells within RBS-As.
Cooperative synthesis of a single, shared periodic surface covering by multiple cells could
have evolved since close kin (other cells in an RBS-A) have limited dispersal ability and
are therefore situated in close physical proximity. RBS-As would benefit from cooperative
production of a single periodic surface covering around a population of cells rather than
around each individual segment by reducing the surface area required to cover all cells,
and such an advantage could even have contributed to selection for aggregation. An
additional and not mutually exclusive possibility is that the periodic surface covering may
help to maintain the ultrastructure of segments within an RBS-A, similar to archaea such

as Thermoproteus tenax®’.

One of the most striking features of RBS-As is their pilus-like appendages. At present,
there are five characterized classes of pili in Gram-negative bacteria (chaperone-usher,
curli fibers, F-type, type IV, and type V) and two general types of pili in Gram-positive
bacteria (short, thin rods and longer, flexible, hair-like filaments)*54¢; other pilus-like
appendages have been documented, such as hami in archaea?'. To the best of our
knowledge, characterized bacterial pili all consist of single appendages that exist as
independent units. By contrast, the pilus-like appendages that protrude from RBS-A
segments exhibit an unusual architecture involving heterogeneous bundles of filaments

that often splay out at the tips. These observations raise the question of whether the RBS-
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A appendages represent a novel type of assembly of pilin subunits or are a completely

distinct class of appendages.

Extensive investigation of hundreds of cryoEM images and dozens of cryoET tomograms
enabled visualization of the structure of many RBS-A features at close to nanometer reso
lution. Future studies of RBS-As may benefit from imaging with phase-plate optics that
dramatically increase image contrast®® following specimen preparation methods that thin
cells into lamellae by focused ion beam (FIB) milling coupled with scanning electron
microscopy (SEM) at cryogenic temperatures*®4°. Our data suggest that cryoCLEM will
be needed to enable production of thin lamellae for RBS-As since the RBS-A cell body
seems to be thicker than the limit allowed for cryoET experiments, and yet too thin for
RBS-As to be readily found by cryoSEM prior to cryoFIB milling without fluorescent labels.
Successful cryoCLEM+cryoFIB-SEM experiments followed by cryoET could enable more
comprehensive analyses of the community of RBS-As and their cell body beyond the thin
periphery as well as visualization of subcellular components of interest at higher

resolution via subtomogram averaging.

The vast majority of microorganisms on Earth lack isolated representatives'®.
Sequencing-based analyses have proved invaluable in exploring and describing said
diversity, yet cannot be used to explore all aspects of the biology of microorganisms.
Notable blind spots in our understanding of uncultured organisms include the unique
genes and corresponding structural and functional features that have evolved within these
lineages. While the use of advanced imaging techniques to visualize microbes can

provide insight into the biology of uncultured lineages, a shift toward a more multifaceted
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approach drawing on many disciplines and techniques will be required to create a

comprehensive view of this biological dark matter%:6°,

METHODS
To maximize reproducibility, a list of the reagents and resourced used in this study, as

well as their source and identifier, is provided in Supplementary Table 5.

Experimental model and subject details. Oral swab samples were obtained from
bottlenose dolphins (Tursiops truncatus) managed by the U.S. Navy Marine Mammal
Program (MMP) Biosciences Division, Space and Naval Warfare Systems Center Pacific,
San Diego, USA. The earliest sample containing RBSs was collected on April 1, 2012
and the latest on March 24, 2022. Swab samples were obtained using sterile foam Catch-
All sample collection swabs (Epicenter, WI, Cat. #QEC091H). Samples collected in 2012
were obtained by swabbing the left gingival sulcus. Samples collected in 2018 were
obtained by swabbing the palate, the tongue, and the left gingival sulcus (all three
surfaces for each swab). Samples collected in 2022 were obtained from the palate, buccal
surface, or left gingival sulcus. Of the 2022 samples of the gingival sulcus, 5 were stored
in 20% glycerol. All other swab samples were dry frozen. The swabbing protocol adhered

to the guidelines described in the CRC Handbook of Marine Mammal Medicine.

The MMP is accredited by the Association for Assessment and Accreditation of
Laboratory Animal Care (AAALAC) International and adheres to the national standards
of the United States Public Health Service Policy on the Humane Care and Use of
Laboratory Animals and the Animal Welfare Act. As required by the U.S. Department of

Defense, the MMP’s animal care and use program is routinely reviewed by an Institutional
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Animal Care and Use Committee (IACUC) and by the U.S. Navy Bureau of Medicine and
Surgery. The animal use and care protocol for MMP dolphins in support of this study was
approved by the MMP’s IACUC and the Navy’s Bureau of Medicine and Surgery (IACUC

#92-2010, BUMED NRD-681).

Microscopy sample preparation. To separate cells from swabs, swabs were immersed
in 1X PBS (~50-100 uL, depending on cell density) in microcentrifuge tubes. Tubes were
vortexed vigorously for ~10 s and lightly centrifuged to remove liquid from tube caps. The

resulting solution was used for microscopy.

Light microscopy. Approximately 1 pL of cell solution in PBS was spotted onto an
agarose pad (1% agarose in PBS) and imaged with an Eclipse Ti-E inverted microscope
with a 100X (NA: 1.4) objective (Nikon, Tokyo, Japan). To determine DNA localization,
cells were stained with DAPI at a final concentration of 0.5 yg mL-' for 5 min prior to
imaging using emission/excitation spectra of 340/488 nm. High-throughput, automated
imaging of dolphin oral samples via phase contrast microscopy was achieved using the
Strain Library Imaging Protocol (2016 implementation)3® to capture 226 fields of view for

each of the samples collected in 2018, and 100 fields of view for those collected in 2022.

Gram and FM4-64 staining. Gram staining was performed using a Gram Staining Kit
(Sigma Aldrich, cat. #77730-1KT-F) following manufacturer’s protocol. Cells were imaged
using a bright field microscope with a 100X objective (Nikon). FM4-64 dye (ThermoFisher
Scientific, cat. #T13320) was applied directly to dolphin oral swab samples following

manufacturer’s protocol. The FM4-64 dye did not stain any part of the RBSs.
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RBS-A cryofixation and cryoEM/ET data acquisition. A solution of cells in PBS (2.5
ML) was applied to glow-discharged 200-mesh copper, holey-carbon Quantifoil grids
(Quantifoil, GroRlobichau, Germany, Cat. #Q2100CR1) or gold GridFinder Quantifoil
grids (Quantifoil, Gro3lobichau, Germany, Cat. #L.FH2100AR2), followed by application
of 2 uL of 15 nm gold fiducial solution to both sides of each grid. Grids were blotted for 5
s and plunge-frozen in liquid ethane cooled by liquid nitrogen to approximately -195 °C

using an EM GP Plunge Freezer (Leica, Wetzlar, Germany).

Samples were loaded into one of two microscopes: a Titan Krios G3 operated at 300 kV
with an energy filter (20-eV slit width), or a Titan Krios G4 operated at 300 kV without an
energy filter. Both microscopes were equipped with a K2 Summit direct electron detection
device (Gatan, Pleasanton, USA) used to record micrographs. Data were acquired semi-
automatically in counting mode using SerialEM (v. 3.8)%'. CryoEM/ET imaging

parameters are provided in Supplementary Table 6.

CryoEM/ET data processing. Montages were blended and binned 4-fold or greater
using IMOD v. 4.12.9's “blendmont” algorithm® and normalized, band-pass filtered,
rotated, and cropped for display purposes using EMAN2 v. 2.39%3. Fifteen out of sixteen
tilt series were suitable for tomographic reconstruction in IMOD v. 4.12.9. Tilt series with
sampling at 7.5 A pixel"! were down-sampled by 2-fold and those with sampling at 3.48 A
pixel' or 3.75 A pixel' were down-sampled by 4-fold. Images with artifacts such as
excessive charging, drifting, large ice contamination creeping in at high tilts, or excessive
thickness at high tilt were excluded from 12 of the tilt series prior to manual gold-fiducial-
based alignment; up to 13 images were removed out of the 41 images in the original raw

tilt series.
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Tomograms were reconstructed using standard weighted back-projection and a SIRT-like
filter (mimicking 16 iterations) and were band-pass-filtered and further binned by 2-fold in
most cases for feature annotation, segmentation, movie production, and other display
purposes. Tomogram thickness was estimated by visually identifying the smallest and
largest z-slices with visible RBS-A or ice contamination densities and converting the
number of slices to nanometers. Subtomogram averaging was attempted using EMAN2
v. 2.395485 for globular densities suspected to be ribosomes, matrix densities under the
outer membrane, patches of the periodic surface covering, and regions of pilus-like
appendages, but no interpretable structures with resolution better than ~50 A were
obtained. The ranges of thickness and length for the pilus-like appendages were derived
by visually scanning the slices in the tomograms for the thinnest individual filaments and
thickest bundles perceptible to the naked eye, and measuring their dimensions in binned-
by-4 tomographic slices using the measuring tape tool of EMANZ2’'s e2display.py. The
repeat distance of the periodic surface covering was measured manually in a similar
fashion as the pilus-like appendages from tomographic slices, with ~10-20 measurements
from each of three tomograms displaying at least small regions where the repeat was
discernible. This quantification yielded a range between ~6 and 10 nm, suggesting that
either the layer components are flexible or that the underlying structure can yield different
apparent distances between its subunits depending on the angle at which it is sliced.
Additionally, regions showing the pattern much more clearly in higher-magnification
montage two-dimensional projection images were cropped out, rotated to lie in a
horizontal plane, filtered, and masked to compute line-density profiles parallel to the outer

membrane.
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We initially carried out tomographic annotation of three features (periodic surface
covering, lipid membranes, and pilus-like appendages) for three tomograms using
EMAN2's semi-automated two-dimensional neural network-based pipeline®® and
performed manual clean-up of false positives in UCSF Chimera v. 1.16%. The output
annotation probability maps from EMANZ2 v. 2.39 were turned into segmentations by
applying a visually determined threshold and multiplying the contrast-reversed
tomograms by the thresholded annotation map. The segmentations were low-pass-
filtered with EMAN2 v. 2.39 to smooth out noise. However, since the complexity of
subcellular structures was not captured by the semi-automated annotations, we applied
a similar process to generate segmentations of five features (pilus-like appendages,
periodic surface covering, outer membrane, matrix, and inner membranes) using manual
annotations performed with IMOD v. 4.12.9, following a recent protocol that increases
manual annotation efficiency®®. Snapshots for Fig. 6 displaying RBS-A features in color
as well as Supplementary Movies 2 and 3 showing segmentation results were produced

with UCSF Chimera v. 1.16.

CryoFIB-SEM. We first identified a grid that contained RBS-As using light microscopy.
Using an Aquilous Cryo-FIB (ThermoFisher Scientific, MA, USA), we created 5 lamellae
using 30 kV, 30 pA current and 5 ys duration time. The samples were then loaded into a
cryo-TEM for sample observation and data collection. We were unable to identify RBSs

in the lamellae.

Fluorescence in situ hybridization. Cell cultures of axenic Escherichia coli MG1655,

non-axenic Skeletonema costatum LB 2308 (UTEX Culture Collection of Algae at the
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University of Texas at Austin, Austin, TX, USA), Caulobacter crescentus CB15N, and
Simonsiella muelleri ATCC29453 were prepared as controls. E. coli was cultured in LB
broth and grown at 37 °C, S. costatum was cultured in Erdschreiber’'s Medium at 20 °C
with a ~12 h light and ~12 h dark cycle, C. crescentus was cultured in PYE medium at 30
°C, and S. muelleri was cultured in BSTSY medium at 37 °C (2.75% (w/v) Tryptic Soy

Broth, 0.4% (w/v) yeast extract, 10% bovine serum),.

All FISH probes were ordered from Integrated DNA Technologies (Coralville, USA) with
HPLC purification. Probe sequences and fluorescence labels are as follows: Euk-1209:
5-GGGCATCACAGACCTG-/3AIx660/-3', Bact338: 5-GCTGCCTCCCGTAGGAGT-
IAIx488/-3', BET42a: 5'-/AIx594/-GCCTTCCCACTTCGTTT-3, GAM42a: 5'-/Alx488/-

GCCTTCCCACATCGTTT-3’, nonEUB: 5'-/Cy5/-ACTCCTACGGGAGGCAGC-3'.

Cells from controls and RBS-As were collected in microcentrifuge tubes. To ensure
sufficient biomass from dolphin oral swabs, cells from four swabs were condensed into a
single tube. The FISH protocol was adapted from ref. ¢°. Cells were fixed in 1 mL of 3.7%
formaldehyde solution (800 puL of DEPC-treated water, 100 yL of 10X PBS, 100 pL of
37% formaldehyde) for 30 min with gentle shaking at 700 rpm. Cells were then washed
twice in 1 mL of 1X PBS, and permeabilized in a mixture of 300 uL of DEPC-treated water
and 700 pL of 200-proof ethanol with gentle shaking at 700 rpm for 2 h. Probes were
added to 50 pL of hybridization solution to a final concentration of 1 uM per probe set.
For BET42a, and GAM42a, the hybridization solution contained 55% formamide solution
(4 mL of DEPC-water, 1 g of dextran sulfate, 4.85 mL of formamide, 1 mL of 2X SSC,
brought to a total volume of 10 mL with DEPC-treated water); for other probes, the

hybridization solution contained 40% formamide (5 mL of DEPC-water, 1 g of dextran
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sulfate, 3.53 mL of formamide, 1 mL of 2X SSC, brought to a total volume of 10 mL with
DEPC-treated water). For BET42a, and GAM42a, cells were incubated in 50 pyL of
hybridization buffer with probes at 46 °C for 1 h; for other probes, cells were incubated
overnight in 50 pL of hybridization buffer with FISH probes at 30 °C. Cells were washed
twice using a wash solution (2 mL of 20X SSC buffer, 7.06 mL of formamide, 10.94 mL
of DEPC-treated water) and resuspended in 2X SSC buffer. One microliter of cells was
mounted onto 1% agarose pads containing PBS and 5 ug mL™" of DAPI for imaging.

Imaging data were processed using FI1JI v. 2.0.07°.

16S rRNA amplicon sequencing and processing. Fifty-four dolphin oral samples were
selected for 16S rRNA gene amplicon sequencing. Genomic DNA was extracted from
dolphin oral samples and 32 negative (PBS) controls using the DNeasy UltraClean 96
Microbial Kit (Qiagen Cat. #10196-4) following manufacturer’s instructions. The 16S V4
region was amplified using 515F and 806rB primers using Platinum™ |l HotStart PCR
Master Mix (ThermoFisher Cat. #14000013). The PCR products were pooled at equal
volume and gel-purified. Final purification was performed using Macherey-Nagel
NucleoSpin Gel and PCR Clean-up, Mini Kit (Fisher, Cat. #740609). Amplicons were
sequenced on the lllumina MiSeq platform with 250-bp paired reads at the Stanford Chan
Zuckerberg Biohub Facility, resulting in a median read depth of 92,077 reads (min:

50,772, max: 265,108).

Demultiplexing was performed using Bcl2Fastq v. 2 (lllumina, CA, USA). ASVs were
inferred using DADA27' v. 1.16.0, following guidelines in the "Big Data Workflow"
(https://benjjneb.github.io/dada2/bigdata_paired.html). Taxonomic affiliations were

assigned using the SILVA 138 SSU database’® as a reference. Forward and reverse
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reads were trimmed to 240 nt and 180 nt, respectively. This pipeline yielded a total of
1,116 taxa and 5,339,751 reads across the 54 samples. ASVs were analyzed using

phyloseq v. 1.28.072.

Spike-in experiment. To confirm that our DNA extraction, amplification, sequencing, and
bioinformatic analysis pipeline was able to identify members of the family Neisseriaceae,
we performed a spike-in experiment. We first selected a dolphin oral sample that
contained RBS-As, as determined by phase-contrast microscopy. We then created two
aliquots of this sample. To the first aliquot, we spiked in cells from an S. muelleri pure
culture at a 1:1 ratio. The other aliquot was left untouched. These two samples, along
with an aliquot of the S. muelleri pure culture (positive control), underwent DNA extraction,
PCR amplification, and sequencing protocol as described above. The three samples were
sequenced in a single lllumina MiSeq run, which was not the same lane as the other
amplicon samples from this study. Note that by PCR amplifying S. muelleri in the same
lab environment as the negative control sample and then sequencing it on the same lane,
some cross-contamination is to be expected. The first time the negative control sample
was sequenced (in the absence of S. muelleri pure cultures in the laboratory), no family

Neisseriaceae amplicons were detected.

Mini-metagenomics. To obtain candidate identities for RBS-As, we employed a mini-
metagenomics approach. To limit contamination by foreign DNA, reagents, tubes, and
PBS were treated with 11.4 J cm of ultraviolet light following the guidelines in ref. 72,
RBS-As were visualized using an Olympus IX70 inverted microscope (Olympus,
Waltham, USA) with a 40X objective and Hoffman modulation optics. An Eppendorf

TransferMan micromanipulator (Eppendorf, Hamburg, Germany, Cat. #5193000020) with
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a SAS-10 microinjector was used to capture RBS-As with Polar Body Biopsy
Micropipettes (30° angled, beveled, and polished with an inner diameter of 13-15 ym)
(Cooper Surgical, Malov, Denmark, Cat. #MPB-BP-30). After an RBS-A or chain of RBS-
As was acquired, the micropipette tip was transferred to a collection tube containing 1X
PBS and crushed into the tube to ensure the RBS-A(s) was deposited in the tube; this
precaution was adopted because RBS-As frequently stuck to the glass micropipette and
could not be dislodged. No dolphin cells were captured, although cell-free DNA and small,
non-target cells from the sample were likely acquired as contaminants along with RBS-
As based on the propensity of the latter to attach to other species (Fig. 5e). Four tubes
of RBS-As were collected (sample names RBS1-4), along with four negative-control tubes
(NEG1-4). Negative controls consisted of draws of PBS from the same sample that did
not contain any visible cells and were otherwise treated identically to RBS-A-containing

samples.

DNA from each tube was amplified via multiple displacement amplification (MDA) using
the Repli-g single-cell kit (Qiagen, Hilden, Germany, Cat. #150343) according to the
manufacturer’s protocol. DNA was purified using a Zymo Clean and Concentrate Spin
Column (Zymo Research Corporation, Irvine, USA, Cat. #D4013) and libraries were
prepared using the Kapa Hyper Prep Kit (Kapa Biosystems, Wilmington, USA, Cat.
#KK8504) at the W.M. Keck Center for Comparative Functional Genomics at the
University of lllinois, Urbana-Champaign. The eight libraries were sequenced using the
lllumina MiSeq 2x250 nt P2 V2 platform. RBS-A samples RBS1, RBS2, NEG1, and NEG2
were pooled and sequenced across a single lane that produced 11,371,243 read pairs,

and samples RBS3, RBS4, NEG3, and NEG4 were pooled and sequenced across 1.5
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lanes, collectively producing 19,615,690 read pairs. Sequencing adapters were

computationally removed at the Keck Center.

Reads from all eight samples were co-assembled using SPAdes v. 3.11.172 with the single
cell (—sc) and careful (—careful) modes specified. A total of 61,973,866 read pairs were
used for assembly, resulting in 1,406 scaffolds =5 kbp long with a total length of
17,438,233 bp and an N50 of 14,592 for scaffolds 25 kbp long. Protein coding genes were
identified using Prodigal v. 2.6.274. Per scaffold average coverage was calculated by
mapping reads per sample against the co-assembly using bowtie2 v. 2.2.47°, using the
samtools v. 1.6 depth function’® to calculate per-base read coverage, and a custom script

to calculate average per-base read coverage per scaffold.

A search for the amiC2 gene in bins recovered from the mini-metagenomics experiment
was performed by querying Pfam alignment PF01520 against each genome’s protein

sequences, using HMMER suite v. 3.1b27".

To determine the taxonomic identity of sequenced cells, we employed a genome-resolved
approach. Assignment of scaffolds to genome bins was performed using the
tetranucleotide frequencies of all scaffolds =5 kbp long over windows of 5 kbp, as
described in ref.”®. Results were computed and visualized using the Databionics ESOM
Tools software v. 1.17°, leading to the reconstruction of 18 genome bins (Supplementary
Fig. 3). To refine bins, we removed scaffolds for which <560% of keys were assigned to
the bin. Scaffolds <5 kbp long were not binned. The completeness and contamination per
bin were assessed using CheckM v. 1.0.78. To evaluate how representative binning was

of the genomes that were sequenced, we estimated the number of prokaryotic genomes
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expected to be recovered by searching the metagenome assembly for a set of 16 bacterial
single copy genes (bSCGs) assumed to be present in every genome in a single copy?®’,
namely ribosomal proteins L2, L3, L4, L5, L6, L14, L15, L16, L18, L22, L24, S3, S8, S10,
S17, and S19. Alignments for these proteins (PF00181, PF00297, PF00573, PF00281,
PF00347, PF00238, PF00828, PF00252, PF00861, PF00237, PF17136, PF00189,
PF00410, PF00338, PF00366, and PF00203) were obtained from the Pfam database®?
(accessed March 2019) and queried against our dataset using HMMER suite v.
3.1b277.The median number of each bSCG was 10, suggesting ~10 prokaryotic genomes
were represented in our sequencing dataset. In the case of the family Alcaligenaceae
genome of interest, the 16S rRNA gene was manually extended from the end of a

scaffold; using bowtie2 v. 2.2.4 we ensured that the reads supported the final sequence.

Taxonomic identification of bins posed a challenge since 16S/18S rRNA genes were not
reliably amplified/sequenced/assembled, and genomes were partial with few
phylogenetically informative bacterial single copy genes present in the dataset. Hence,
we used BLAST v. 2.2.30% to query all protein coding genes from each genome against
the NCBI non-redundant protein database using an e-value of 10'° and taxonomic
assignments were made based on the closest protein match. Genome bin taxonomic
assignments were considered highly likely if 250% of the top BLAST hits originated from
a single taxon and were considered plausible if <560% but 233% of the top BLAST hits

originated from a single taxon.

There are numerous approaches by which one could assess whether a bin is “present” in

a sample, each with largely arbitrary thresholds. We focused on the relative abundance
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of each bin per sample (Supplementary Table 4) as it accounts for the length of each bin

and allows for comparisons between samples with different numbers of read pairs’®.

Confirmation of the taxonomic identity of bin 16. Maximum likelihood phylogenies of
the family Alcaligenaceae were inferred using the 16S rRNA gene (Supplementary Fig.
4a) and ribosomal protein S3 (Supplementary Fig. 4b) to confirm the taxonomic affiliation
of bin 16, which was recovered from the mini-metagenomics experiment. Gene/protein
sequences were acquired for each characterized genus in the family Alcaligenaceae, as
shown on the NCBI Taxonomy Browser (accessed August 2022), when such sequences
were available in the NCBI system (some genera have scant or no genomic
representation). We additionally performed BLAST®3 v. 2.2.30 queries of the bin 16 16S
rRNA gene and rpS3 protein against the nr/nt and nr databases (accessed August 2022),
respectively, and included the top 10 most similar sequences. 16S rRNA gene sequences
were aligned using SINA® v. 1.2.11, using the SILVA SSU database release 138.1 as a
reference, and columns containing >3% gaps or rows with <560% sequence were
removed. rpS3 protein sequences were aligned using Clustal Omega®58 v. 1.2.4 and
columns containing >5% gaps or rows with <50% sequence were removed. Both
phylogenies were inferred using PhyML® v. 3.1 with 1000 bootstrap replicates, with
model selection performed using smart model selection®® (GTR+R for the 16S rRNA gene

and Q.yeast+G+l for the rpS3 protein). Trees were visualized using iTOL® v. 6.

Attempt at culturing RBSs. Four dolphin oral samples confirmed to contain RBSs were
selected for culturing efforts. For each sample, one milliliter of sterile PBS was added to
a 1.5-mL Eppendorf tube containing the oral swab sample. For liquid culturing, 600 L of

each sample were used to inoculate 3 mL of BSTSY® (2.75% (w/v) Tryptic Soy Broth,



814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

0.4% (w/v) yeast extract, 10% bovine serum), SHI®', or mSHI media (SHI supplemented
with 0.9 g/L NaCl, 2.5 g/L K2PQOg4, 0.84 g/L NaHCOs3, 0.17 g/L CaClz, 0.04 g/L MgCl2+6H-0,
and 5 g/L dextrose). BSTSY was selected for its use in successfully culturing bacteria (S.
muelleri specifically) from the oral cavities of various mammals®. SHI was selected
because this medium was designed to sustain high diversity communities derived from
the human oral microflora. mSHI (modified SHI) was included as a higher-salinity version
of SHI in an attempt to further mimic the conditions that might be found in the oral cavity
of dolphins. Inoculation was repeated under anaerobic conditions in an anaerobic
chamber (COY Lab Products, Grass Lake, USA); note that all samples were unavoidably
exposed to atmospheric oxygen prior to culturing. Cultures were incubated at 37 °C to
mimic the body temperature of dolphins. No RBSs were detected in liquid media by visual
screening under a microscope after ~24, ~48, ~72, and ~96 h. For solid-surface culturing,
~103-10* cells (verified by microscopy to contain RBS-As) were directly plated onto
BSTSY or BHI-blood (BHI medium supplemented with 5% sheep blood) agar plates, and
incubated at 37 °C with or without oxygen, respectively. No colonies grew on the BSTSY
plates after 3 weeks of incubation; the colonies grown on the BHI-blood plates were
screened using microscopy and no RBSs were visible. By contrast, a control of S. muelleri
streaked onto BSTSY plates developed visible colonies after 1-2 days of incubation with
oxygen at 37 °C, and the colonies were verified under microscopy to consist of cells with

the morphology expected of S. muelleri.

Statistics and reproducibility. Given the exploratory nature of this descriptive study,

most experiments aimed at characterizing the RBSs were performed a single time.

DATA AVAILABILITY
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Sequencing data for this project are available through NCBI BioProject PRINA174530
(https://www.ncbi.nlm.nih.gov/bioproject/PRINA174530). Raw reads for the amplicon
survey were deposited to SRA and are associated with BioSamples SAMN32739817-69
and SAMN19012476. Data for the spike-in experiment are associated with BioSamples
SAMN32869723-5. Raw reads for the single cell genomics experiment were also
deposited to SRA,; the captured RBSs and negative controls were physically derived
from a single oral swab represented by BioSample SAMN19012476, while the reads
each from the eight experimental replicates (four RBSs, four negative controls) are each
individually associated with BioSamples SAMN19022663-SAMN19022670. The co-
assembly of scaffolds =5 kb in length from the single cell genomics experiment was
deposited as a Whole Genome Shotgun project at DDBJ/ENA/GenBank under the
accession JAHCSF000000000, following the removal of human-derived sequences.
Fhe-version-deseribed-in-this paperis JAHCSFO10000000- Genome bins 2-5 and 7-18
from the single cell genomics experiment have been deposited as a Whole Genome
Shotgun project at DDBJ/ENA/GenBank under accessions JAGYHIO00000000-
JAGYHXO000000000. Fhre-versions-deseribed-in-this-paperare JAGYHI010000000-
JAGYHX0140000000--Genome bin 1 (human) was not deposited. Scaffolds for genome
bin6 (<100,000 nucleotides) were deposited as a non-genome GenBank submission

under accession numbers MZ126582-MZ126593.

Public datasets and databases used in this study are as follows. The SILVA SSU
database release 138.1 was used as a reference for assigning taxonomic identities to
ASVs. The NCBI nr/nt, nr, and taxonomy databases (accessed August 2022) were used
to obtain 16S rRNA gene sequences (n=77) and ribosomal protein S3 sequences

(n=63) for representatives of genera of the family Alcaligenaceae. The NCBI accession
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numbers for these sequences are available in Supplementary Fig. 4 and 5, respectively.
Finally, we performed analyses with alignments sourced from the Pfam?® database.
Pfam alignment PF01520 was used to search genome bins for AmiC2 proteins
(accessed August 2022). The following Pfam alignments were used to search for 16
bacterial single copy genes (accessed March 2019): PF00181, PF00297, PF00573,
PF00281, PF00347, PF00238, PF00828, PF00252, PF00861, PF00237, PF17136,

PF00189, PF00410, PF00338, PF00366, and PF00203.
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FIGURE LEGENDS

Figure 1. Light microscopy reveals RBSs with multiple morphotypes and distinct
DNA banding patterns. a) Phase-contrast images of RBSs (arrow indicates one
example) on the surface of dolphin oral epithelial cells. See also Supplementary Movie 1.
b,c) Some RBSs exhibited long bands of DAPI fluorescence. Phase-contrast image is
shown in (b), with fluorescence overlay in cyan in (c). d,e) Other RBSs exhibited shorter
DAPI bands. Phase-contrast image is shown in (d), with fluorescence overlay in cyan in
(e). Dark spots (arrowheads) were organized in lines perpendicular to DAPI-stained
bands. DAPI-stained bands appeared to be organized in pairs. f) Gram-stained RBSs
display Gram-negative characteristics. Inset: Gram-stained Bacillus subtilis (B.s., Gram-
positive) and Escherichia coli (E.c., Gram-negative). g) Neighboring DNA band pairs in
an RBS form “H”-like shapes (white arrow), likely because the DNA bands are segregated
nucleoids in a cell undergoing longitudinal division. h) The two RBS morphotypes have
distinct distributions of length and width. The median width and length of 15 RBS-As
measured 3.95 + 2.89 ym MAD and 5.08 + 0.10 ym MAD, respectively, and for 8 RBS-
Bs measured of 3.08 £ 0.93 um MAD and 2.21 £ 0.56 ym MAD, respectively. The centers
of the orange and blue crosses represent the means of RBS-As and RBS-Bs,

respectively, while the lengths of the arms represent +1 standard deviation.
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Figure 2. 16S rRNA gene amplicon sequencing of dolphin oral samples indicates
that RBSs are not affiliated with the class Betaproteobacteria family
Neisseriaceae. Dolphin oral samples (n=54) were subjected to deep 16S rRNA gene
amplicon sequencing. a) Rarefaction curves for the 54 sequenced dolphin oral samples.
b) For each family of class Betaproteobacteria detected in the 54 dolphin oral samples,
the relative abundance of member ASVs is plotted. Note that the genus Simonsiella is a
member of the class Betaproteobacteria family Neisseriaceae; no ASVs affiliated with
this family were detected. Visual examination using phase-contrast microscopy (see
Methods) revealed RBSs of either morphotype A or B in 39 of 73 samples screened
(note that in total 73 samples were visually screened for RBSs; 54 were used for
amplicon sequencing, while the remainder were used for other experiments)
(Supplementary Data 1). ¢) Sequencing of an S. muelleri pure culture and a dolphin oral
sample (confirmed to contain RBS-As) with S. muelleri spiked in resulted in the
detection of a family Neisseriaceae ASV. The same ASV was detected at a relative
abundance of <0.1% in that same dolphin oral sample in its unaltered state (no S.
muelleri added) when prepared and sequenced in parallel with the S. muelleri positive
samples; the ASV was not detected in any dolphin oral sample prior to the introduction

of S. muelleri into the lab environment.
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Figure 3. Fluorescence in situ hybridization indicates that RBS-As are class
Betaproteobacteria. Probes for phylum Proteobacteria classes Alphaproteobacteria
(ALF968), Betaproteobacteria (BET42a), and Gammaproteobacteria (GAM42a) were
assessed for their ability to hybridize to RBSs. Top row: phase-contrast images; middle
three rows from top to bottom: fluorescence images for class Alphaproteobacteria,
Betaproteobacteria, and Gammaproteobacteria probes, respectively; bottom row: DAPI
staining of presumed DNA. Arrows highlight relevant cells in samples. RBSs of the “A”
morphotype (Figure 1h) hybridized with the class Betaproteobacteria probe and exhibited
minimal hybridization with the class Alphaproteobacteria and Gammaproteobacteria

probes.
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Figure 4. Insights into RBS-A identity. Table shows the 18 bins recovered from MDA
and sequencing of RBS-A samples collected via micromanipulator, along with the phylum
from which they are inferred to derive. For lowest taxonomic identity achieved (or class,
in the case of the polyphyletic phylum Proteobacteria), an asterisk (*) denotes lower
confidence in the assignment (Methods). The RBS-A panel depicts relative abundances
of bins in each of the four samples that contained RBS-As based on visualization, color-
coded as follows: green: 25%, yellow: 21% and <5%, orange: >0% and <1%, red: 0%.
The negative-control panel (Neg) presents the same information for each of the samples
that did not appear to contain RBS-As. Criteria for gauging the likelihood of a bin deriving
from the RBS-As are shown: (Genomics) Was the bin ever present in negative controls
(green = no, yellow = yes but never 21% relative abundance, orange = yes but never
25%, red = yes and at least once 25%)? (Gram stain) Are members of this taxonomic
group known to be Gram-negative, like the RBSs? (16S 75%+) Of ASVs detected in >75%
of samples that underwent 16S rRNA gene amplicon sequencing and were visually
confirmed to contain >10 RBS-As (n=13), was an ASV of this taxonomic identity?
Numbers in boxes indicate the number of samples in which this ASV was present. For
recovered bins detected only to the level of class Gammaproteobacteria, a large and
diverse group, this criterion is marked in yellow and ASV counts are not shown. (FISH)
Based on FISH results, which bins are supported as potential candidates for the RBS-
As? A cross (T) denotes that members of the phylum Gracilibacteria are inferred not to
be Gram-negative from genomic studies (although they are not necessarily Gram-

positive)%2. Highest likelihood candidates are green for all three criteria.
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Figure 5. CryoTEM demonstrates that RBSs consist of multiple parallel, likely
paired segments and are often near other cells. Band-pass filtered and denoised low
magnification (a,b) images or (c¢) montage cryoTEM images of RBSs on an R2/2 holey
carbon TEM grid. Higher-magnification images showing (d) pilus-like appendages and (e)
proximal cells and interacting vesicles at the RBS periphery. In (a), pairs of segments are
highlighted with alternating shades of blue, and sharp indentations between groups of
segments are denoted with black arrows. Dense spheroidal objects were present inside
RBSs (white arrow). In (d), segments are encapsulated by an inner membrane (IM) and
outer membrane (OM), denoted by black arrows. d,e) Representative micrographs
showing that RBSs were often in close physical proximity to other cells in the samples. In
(e), an apparent small indentation (black arrow) in the RBS periodic surface covering
overlaps with a non-RBS cell or vesicle. Small dark spots (15 nm) in (c-e) are gold fiducial

particles used for tilt series alignment in cryoET experiments (black arrow).
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Figure 6. CryoET reveals the three-dimensional architecture of RBS-A
components. a,f) Examples of ~3-nm-thick slices at two different depths (left and
center) from two representative RBS-A tomograms, and corresponding manual
annotations of cellular features (right). The tomograms are thick (~500-600 nm) and as
such, pilus-like appendages (yellow) were visible only at a certain depth within the
tomographic volume density of the RBS-A. See also Supplementary Movies 2 and 3.
Blue, inner membranes; purple, periodic surface covering; green, outer membrane; red,

matrix.
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Figure 7. RBS-A surface features include appendages in heterogeneous bundles
that splay out at the tips and a periodic surface covering around the entire RBS-A.
a) Single cryoTEM image. b,c) CryoET slices (~3-nm thick) of an RBS-A. Red and orange
boxes in (c) are magnified views of bundles of appendages, and yellow arrows denote
thin, single appendages. d) Representative 2D cryoTEM image at the edge of an RBS-A
showing a periodic surface covering. e) Line density profiles along selected regions from
the image in (d) show that the spacing of the repetitive features is ~7-9 nm along a

direction parallel to the RBS-A membrane.



