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Abstract 16 

Bacterial cells regularly confront simultaneous changes in environmental nutrient 17 

supply and osmolarity. Despite the importance of osmolarity and osmoregulation in 18 

bacterial physiology, the relationship between the cellular response to osmotic 19 

perturbations and other stresses has remained largely unexplored. Bacteria cultured in 20 

hyperosmotic conditions and bacteria experiencing nutrient stress exhibit similar 21 

physiological changes including metabolic shutdown, increased protein instability, 22 

dehydration, and condensation of chromosomal DNA. In this review, we highlight 23 

overlapping molecular players between osmotic and nutrient stresses. These 24 

connections between two seemingly disparate stress response pathways reinforce the 25 

importance of central carbon metabolism as a control point for diverse aspects of 26 

homeostatic regulation. We identify important open questions for future research, 27 

emphasizing the pressing need to develop and exploit new methods for probing how 28 

osmolarity affects phylogenetically diverse species. 29 

  30 



Introduction 31 

Osmolarity, the number of dissolved solute particles per liter of solution, is an 32 

important yet often ignored aspect of cellular physiology (Glossary) [1]. Single-celled 33 

bacteria typically cannot control their environment, and hence osmolarity broadly 34 

influences phenotypes from cell size [2] to antibiotic sensitivity [3]. Osmolarity dictates 35 

the water content of cells, impacting the activity of essential enzymes and modulating 36 

metabolic function [4,5]. The osmolarity differential between the inside and outside of 37 

the cell (turgor pressure, Glossary), which can be >10 atmospheres in some species [6,7], 38 

determines the mechanical force balance between the cell envelope and the 39 

environment [8], and maintaining positive turgor can be important for growth. 40 

 41 

Under typical growth conditions, proteins, sugars, lipids, nucleic acids, and other small 42 

molecules within the cytoplasm collectively constitute a dense, highly crowded 43 

environment with concentrations as high as 400 mg/mL [9-11]. A substantial increase or 44 

decrease in density impacts molecular diffusion (Glossary) and interactions through the 45 

level of crowding [12,13]. Osmolarity is intrinsically related (although not identical) to 46 

intracellular density. Since osmolarity is the number of solute particles per liter, 47 

reducing intracellular osmolarity can be as simple as polymerizing hundreds of amino 48 

acids into a single protein or thousands of nucleotides into a molecule of DNA or RNA, 49 

as long as the subunits constitute a sizeable fraction of cellular mass. Thus, nutrient 50 



availability and metabolic rate have the potential to alter cytoplasmic osmolarity, and 51 

osmotic regulation may be required to maintain cellular homeostasis. Thus, the physical 52 

properties of the cytoplasm are intertwined with growth and directly impact 53 

intracellular organization and biochemistry. 54 

 55 

The osmolarity of the bacterial cytoplasm is stringently regulated by molecular 56 

mechanisms that mediate accumulation or secretion of osmolytes. The importance of 57 

osmotic regulation is further underscored by its metabolic cost, involving the synthesis 58 

and breakdown of carbon-rich molecules. The osmoprotectants trehalose (a 59 

disaccharide of two glucose molecules), glycine betaine (amino acid derivative), and 60 

proline betaine (amino acid derivative) are manufactured or imported under 61 

hyperosmotic stress [1]. Thus, induction of osmoregulatory pathways requires 62 

repurposing nutrients from metabolic pathways that would otherwise provide cellular 63 

energy and synthesis capacity.  64 

 65 

Just as many osmolytes are repurposed nutrients, nutrients can function as osmolytes, 66 

illustrating an intrinsic connection between osmolarity and nutrient availability such 67 

that a low-osmolarity environment may generically contain fewer molecules with 68 

nutritional potential, and vice versa. This coupling is particularly poignant for bacteria 69 

that face sudden shifts into drastically more dilute environments. Human gut 70 



commensals and pathogens face both osmotic shifts and feast-famine cycles as they 71 

transition between their host and the environment [14] and hence it would be natural to 72 

couple osmotic regulation to other aspects of physiology. Indeed, Leptospira interrogans 73 

utilizes the inevitable change in osmolarity when entering host tissues as a signal to 74 

upregulate virulence factors [15]. 75 

 76 

In this review, we discuss the impact of osmolarity on bacterial physiology and growth, 77 

emphasizing physiological and regulatory overlaps between the response to osmotic 78 

stress and to nutrient stress. Hyperosmotic or hypoosmotic stress result from a 79 

transition to an environment with higher or lower osmolarity, respectively. Although a 80 

low-osmolarity environment due to general dilution signifies a dearth of nutritional 81 

potential, under hypoosmotic conditions bacteria nevertheless use glucose to synthesize 82 

osmoregulated periplasmic glucans (OPGs, Glossary) [16]. This tension between two 83 

coincident stresses suggests that devoting precious resources to producing an 84 

osmoprotectant outweighs the benefits of using it for biosynthesis. Despite the 85 

intriguing nature of the OPGs and hypoosomotic stress as a whole, links with molecular 86 

crowding have made hyperosomotic stress the better studied of the two phenomena, 87 

and hence it will be the focus of this review. 88 

 89 

Nutrient stress and hyperosmotic stress elicit similar changes in cytoplasmic density 90 



Plasmolysis—cytoplasmic dehydration and shrinkage coupled with enlargement of 91 

regions of the periplasm (Glossary)—is a visibly striking and well-known hallmark of 92 

the initial stages of hyperosmotic stress (Figure 1). Sudden or gradual nutrient depletion 93 

in Gram-negative bacteria similarly leads to plasmolysis, although the regions of 94 

periplasmic enlargement can differ from hyperosmotic shock (Figure 1A). During 95 

stationary phase (Glossary), a state of metabolic quiescence and cell shortening upon 96 

gradual nutrient depletion, the cytoplasm decreases in volume and becomes denser [11] 97 

and the periplasm increases in volume [17]. Likewise, during sudden depletion of 98 

carbon, nitrogen, or phosphorus, the inner membrane of E. coli [11], K. pneumoniae [11], 99 

and V. cholerae [18] retracts, resulting in a smaller, denser cytoplasm and enlarged 100 

periplasm. Budding yeast cells undergo a similar process under glucose starvation in 101 

which cell volume shrinks without any loss of cell mass, in this case due to vacuolar 102 

expansion [19] rather than the periplasmic expansion that occurs in bacteria [11]. The 103 

increased periplasmic volume at the expense of cytoplasmic volume during 104 

hyperosmotic shock and nutrient stress highlights the interplay between these 105 

compartments and raises the interesting possibility that one function of the bacterial 106 

periplasm may be to act as a vacuole-like organelle. 107 

 108 

Gram-positive bacteria lack a periplasm but still exhibit similar cytoplasmic changes as 109 

Gram-negative bacteria during starvation (Figure 1B). The model Firmicute Bacillus 110 



subtilis and other related species induce a programmed stress response pathway that 111 

culminates in the formation of a dormant, heat-resistant endospore [20]. Spore 112 

formation (Glossary) is characterized by nucleoid condensation [21] and dehydration, 113 

which contributes to heat tolerance [22]. The frequency of protein-DNA interactions 114 

also increases in spores, which provides protection against DNA damage [23]. Thus, a 115 

condensed, dehydrated state may generally increase resilience across the bacterial 116 

kingdom. 117 

 118 

Notably, treatment of E. coli cells with DNP, a drug that uncouples the electron 119 

transport chain from ATP synthesis and leads first to an increase in metabolic activity 120 

and then to metabolic arrest, results in an expanded nucleoid rather than an expanded 121 

periplasm [24], highlighting the specificity of physiological responses to starvation. It 122 

remains unclear whether cytoplasmic volume fraction is intrinsically linked to growth 123 

rate and/or nutrient quality [17]; in E. coli, nutrient concentration during exponential 124 

growth non-monotonically impacts cytoplasmic volume fraction in stationary phase 125 

[11]. Altogether, comparison of cytoplasmic condensation between hyperosmotic shock 126 

and various modes of metabolic slowdown suggests that reduction in water content 127 

may be broadly beneficial but dependent on many aspects of growth history. 128 

 129 



Physical mechanisms of enzymatic activity regulation during hyperosmotic and 130 

nutrient stress 131 

The reduction in cytoplasmic volume elicited by nutrient stress and osmotic stress 132 

affects molecular crowding (Figure 1), a critical component of cellular physiology. 133 

Crowding inhibits many enzymatic reactions by physically slowing their kinetics, as 134 

diffusion coefficients decrease and reactant molecules encounter each other less 135 

frequently [4], or by inactivating enzymes through steric hindrance resulting from 136 

polymerization [25]. The increase in crowding during stationary phase in E. coli 137 

suggests that cells may face similar physiological challenges as under hyperosmotic 138 

stress [11,13], when density also increases, although the contribution of increased 139 

cytoplasmic crowding to stationary phase-dependent reductions in metabolic activity is 140 

unknown. In the budding yeast Saccharomyces cerevisiae (Glossary), the rates of 141 

cytoplasmic and nuclear diffusion decrease during glucose starvation, which has been 142 

suggested to be due to crowding [19], and mechanical stress-induced crowding inhibits 143 

translation and curtails cell growth [26]. Importantly, higher intracellular density is not 144 

necessarily associated with slow growth [27], and metabolic slowdown can inhibit 145 

molecular diffusion in the absence of obvious changes in cell volume or density [24]. 146 

Thus, the relationships among crowding, density, and growth may be more multi-147 

faceted than previously appreciated.  148 

 149 



In addition to the physical effects of crowding, nutrient and hyperosmotic stress lead to 150 

changes in protein synthesis. During nutrient stress, bacteria downregulate protein 151 

synthesis through the stringent response and synthesis of the alarmone (p)ppGpp 152 

(Glossary) [28,29]. Hyperosmotic stress specifically inhibits translation elongation, 153 

leading to compensatory transcriptional upregulation of ribosomes in an attempt to 154 

maintain translational capacity [30]. Similarly, in budding yeast, translation and 155 

metabolic activity are initially inhibited during salt stress, which enables adaptation 156 

that avoids long-term defects in cell growth [26,31]. In addition to the shift in water 157 

content between the cytoplasm and periplasm that alters cytoplasmic volume fraction, 158 

nutrient and hyperosmotic stress also cause major redistribution of the proteome. 159 

Bacterial cells experiencing nutrient stress and cells experiencing hyperosmotic stress 160 

both have more biomass in the periplasm and outer membrane and a concomitant 161 

decrease in biomass in the cytoplasm and inner membrane compared to steady-state 162 

growth (Glossary) (Figure 2) [17]. Interestingly, similar changes are observed during 163 

growth at pH 6 as well (Figure 2), suggesting the potential for further overlap with the 164 

acid stress response pathway. 165 

 166 

While an increase in cytoplasmic density is expected after a hyperosmotic shock due to 167 

the physical nature of the perturbation, why the cytoplasm shrinks during nutrient 168 

stress is unclear. It may be an active and beneficial response or an inevitable 169 



consequence of the physiological changes inherent in starvation. Regardless, the 170 

metabolic shutdown inherent in a dense, dehydrated state conserves energy [13,21] and 171 

boosts resistance to antibiotics [3], heat, and desiccation [10]. Nucleoid compaction 172 

driven by water efflux [21,29,32] also protects DNA from damage under stress [32-34]. 173 

Moreover, the reduction in size may itself be beneficial due to the increase in surface 174 

area-to-volume ratio, which decreases the distance molecules have to traverse from 175 

uptake to synthesis, utilization, and expulsion as waste [21]. Elucidating the genetic 176 

and/or physical mechanisms underlying these benefits will likely provide mechanistic 177 

insight into the links between nutrient and osmotic stress responses. 178 

 179 

The role of ion trafficking in stress adaptation 180 

While the buildup of osmotic stress typically occurs on a short time scale (e.g., the 181 

transition of enteric bacteria from a host into a water supply), nutrient stress can 182 

increase quickly (e.g. a sudden shift to a rich or poor carbon source) or slowly (nutrient 183 

exhaustion and entry into stationary phase) (Figure 3). Adaptation to hyperosmotic 184 

stress is a two-step process initially involving quick and promiscuous import of any 185 

available ions and osmolytes to balance osmolarity and prevent loss of viability. This 186 

emergency response results in an increased concentration of ions including K+, which 187 

disrupts DNA-protein interactions and protein folding [1]. Ion trafficking is thus not a 188 

permanent solution, and as cells adapt to the new conditions, ions are effluxed as 189 



synthesis of compatible solutes such as glycine-betaine and trehalose restores water 190 

content [1]. Adaptation typically requires synthesis of proteins to generate and/or 191 

import osmolytes, costing energy and time. 192 

 193 

Nutrient stress also involves changes in ion flux (Figure 3B). Ions, particularly Na+ and 194 

H+, are essential for the transport of nutrients into and waste out of the cell as part of 195 

symporter and antiporter systems. In stationary phase, bacterial cells favor retention of 196 

K+, NH4+, and H+ [35], and accumulate the compatible solute trehalose [34]. In E. coli, the 197 

membrane depolarizes as cells transition from early to late exponential phase [36], but 198 

membrane potential is maintained during sudden starvation [11], suggesting 199 

differential regulation of ion flux. Cells suddenly starved of nutrients [11] maintain ATP 200 

levels for ~30 minutes, indicating that they possess the energy to adapt to dormancy 201 

and to synthesize proteins for the synthesis or transport of osmolytes. The importance 202 

of ion flux during both nutrient and hyperosmotic stress provides further evidence of 203 

the interconnectedness between these two stresses and the tension that arises as a result. 204 

 205 

Overlap in transcriptional regulation between osmotic and nutrient stress responses 206 

Several lines of evidence indicate common transcriptional regulation of the osmotic and 207 

nutrient stress responses in bacteria. In E. coli, the stationary-phase transcription factor 208 

RpoS (sS) induces hundreds of genes upon nutrient stress, including several 209 



osmoprotectant pathways [37]. Entry into stationary phase confers cross-protection 210 

against osmotic stress [38,39], which may be due to induction of one or more of these 211 

pathways but also could reflect the common physiological responses to these two 212 

stresses (Figure 1). Many genes under the control of RpoS are induced by hyperosmotic 213 

stress (Figure 3A), demonstrating an intrinsic link between osmoregulation and 214 

starvation. These genes include otsBA [40] and treA [41], which encode proteins that 215 

synthesize and breakdown trehalose, respectively; proP [40], which encodes a 216 

transporter for glycine betaine and other osmolytes; osmY [41], which encodes a 217 

periplasmic chaperone; and osmE [42-44] and osmB [41], which encode predicted 218 

lipoproteins. In addition to increasing cellular osmolarity, trehalose and glycine betaine 219 

also stabilize proteins [34,45], of notable benefit due to the increase in protein 220 

destabilization during both hyperosmotic stress and stationary phase. Interestingly, 221 

osmoregulated genes are highly induced by a small amount of RpoS, by contrast to the 222 

expression of canonical stationary phase genes that tend to require higher levels of the 223 

transcription factor [46]. 224 

 225 

The Rcs envelope stress response (Glossary) is also directly coupled to both nutrient 226 

and osmotic stress response pathways. The Rcs pathway is activated in response to 227 

changes in cell width and periplasmic dimensions [47], which are strongly affected by 228 

osmolarity and by nutrient stress (Figure 3) [48,49]. Rcs pathway activation also leads to 229 



expression of osmB and osmC [50], which are regulated by both osmotic stress and 230 

stationary phase [51] and encode enzymes that reduce organic hydroperoxides. Taken 231 

together, the co-regulation of stationary phase and osmotic genes may reflect a frequent 232 

need to adapt to both osmotic and nutrient stresses concurrently. 233 

 234 

The Gram-negative cell envelope consists of an inner membrane, a thin layer of 235 

peptidoglycan cell wall, and an asymmetric outer membrane. The outer membrane 236 

plays a key role in mediating resistance to desiccation and antibiotics [14], and its 237 

capacity to bear substantial mechanical stress due to both its protein and 238 

lipopolysaccharide (Glossary) content was recently discovered [52]. Interestingly, the 239 

outer membrane of E. coli does not appear to bear mechanical stress during steady-state 240 

growth, but becomes critical during osmotic shock [53]. Production of the outer 241 

membrane lipoproteins OsmB and OsmE during osmotic stress may play a role in 242 

maintaining cell envelope integrity, although the mechanism is unknown. More 243 

generally, how transcriptional responses counteract the physical effects of osmotic and 244 

nutrient stress remains to be determined. 245 

 246 

Prospects for future interrogation of the coupling between osmotic and nutrient 247 

stress responses 248 



Progress in understanding the osmotic and nutrient properties of the cytoplasmic 249 

environment and their regulation has thus far largely relied on inferences. It is typically 250 

assumed that, like pH, there is an optimal cytoplasmic osmolarity. On the other hand, 251 

the turgor pressure of Gram-positive bacteria such as B. subtilis has been inferred to be 252 

an order of magnitude larger than that of E. coli [54,55], indicating a huge range of 253 

potential cytoplasmic osmolarity. Without the ability to measure cytoplasmic 254 

osmolarity, questions about its magnitude and that of turgor pressure will be difficult to 255 

address. Moreover, the functions of periplasmic contents remain largely mysterious, 256 

particularly during stress and across growth phases. Notably, for most organisms, no 257 

estimates of turgor or intracellular density have been made. Recent methodological and 258 

computational advances in quantitative phase imaging (QPI) have simplified the 259 

measurement of intracellular density [56,57], which should help to clarify the 260 

relationship between osmolarity and intracellular contents. Application of QPI and 261 

direct measurements of turgor through nanoscale probing [58] or other methods would 262 

expand our understanding of the relationship between osmolarity and physiology 263 

across growth conditions. Advances in metabolomics may also provide a window into 264 

osmolyte concentrations during perturbations (osmotic and otherwise); phenotypes of 265 

interest should generally be compared across media, which may have different 266 

osmolarities and/or contain different amounts of compatible solutes (trehalose, betaines, 267 

proline). 268 



 269 

Beyond tools, we lack general principles regarding how osmolarity affects physiology, 270 

motivating a broad comparison across organisms to uncover both general and specific 271 

behaviors. The field has mainly focused on one organism (E. coli), resulting in narrow 272 

understanding of a challenge faced universally across the bacterial family tree. 273 

Moreover, the lack of insight into how osmolarity homeostasis during steady-state 274 

growth is re-established long after adaptation to an initial shock means that well-275 

studied genes may have unrecognized osmoregulatory roles in the absence of osmotic 276 

stress. It will also be fascinating to understand the intersection of osmotic and nutrient 277 

stress in microbes that inhabit environments highly distinct from the mammalian gut, 278 

from marine cyanobacteria to halophiles, to determine whether an organism’s behaviors 279 

are dictated by the osmotic variation in its natural environment. Application of 280 

oscillatory osmotic shocks has revealed qualitatively distinct phenomena linking 281 

osmolarity to growth behaviors in every organism studied thus far [2,27,59,60], 282 

indicating that there is likely much to be learned simply by looking. Addressing the 283 

crucial knowledge gaps discussed in this review would greatly enhance our 284 

understanding how nutrient and osmotic stresses are mechanistically coupled, and of 285 

cellular physiology more broadly.  286 



Glossary: 287 

• Budding yeast (Saccharomyces cerevisiae): a unicellular fungus used as a model 288 

eukaryote. 289 

• Diffusion: the random movement of particles that serves to smooth variations in 290 

concentration. 291 

• Guanosine penta-phosphate and guanosine tetraphosphate ((p)ppGpp): an 292 

alarmone that induces the stringent response under carbon or amino acid 293 

starvation. 294 

• Lipopolysaccharide (LPS): an anionic component of the outer leaflet of the outer 295 

membrane of Gram-negative bacteria, important for envelope stiffness and 296 

resistance to expansion by turgor. 297 

• Osmoregulated periplasmic glucans (OPGs), formerly known as membrane 298 

derived oligosaccharides (MDOs): polymers of D-glucose produced by 299 

Proteobacteria in hypoosmotic conditions with predicted roles in envelope and 300 

osmotic homeostasis. 301 

• Periplasm: typically used to refer to the space between the inner and outer 302 

membrane of Gram-negative bacteria, which is less protected from the 303 

extracellular environment than the cytoplasm and contains a distinct enzymatic 304 

repertoire. Note that Gram-positive bacteria can also have a periplasm-like space 305 

between the cytoplasmic membrane and cell wall.  306 



• Physiology: processes important for cell viability such as metabolic and stress 307 

response pathways. 308 

• Rcs pathway: induces the expression of genes involved in processes such as 309 

capsule synthesis in response to envelope damage. 310 

• Sporulation: a developmental strategy for adapting to unfavorable conditions 311 

through spore formation. 312 

• Stationary phase: a state of metabolic quiescence entered as cell density increases 313 

and nutrient levels decrease, characterized by cell shortening and regulation by 314 

the sigma factor RpoS. 315 

• Steady-state growth: a state with constant rate of cell expansion without shifts in 316 

the environment. 317 

• Turgor: the pressure exerted on the cell envelope as a result of higher 318 

intracellular osmolarity compared with the environment.  319 
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Figures 326 

 327 

Figure 1: Nutrient and hyperosmotic stress have similar physiological effects on 328 

microbes. 329 

A) In the model Gram-negative bacterium Escherichia coli, similar features 330 

distinguish cells under steady-state growth conditions from those under nutrient 331 

stress or hyperosmotic stress: protein instability, intracellular density, DNA-332 

protein interactions, water content, and metabolic rate. 333 

B) Escherichia coli (a model Gram-negative bacterium), Bacillus subtilis (a model 334 

Gram-positive bacterium), and Saccharomyces cerevisiae (a model unicellular 335 

eukaryote) all experience dehydration, cytoplasmic volume reduction, increased 336 

protein instability, and metabolic slowdown upon nutrient depletion. The 337 

crowded cytoplasm decreases molecular diffusion, and in bacteria this crowding 338 

increases the levels of DNA-protein interactions and nucleoid condensation.  339 



Figure 2: Proteome redistribution among cellular compartments and membranes 340 

upon stress. 341 

A) During exponential growth in LB, the cytoplasm of E. coli cells contains 73% of 342 

the total protein mass, while the periplasm contains only 6%. During stationary 343 

phase (SP) or upon osmotic (Osm) stress in minimal medium supplemented with 344 

50 mM NaCl, the cytoplasm accounts for only 57% and 64% of the proteome, 345 

respectively, and the expanded periplasm (Figure 1) accounts for 15% and 11% of 346 

the proteome, respectively. 347 

B) The ratio of protein fraction between the periplasm and cytoplasm is greater 348 

during stationary phase, hyperosmotic stress, and pH stress than during 349 

exponential growth in LB. 350 

Data plotted are from [17].  351 



Figure 3: The timelines of hyperosmotic and nutrient stress. 352 

A) Hyperosmotic shock involves rapid onset of stress. Water efflux causes 353 

immediate plasmolysis, and cells initially respond with a rapid influx of ions, 354 

and later with synthesis or import of compatible solutes. The genes responsible 355 

for re-establishing osmotic homeostasis at steady state are not well understood. 356 

B) Nutrient depletion can be sudden or gradual. In stationary phase, cells 357 

accumulate positively charged ions and trehalose in the cytoplasm and induce 358 

transcriptional changes. By contrast, cells that are starved by sudden removal of 359 

nutrients accumulate positively charged ions outside of the cytoplasm and the 360 

response does not rely on transcriptional regulation.  361 
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