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Abstract

Bacterial cells regularly confront simultaneous changes in environmental nutrient
supply and osmolarity. Despite the importance of osmolarity and osmoregulation in
bacterial physiology, the relationship between the cellular response to osmotic
perturbations and other stresses has remained largely unexplored. Bacteria cultured in
hyperosmotic conditions and bacteria experiencing nutrient stress exhibit similar
physiological changes including metabolic shutdown, increased protein instability,
dehydration, and condensation of chromosomal DNA. In this review, we highlight
overlapping molecular players between osmotic and nutrient stresses. These
connections between two seemingly disparate stress response pathways reinforce the
importance of central carbon metabolism as a control point for diverse aspects of
homeostatic regulation. We identify important open questions for future research,
emphasizing the pressing need to develop and exploit new methods for probing how

osmolarity affects phylogenetically diverse species.



31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Introduction

Osmolarity, the number of dissolved solute particles per liter of solution, is an
important yet often ignored aspect of cellular physiology (Glossary) [1]. Single-celled
bacteria typically cannot control their environment, and hence osmolarity broadly
influences phenotypes from cell size [2] to antibiotic sensitivity [3]. Osmolarity dictates
the water content of cells, impacting the activity of essential enzymes and modulating
metabolic function [4,5]. The osmolarity differential between the inside and outside of
the cell (turgor pressure, Glossary), which can be >10 atmospheres in some species [6,7],
determines the mechanical force balance between the cell envelope and the

environment [8], and maintaining positive turgor can be important for growth.

Under typical growth conditions, proteins, sugars, lipids, nucleic acids, and other small
molecules within the cytoplasm collectively constitute a dense, highly crowded
environment with concentrations as high as 400 mg/mL [9-11]. A substantial increase or
decrease in density impacts molecular diffusion (Glossary) and interactions through the
level of crowding [12,13]. Osmolarity is intrinsically related (although not identical) to
intracellular density. Since osmolarity is the number of solute particles per liter,
reducing intracellular osmolarity can be as simple as polymerizing hundreds of amino
acids into a single protein or thousands of nucleotides into a molecule of DNA or RNA,

as long as the subunits constitute a sizeable fraction of cellular mass. Thus, nutrient
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availability and metabolic rate have the potential to alter cytoplasmic osmolarity, and
osmotic regulation may be required to maintain cellular homeostasis. Thus, the physical
properties of the cytoplasm are intertwined with growth and directly impact

intracellular organization and biochemistry.

The osmolarity of the bacterial cytoplasm is stringently regulated by molecular
mechanisms that mediate accumulation or secretion of osmolytes. The importance of
osmotic regulation is further underscored by its metabolic cost, involving the synthesis
and breakdown of carbon-rich molecules. The osmoprotectants trehalose (a
disaccharide of two glucose molecules), glycine betaine (amino acid derivative), and
proline betaine (amino acid derivative) are manufactured or imported under
hyperosmotic stress [1]. Thus, induction of osmoregulatory pathways requires
repurposing nutrients from metabolic pathways that would otherwise provide cellular

energy and synthesis capacity.

Just as many osmolytes are repurposed nutrients, nutrients can function as osmolytes,
illustrating an intrinsic connection between osmolarity and nutrient availability such
that a low-osmolarity environment may generically contain fewer molecules with
nutritional potential, and vice versa. This coupling is particularly poignant for bacteria

that face sudden shifts into drastically more dilute environments. Human gut
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commensals and pathogens face both osmotic shifts and feast-famine cycles as they
transition between their host and the environment [14] and hence it would be natural to
couple osmotic regulation to other aspects of physiology. Indeed, Leptospira interrogans
utilizes the inevitable change in osmolarity when entering host tissues as a signal to

upregulate virulence factors [15].

In this review, we discuss the impact of osmolarity on bacterial physiology and growth,
emphasizing physiological and regulatory overlaps between the response to osmotic
stress and to nutrient stress. Hyperosmotic or hypoosmotic stress result from a
transition to an environment with higher or lower osmolarity, respectively. Although a
low-osmolarity environment due to general dilution signifies a dearth of nutritional
potential, under hypoosmotic conditions bacteria nevertheless use glucose to synthesize
osmoregulated periplasmic glucans (OPGs, Glossary) [16]. This tension between two
coincident stresses suggests that devoting precious resources to producing an
osmoprotectant outweighs the benefits of using it for biosynthesis. Despite the
intriguing nature of the OPGs and hypoosomotic stress as a whole, links with molecular
crowding have made hyperosomotic stress the better studied of the two phenomena,

and hence it will be the focus of this review.

Nutrient stress and hyperosmotic stress elicit similar changes in cytoplasmic density
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Plasmolysis—cytoplasmic dehydration and shrinkage coupled with enlargement of
regions of the periplasm (Glossary)—is a visibly striking and well-known hallmark of
the initial stages of hyperosmotic stress (Figure 1). Sudden or gradual nutrient depletion
in Gram-negative bacteria similarly leads to plasmolysis, although the regions of
periplasmic enlargement can differ from hyperosmotic shock (Figure 1A). During
stationary phase (Glossary), a state of metabolic quiescence and cell shortening upon
gradual nutrient depletion, the cytoplasm decreases in volume and becomes denser [11]
and the periplasm increases in volume [17]. Likewise, during sudden depletion of
carbon, nitrogen, or phosphorus, the inner membrane of E. coli [11], K. pneumoniae [11],
and V. cholerae [18] retracts, resulting in a smaller, denser cytoplasm and enlarged
periplasm. Budding yeast cells undergo a similar process under glucose starvation in
which cell volume shrinks without any loss of cell mass, in this case due to vacuolar
expansion [19] rather than the periplasmic expansion that occurs in bacteria [11]. The
increased periplasmic volume at the expense of cytoplasmic volume during
hyperosmotic shock and nutrient stress highlights the interplay between these
compartments and raises the interesting possibility that one function of the bacterial

periplasm may be to act as a vacuole-like organelle.

Gram-positive bacteria lack a periplasm but still exhibit similar cytoplasmic changes as

Gram-negative bacteria during starvation (Figure 1B). The model Firmicute Bacillus
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subtilis and other related species induce a programmed stress response pathway that
culminates in the formation of a dormant, heat-resistant endospore [20]. Spore
formation (Glossary) is characterized by nucleoid condensation [21] and dehydration,
which contributes to heat tolerance [22]. The frequency of protein-DNA interactions
also increases in spores, which provides protection against DNA damage [23]. Thus, a
condensed, dehydrated state may generally increase resilience across the bacterial

kingdom.

Notably, treatment of E. coli cells with DNP, a drug that uncouples the electron
transport chain from ATP synthesis and leads first to an increase in metabolic activity
and then to metabolic arrest, results in an expanded nucleoid rather than an expanded
periplasm [24], highlighting the specificity of physiological responses to starvation. It
remains unclear whether cytoplasmic volume fraction is intrinsically linked to growth
rate and/or nutrient quality [17]; in E. coli, nutrient concentration during exponential
growth non-monotonically impacts cytoplasmic volume fraction in stationary phase
[11]. Altogether, comparison of cytoplasmic condensation between hyperosmotic shock
and various modes of metabolic slowdown suggests that reduction in water content

may be broadly beneficial but dependent on many aspects of growth history.
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Physical mechanisms of enzymatic activity regulation during hyperosmotic and
nutrient stress

The reduction in cytoplasmic volume elicited by nutrient stress and osmotic stress
affects molecular crowding (Figure 1), a critical component of cellular physiology.
Crowding inhibits many enzymatic reactions by physically slowing their kinetics, as
diffusion coefficients decrease and reactant molecules encounter each other less
frequently [4], or by inactivating enzymes through steric hindrance resulting from
polymerization [25]. The increase in crowding during stationary phase in E. coli
suggests that cells may face similar physiological challenges as under hyperosmotic
stress [11,13], when density also increases, although the contribution of increased
cytoplasmic crowding to stationary phase-dependent reductions in metabolic activity is
unknown. In the budding yeast Saccharomyces cerevisiae (Glossary), the rates of
cytoplasmic and nuclear diffusion decrease during glucose starvation, which has been
suggested to be due to crowding [19], and mechanical stress-induced crowding inhibits
translation and curtails cell growth [26]. Importantly, higher intracellular density is not
necessarily associated with slow growth [27], and metabolic slowdown can inhibit
molecular diffusion in the absence of obvious changes in cell volume or density [24].
Thus, the relationships among crowding, density, and growth may be more multi-

faceted than previously appreciated.



150 In addition to the physical effects of crowding, nutrient and hyperosmotic stress lead to
151  changes in protein synthesis. During nutrient stress, bacteria downregulate protein

152 synthesis through the stringent response and synthesis of the alarmone (p)ppGpp

153  (Glossary) [28,29]. Hyperosmotic stress specifically inhibits translation elongation,

154  leading to compensatory transcriptional upregulation of ribosomes in an attempt to

155  maintain translational capacity [30]. Similarly, in budding yeast, translation and

156  metabolic activity are initially inhibited during salt stress, which enables adaptation
157 that avoids long-term defects in cell growth [26,31]. In addition to the shift in water

158  content between the cytoplasm and periplasm that alters cytoplasmic volume fraction,
159  nutrient and hyperosmotic stress also cause major redistribution of the proteome.

160  Bacterial cells experiencing nutrient stress and cells experiencing hyperosmotic stress
161  both have more biomass in the periplasm and outer membrane and a concomitant

162 decrease in biomass in the cytoplasm and inner membrane compared to steady-state
163 growth (Glossary) (Figure 2) [17]. Interestingly, similar changes are observed during
164 growth at pH 6 as well (Figure 2), suggesting the potential for further overlap with the
165  acid stress response pathway.

166

167 While an increase in cytoplasmic density is expected after a hyperosmotic shock due to
168  the physical nature of the perturbation, why the cytoplasm shrinks during nutrient

169  stress is unclear. It may be an active and beneficial response or an inevitable
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consequence of the physiological changes inherent in starvation. Regardless, the
metabolic shutdown inherent in a dense, dehydrated state conserves energy [13,21] and
boosts resistance to antibiotics [3], heat, and desiccation [10]. Nucleoid compaction
driven by water efflux [21,29,32] also protects DNA from damage under stress [32-34].
Moreover, the reduction in size may itself be beneficial due to the increase in surface
area-to-volume ratio, which decreases the distance molecules have to traverse from
uptake to synthesis, utilization, and expulsion as waste [21]. Elucidating the genetic
and/or physical mechanisms underlying these benefits will likely provide mechanistic

insight into the links between nutrient and osmotic stress responses.

The role of ion trafficking in stress adaptation

While the buildup of osmotic stress typically occurs on a short time scale (e.g., the
transition of enteric bacteria from a host into a water supply), nutrient stress can
increase quickly (e.g. a sudden shift to a rich or poor carbon source) or slowly (nutrient
exhaustion and entry into stationary phase) (Figure 3). Adaptation to hyperosmotic
stress is a two-step process initially involving quick and promiscuous import of any
available ions and osmolytes to balance osmolarity and prevent loss of viability. This
emergency response results in an increased concentration of ions including K*, which
disrupts DNA-protein interactions and protein folding [1]. Ion trafficking is thus not a

permanent solution, and as cells adapt to the new conditions, ions are effluxed as
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synthesis of compatible solutes such as glycine-betaine and trehalose restores water
content [1]. Adaptation typically requires synthesis of proteins to generate and/or

import osmolytes, costing energy and time.

Nutrient stress also involves changes in ion flux (Figure 3B). Ions, particularly Na* and
H*, are essential for the transport of nutrients into and waste out of the cell as part of
symporter and antiporter systems. In stationary phase, bacterial cells favor retention of
K*, NH4*, and H* [35], and accumulate the compatible solute trehalose [34]. In E. coli, the
membrane depolarizes as cells transition from early to late exponential phase [36], but
membrane potential is maintained during sudden starvation [11], suggesting
differential regulation of ion flux. Cells suddenly starved of nutrients [11] maintain ATP
levels for ~30 minutes, indicating that they possess the energy to adapt to dormancy
and to synthesize proteins for the synthesis or transport of osmolytes. The importance
of ion flux during both nutrient and hyperosmotic stress provides further evidence of

the interconnectedness between these two stresses and the tension that arises as a result.

Overlap in transcriptional regulation between osmotic and nutrient stress responses
Several lines of evidence indicate common transcriptional regulation of the osmotic and
nutrient stress responses in bacteria. In E. coli, the stationary-phase transcription factor

RpoS (c%) induces hundreds of genes upon nutrient stress, including several
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osmoprotectant pathways [37]. Entry into stationary phase confers cross-protection
against osmotic stress [38,39], which may be due to induction of one or more of these
pathways but also could reflect the common physiological responses to these two
stresses (Figure 1). Many genes under the control of RpoS are induced by hyperosmotic
stress (Figure 3A), demonstrating an intrinsic link between osmoregulation and
starvation. These genes include otsBA [40] and treA [41], which encode proteins that
synthesize and breakdown trehalose, respectively; proP [40], which encodes a
transporter for glycine betaine and other osmolytes; osmY [41], which encodes a
periplasmic chaperone; and osmE [42-44] and osmB [41], which encode predicted
lipoproteins. In addition to increasing cellular osmolarity, trehalose and glycine betaine
also stabilize proteins [34,45], of notable benefit due to the increase in protein
destabilization during both hyperosmotic stress and stationary phase. Interestingly,
osmoregulated genes are highly induced by a small amount of RpoS, by contrast to the
expression of canonical stationary phase genes that tend to require higher levels of the

transcription factor [46].

The Rcs envelope stress response (Glossary) is also directly coupled to both nutrient
and osmotic stress response pathways. The Rcs pathway is activated in response to
changes in cell width and periplasmic dimensions [47], which are strongly affected by

osmolarity and by nutrient stress (Figure 3) [48,49]. Rcs pathway activation also leads to
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expression of osmB and osmC [50], which are regulated by both osmotic stress and
stationary phase [51] and encode enzymes that reduce organic hydroperoxides. Taken
together, the co-regulation of stationary phase and osmotic genes may reflect a frequent

need to adapt to both osmotic and nutrient stresses concurrently.

The Gram-negative cell envelope consists of an inner membrane, a thin layer of
peptidoglycan cell wall, and an asymmetric outer membrane. The outer membrane
plays a key role in mediating resistance to desiccation and antibiotics [14], and its
capacity to bear substantial mechanical stress due to both its protein and
lipopolysaccharide (Glossary) content was recently discovered [52]. Interestingly, the
outer membrane of E. coli does not appear to bear mechanical stress during steady-state
growth, but becomes critical during osmotic shock [53]. Production of the outer
membrane lipoproteins OsmB and OsmE during osmotic stress may play a role in
maintaining cell envelope integrity, although the mechanism is unknown. More
generally, how transcriptional responses counteract the physical effects of osmotic and

nutrient stress remains to be determined.

Prospects for future interrogation of the coupling between osmotic and nutrient

stress responses
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Progress in understanding the osmotic and nutrient properties of the cytoplasmic
environment and their regulation has thus far largely relied on inferences. It is typically
assumed that, like pH, there is an optimal cytoplasmic osmolarity. On the other hand,
the turgor pressure of Gram-positive bacteria such as B. subtilis has been inferred to be
an order of magnitude larger than that of E. coli [54,55], indicating a huge range of
potential cytoplasmic osmolarity. Without the ability to measure cytoplasmic
osmolarity, questions about its magnitude and that of turgor pressure will be difficult to
address. Moreover, the functions of periplasmic contents remain largely mysterious,
particularly during stress and across growth phases. Notably, for most organisms, no
estimates of turgor or intracellular density have been made. Recent methodological and
computational advances in quantitative phase imaging (QPI) have simplified the
measurement of intracellular density [56,57], which should help to clarify the
relationship between osmolarity and intracellular contents. Application of QPI and
direct measurements of turgor through nanoscale probing [58] or other methods would
expand our understanding of the relationship between osmolarity and physiology
across growth conditions. Advances in metabolomics may also provide a window into
osmolyte concentrations during perturbations (osmotic and otherwise); phenotypes of
interest should generally be compared across media, which may have different
osmolarities and/or contain different amounts of compatible solutes (trehalose, betaines,

proline).
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Beyond tools, we lack general principles regarding how osmolarity affects physiology,
motivating a broad comparison across organisms to uncover both general and specific
behaviors. The field has mainly focused on one organism (E. coli), resulting in narrow
understanding of a challenge faced universally across the bacterial family tree.
Moreover, the lack of insight into how osmolarity homeostasis during steady-state
growth is re-established long after adaptation to an initial shock means that well-
studied genes may have unrecognized osmoregulatory roles in the absence of osmotic
stress. It will also be fascinating to understand the intersection of osmotic and nutrient
stress in microbes that inhabit environments highly distinct from the mammalian gut,
from marine cyanobacteria to halophiles, to determine whether an organism’s behaviors
are dictated by the osmotic variation in its natural environment. Application of
oscillatory osmotic shocks has revealed qualitatively distinct phenomena linking
osmolarity to growth behaviors in every organism studied thus far [2,27,59,60],
indicating that there is likely much to be learned simply by looking. Addressing the
crucial knowledge gaps discussed in this review would greatly enhance our
understanding how nutrient and osmotic stresses are mechanistically coupled, and of

cellular physiology more broadly.
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Glossary:

Budding yeast (Saccharomyces cerevisiae): a unicellular fungus used as a model
eukaryote.

Diffusion: the random movement of particles that serves to smooth variations in
concentration.

Guanosine penta-phosphate and guanosine tetraphosphate ((p)ppGpp): an
alarmone that induces the stringent response under carbon or amino acid
starvation.

Lipopolysaccharide (LPS): an anionic component of the outer leaflet of the outer
membrane of Gram-negative bacteria, important for envelope stiffness and
resistance to expansion by turgor.

Osmoregulated periplasmic glucans (OPGs), formerly known as membrane
derived oligosaccharides (MDOs): polymers of D-glucose produced by
Proteobacteria in hypoosmotic conditions with predicted roles in envelope and
osmotic homeostasis.

Periplasm: typically used to refer to the space between the inner and outer
membrane of Gram-negative bacteria, which is less protected from the
extracellular environment than the cytoplasm and contains a distinct enzymatic
repertoire. Note that Gram-positive bacteria can also have a periplasm-like space

between the cytoplasmic membrane and cell wall.
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Physiology: processes important for cell viability such as metabolic and stress
response pathways.

Rcs pathway: induces the expression of genes involved in processes such as
capsule synthesis in response to envelope damage.

Sporulation: a developmental strategy for adapting to unfavorable conditions
through spore formation.

Stationary phase: a state of metabolic quiescence entered as cell density increases
and nutrient levels decrease, characterized by cell shortening and regulation by
the sigma factor RpoS.

Steady-state growth: a state with constant rate of cell expansion without shifts in
the environment.

Turgor: the pressure exerted on the cell envelope as a result of higher

intracellular osmolarity compared with the environment.
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Figures

Figure 1: Nutrient and hyperosmotic stress have similar physiological effects on

microbes.

A) In the model Gram-negative bacterium Escherichia coli, similar features

B)

distinguish cells under steady-state growth conditions from those under nutrient
stress or hyperosmotic stress: protein instability, intracellular density, DNA-
protein interactions, water content, and metabolic rate.

Escherichia coli (a model Gram-negative bacterium), Bacillus subtilis (a model
Gram-positive bacterium), and Saccharomyces cerevisiae (a model unicellular
eukaryote) all experience dehydration, cytoplasmic volume reduction, increased
protein instability, and metabolic slowdown upon nutrient depletion. The
crowded cytoplasm decreases molecular diffusion, and in bacteria this crowding

increases the levels of DNA-protein interactions and nucleoid condensation.



340 Figure 2: Proteome redistribution among cellular compartments and membranes

341  upon stress.

342 A) During exponential growth in LB, the cytoplasm of E. coli cells contains 73% of
343 the total protein mass, while the periplasm contains only 6%. During stationary
344 phase (SP) or upon osmotic (Osm) stress in minimal medium supplemented with
345 50 mM Na(l], the cytoplasm accounts for only 57% and 64% of the proteome,

346 respectively, and the expanded periplasm (Figure 1) accounts for 15% and 11% of
347 the proteome, respectively.

348 B) The ratio of protein fraction between the periplasm and cytoplasm is greater

349 during stationary phase, hyperosmotic stress, and pH stress than during

350 exponential growth in LB.

351 Data plotted are from [17].
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Figure 3: The timelines of hyperosmotic and nutrient stress.

A) Hyperosmotic shock involves rapid onset of stress. Water efflux causes

B)

immediate plasmolysis, and cells initially respond with a rapid influx of ions,
and later with synthesis or import of compatible solutes. The genes responsible
for re-establishing osmotic homeostasis at steady state are not well understood.
Nutrient depletion can be sudden or gradual. In stationary phase, cells
accumulate positively charged ions and trehalose in the cytoplasm and induce
transcriptional changes. By contrast, cells that are starved by sudden removal of
nutrients accumulate positively charged ions outside of the cytoplasm and the

response does not rely on transcriptional regulation.
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