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ABSTRACT: Ultrathin flat meta-optics have shown great promise
for holography in recent years. However, most of the reported
meta-optical holograms rely on only phase modulation and neglect
the amplitude information. Modulation of both amplitude and
phase in meta-optics requires either polarization-sensitive meta-
atoms or complex scatterers with stringent fabrication require-
ments. Additionally, almost all of the meta-optical holograms were
measured under laser illumination. Here, we adopt the concept of
double-phase holography, to report polarization-independent
holography with both amplitude and phase modulation, using
dielectric meta-optics. We validate the implementation of complex
phase hologram by measuring an improvement of structural
similarity of the reconstructed hologram by nearly 3 times over
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phase-only holograms. Finally, we demonstrate that meta-optical holography can also be realized using partially incoherent light from
a light-emitting diode. This observation can significantly reduce the alignment complexity and speckles in laser-based meta-optical

holography.
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Bl INTRODUCTION

Holography is a key concept for next-generation display
technologies, widely being explored for three-dimensional
(3D) displays and near-eye visors for augmented and virtual
reality, where an immersive visual experience for the user is of
utmost importance. The fundamental principle of holography
relies on the reconstruction of the light field produced by a
screen containing both amplitude and phase information.' The
simplest configuration to store and recreate a hologram is
achieved by recording the interference patterns formed by light
scattered by an object and a reference coherent beam." While
this technique creates crisp scenes, the requirement of recording
areal object and a spatially and temporally coherent light source
severely restricts applications, as typically only existing and static
scenes are recordable. These particular limitations were resolved
with the advent of digital computers and the emergence of
spatial light modulators (SLM), which brought forth the
development of computer-generated holography (CGH).”” In
CGH, the phase profile for any desired image is generated via
computational algorithms, and subsequently the phase profile is
displayed on an SLM, which under coherent light illumination
creates the image at the desired plane. Based on the same
principle, static holograms can be implemented using patterned
surfaces, such as diffractive optics.4 However, traditional SLMs
or diffractive optics cannot modulate both amplitude and phase,
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making CGHs primarily limited to either phase-only or
amplitude-only modulation. This typically results in a poor
signal-to-noise ratio (SNR) of the reconstructed image. A
solution to this problem is achieved by implementing both
amplitude and phase modulation via dual-phase holography,”~”
where each value of the complex phase is coded using two
different pixels. While dual-phase holography improves the
SNR, it comes at the cost of reduced spatial resolution.

In recent years, meta-optics has emerged as a promising
alternative to implement a desired phase profile. Meta-optics are
artificially manufactured arrays of subwavelength scatterers,”"’
which shape the optical wavefront with high spatial resolution. A
distinct advantage is that the subwavelength pitch of scatterers
precludes any higher-order diffraction, thus maximizing light in
the zeroth-order diffraction and making it more efficient than
traditional diffractive optics.'""'> These properties have inspired
many researchers to demonstrate holography with meta-
optics."*~*' However, for the majority of these works, phase-
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only modulation has been considered. To implement complex
phase holography, i.e., both phase and amplitude modulation,
meta-atoms with complex orientations and shapes were utilized
in THz domain,”>** but their fabrication will be difficult in the
visible wavelength. The other approaches are generally polar-
ization-sensitive.”»*> Complex phase modulation can also be
achieved using multilayer meta-optics,””*” where the first meta-
optic modulates the amplitude and a subsequent one modulates
the phase of the transmitted light. However, such bilayer meta-
optics are arduous to fabricate due to their requirement of
precise alignments. Additionally, one needs to rely on high-
contrast materials like silicon or metal as they need to be
embedded in polymers. This presents a limitation for low-index
materials like silicon nitride®® of titanium dioxide,*” which are
transparent in the visible wavelength.

In this work, we report polarization-independent complex
phase modulated holography using a single visible meta-optics
containing simple square pillar meta-atoms. We employ double-
phase holography to implement the complex phase modulation.
We note that several other works have previously focused on
improving the double-phase holography,””*" for instance,
through improving the algorithms to generate the hologram or
by imposing other limits to improve reconstructions, our
contribution in this work is to implement double-phase
holography using meta-opitcs. Thanks to the subwavelength
pitch in a meta-optic, we can achieve a very high space-
bandwidth product, and thus the main limitation of double-
phase holography is not as severe as in a meta-optic. We establish
the efficacy of double-phase holography by demonstrating a
higher structural similarity index metric (SSIM) of double-phase
holograms over phase-only holograms, under both coherent and
incoherent green illumination. The ability to create meta-optical
holograms using incoherent illumination from light-emitting
diodes can significantly simplify the optical arrangement, making
them more applicable for practical applications, including near-
eye displays for augmented and virtual reality.”> Additionally,
the ability to coherently manipulate the optical field will be
important for free-space vector-matrix multiplication and optical
computing.33

B METHODOLOGY

Figure 1 shows the schematic where the meta-optical hologram
is irradiated with a coherent or incoherent light source (4 = 532
nm), and the images are reconstructed at the imaging plane z =2
mm away from the meta-optic. The meta-optics is polarization-
independent and designed to generate the images at the desired
wavelength. Here, we used two objects, “digit W and Husky”,
and a part of the United States Air Force (USAF) test targets.
We assumed the object to be virtually located at the imaging
plane (z = 2 mm) from the meta-optics and used the angular
spectrum method”” to estimate the desired complex phase of the
meta-optic. We applied the double-phase encoding technique to
generate the complex field in the meta-hologram. We also
extracted the real part of the phase from the complex electric
field to realize a phase-only meta-optic hologram. Additionally,
another phase-only meta-optic hologram was realized using the
Gerchberg—Saxton algorithm,‘%5 having imaging plane and size
identical to other holograms.

The procedure for realizing the double-phase hologram is
shown in Figure 2. Let us assume the target complex hologram
Uy can be expressed as Ug(x,y) = A, (x,y)-€“*?), where ¢(x,y) is
the phase and A, (x,y) is normalized amplitude with values in the
range between 0 and 2. We can then rewrite A, (x,y) = e +
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Figure 1. Illustration of holography using a double-phase hologram and
a phase-only hologram realized by all-dielectric meta-optics. Under
incident green light (both coherent and incoherent), the device displays
an image at the desired plane. The image quality with double-phase
holography is expected to be better than simple phase-only hologram.

e ) = 9 cos 0(x,y), where 8(x,y) € [—x, z]. Hence, we can
rewrite U as

UF(xl y) = hl(x: )’) XM, + hz(x: y) X M,

with h, = el0@) 0] nd h, = el0E)=0@)] Thys, at each point
(x,y), we obtain two-phase values: ¢(x,y) + O(x;y). The
complementary binary masks (M; and M,)*® with two-
dimensional (2D) checkerboard patterns, help reduce the
required phase at each point to a single value.

This sampling technique is similar to the random mask
encoding for multiplexing phase-only filters,”” except we select
two complementary binary functions under Nyquist limit. This
phase profile can then be translated into a meta-optic and upon
illumination with light, a hologram forms at the desired plane, as
schematically depicted in Figure 1.

B DESIGN

The meta-optical hologram consists of an array (periodicity p =
350 nm) of meta-atoms, here subwavelength silicon nitride
square pillars with height t = 560 nm on quartz substrate (Figure
3a). We keep a blanket 40 nm thick silicon nitride film on the
quartz substrate to ensure mechanical stability. We found the
effect of the blanket thin Si;N, film to be negligible as detailed in
the Supporting Materials. The width w of the pillars was varied
between 75 and 330 nm to cover the entire 27 phase modulation
at a wavelength of 4 = 530 nm with near-unity transmission
(Figure 3b), as simulated using rigorous coupled-wave analysis
(RCWA).* These meta-atoms also ensure a moderate aspect
ratio and can be easily fabricated. To design the meta-optics, we
selected 12 different scatterers (all with transmission greater
than 80%), i.e., the resulting hologram has 12 discrete phase
levels. Figure 3¢ shows the scanning electron microscope images
of the fabricated meta-optic (details in the Materials and
Methods Section).

B RESULTS

The efficacy of the double-phase holograms over the phase-only
holograms was then experimentally assessed. Either a laser or a
light-emitting diode is used to illuminate the meta-holograms
(Figure 4a), and the reconstructed image was captured using a
movable microscope (details in the Materials and Methods
Section).
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Figure 2. Flowchart of double-phase encoding method for complex field modulation. First, the complex hologram Uy, is calculated from the desired
ground truth. Then, the amplitude and phase from the complex field are extracted for the decomposition of the given complex field into two pure phase
functions h, and h, using the phase encoding technique.’ Two complementary 2D binary masks (checkerboard patterns) are superimposed on the two
pure phase elements to reduce it to one phase value at every coordinate (x,y).
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Figure 3. (a) Schematic of silicon nitride pillars with width w, pitch p, and height . (b) Transmission amplitude and phase of the nano-pillars as a
function of pillar width, simulated using RCWA.*® (c) Scanning electron microscope (SEM) images of part of the meta-optical hologram showing the

nano-pillars. Scale bar: 1 ym.

Using two different ground truth images (Figure 4b), we first
compare the performance of the holography for three cases
under coherent green illumination: complex-valued phase with
double-phase holography (see the MethodologySection), phase-
only hologram with only real part of the complex-valued phase,
and phase hologram designed via Gerchberg—Saxton (GS)
algorithm. The comparison to the phase-only hologram with
only real part of the complex-valued phase allows us to assess the
efficacy of the double-phase holograms implementing the full
complex phase. The comparison with iterative GS holograms is
reported to show that a single-step calculation can create a
hologram comparable to that of an iterative process, thanks to
the ability to code the whole complex phase. A low-pass filter was
applied to the target image to blur the boundaries of the object
so that the outer edges of the hologram have low amplitudes

(Section S1). This correctly modulates the higher spatial
frequencies in the hologram and removes the unwanted edge
enhancements (see the Supporting Information). Both in the
simulation (Figure 4c) and experiment (Figure 4d), the double-
phase holography shows better reconstruction results compared
to phase-only holography and comparable results to GS
holograms. However, the GS holograms have the problems of
unwanted speckles in reconstruction due to destructive
interference occurring within the target image region. To
quantitatively validate our claim, we calculated the structural
similarity metrics (SSIM) between the reconstructed images and
the ground truth in the region of interest containing only the
image (Table 1). We clearly observe superior performance of the
double-phase holography.
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Figure 4. (a) Schematic of optical setup to test the meta-optical holography. (b) Appropriately cropped original object patterns of “W and Husky” and

“USAF target portion” are the ground truth image. (c) Simulated and (d) experimentally measured holographic reconstruction for three methods:
double-phase holography (DPH), Gerchberg—Saxton holography (GS), and amplitude-discarded phase-only holography.

Table 1. Structural Similarity Metrics of Different Types of Measured Holograms for Two Different Objects Using Both Coherent
and Incoherent Illumination

DPH GS phase-only
coherent incoherent coherent incoherent coherent incoherent
USAF target portion 0.5834 0.5703 0.6408 0.5144 0.2621 0.2185
W and Husky 0.5855 0.5496 0.5728 0.5251 0.2736 0.2301
Although for holography, coherent illumination typically DPH GS Phase only

yields better results, incoherent light sources such as light-
emitting diodes can be significantly more cost-effective.
Additionally, the speckle under incoherent illumination is
minimal, whereas under laser illumination, we often need to

rely on extra optics to reduce spectral coherence. Hence, we

tested the meta-optical holograms under incoherent illumina- I I I

tion. Here, we use a green light-emitting diode (Thorlabs

MS30F1) at a central wavelength of 525 nm and linewidth ~20

nm. The resulting holograms are shown in Figure 5. While

coherent illumination does provide better holographic recon-

struction, we demonstrate that a comparable quality for

as can be seen in the SSIMs in Table 1. Furthermore, we Figure S. Hologram reconstruction with incoherent illumination using
green light-emitting diodes with a bandwidth of ~20 nm. DPH—

double-phase hologram; GS—Gerchberg—Saxton hologram; phase-
only holograms.

reconstruction can be achieved using incoherent illumination,

observed that the double-phase holograms achieved higher
SSIM even under incoherent illumination compared to the

amplitude-discarded phase-only approach under coherent
illumination. This is further confirmed by peak signal-to-noise
ratio analysis for the different holograms, as shown in B CONCLUSIONS

Supporting Section S2. We emphasize that this is the first-time We have demonstrated complex field-modulated holography in

incoherent holography has been reported using meta-optics, meta-optics using a double-phase encoding technique. Our

which can potentially enable a drastic reduction of the form proposed approach is polarization-independent and does not
factor of near-eye visors. rely on complicated meta-atoms. Moreover, we demonstrated
D https://doi.org/10.1021/acsphotonics.2c02016
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meta-optical holography under an incoherent light-emitting
diode source. While partially incoherent holography has been
reported in CGH literature in the past, this is the first time it is
demonstrated in a meta-optic. We compared three meta-
hologram types (complex phase, amplitude-discarded phase-
only, and phase-only via GS algorithm) using SSIM and
demonstrated the superiority of double-phase hologram. This
work offers a robust and generalizable method for realizing the
primary promise of meta-optics: to modulate complex fields at
will. Such ability to modulate complex fields will be beneficial for
other applications, including free-space optical computing.

B MATERIALS AND METHODS

Fabrication Process. We fabricated the meta-optical
holograms using a 500-micron-thick fused silica wafer and
depositing 600 nm of silicon nitride using plasma-enhanced
chemical vapor deposition at 350° centigrade. A 300 nm thick
layer of ZEP S520A followed by a thin film of anticharging
polymer (DisCharge H,0O) was spin-coated on top of Si;N, thin
film. Next, the hologram patterns are written by electron beam
lithography (JEOL 6300) at a beam voltage of 100 kV, beam
current of 8000 pA, and a base dose of 275 uC/cm* and
appropriate proximity effect corrections. The resulting designs
are developed in a solution of amyl acetate and cleaned with
isopropyl alcohol. The exposed and developed samples are then
placed in a physical evaporator to deposit roughly 60 nm of
aluminum oxide. The dissolution of the remaining resist
performs lift-off in N-methyl-2-pyrrolidone (NMP) at 90 °C
for 12 h. Finally, the pattern is transferred from the aluminum
oxide mask to the Si;N, by using a fluorine-based RIE process
(Oxford) leaving a total thickness of 10 nm of alumina over 560
nm of SizN,.

Optical Characterization. A set of collimating optics passes
coherent light (Laserglow; wavelength: $32 nm; max power: 150
mW) to the meta-optics. Light is collected and analyzed using a
movable microscope. An infinity-corrected 5X objective (Nikon
Plan Fluor $X, 0.15 NA) collects light scattered by the meta-
optic at 2 mm away from the optic and passes it through a tube
lens (Thorlabs, f = 200 mm). Then, an iris is used to cut off
unwanted light from reaching the CMOS sensor (Point Grey
CMLN 13S52M CS). The same experiment was repeated with
incoherent light by replacing the green laser with the green light-
emitting diode (Thorlabs MS30F1) while keeping the rest of the
setup intact.
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