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promoting coexistence among competing species is a tradeoff between dispersal
and competitive ability.
©2022 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Background and motivation

As a result of human activities, the landscapes within which species live have become increasingly
more heterogeneous—suitable habitats are becoming fewer in number, smaller in size and more isolated.
Compounding the problem, the matrix surrounding these habitat patches is becoming much more hostile
(e.g., through urbanization or agricultural development) with elevated risks of mortality for those individuals
who attempt to emigrate from a patch [1-3]. It is an ecological imperative that we understand how changes
in landscape heterogeneity affect population dynamics and coexistence among species residing in these
landscapes. Through decades of ecological research, it is clear that the dispersal process has major implica-
tions for individual fitness, species’ distributions, interactions with other species, population dynamics and
stability (e.g., [4-8]). In particular, theoretical studies have played an extremely important role in predicting
population level effects of dispersal [9]. However, models have largely ignored the conditional dependency of
dispersal; for example, the effects of an interspecific competitor or predator on dispersal (but see e.g., [10—-
12]). Theoretical studies of competing species in fragmented habitats typically model dispersal as a regional
constant (e.g., [13]). This approach neglects realistic aspects of dispersal behavior that may affect the regional
persistence of the competitors. These behaviors include the relationship between conspecific density and em-
igration, responses to boundary conditions and matrix hostility [10,12,14-17]. It has been hypothesized that
intraspecific and interspecific competition may influence dispersal of a species differently [11,18,19], although
this has rarely been tested experimentally [11]. Clearly, both theoretical and empirical investigations are
needed that account for realistic aspects of animal movement behavior and interactions with other species
to understand the effects of landscape heterogeneity on species population dynamics and coexistence.

Here, we explore dynamics of the diffusive Lotka—Volterra (L—V) competition model in a fragmented
landscape, see Fig. 1. The model is built upon the reaction diffusion framework and includes a boundary
condition designed to model effects of differential matrix hostility and behavior response to habitat edges
between species. In the literature, the diffusive L-V competition model has been extensively studied in the
case of a closed patch (reflecting boundary) and to a somewhat lesser degree in the case of an immediately
lethal matrix (absorbing boundary). However, little attention has been paid to the diffusive L-V competition
model in fragmented landscapes with a framework that allows for more realistic modeling of organismal
behavior at the patch/matrix interface. To date, we have not found any work which considers long term
behavior under combined effects of changes in matrix hostility and patch size (but see [20] &[21] where
reversal of competitive dominance was studied as matrix hostility varied for fixed patch geometry). This
paper is the first in a series of works exploring the dynamics of the diffusive L-V competition model
in fragmented landscapes and focuses on the relationship between patch size and matrix hostility and
coexistence. In an upcoming paper, we will explore how competitive dominance changes as patch size and
matrix hostility vary. We note that results in the present work are in the spirit of those from [22] who studied
the diffusive L-V competition model with reflecting boundary (Neumann boundary condition) and [23]
who considered an absorbing boundary (Dirichlet boundary condition). The authors of those works did not
explicitly consider structure of coexistence states as patch size or matrix hostility varied.
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u(x),v (x)

Fig. 1. Tlustration of a fragmented habitat patch 2, and surrounding exterior matrix .

1.2. Model formulation

We present and study the diffusive Lotka—Volterra two species competition model coupled with boundary
conditions which will allow study of the effects of habitat fragmentation on the system. The model is built
upon the reaction diffusion framework which has seen tremendous success in studying spatially structured
systems in the literature, see [24-30] and references therein for a detailed history of the framework. We
assume that two species are dwelling in a single focal patch 2y = {¢z | z € 2} with patch size £ > 0 and
22 =(0,1) or 2 C R™ having unit measure (e.g. if n = 2 then the area of {2 is one) and smooth boundary with
n = 2,3, that is surrounded by a hostile matrix, denoted by 2§ = R™\ {2y, where it is assumed that organisms
experience exponential decay at fixed rate, say, So > 0 (see Fig. 1). Denote the boundary of 2y by 9f2. The
variable t represents time and x represents spatial location within the patch. The two organisms follow an
unbiased random walk inside both patch and matrix, while on the patch/matrix interface a discontinuity
between the density in the patch and matrix is allowed at the interface (via a biased random walk), while
maintaining continuity in the flux (see e.g. [15,31,32]).

Here, organisms recognize the patch/matrix interface and modify their random walk movement probabil-
ity (i.e. probability of an organism moving at a given time step in the random walk process), random walk
step length (i.e. distance that an organism moves during a given time step), and/or probability of remaining
in the patch (say «). In this patch-level setting, we equate dispersal from the patch to organisms reaching
the patch/matrix interface, leaving the patch with probability 1 —« (taken to be constant), and entering the
matrix, where they still have the opportunity to re-enter the patch at the interface. Following the derivation
given in [33], the diffusive competitive Lotka—Volterra system becomes:

:DlAu—Frlu(l—Kil—%v); t>0,z € )
= Dy Av + rov(l — K—Q — %u), t>0,2 € )
u(O,x) = ug(z); x € (1)
v(0,2) = vo(x); x €
Dlala +Si[1—ai]u=0; t>0,2 €0
Doy 32 ar + 95 [1 —az]v=0; t> 0,7 €0

and will exactly model the study system in the case of a one-dimensional patch in the sense that steady
states of (1) and their stability properties will be exactly the same as those of the study system (see [33] and
references therein). In the case of a simply connected, convex patch in two- or three-dimensions, the model
will provide a reasonable approximation of the study system.
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In this model, D; > 0 represents patch diffusion rate, r; > 0 patch intrinsic growth rate, K; > 0
patch carrying capacity, a; > 0 scale of competitive effect from the other competitor, ug(x),vo(x) initial
population density distributions in the patch, and «; the probability of an individual remaining in the patch

upon reaching the boundary (¢ = 1 for w and ¢ = 2 for v). The term 3% denotes the outward normal
S0 pY

derivative operator. From the derivation in [33], the nonnegative parameter S; = represents the
effective matrix hostility towards an organism and has units of length by time. The parameter S > 0
represents matrix death rate, D? > 0 represents matrix diffusion rate, and s encapsulates patch/matrix

interface assumptions (see Table 1 in [33]), is independent of S?, and may depend on D?. For example, if

DY
k3

function of matrix death rate for fixed D; and DY. The boundary is absorbing, i.e. all individuals that reach

a Type II Discontinuous Density is assumed at the interface then S} = and is a strictly increasing

the boundary will emigrate, when «; = 0, whereas the boundary is reflecting, i.e. the emigration rate is zero,
when o; = 1.
We now introduce a standard scaling,

xT ~
G R L R U 2
€T 67 i, u Kl, v KQ ()

After applying this scaling and dropping the tilde, (1) becomes

up = + Au+ u(l — u — byv); t>0,z€f
vt:%Aerrov(lfv—bgu); t>0,z €

u(0, ) = up(x); x € 3)
v(0,2) = vo(x); RSN

52+ Vmu = 0; t>0,z €00

%—F\fx\vgv:O; t>0,x €00

with corresponding steady state equation:

—Au = du(l —u—b1v); 2
—Av = Arv(1 — v — bau); 2
%Z +Vyu = 0; 692 (4)
2—:’7 + VA0 = 0; 9N
a; K; 1—og

2 *
_ rit _ r2 _ Do — 7o — Ji.; i — ; ; _ 5
where \ = b To = Dy = Do "= D07bi = Ko hJ = 1,2and i # j, 11 = TR , and

S3 1—ay

P)/Q B \/TIDIDO @2

fixed 71,72, D1, Do, the composite parameter A is proportional to patch size squared, 7; is proportional

are all unitless. Also, recall that 2 has length, area, or volume of one. Hence, for

to effective matrix hostility towards w, and ~- is proportional to effective matrix hostility towards v. The
composite parameter b; denotes scale of competitive effect of one organism onto the other, e.g., by measures
the competitive effect of v on u. We will consider by, by € [0,1) and byby # 0 as weak competition, by = 1 = by
as neutral competition, either 0 < by < 1 < by or 0 < by < 1 < by as semistrong competition, and
b1,b2 € [1,00) as strong competition.

In the case that 71 = 0 = 72, (3) becomes the classical diffusive homogeneous L-V competition model
whose dynamics have been studied extensively (see, e.g., [22,34,35]). Here we recall a well known result
(see, e.g., Section 12.4 in [36] and Theorems 3.6 & 4.3 in [37]) regarding coexistence for (3) in the reflecting
boundary case:

Theorem 1.1 (/56,37]). Let r > 0, v3 = 0 = 2, and by, ba > 0. Then for all X > 0 the following hold:
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(A) If by, by < 1 (weak competition) then (3) has a globally asymptotically stable coexistence state given by:
1—b; 1—1b
1—biby 1 — bibo

(B) If by <1 <by orbs <1< by (semistrong competition) then no coexistence state of (3) exists

(C) If by =1 = by (neutral competition) then (3) has infinitely many asymptotically stable coexistence states
of the form:
(¢,1—=¢), ¢>0

1.3. Single species model

Before stating our main results, we first recall the dynamics of the following single species model and
discuss some important eigenvalue problems for which our coexistence results are built upon:

Wy=5zAW+W(1—-b-W); t >0,z € 2
W(0,x) = Wo(x); v € 2 (5)
G+ VMW =0; >0,z €00

with corresponding steady state equation:

—AW = ARW(1—b-W); 2 ’
G+ VMW =0; 00 ©)

where v > 0, Wy is a smooth nonnegative function, and either (1) b = 0 with either R =1 and v = v, or
R=rand y=1,; (2) b=b;, R=1,and v =;; or (3) b =be, R =71, and 7 = 75. From [38], the complete
dynamics of (5) can be determined via the sign of the principal eigenvalue o9 = o¢(A, R, b, ) of

—Apg — AR(1 = b)go = doo; 12 .
b S i "

with corresponding eigenfunction ¢o which can be chosen such that ¢g > 0; 2 and ||¢]/cc = 1. Also recall
from [38] the eigenvalue problem,

{—8A¢ =R(1-b)E¢; 2 ()

52+ WE¢=0; 092.

For fixed R,b, & =, let Eq1(R,b,7y) denote the principal eigenvalue of (8) with corresponding eigenfunction
¢ which can be chosen such that ¢ > 0; 2. We will make the convention that Fj(R,0,00) = % where
EP > 0 is the principal eigenvalue of Laplace’s equation with Dirichlet boundary conditions. Then from [38]
we obtain:

Theorem 1.2 (/38]). Let R >0, b€ [0,1), and v > 0.

(a) If o9 > 0 ()\ < w> then W = 0 is globally asymptotically stable and no positive solution exists
for (6).

(b) If o < 0 ()x > w> then W = 0 is unstable and there exists a unique globally asymptotically
stable positive solution Wg . for (6). Moreover, the following properties of Wr p hold:

(Z) U(Rb”y’ (b <WR'yb<]- re R
(ii) For ﬁxed x and A

(1) Wgyp is increasing in R for fived b & ~y
(2) Wryp s decreasing in b for fized R & ~
5
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W]t
1—bf--mmmmm oo
0 :

E1(R,b,y) A

Fig. 2. Exact bifurcation diagram for positive solutions of (6).

(8) Wr b is decreasing in v for fized R & b

(11t) Wr b — (1 — b) uniformly on every closed subset of 2 as A — co.

See Fig. 2 for an exact bifurcation curve of positive solutions of (6).

Throughout the paper, we will consider either (1) b = 0 and define (i) W1, = Wi 4,0 and E1(1,71) =
E1(1,0,71) and (ii) Wy, = Wy 0 and Eq(r,72) = Ei(7,0,72), (2) b=0b1, R =1, and v = v, and employ
Wi~ 0, and E1(1,b1,71), or (3) b=bg, R =r, and v = vy and employ W, -, 5, and E;(r, b2, 72).

Now, we consider the semitrivial steady states of (3) in which one population is present and the other is
absent, namely:

AW =AW - W); 2 .
W Ay W =05 00 ©)

and

{—AW =MW1 —=W); 2 (10)

88% + VAW =0; 00.

Hence, (9) is (6) with R =1, b = 0, and v = ~, represents the governing steady state equation for species
u in the absence of v, and has unique positive solution W = W, ,, whenever A > E;(1,71). Also, (10) is
(6) with R =r, b =0, and v = 72, represents the governing steady state equation for the species v in the
absence of u, and has unique positive solution W = W, ., whenever A > E1(r,v2).

Let 01 = 01(A,71) and o2 = o2(\, 7, 72) be the principal eigenvalues of

—Apr — Ap1 = 01915 2 (11)
G+ Vg =0; 00

and

{A¢2 — Argy = o2¢9; 12 (12)

G2+ Vs = 0; 00,

with corresponding eigenfunctions ¢1, @2 which can be chosen such that ¢1,¢s > 0; (2, respectively. The
sign of these principal eigenvalues will determine whether or not a species can colonize the patch when rare.
Finally, we consider two eigenvalue problems involving Wi ,, and W, .,:

{—A¢3 —Ar (1 = bWy ,) 3 = 03033 12 (13)

%‘:,3 + Va3 = 0; 0
6
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and
_A¢4 - A (1 - b1Wr,'\/2) G4 = 04Qa; ) (14)
G+ V164 = 0; 09

Let 03 = 03(\,7,7%2), 04 = 04(\,71) be the principal eigenvalues and ¢3, ¢4 > 0; {2 be the corresponding
eigenfunctions of (13) and (14), respectively. The sign of o3 (o4) will ultimately determine if v (u) can invade
the patch when rare if u (v) is near its equilibrium.

In the absence of competition (i.e., by = 0 = bs) the principal eigenvalues, F1(1,7v;1) and E1(r,v2), can
be employed to determine when one species has an advantage over the other, in the sense that it has a
smaller minimum patch size, allowing it to invade and colonize smaller patches than the other species. To

D1E1(1,91)
1

see this, from the definition of A we obtain the minimum patch size for u, {7 = and for v,

0 = 1/%@. Fixing r; and D;, there are then three cases: (1) Ey(1,71) = Ei(r,72) implying that
05 = £5: neither species has an advantage as their minimum patch sizes are the same; (2) F1(1,71) < E1(r,y2)
implying that £7 < £3: u has an advantage being able to invade and colonize smaller patches than v; and (3)
Ei(1,71) > Ei1(r,y2) implying that ¢5 > ¢5: v has an advantage being able to invade and colonize smaller
patches than u. Crucial to this determination of advantage are the composite parameters, 71,2, which
encapsulate several biological mechanisms, i.e., r measures differences in the organisms in the patch and
71,72 measure the combined effect of a hostile matrix on the respective organisms.

To see this, we first assume that the matrix affects both species the same and there is no competition,
T2

ie, 71 = 72 and by = 0 = by. Note that r can be written as r = % and interpreted as a means to

compare the two species by their patch growth-to-diffusion (G-D) ratio, dgi%ined as the ratio of patch intrinsic
growth rate to patch diffusion rate. We employ Lemma 2.7(A) in Section 2 to explore the three cases: (1)
if » = 1, then both growth to diffusion ratios are the same, Ei(1,v1) = E1(r,v1) implying that ¢5 = £3,
and neither species has a G-D advantage; (2) if > 1 then v’s growth to diffusion ratio is greater than u’s,
E1(1,741) > E1(r,v1) implying that ¢ > ¢35, and v has a G-D advantage in having a smaller minimum patch
size; and (3) if » < 1 then w’s ratio is greater than v’s, E1(1,v1) < E1(r,~1) implying that ¢ < £5, and u
has a G-D advantage in having a smaller minimum patch size.

Secondly, we assume there is no overall difference in G-D ratios of the organisms and no competition,
ie., 7 = 1 and by = 0 = by. The combined effect of matrix hostility and behavior response to detecting
a patch edge is measured in the respective ~;-value. For example, a large ~;-value could indicate a high
matrix mortality rate (i.e. S7 > 1) and/or a propensity of organisms to recognize the patch edge, bias their
movement, and leave the patch with a high probability (i.e., a; = 0). We employ Lemma 2.7(B) in Section 2
to explore the there are three cases: (1) if 3 = 42 then E1(1,v1) = E1(1,72), ¢f = ¢5, and the combined
matrix effect benefits neither species over the other; (2) if v > 2 then E1(1,71) > E1(1,72), €5 > €5, and
the combined matrix effect causes more mortality in u through interactions with the hostile matrix, and thus,
gives v a smaller minimum patch size and a matrix advantage; and (3) if y; < 7o then E;(1,71) < E1(1,72),
07 < 05, and the combined matrix effect causes more mortality in v through interactions with the hostile
matrix, and thus, gives v a smaller minimum patch size and a matrix advantage. Since larger patches have
a correspondingly larger core area within the patch where organisms have little chance of encountering
mortality at the patch/matrix interface, any differential matrix effect acting on the system will be more
pronounced for small patch sizes and diminish as the patch size goes to infinity. As we will see in the
sections that follow, advantage in growth-to-diffusion ratio and combined matrix effect will play vital roles
in predicting the outcome of this competition system.
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1.4. Main results

In this subsection, we discuss nonexistence, existence, uniqueness, and stability of coexistence states of

(3), i.e., positive solutions for (4). First, we state a result which provides sufficient conditions for nonexistence
of positive solutions for (4).

Theorem 1.3 (Nonexistence). Forr > 0, by,by > 0, and 71,72 > 0, (4) has no positive solution if any of
the following hold:

(A) A < max {Ey(1,m), E1(r,72)}
(B) v1 = 72 and either of the following also hold:

(i) bo<1<byandl <r< g—;, with at least one inequality being strict;
(ii) by <1 < by and Z—; <r <1, with at least one inequality being strict

(C) v1 > 72, ba <1< by, andlﬁrﬁ%

(D) ¥ <72, by <1<by, and gt <r <1

(B) by >1, by < 8=, and A > 1

(F) by >1, b <22 and A > 1

(G) E1(1,7v1) < E1(r,72), ba > 0, and A\ < E1(r,¥2) + 6(b2), for some d(ba) > 0

(H) E1(1,71) > E1(r,72), b1 > 0, and A < E1(1,v1) + d(b1), for some 6(by) > 0.

We conjecture that the upper (lower) bounds on 7 in (B)(i) and (C) (respectively, (B)(ii) and (D)) and
the upper bounds on by in (E) and b; in (F) are all artificial, due to limitations in our proof method. Next,
we present our main result giving sufficient conditions on coexistence of the competitors.

Theorem 1.4 (Ezistence). Let r* = Z1:72) - gy >0, by,b >0, and 1,72 > 0 the following hold:
E1(1,71) 71,7 g

(A) If by,ba < 1 then (4) has at least one positive solution, (u,v), for X\ > max{%(%lql),%f}.
Furthermore, every positive solution of (4), (u,v), will satisfy:

(1) for X\ > max {E1(1,v1), E1(r,72)},

0 <u(z, ) < Wiy 0z, N); 02,

0 <v(z,\) < Wy 0z, A); 12,

(ii) for A > max { Ell(,llql), Ell(jigz) }7

Wiy by (2, A) < u(x, A) < Wy 4,0z, A); 2

Wi b (2, A) < 0(2,A) < Wyny (2, A); 2
(iii) if r =1 and v1 = 72 (implying that E1(1,71) = E1(r,72)) then for X > E1(1,71),

1—b —
u(z, ) = leﬂho(ac,)\); {2,
1—by —
v(z,\) = lem,o(x, A); 2

(B) If by = by = 1, v4 = 72, and r = 1 (implying that E1(1,7v1) = E1(r,72)) then (4) has infinitely many
positive solutions for A > E1(1,7v1), of the form:

(u(a:, /\)a U(J,‘, )‘)) = (Sle’YlyO(xv A), (1= S)W17“/1,0(xv )‘)) ) §7 S (07 1)
8
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(C) Ifby <1 <bg,y1 >0, and r > r* (implying that E1(r,v2) < E1(1,71)) then for by ~ 0 there exist
A1(r, b1, b2,71,72), A2 (r, ba, v1,72) > E1(1,71) such that (4) has at least one positive solution, (u,v), for
A € (A1, A2). Furthermore, (u,v) will satisfy:

W1»717b1 (xv >‘) < u(xv )‘) < W1,71,0(x’ )‘)3 ﬁ»

0 <v(z,A) < Wy qy0(z, A); N

(D) If by < 1 < by, v2 > 0, and r < r* (implying that E1(r,v2) > E1(1,71)) then for by = 0 there exist
A1(ry b1, b2, 71, 7v2), A2 (ry b, y1,72) > E1(r,v2) such that (4) has at least one positive solution, (u,v), for
A € (A1, \2). Furthermore, (u,v) will satisfy:

0 <u(x, ) < Wi a0z, N); 2,

Wi oo (T, A) < v(2,A) < Wiy 0z, A); 2

(E) If b1,by > 1, v1 = 72, and r = 1 (implying that E1(r,v2) = FE1(1,71)) then (4) has at least one positive
solution for A > E1(1,71), given by:
1-— 1-—
(u(z, ), v(x,\)) = (1 — blb Wi~y 02, A), T blb ———Wi 4, 0(z, A)) 0.

Notice that (A)(i) of Theorem 1.4 holds for b1,by > 0 and the inequalities become strict if and only if
b1,bs > 0. We now present sufficient conditions for uniqueness of positive solutions of (4).

Theorem 1.5 (Uniqueness). Forr >0, by,bs <1, and v1,7v2 > 0 the following hold:

(A) If by, by < 1, 7 =1, and 1 = 2 then (4) has at most one positive solution for any A > 0.
(B) For A > max {E1(1771)7 E]('f’, ’72)} Zf

B2 {W1 (@ A)} {WT (,\)
4> Lgupd =120 4 9b by + b2 su ’m} 15
r Qp WTWQ ('T7)‘) . ? p Wi 7 (55 )‘) ( )

then (4) has at most one positive solution. In particular, if by,by =~ 0 then (15) holds and (4) has a

E1(1,y1) Ei(ry2)
1-b1 7 1-bo

unique positive solution for A > max{

Note that we provide a stronger uniqueness result for the asymmetric competition case (i.e. by = 0) in
Section 4.

Next we present results on stability of the semitrivial steady states for (3) and a condition for convergence
to a coexistence state. We consider stability in the Lyapunov sense (see [36,39], for example).

Theorem 1.6 (Stability). Suppose that r > 0, by, by > 0, y1,72 > 0, and X\ > 0 are such that 01,09 < 0.
The following hold:

(A) If o3 > 0 or o4 > 0 then (W1 ,,,0) or (0,W,.,,) is asymptotically stable, respectively
(B) If 03 <0 or o4 <0 then (Wi 4,,0) or (0, W, ,,) is unstable, respectively
03,04 < then there exist a mazr—-min (u,v) and a min-max (w,V) positive solution o wit
C) If 0 then th ] ] d j jti lution of (4) with
0<uLus<W,,y and0<v <7< W, ,, on 2 such that:
(1) if u(z) < u(0,2) < Wiy, (2); 2 and 0 < v(0,2) < v(x); 2 then the unique positive solution of
(3), (u(t,z),v(t,x)), converges to (u,v) ast — oo.
(i1) if 0 < w(0,2) < u(z); 2 and T(x) < v(0,z) < W, 4, (x); 2 then the unique positive solution of
(3), (u(t,z),v(t,x)), converges to (u,v) ast — oo.
9
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Table 1

Summary of coexistence and nonexistence results in the semistrong competition case comparing matrix effect, G-D ratio, minimum
patch size in the absence of competition, and competitive effect. Recall that predictions of no coexistence are for all patch sizes,
while predictions of coexistence in the semistrong case are only valid for a finite range of patch sizes (see Theorem 1.4). For each
category, species advantage is given in parentheses, e.g., (N) represents neither species having an advantage, whereas (u) denotes u
having an advantage over v in that category. Note that in Cases 1, 7, 13-15 we require 5 > 0, while in Cases 6, 10-12, 18 we require
1 > 0. The rightmost column shows where our results hold in the two extreme cases of 1) D: Dirichlet boundary condition (absorbing
boundary) or 2) N: Neumann boundary condition (reflecting boundary). Note that R denotes Robin boundary condition which occurs
when a v; € (0,00). For example, Case 10 still holds even if u faces an immediately lethal matrix (D) and v is completely isolated
from matrix effects (N).

Case Matrix effect G-D Ratio Minimum patch size Competition Predicted outcome Other BCs

1 y1 =772 (N) r <1 (u) E1(1,v1) < E1(r,v2) (u) by <1< by (v) Coexistence for b, 0 wu,v: D

2 y1 =72 (N) r=1 (N) Ei(1,v1) = E1(7r,v2) (N) by <1< by (v) No Coexistence u,v: D or N

3 1 = v2 (N) r e (1, i—‘) (v) Ei1(1,v1) > E1(r,v2) (v) by <1< b1 (v) No Coexistence u,v: D

4 =7 (N)  re (% 1) (w)  Ei(1,v1) < E1(r,y2) (w) by <1<by (u) No Coexistence w,v: D

5 Y1 =72 (N) r=1 (N) E1(1,v1) = E1(r,v2) (N) by <1< by (u) No Coexistence u,v: D or N

6 1 =v2 (N) r>1 (v) E1(1,v1) > E1(r,v2) (v) b1 <1< by (u) Coexistence for by 0 wu,v: D

7 1 > v2 (v) r<r* (u) Ei1(1,7) < Ei(r,v2) (u) by <1< b; (v) Coexistence for b, 0 wu: D, v: R

8 Y1 > v2 (v) r=1 (N) Ei(1,v1) > E1(r,v2) (v) by <1< b1 (v) No Coexistence u: D, v: N or R
9 Y1 > v2 (v) r € (1, %) (v) Ei1(1,v1) > E1(r,v2) (v) by <1< b1 (v) No Coexistence u: D, v: N or R
10 Y1 > v2 (v) re(r,1) (u) Ei1(1,v1) > Ei(r,v2) (v) by <1< by (u) Coexistence for by /0 wu: D, v: N or R
11 y1 > v2 (v) r=1(N) Ei(1,v1) > E1(r,v2) (v) by <1< bs (u) Coexistence for by /0 wu: D, v: N or R
12 y1 > v2 (v) r>1 (v) Ei(1,v1) > E1(r,v2) (v) by <1< by (u) Coexistence for by &0 wu: D, v: N or R
13 F1 < vz (u) r <1 (u) Ei(1,v1) < E1(r,v2) (u) by <1< by (v) Coexistence for b, &0 wu: N or R, v: D
14 1 < vz (w) r=1 (N) Ei1(1,v1) < E1(r,v2) (u) by <1<by (v) Coexistence for b, &0 u: N or R, v: D
15 F1 < vz (w) r e (1,r*) (v) E1(1,v1) < E1(r,v2) (u) by <1< b1 (v) Coexistence for by =~ 0 u: N or R, v: D
16 71 <2 (uw) re (%, 1) ()  Ei(1,7) < Ei(r,y2) (u) by <1<by (u) No Coexistence u: N or R, v: D
17 1 < v2 (w) r=1 (N) Ei1(1,v1) < E1(r,v2) (u) by <1<b; (u) No Coexistence u: N or R, v: D
18 F1 < vz (u) r>r* (v) E1(1,v1) > E1(r,v2) (v) b1 <1< by (u) Coexistence for by =~ 0 u: R, v: D

(iti) (w,v) = (u, D) if and only if there is a unique positive solution of (4). Moreover, this coezistence
state is globally asymptotically stable.

(iv) There does not exist an asymptotically stable positive solution of (4) arbitrarily close to (Wi 4,,0)
or (0, Wy ,).

In the absorbing boundary case (Dirichlet boundary condition), we have that v;,v2 — oo, E1(1,71) = EP
and E1(r,v2) = i, and Theorem 1.3 (A) & (B), Theorem 1.4 (A), (B), & (E), and Theorem 1.5 provide
results similar to those in Theorems 3.1, 4.1, & 4.2 in [23]. In the reflecting boundary condition case
(Neumann boundary condition, 71 = 0 = 42), we have that Ei(1,71) = 0 = Ey(r,72) and Theorem 1.3
(A) & (B), Theorem 1.4 (A), (B), & (E) provide results similar to those in Theorems 3.6 & 4.3 of [37].

We close this subsection with a discussion of our results in the semistrong competitive case. In previous
studies where both organisms were symmetrically affected by the matrix (i.e. either not at all via a reflecting
boundary or facing the harsh reality of an immediately lethal matrix via an absorbing boundary), coexistence
is not possible in the semistrong competition case with any G-D ratio and a reflecting boundary or when
the G-D ratio is one in the absorbing boundary case (see, e.g., [22,23]). Interestingly, our results show that
when organisms are differentially affected by the surrounding patch matrix coexistence is possible even in
the semistrong case, at least for an intermediate range of patch sizes. Although our results do not prove
necessity, they suggest that coexistence in this case requires counterbalancing of advantage and disadvantage
in contrasting mechanisms. In Table 1 we summarize Theorems 1.3 and 1.4 in the semistrong case and provide
a detailed comparison of advantage/disadvantage between the species. The Matrix Effect, G-D Ratio, and
Competition columns denote appropriate parameter value ranges in our framework, as well as an indication

10
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of which species has an advantage in a particular category given that the remaining categories show no
advantage for a particular species. For example, r < 1 in the G-D Ratio category indicates an advantage for
u in the absence of competition and with the same matrix effect (i.e., 71 = 72). We note that the Matrix
Effect and G-D Ratio columns together determine which species has the smallest minimum patch size (again
in the absence of competition) which is denoted in the Minimum Patch Size column.

As a first example, Case 10 shows the matrix affects u more severely than v (either w has a higher
emigration rate or higher effective matrix hostility relative to v) giving v the advantage in this category,
while a G-D ratio less than one indicates that u either has a higher patch intrinsic growth rate or lower
patch diffusion rate relative to v, which gives u the advantage in this category. However, » > r* indicates that
between these contrasting mechanisms, the negative matrix effects on u overcome its G-D ratio advantage
giving v a smaller minimum patch size requirement in the absence of competition. Thus, v has a combined
advantage over u in the absence of competition. But, the effects of competition for resources in the patch are
more severe towards v, giving u a competitive advantage. Our results then predict that coexistence is possible
for an intermediate (finite) range of patch sizes as long as b; ~ 0 (meaning that the competitive effect of v
onto u is sufficiently weak). This restriction on b; is reasonable since we have placed no upper bound on bs. In
fact, we would expect that for by > 1 we must also have b; =~ 0 in order to still allow for coexistence. In this
case, we see a balancing act between v’s ability to invade and colonize smaller patches than u in the absence
of competition and the ability of u to better compete with v for resources in a patch enables coexistence for

a finite range of patch sizes. Our nonexistence results also indicate that in semistrong cases such as Case
bo—1
b

10, coexistence is not possible for large patch sizes when b; < . This nonexistence result is consistent
with previous work where it has been shown that as patch size increases, a large enough core area develops
in the patch where organisms are somewhat isolated from matrix effects (see, e.g., [29]). Thus, for large
enough patch sizes, dynamics of the model begin to resemble those of the reflecting boundary case. Recall
that coexistence is not possible for the semistrong case with a reflecting boundary condition. The Other BCs
column gives some indication as to when our results are still valid in the extreme cases of an immediately
lethal matrix (absorbing boundary or Dirichlet boundary condition (DBC)) and a completely isolated patch
(reflecting boundary condition or Neumann boundary condition (NBC)). Interestingly, if v — oo (u faces
immediate mortality when encountering the patch/matrix interface, giving rise to an absorbing boundary
condition) and 2 = 0 (v is completely isolated from matrix effects, giving rise to a reflecting boundary
condition) then coexistence is still possible for an intermediate range of patch sizes.

We also note that as 73 — 2 we have r* — 1 and Case 10 ceases to exist. A parallel scenario for Case 10
when y; = 79 is found in Cases 4 & 6. Since r* = 1, Case 4 indicates a scenario where neither species has
a matrix effect advantage, but v retains an advantage in G-D ratio, and ultimately in minimum patch size.
Our results show that if u has an advantage both in being able to colonize smaller patches (in the absence of
competition) and better compete for resources in the patch then coexistence is not possible (we have already
conjectured that our result in this case can be extended to cover r < Z—;). In stark contrast, Case 6 shows
a scenario where v’s G-D ratio gives it an advantage in being able to colonize smaller patch sizes (in the
absence of competition), combined with a counter-balanced advantage for « in competition for resources in
the patch, allow for coexistence for an intermediate range of patch sizes when b; ~ 0. We also note that
these results also hold when ~1,v2 — 0o giving rise to an absorbing boundary for both u and v. Cases 1, 3,
and 15 show a similar setting as Cases 4, 6, and 10 but with the roles of u and v being swapped.

Maintaining a matrix effect advantage for v (71 > 72) but taking a G-D ratio such that r < r* leads us
to Case 7 which is similar to Case 10 except that u’s G-D ratio allows for an advantage in u being able to
colonize smaller patches in the absence of competition. This advantage is offset by v’s competitive advantage
in the patch to allow coexistence in an intermediate range of patch sizes. A similar situation is found in Case
18, but where u and v roles are reversed. Unlike Cases 10 & 15, scenarios in Case 7 & 18 do not allow for
either species to have a reflecting boundary condition.

11
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When all mechanisms are either neutral with regard to awarding an advantage to one species over the
other or favor the same organism when an advantage occurs, Cases 2, 5, 8, 9, 16, & 17 give predictions of
no coexistence for all patch sizes. Finally, Cases 11 & 13 give scenarios where either the G-D ratio is neutral
with respect to advantage or favors v, giving rise to v having an advantage in terms of colonizing smaller
patches than u in the absence of competition. This offset by w’s competitive advantage in the patch yields
prediction of coexistence for an intermediate range of patch sizes. A symmetric set of cases is found in Cases
13 & 14 where the roles of u and v are reversed.

The overarching theme arising from our results as outlined in Table 1 is that advantage in either minimum
patch size (in the absence of competition) or direct competitive effect and disadvantage in the other is
sufficient to allow an intermediate (and finite) range of patch sizes for which coexistence occurs. Our results
suggest that such a balancing act is necessary for coexistence. In fact, we conjecture that one of the conditions
must hold in order to have coexistence in the semistrong competition case:

El(l,’}/l) < El(’l“, ’)/2) and by <1< by (16)
El(l,’yl) > El(’l",’)/g) and b; < 1 < bs. (17)

Computational results in the asymmetric case (see Section 4) certainly agree with this conjecture. From a
mechanistic standpoint, these conditions are certainly consistent with intuition. In the case of (16), if for a
given level of competitive effect of u onto v (b > 0) a patch size was such that A € (Ey(r,v2), E1(r,v2) +
d(b2)) (for §(b2) = 0, whose existence is guaranteed by Theorem 1.3(G)) then a coexistence state is not be
possible. In this case, we expect a range of patch sizes giving A € (E1(r,y2), F1(r,y2) +0(b2)) where (u,0) is
globally asymptotically stable and (0, v) is unstable. But, for sufficiently large patches the dynamics of (3)
resemble that of the same model but with reflecting boundary conditions where coexistence is not possible,
(u,0) is unstable, and (0,v) is globally asymptotically stable. Under the sufficient conditions listed in our
results, we see that this reversal of competitive dominance as patch size increases yields an intermediate
(finite) range of patch sizes where coexistence arises.

1.5. Structure of the paper

We will present some preliminary mathematical results in Section 2. Proofs of our main results are given
in Section 3, followed by an analysis of the asymmetric competition case in Section 4. Finally, we discuss
some consequences of our results in Section 5.

2. Mathematical preliminaries

Firstly, note that the general theory for reaction diffusion systems such as (3) is well established
(e.g., see [29,36]). In fact, since (3) is a quasimonotone nonincreasing system, an application of Theorem
3.2 of Chapter 8 in [36] with subsolution (0,0) and supersolution (M, Ms) (M7, My > 1) of (3) guarantees
existence and uniqueness of a solution to (3). Also, solutions with nonnegative initial data exist and remain
nonnegative and bounded for all time. Predictions of persistence, coexistence, and extinction in reaction
diffusion systems can be explored via determination of the stability of the trivial steady state (0,0) and
semitrivial steady states (u*,0) and (0, v*), via determination of the sign of o1, 02, 03, and o4 (see, e.g., [29]).
In fact, our main results show that the conventional view of “invasibility implies persistence” (see [29], for
example) also holds for the model in the sense that instability of both the trivial and semitrivial steady
states will imply a prediction that if an organism can invade the patch with small positive initial density
then that the organism can colonize the patch and persist.

We now present and prove several preliminary results which will be crucial in proving our main results.
Recall that we denote Wi 4, = Wi 4,0 and W, 4, = W, 4, 0.

12
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Lemma 2.1. If A > max{E1(1,v), E1(r,72)} and 03,04 < 0 then (4) has a positive solution, (u,v), which
for m = 0 satisfies:
(m¢47m¢3) < (U,U) < (Wl,'n»W’f‘,’YQ); 2

where o3, 04 are the principal eigenvalues with corresponding eigenfunctions ¢s, ¢4 of (13), (14), respectively.

Proof. Let m > 0 and define ¢ = (m¢s, m¢s3) and Z = (Wi 4,, Wr 4,). By our choice of X, 01,02 < 0
ensuring that both Wy, and W, ., exist. We will now show that ¢ and Z are a sub-supersolution pair for
(4) (see [36], for example). First, we check (11, Z5):

— Ay — M1 (1 — 1 — 01 Z2) = mosds + mApy — mAbI W, o, bs — Aoy
+ Am2 g7 + mA W,y ha
= My [04 + Ampy]
<0 (18)

for m = 0 since o4 < 0. Also, we have

— AZy = ArZy (1 = Zy — bathr) = AWy — MW7 — AWy + MW7
+ )\erWTﬁQm(m
= )\erWT’»YQm(bzl
>0 (19)
since Wy, 04 > 0; £2, A,7 >0, and by > 0. It is easy to see that
0 0Z.
on on

Next, we check (Z7,9):

— AZy = A2y (1 = Zy — batha) = AWy — AWE L — AW1, + AWE. 4 Aby mW 4, 63
= Aby mWy 4, 03
>0 (21)

since Wi ., ¢3 > 0; £2, A,r >0, and b; > 0. Also, we have

— Atpy — Aripa (1 — 9o — by Z1) = mozgz + mArgs — mArbo Wi ., ¢3 — mAres
+ mAArg3 + mArbo Wi ., ¢3
= maes [o5 + mArds]
<0 (22)
for m ~ 0 since o3 < 0. It is also easy to see that

0Z 0
an on

Also, we can choose m = 0 such that ¢ < Z; 2. Thus, ¢, Z are a strict sub-supersolution pair and Theorem
4.2 in Chapter 8 of [36] gives that (4) has at least one solution, (u,v), with

(¢1,¢2) < (u,v) < (Zl,ZQ); 0. O (24)

Lemma 2.2. If A > max{Ei(1,71), E1(r,v2)} then the following hold:

13
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(A) o3 fQ Wiy, @3de = Ar fQ Wi o @3 [b2W1,4y — Wi, ] do
(B) 04 f,rz Wi 5, ¢adz = A fn Wi 5, ¢4 [ler/yz - Wlm] dx.

Proof. We only present a proof of (A) as the proof of (B) is similar. Using Green’s Identity, we have:

oW, 0
/ —AWMQ o3 + AngWT,yzdx = / *7’72(,253 + ﬁWm2 ds. (25)
n o] on on

It is easy to see that the right-hand side of (25) is zero, thus
0= /Q — AW,y 03 + ApsW, o, dx = /Q MWy iy b3 — XMrW2 3 — 03Wy yy 03 — ArW, 1, é3
+ /\’I“bgWL—yl er’)’Q ¢3d$
= / —0’3WT772 o3 + )\7“VVT’V2 b3 [b2W1,V1 — Wr,wg] dx (26)
2

or, equivalently,
UgLWT’72¢3d$ = /Q)‘TWT”Y2¢3 [bQWL’Yl — WrﬁQ}d.’L‘. O] (27)

Lemma 2.3. Considering 03,04 as functions of Wi ,, W,. ., , respectively, the following hold:

(A) 03,04 is an increasing function of Wi ~,, Wy +,, respectively
(B) If X > E1(1,71) then
03(0) < o3(Wiy,) <o3(1),

(C) If X > Eq(r,v2) then
0'4(0) < 0’4(WT772) < 0'4(1).

The proof of Lemma 2.3 follows from Corollary 2.2 in [29].

Lemma 2.4. If (u,v) is a positive solution of (4) then the following holds:

)\/qu [(1 = 7) + (rby — Vu+ (r — by)v] dz = VA(71 — 72) /BQ uvds. (28)

Proof. Again by Green’s Identity, we have that:

ou v
—Auv + Avudx = / ——v + —uds. 29
/g oo On  On (29)
Thus, we have
/ —Auv 4+ Avudx = / Au(l—u—bv)v
10, 2
— Arv (1 — v — bou) udz
= / Auv — Ao — Abjuv? — Aruw
2

+ Aruv? 4+ Mrbsu?vdx

= )\/ w [(1 =7) 4 (rbe — Du+ (r — by)v] dx (30)

Q

and Ou v
/{m —8—7711 + a—nuds = V(11 —72) /8!2 uvds (31)

as desired. [
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Lemma 2.5. Suppose that D(z) =1 —r + (rby — Du(z) + (r — by)v(z). If r > 0, by,be > 0, y1,72 > 0,
and (u,v) is a positive solution of (4) then the following hold:

(A) if by <1< by and% <r <1 then D(z) >0

(B) ifby <1<by and 1 <7 < & then D(z) < 0.

Proof. To establish the result, we consider the following cases.
Case i: Assume that r < min {bl, %}, which implies that rbs — 1 < 0 and r — by < 0. Since u,v > 0; {2,
if » > 1 then we have that:

1—r
0; £2. (32)

D(z)=1—=r+ (rby — Du(z) + (r — by)v(x)

IA A

Also, since u,v < 1; 2,if r > % then we have that:

Dx)=1—r+(rbo—Du(z)+ (r—bv(z) >1—r+rbyg—1+7r—10b
= Tbg —b1
> 0; £2. (33)

Notice that for (32) to hold, it is necessary that by < 1 < by and for (33) to hold, that b; < 1 < by. Also,
D(z) < 0; £2in (32) (D(xz) > 0; £ in (33)) if at least one of the inequalities is strict.

Case ii: Assume that b; <r < %, which implies that rbo —1 < 0and r—b; > 0. Sinceu >0 & v < 1; {2,
if by > 1 then we have that:

D)=1-—r+(@rby—Du(x)+ (r—b)v(x) <1l—r+r—>b
<1-1b
<0; 0. (34)

Also, since u <1 & v > 0; 2, if bo > 1 then we have that:

D(z) =1 =74 (rby — Vu(z) + (r —b)v(x) > 1 — 7 +1rby — 1
= T(bz — ].)

Again, notice that for (34) to hold, it is necessary that by < 1 < by and for (35) to hold, that b; <1 < bs.
Also, D(z) < 0; 2 in (34) (D(x) > 0; £ in (35)) if at least one of the inequalities is strict.

Case iii: Assume that é < r < by, which implies that 7bo —1 > 0 and r—b; < 0. Sinceu > 0& v < 1; £,
if b1 <1 then we have that:

D(z)=1—7+ (rby — Du(z) + (r —by)v(x) > 1 —r+r—1b;
=1-1b
> 0; £2. (36)

Also, since u <1 & v > 0; 2, if by < 1 then we have that:

D(z)=1—7+ (rby — Du(z) + (r —bi)v(z) < 1—r+rby — 1
=T (bg — ]_)
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Again, notice that for (36) to hold, it is necessary that by < 1 < by and for (37) to hold, that bs < 1 < by.
Also, D(z) > 0; 2 1in (36) (D(z) < 0; 2 in (37)) if at least one of the inequalities is strict.

Case 1v: Assume that max{b ,bl} < r < 1, which implies that rbo — 1 > 0 and r — by > 0. Since
u,v > 0; {2, we have that:

1—r
0; 0. (38)

D(z) =1—r+ (rby — Du(z) + (r — by)v(x)

AVARLYS

Also, since u,v < 1; 2,ifr < 1% then we have that:

Dx)=1—r+(rbo—Du(z)+ (r—bv(x) <l—r+rby—14+7r—10b
=1rby — b
<0; £2. (39)
Again, notice that for (38) to hold, it is necessary that by < 1 < by and for (39) to hold, that bs < 1 < b;.
Also, D(z) > 0; 2 1in (38) (D(z) < 0; 2 in (39)) if at least one of the inequalities is strict.
The result now follows for (A) from (33), if = < by then (36) or if ;= > by then (35), and (38), and for
(B) from (32), if 1 < by then (37) or if 4~ S > b then (34), and (39). D

Lemma 2.6. Ifby,bs <1 and (u,v) is a positive solution of (4) then the following hold:

(A) if z(x) is a smooth function that satisfies

—Az=Xz(l—u—v); 10
%f; + VA2 =0; O (40)
then z(x) =0
(B) if z(x) is a smooth function that satisfies
—Az=Xrz(l—u—v); 2 "
%f; +V ez =0; 00 (41)

then z(xz) = 0.

Proof. We only provide a proof for (A) as the proof for (B) is similar. Note that when p =0, w = u is a
solution of

—Aw —dw (1l —u—bw) = pw; 2 49
%—F\/X'ylwzo; 01. (42)
Since u > 0; {2, the principal eigenvalue py of (42) is zero. But, for any ¢ # 0 smooth we must have:
f9|v¢| — A1 —u—bv) *dz + [,, VIndds (43)
Jo #?dx
(this can be seen from page 97 of [29]). But, we also have
/ —Azzdr = / ——zds —|—/ |Vz|? da (44)
2 oo On
where
/ —Azzdr = | AN(1—u—v)2%dx (45)
Q Q
and P
/ s = Vi 22ds (46)
on On a0
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implying that
/ |Vz|2dx—/ A1 —u—0v)22de + Vayiz2ds = 0. (47)
o 17} 00

Now, using (43) we have

O:/ |Vz\2dx—/ A1 —u—byv) 22dx + \f)\'yleds—ﬁ—/)\(l—bl)vzzdx
2 I7;

802 0

> /Q/\(l —by)vztdx (48)

implying that
/ A1 — by)vzide < 0. (49)
Q

But, this is a contraction since A > 0,b; < 1, and v > 0. Hence, z = 0 as desired. [

Lemma 2.7. The principal eigenvalue, Eq1(r,7), which is defined in (8) has the following properties for all
r >0 andy > 0 (note that b = 0 throughout this result):

(A) For fized v >0

(i) E1(r,7) is a decreasing function of r
(ii) E1(r,y) = 0 as r — o0
(iii) Eq1(r,y) — o0 asr — 0T

(B) For fized r > 0

(i) E1(r,7) is an increasing function of
(ii) E1(r,vy) — ETl asy — oo

(iii) E1(r,y) — 0 asy — 0F

(C) Ei(r,y) = 2200

(D) Fixy1 >0 and o > 0 and let r* = %7

(i) if r < r* then E1(1,v1) < E1(r,72)
(it) if r = r* then E1(1,71) = E1(r,72)
(#i5) if v > r* then E1(1,7v1) > E1(r,v2)
() if y1 > 7y2 then r* < 1

(v) if y1 =72 thenr* =1

(vi) if 1 < 7y then r* > 1.

The proof of (A) — (C) can be found in [17] and (D) follows immediately from (C).
We close this section by discussing two computational methods that we will employ to numerically study
the structure of positive solutions of (4) in the asymmetric competition case in Section 4.

2.1. Quadrature method

Here, we recall in detail the quadrature method derived in [38] which we use to approximate the unique
positive solution u (= uy) of (9) in the case of a one-dimensional patch. We note that such a quadrature
method for the Dirichlet boundary condition case was first introduced in [40]. Let f(u) = u(1—u), 2 = (0, 1),
and u be a positive solution to (9). Since (9) is autonomous, u must be symmetric about x = %, increasing
on (0, 3), and decreasing on (%,1). Let u(0) = u(1) = ¢ and |Jufo = u () = p. Also, note that v’ (3) = 0.
See Fig. 3 for an illustration of the structure of .

17
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u(x) S
|
1
|
|
1 2 1
1 |
1 1
q 1 | q
1 |
1 |
1 ] >
0 1 1 X
2
Fig. 3. Shape of a positive solution, u, to (9).
Multiplying the differential equation in (9) by «’ we have
—uu" = Nf(u)u'. (50)
By integrating both sides, we obtain
[ ()
— 5 = AF (u(z))+C (51)

where F(s fo t)dt. Now, applying v’ (%) =0 and u (%) = p we must have that C' = —\F(p). Thus

(@) = VINF() -~ F@)): #< (0.3 (52)

Further integration from 0 to z; x € [0, %) yields

= V2\z. (53)

r u'(z)ds
/0 VF(p) — F(u(s))

Through a change of variables and using the fact that «(0) = ¢ we have

u(®) ds 1
Now, letting x —> 5, we have
p ds

For the improper integral in (55) to exist, we must have f(p) > 0 and F(p) > F(s);s € [0, p). Hence, in
this case we require p € (0,1). Using the boundary conditions in (9), we note that p and ¢ must satisfy

2F (q) + 754

F(p) = 5 (56)
It is easy to verify that given p € (0,1), there exists a unique ¢ = ¢q(p) € (0, p) satisfying (56). Also,
d
G(p) = V2 (57)

q(p) VF



A. Acharya, S. Bandyopadhyay, J.T. Cronin et al. Nonlinear Analysis: Real World Applications 70 (2023) 103775

is well defined and continuous on (0, 1). Further, if A, p, and ¢(p) satisfy

i—ap=va [ %
)=V o VF = PG >

then it can be shown that for each x € [0, %) there is a unique u(z) € [0, p) that satisfies the equation

ulxr
/ Y ds V2iz. (59)
ate) VF(p) = F(s)

Now, defining u (3) = p, and u(z) = u(1 — z) for = € (3,1], it can then be shown that u € C?[0,1] and
satisfies (6).

Hence (58), namely S = {(\,p) | p € (0,1), G(p) = VA}, describes the bifurcation diagram for
positive solutions of (6). For given A, p, and ¢ satisfying (56) and (58), we will also use (59) to numerically
approximate u.

2.2. Shooting method

In this subsection, we discuss a numerical shooting method which will be employed to approximate the
positive solution v of (4) in the asymmetric competition case when b; = 0, namely:

—v" = Arv [l —v—bou]; (0,1)
—0'(0) + VAy20(0) = 0 (60)
v'(1) + VAyu(l) =0

where u = W1, 0 is the unique positive solution of (6) and is numerically approximated using the quadrature
method.
Let v(0) = 6 and v' = 2. Then we obtain the following system of ordinary differential equations:

v =2z; (0,1)
—2' = (1 —v—bWi,,); (0,1)
2(1) = —vAme(L) (61)
v(0) =24
2(0) = VAy1d.

For a given value of § > 0, we employ the ParametricNDSolve command in Wolfram Mathematica (which
uses the “Runge-Kutta” numerical method) to approximate solutions of (61). This process can be explained
as shooting from 2 = 0 (where v(0) = ¢ and 2(0) = v/Ay16) and checking at = = 1 to see if 2(1) = —v/Ayv(1)
(see Fig. 4).

3. Proof of main results

In this section, we provide proofs of our main results.

3.1. Proof of Theorem 1.3

Assume that (u,v) is a positive solution of (4) for a fixed A > 0.
(A) First, assume that A < Ey(1,71) which implies that o1 > 0 (see Theorem 1.2). Using Green’s Identity
and the eigenfunction corresponding to o1, we have that:

/ —Augy + Aprudx = / —@% + %uds. (62)
Q o2 On on
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v(x) 1

v(1)
v(0)

v

0

P ———— - -

Fig. 4. Illustration of shooting from z = 0 to z = 1. Dotted lines indicate §-values which yield solutions, v, that do not satisfy the
boundary condition at x = 1, whereas the solid line represents values that do satisfy the boundary condition.

But, the right-hand-side of (62) is clearly equal to zero, and we also have:

/ —Augy + Aprudx = / Audy (1 —u—b1v) —u (o191 + A1) dz
I?) 1?)
= / Aupy — Mg — Abjuvgy — o110 — Audrde
7]

:/—uqSl (u+byv+oy)dx
o
<0 (63)

since u,v,¢1 > 0; 2 and o7 > 0. This contradiction ensures that no positive solution of (4) exists when
A < Ei(1,7). An almost identical argument follows when A < Ey(r,v2).

(B) — (D) Note that these parts follow immediately from Lemmas 2.4 and 2.5. For example, we provide a
proof of (C): Note that (A) implies that A > max{E1(1,71), E1(r,v2)}. Now, assuming 3 > -2 ensures
that the right-hand-side of (28) is strictly positive, whereas the left-hand-side of (28) is nonpositive from
Lemma 2.5 when by <1 <b;and1<r < % (since u,v > 0; 2 and A > 0). This contradiction implies that
no positive solution of (4) exists when by <1 <b; and 1 <r < %.

(E) Assume that by > 1 and by < blbzl. Since we wish to prove nonexistence for large A-values, it suffices to

E1(ryy2)

show nonexistence for A > b, - Using Green’s Identity, we have:

/ _AUWL'YI + AWl,’yludx = / —@WL'}'I + an,’Yl uds- (64)
2 o On on

But, the right-hand-side of (64) is clearly equal to zero and the left-hand-side becomes:
/ —AuWy o, + AW,y ude = / (1 —u—b1v) Wiy, — AWy 4, (1 — W1, ) ude
Q Q

= / )\UWL»“ [WL’Yl - (U + bll})] dzr
2

< / MW, Wiy — bW, ] da (65)
Q
since uw > 0; 2 and v > Wy, 0,5 2 (see proof of (D) in Theorem 1.4 and note that for A > %2;;2),
Theorem 1.2 ensures that W ,, s, exists). Also, Theorem 1.2 ensures that:
Wi — bW g6, — 1 —b1(1 —b2) on all closed subsets of 2 as A — oo. (66)
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Since b7 > 1 and by < 1711)7;17 we have that 1 — by(1 — b2) < 0 and can choose A > 1 such that

Jo MuW 5y (W 4y — b1Wo 4y 5, ] d < 0, which is a contradiction.

(F) We omit this proof as it is almost identical to the one in (E).

(G) Here, we show that there exists §(b2) > 0 such that (4) has no positive solution for A < F1(r,y2)+d(ba).
If A < Ei(1,v1) then from (A) (4) has no positive solution. Thus, we assume (u,v) is a positive solution of
(4) for some A € (E1(1,71), E1(r,72)), which implies that oo > 0. By Green’s Identity, we obtain:

/Q —Avgg + Adovdr = / ——¢ + —nvds, (67)

and it is easy to see that the right-hand-side of (67) is zero. Now, we also have that:

/ —Avgs + Agoudr = / Arv(1 — v — bau)da — (AT + 02)povdx
Q Q

S~

(=Ar — o9 + Ar — Arv — Arbau) dovda

(—o2.x — Arv — Arbau) ¢povdz

/Q <_;2 - b2u> povdz (68)

< )\r/ <_02’)‘ — v — by min {u}> dovdx
Q Ar 2

< )\T/ <02 — by min {u}> poude, (69)
o\ Ar 2

QD

Il
>
Z

which gives rise to a contradiction since g > 0. Further, from (68), we have 0 < ming{u} W‘%{u} — by

and we note that o9 — 0 when A\ — F1(r,72) and o9 < 0 when A > FE;(r,72). Since by > 0, there exists
a d(by) > 0 such that (4) has no positive solution for A € [E1(r,v2), E1(r,v2) + d(b2)) and hence a positive
solution does not exist for A < FEy(r,v2) + 6(b2). Furthermore, it is clear that a necessary condition for
existence of a positive solution is H(\,r) = y—22—

(H) We omit this proof as it is almost identical to the one in (G). O

> by, as desired.

3.2. Proof of Theorem 1.4

(A) Assume that by,bo < 1 and A > maX{Ell(%Z’gQ), 1‘311(%1;’:1) . We first prove existence of a positive

solution of (4). Note that this implies 01,02 < 0 ensuring that W, ,, W, ,, (the unique positive solution of

(6) with R =1 and R = r, respectively) both exist. Now consider o3(Wi ,,) with Wy, =1 and o4(W; 4,)

with W, ., = 1, namely,

—Ap3 — Ar (1 —b2) p3 = o3¢3; 12 (70)
85%’ + V23 = 0; 90
and
—Apy — AN(1 —b1) ¢y = 04¢4; 2 (71)
% + VY164 = 0; 002

By Lemma 2.3, we have that o3(W1,,) < o3(1) and o4(W, ,) < 04(1), thus by Lemma 2.1 it suffices to
show that o3(1),04(1) < 0 in order to prove existence. Comparing (70) with (8), uniqueness of the principal
eigenvalue ensures that

0'3(1) =+ A’I’(l — bg) = El(R, ’}/)R

Y =72 (72)
21
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or equivalently,
o3(1) = E1(R,y)R — Ar(1 — by). (73)
Taking o3(1) = 0, we see that R = r(1 — bg) and A = Ey(r(1 — b2),72) = B1(r2) ysing Lemma 2.7. Also,

1—bo
using (73) we have that o3(1) < 0 for A > Ell(+b';2)

Similarly, comparing (71) with (8), uniqueness of the principal eigenvalue ensures that

o4(1) + A1 = b1) = E1(R,7)R

Y=, (74)

or equivalently,
o4(1) = E1(R,7)R — A1 — by). (75)
Again, taking o4(1) = 0, we see that R = (1 — b)) and A = E1((1 — b1),11) = Ell(%l’ql), using Lemma 2.7.
Using (75), we have that o4(1) < 0 for A > 1311(%1;?1). Thus, for A > max{%, Ell(%l’;l”)}, Lemma 2.1

ensures existence of a positive solution of (4) with (m¢s, mes) < (u,v) < (Wi, Wiay); 2 for m = 0.
(i) Now assume (u,v) is any positive solution of (4) with A > max {E1(r,7v2), E1(1,7v1)}. Then (u,v) also
satisfies:

{—Au — (1l —u)=—-Xbuv <0; 2 (76)

?TZ + VM yu=0; 0

implying that u is a strict subsolution of (9). Since Z = M > 1 is a supersolution of (9) and u < M; 2,
uniqueness of Wy 5, gives that u < Wy ,,; 2. A similar argument gives that v < W, .,; 2.

(ii) We assume (u,v) is any positive solution of (4) with A > max {1511(%{;'171)’ E11(+bzz)} (which implies that
Wi 461> Wi g5, bOth exist). Now, since v < W, ., < 1; 12, we have that (u,v) satisfies:

{—Au—)\u(l—u—bl)Z—Au—)\u(l—u—bw):(); 0 (77)

g—x—i—\f)\%u:O; on

implying that u is a supersolution of (6) with R = 1,b = by, and v = ;. Using the principal eigenfunction,
¢o, corresponding to oy (which is negative by our choice of \) gives that ¢ = mgy is a subsolution of (6)
with R = 1,b = by, and v = v; and satisfies m¢y < u; 2 both by choosing m ~ 0. Uniqueness of Wi ,by
(the positive solution of (6) with R = 1,b = by, and v = ;) gives that Wy , p, < u; 2. A similar argument
shows that W, ., b, < v; 2.

(iii) Finally, assume that r = 1 and v = 72. We will show that (11_771’1172 Wi s 11_77?12)2 Wrm) will satisfy (4).
To that end, we see that:

1 —
~ Au—u(l—u—bv) = W (1= W)
1—b1by ’ ’
1—b 1—b by (1 — by)
A (1 — blbg) Wi (1 T by 5 T T byby
1-b 1—1b by (1 — by)
- 1— b1b2 )\le’Yl |:1 le'}’l 1+ 1— b1b2 Wl»'}’l + 1— blbg 1m
1-0b; 9 biby —1+1—b; +b; — biba
—
+ 1—b1by Wl’yl |: 1 —biby ]
-0 (78)
and B 1—b 1—b
u —_ ("1 e —0-
3777 + ﬁvlu = (1 — ble) WL‘Yl \&71 + (1 — b1b2> Wl,wl \/X’)q 0; 012. (79)

A similar argument holds for v. Theorem 1.5 gives uniqueness of the solution in this case.
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(B) Assume that by = by = 1,71 = 72, and r = 1 and A > E;(1,v1). Notice that o7 < 0 in this case
ensuring existence of W1 ,,. Fix s € (0,1) and let (u,v) = (sWy 4, (1 —s)Wi 4,). We will first show that
(u,v) is a solution of (4). To that end, we see that:

—Au—Adu(l —u—v) = —-AsWy 5, —AsWi,, (1 —sWi, — (1 —s)Wi,,)
§[=AWiy = AWy, (1= Wiy

=0 (80)
and
—Av—d(l—-v—u)=—-A1—-s)Wi ., — AL =)W1, (1= (1 —35)W1,, —sWi,)
= (1 =8) [FAW1, = AW, (1= Wiy,)]
=0 (81)
with
gz + ﬁ’ylu = (%Ig/nul + ﬁ%szm
=s [Wa/;“ + \[\'ylWlm}
=0 (82)
and

v 01— s)Wy,
o+ Vv = T”l + V(1 = 8) Wi,

oW,
— (-9 [T 4 Vi
—0. (83)

Now, we will show that all positive solutions of (4) must have this form. Assume that (u,v) is a positive
solution of (4). Following the same argument as in the proof of Lemma 2.6, the principal eigenvalue of (42)
with by = 1, p1, must be zero. But, both u and v satisfy (42) and since p; is simple, we must have that
u = cv where ¢ > 0. Substituting (u,v) into (4) yields:

1
—Au—)\u(l—u—v):—Au—)\u<1—u—cu>

= —Au—u (1 - <1 + i) u) (84)

—Av-—dw(l—-v—u)=—-Av— vl —v—cv)
=—-Av— w(l—-(1+c)v). (85)

and

It is now easy to see that u = £ Wy, and v = 3= W,.,,. Let s = -5 € (0,1) which gives that 1—s = 11,
as desired.

(C) In this case, we assume that by < 1 < by, 3 > 0, and » > r* (note that if 79 = 0 then
there is no restriction on r), for which Lemma 2.7 implies that FEq(r,v2) < Ei(1,71). Fix by > 1.
By Lemma 2.1, it suffices to show that o3(W1i,,),04(Wr,,) < 0. Since Ei(r,v2) < Ei(1,7m), we

have that Wy, (z,E1(1,71)) = 0 and W, ,, (z,E1(1,71)) > 0; 2. This implies that there exists a
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X2(b2) > (=) Ei(1,71) such that boWi 4, (2, A) < Wy, (z,A); 2 for X € (Ei(1,71), A2(b2)). Now, fix
Ao € (E1(1,71), A2(b2)) and choose by such that

b1 <mi(No) == m(}n{Wlﬁl (z, o)} - (86)
Since W, 4, (z,A) < 1; {2, this choice ensures that b < %@;ii, 2 for A € (A1(b1,b2), A2(b2)) where

A1(b1,b2) := Ag — 01 for some 61 (b1,bs) > (=) 0. Thus, for A\ € (2)\1 (b1,b2), Aa(b2)) and by < n1(Ag), we must
have

b2W1:V1 (J), /\) - W, ,72( /\) <0; 12 (87)
bWy (2, ) — Wh 4, (2, M) <05 £2. (88)

Lemma 2.2 now gives that o5(W1 ,),04(W; 4,) < 0 for A € (A1(b1,b2), A2(b2)). The furthermore statement
follows from the proof of (A)(i)-(ii) for the bounds on u and from Lemma 2.1 for the bounds on v, as desired.

(D) In this case, we assume that bs < 1 < by, 2 > 0, and » < r* (note that if vy = 0 then
there is no restriction on r), for which Lemma 2.7 implies that Ei(1,71) < Ei(r,y2). Fix by > 1.
By Lemma 2.1, it suffices to show that o3(Wi,,),04(W,,,) < 0. Since Ei(1,71) < Ei(r,v2), we
have that W, ., (z, E1(r,v2)) = 0 and Wi, (x,E1(r,72)) > 0; {2. This implies that there exists a
Xo(b1) > (=) Ei(r,v2) such that byW, 4, (x, ) < Wi, (z,A); 2 for X € (Ei(r,72), A2(b1)). Now, fix
Ao € (E1(r,v2), A2(b2)) and choose by such that

by < 712()\0) = m{%n {WT772 (LE, )\0)} . (89)
Since W1, (2, A) < 1; {2, this choice ensures that by < %, 2 for A € (A1(b1,b2), A2(b2)) where

A1(b1, b2) == Ao — 2 for some d2(b1,b2) > (=) 0. Thus, for A c A1(b1,b2), Aa(b2)) and ba < na(Ng), we must
have

bQWL’Yl (Z‘,/\) - W, 72( /\) < 0; 0 (90)
bWy (@, ) = Wi 4, (2, A) <05 £2. (91)

Lemma 2.2 now gives that o3(W1 ,),04(W; 4,) <0 for A € (A1(b1,b2), A2(b2)). The furthermore statement
follows from the proof of (A)(i) for the bounds on v and from Lemma 2.1 for the bounds on u, as desired.

(E) In the case of by,bs > 1, the argument in (A)(ii) gives existence of at least one positive solution of
the specified form. However, uniqueness is still open. [J

3.3. Proof of Theorem 1.5

(A) We assume that by, by < 1,7 = 1, and 1 = v2. Now, suppose that (u,v) is any positive solution of (4),

for which we rewrite as:
—Au—du(l —u—v) — A1 =by)uv =0; £
—Av = (1l —v—u)— AN1—=by)uv =0; 2
S8+ Vomu = 0; 992 (92)

%}; + V10 =0; 902.

Now, multiply the first and third equations in (92) by (1—b3) and the second and fourth equations by (1—b;)
and subtract the second from the first and then the fourth from the third giving:

—AYp =M1 —u—v)=0; 2
{ e+ Vo =0; 00

24
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where 9 = (1 — by)u — (1 — by)v. By Lemma 2.6, ¢ = 0 giving that (1 — bg)u = (1 — by)v. In other words,
we have that v = Ru and R = 1 b2

. But, this gives

bi(1—by)  1—byby

1 bp=1 =
+ Rby + 1 b -

(94)
and hence

0=—-Au—du(l—u—>bv)
—Au — Au (1 — (1 + Rby)u)

—Au— (1 - (11_132[1)2) u) ;0. (95)
{—Au — (1 - (%) u) =0; 2 %6)

%7; +Vyiu = 0; 00.

Thus, u satisfies

From Theorem 1.2, it is now easy to see that u = 1 b b2 Wi,4, and, since v = Ru, v =
fact combined with Theorem 1.4(A) (ii) & (iii) gives the result.
(B) Here, we assume that » > 0,71,72 > 0, and b1, bs < 1 with (uy,v1) and (ug,v2) both positive solutions

1 b bQWL»“ This

of (4). Let p = u; — ug and ¢ = v1 — v2. Then we must have

— Ap = Aug (1 —ug — b1v1) — Aug(l — ug — byws)
= A\uj — )\u% — Abiugvy — Aug + )\ug + Ab1ugvs + Aujus
+ Abjusvy — Auqus — Abjusvy
= AMug —u2)(1 —up — byvy) — Aug(ug — ug) — Abjus(vy — v2)

= Ap(1 —uy — byv1) — Augp — Abruag; 2

and, similarly,

— Aq = Arg(1 — vy — bousg) — Arbavp — Arvig; (2. (97)
Also,
0
— + \F/\ 1P 77 (;:]2 + \[\'yl(ul —ug) =0; 0N (98)
and, similarly,
0
a—g +V\aq = 0; 092, (99)

Thus, (p, q) satisfies
—Ap — /\p(l — Uy — bl’Ul) + Augp + Abyusqg = 0; {2
—Aq — Mrq(1 — vg — boug) + Arbouvip + Arvig = 0; 2
% 4 Voup=0; 00 (100)
+ V\2q = 0; 992.

From the proof of Lemma 2.6, if z is a smooth function that satisfies

—Az=Xz(1 —u—bw); N2 101
%;+ﬁ712:0; on (101)
then z also satisfies
/ Vz|? da — / M1 —u —bv)z2de + V1 22ds > 0. (102)
Q Q 09
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Similarly, if w satisfies

—Aw = Arw(l —v — bau); 2 103
?ﬁ-ﬁ-\ﬁ)\'ygw:O;@Q (103)
then w also satisfies
/ V| de — / A1 — v — byu)w?dx + Vayaw?ds > 0. (104)
Q Q o0
Hence, the following hold:
/ z[=Az = Az(1 —uyp — byvy)]dz >0 (105)
Q
/ w [—Aw — Arw(l — vy — baug)] dx > 0. (106)
Q

Now, we multiply the first equation in (100) by p and the second by ¢ and integrating both of them over
2 yields

/ p[=Ap = (1 = ur = bivr)] + Augp? + Abyugpgde = 0 (107)
Q
/ q[—Aq — Arq(1 — vy — bouy)] + Arbovipq + Arvig*dx = 0. (108)
Q
Adding (107) to (108) gives

/ p[—Ap — Ap(1 —uy — byvy)] 4+ q[—Aq — Arg(1 — va — baugz)]
Q

+\ugp? 4+ Abrugpq + Arbgvipg + Arvi¢de = 0. (109)
Employing (105) and (106) we further obtain

)\/ uap? + (byus + rbavy)pg + ruigidz < 0. (110)
Q

Define Q,(s,t) = ua(x)s? + [brua(x) + rbovy(z)] st + rvy(z)t2. If Q. (s,t) is positive definite for all z € 2
then p, ¢ = 0 proving uniqueness. To that end, if the following holds then we are ensured the result:

(b1u2 + Tb2U1)2 — 4ugrvy < 0, (].1].)
or equivalently, )
b
4> 182 4 9p by + b2t 0. (112)
T U1 Ul

It is now clear that if (15) holds then so does (111), giving the result. The final statement of the theorem

follows immediately from the fact that both W, ,, and W, ,, are bounded above and below (and in this case,

E1(1,m) Ei(rye)
1-b1 > 1-—bo

away from zero). Thus, taking b1,bs ~ 0 and A > max{
argument together ensure existence of a unique positive solution for (4). O

}, Theorem 1.3 and the previous

3.4. Proof of Theorem 1.6

Here, we assume that r > 0,b1,b2 > 0, 71,72 > 0, and A > 0 are such that 01,09 < 0. We note that
(A) and (B) are standard, omit their proofs, and direct the interested reader to, e.g., [39]. In particular,
the author in [39] proves in Theorem 7.6.2 that if a positive solution, (u,v), of (4) is stable then it is also
asymptotically stable. (Even though Theorem 7.6.2 specifically addresses a quasimonotone nondecreasing
system, a change of variables as suggested in [39] allows the theorem to apply to our quasimonotone
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nonincreasing system, see also [36]). Also, note that (i)—(iii) of (C) follows immediately from our construction
of sub- and supersolutions of (4) in Lemma 2.1 and Theorems 5.2 and 5.5 in Chapter 10 of [36].
To prove (iv) of (C), fix A > 0 such that 03,04 < 0 and assume that there exists a sequence of

converging to (0, W, ,,) as n — oco. Choose

asymptotically stable positive solutions of (4), {(un,vn)}re s

N > 1 such that for all n > N we have

_T(M > [un — by (Wrny — vn)| 5 2. (113)
Thus, there exists an € > 0 such that
—0y4 _
— >e> |up — b1 (Wyyy —un)l; £2. (114)

A

Now, we have that:

1
up = —Au+u(l —u — byv)

A
1
= XAU +u(l— biWi oy — [u — bl(WT,’Yz +)])
1
> XAu—&—u(l—le,.m—e); t>0,xz € (115)

as long as € > |u—0by(W,, +v)|. Fix an n > N and u(0,z),v(0,2) > 0; £ with u(0,2) ~ 0 and
v(0,z) ~ W, -, on 2. There must exist a K > 0 such that u(0,x) > K¢4(x); £2, where ¢, is the eigenfunction
corresponding to o4, chosen such that ¢4(x) > 0; 2 and ||¢4]|cc = 1. Also, we can choose to > 0 such that

_T‘” > e > |u(t,x) — by (Wyny —v(t,2))]; 2 € 12 (116)

for all t > tg.
oy
Define ¢(t, z) = Ke(Tfe)tqu(x) and h(z) =1— bW, ,,. For all t > 0, we have that:

1 —04 et
b= 380 = (o)~ 90 = K (=€) lF o)

+ el oy 4 Ah(@)] (@) — Ke(FH ) [he) — d o)
0 (117)

and, clearly,

0
9% =0, (118)
on

Thus, u(t, ) is a supersolution and (¢, x) is a solution of:

Wy = AW + (h(z) —e)W; t>0,z € 2

W(0,z) = K¢s(x); x €N (119)

G+ W =0; t>0,2 €00
A standard argument now implies that u(t,z) > ¥(t,z) = Ke(_T%%)tm(x); x € 0 for t > to. But, our
choice of € implies that —* — ¢ > 0 giving that u(t, ) is unbounded as ¢ — oo. This is a contradiction, and
hence, no such sequence can exist. An almost identical argument holds for the case that (u,,v,) converges

to (Wi,,,0) as t = oo and is omitted. (J

27



A. Acharya, S. Bandyopadhyay, J.T. Cronin et al. Nonlinear Analysis: Real World Applications 70 (2023) 103775

4. The asymmetric competition case

In this section, we explore the special case of asymmetric competition, where the competitive effect of v
onto u is negligible, i.e., by = 0, and in either the weak (b2 < 1) or semistrong (b2 > 1) cases. Here, (4)

becomes
{—Au =Au(l —u); 2 (120)
%Z +VAyu=0; 02
and Av = Aro(l — v — byu); 2
—Av = Aro(1 — v — bau);
{ gfz + Vv = 0; 912 (121)
Notice that v = Wi ,, 0, and thus Theorem 1.2 gives the complete structure of positive solutions for

(120). We first state an analytical result regarding uniqueness of positive solutions for (121) which improves
Theorem 1.5.

Theorem 4.1 (Uniqueness). There is at most one positive solution for (121) for all A > 0.

A proof of Theorem 4.1 is presented at the end of this section.

Next, we explore the structure of positive solutions for (121) in the case of 2 = (0,1). Using the
quadrature method discussed in Section 2.1 and Mathematica, we numerically approximate the unique
positive solution of (120), u, guaranteed by Theorem 1.2. Using this approximation, we next employ
the shooting method discussed in Section 2.2 to numerically approximate positive solutions of (121) and
generate bifurcation diagrams of the positive solutions of (4). Based on our analysis, we obtain the following
Computational Results 4.1-4.3. Here, we chose values of 7,71, v2 so that we obtain results for three different
cases: E1(r,v2) < E1(1,711), E1(r,v2) > E1(1,71) and E1(r,v2) = E1(1,71).

Computational Results 4.1 (E1(r,v2) < E1(1,71)). If r,v1, and v are fivzed such that Ei(r,v2) <
E1(1,71) and b > 0 then the following hold:

(a) If ba < 1 (weak competition) or ba = 1 (semistrong competition) then (121) has a positive solution for
A > Ei(r,v2) (see Fig. 5(a)). Moreover, there exists a positive constant by < 1 such that for by = b},
|l s a constant for any A > E1(1,71). Also, for A > E1(1,v1) and any ba < b3, ||v||leo increases in
A, and for any by > b5, ||v]|e decreases in A. Furthermore, for ba <1, ||v]lec = 1 — b2 as A — oo. (See
Fig. 5(b)).

(b) If by > 1 (semistrong competition) then there exists a Amax > E1(1,71), a mazimum patch size (see
Fig. 6), such that (121) has no positive solution for A > Apax. Moreover, Apnax decreases in by and o
and increases in r and 1, for fived values of the remaining parameters. (See Figs. 6-10).

Figs. 5-6 illustrate Computational Result 4.1. In particular, Figs. 7-10 give some insight into the behavior
of Amax as 7,b2,71, and 7. vary, with Figs. 8 and 10 showing behavior for two parameters changing
simultaneously. Two interesting cases arise here: 1) for weak competition (by < 1) existence of such a b3
where ||v]|o remains constant for all patch sizes yielding a A > E1(1,v1) and 2) for the special case of by =1
(semistrong competition) the counterintuitive fact that as the patch size becomes large, ||v|lco — 0. For (1),
a careful balancing of increased competitive pressure on v generated by u’s increasing density and v’s own
increasing density both as patch size increases seems to be a reasonable explantation of this phenomenon.
The interesting case (2) shows bs = 1 as the boundary separating predictions of no maximum patch size for
bs < 1 and existence of a maximum patch size when by > 1. Our computational results here are consistent
with our analytical results in Theorem 1.3 (E) & (F) for existence of a maximum patch size when by > 1,
and even suggest that the upper bounds on by in (E) and by in (F) are artificial.
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(a) Fixed b2 = 0.6. (b) Different values of by < 1.

Fig. 5. Bifurcation diagrams for (4) with various bs-values and r» = 1,v; = 4, and 2 = 2 implying that E;(r,v2) < E;(1,~v1) and
by ~ 0.728074. The blue curve represents the u-component of (u,v), as well as (u,0), green represents the v-component of (u,v), and
red represents (0,v). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

I+ loo

0.8

0.6

0.2

0.0 ' ' i ' A
15 20 , .25 30 35

0 A5 N 10 1
Ei(ry2) Ei(Lv1) max

Fig. 6. Bifurcation diagram for (4) showing existence of a maximum patch size, Ayax, when by = 1.1 and r = 1,v; = 4, and
v2 = 2 imply that E;(r,v2) < E1(1,v1). The blue curve represents the wu-component of (u,v), as well as (u,0), green represents
the v-component of (u,v), and red represents (0, v). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Our computational analysis of the behavior of Apax with respect to r,ba, 1, and 4 is fairly consistent
with intuition. Fig. 7 shows that Aj,.x increases as by (scale of competitive pressure of u onto v) and 2 (v’s
matrix effect) decrease, both of which promote increasing v density in the patch, whereas Fig. 9 shows A\pax
increases as r (G-D ratio, recall r > 1 implies an advantage for v) and 71 (u’s matrix effect) increase, both
of which promote increasing v density in the patch. The heatmap plots in Figs. 8 & 10 confirm that by and
~v2 work in tandem to affect A .y, and similarly for » and ;.

Computational Results 4.2 (Eq(r,v2) > E1(1,71)). If r,y1, and v2 are fized such that Ey(r,v2) >
E1(1,71) and by < 1 (weak competition) then the following hold:

(a) There exists a minimum patch size Amin > F1(r,y2) such that (4) has a positive solution for X > Anin
and no positive solution for A < Apin. Furthermore, ||v]lcc = 1 — by as A — oo (see Fig. 11).

(b) The minimum patch size Amin increases in by and o and decreases in r and 1, for fized values of the
remaining parameters. Moreover, Apmin — 00 as ba — 1, but for a fired bo < 1, if y1 — 00, Amin S
bounded. (see Figs. 12-15).
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(a) Plot of ba vs Amax (maximum patch size). (b) Plot of v vs$ Amax (maximum patch size).

Fig. 7. Variations of Ap.x with respect to by and v, when r = 1 and +; = 4. In (a), v2 = 2, while 2 € (0,4) in (b) is taken to
maintain Eq(r,v2) < E1(1,791).
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Fig. 8. Heatmap plot showing combined effects of by and 2 on Apax for » =1 and v; = 4.

Figs. 11 & 12 illustrate Computational Result 4.2. In particular, Figs. 12-15 give some insight into the
behavior of Apin as r, ba, v1, and 7 vary, with Figs. 13 and 15 showing behavior for two parameters changing
simultaneously. In fact, Figs. 11(b) & 12(a) give some insight as to why coexistence is lost for all patch sizes
when by > 1 (see Theorem 1.3(D)), by examining behavior of Ay as ba — 1. As can be seen in these figures,
Amin — 00 as by — 1, implying that coexistence in not possible for bs > 1. These computational results also
support our conjecture that the lower bound on r in Theorem 1.3(D) is artificial. Theorem 1.3(G) is also
illustrated in Fig. 11 in that Ay, > Eq(r,72). In other words, competition effects from w onto v cause a
larger minimum patch size requirement than what would be needed in the absence of competition.

Our computational analysis of the behavior of Ay, with respect to r,bs,v1, and o is again fairly
consistent with intuition. Fig. 12 shows that Ap;, decreases as b (scale of competitive pressure of u onto v)
or 2 (v’s matrix effect) decrease, both of which promote increasing v density in the patch, whereas Fig. 14
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Fig. 9. Variations of Ay,.x with respect to r and ~; for b =1.1 and 72 = 2. In (a), » > 0.764 and v; = 4, while » =1 and v; > 2 in
(b) is taken to maintain E;(r,v2) < E1(1,71).
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Fig. 10. Heatmap plot showing combined effects of r and v; on A,,4, for by = 1.1 and o = 2.

shows Amin decreases as r (G-D ratio, recall » > 1 implies an advantage for v) and 71 (u’s matrix effect)
increase, both of which promote increasing v density in the patch. The heatmap plots in Figs. 13 & 15
confirm that by and 75 work in tandem to affect Ay, and similarly for » and ~;.

Computational Results 4.3 (E1(r,v2) = E1(1,71)). If r,y1, and 2 are fixred such that Ei(r,vy2) =
E1(1,71) and by > 0 then the following hold:

(a) If by < 1 (weak competition) or by = 1 (semistrong competition) then (4) has a positive solution for
A > E1(1,71) and no positive solution for A < Ey(1,v1). Furthermore, ||v]loc = 1 — b2 as A — oo (see
Fig. 16).
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(a) Fixed b2 = 0.6. (b) Different values of by < 1.

Fig. 11. Bifurcation diagrams for (4) with various bs-values and r = 1,v; = 2, and 2 = 4 implying that E;(r,v2) > E1(1,71). The
blue curve represents the u-component of (u,v), as well as (u, 0), green represents the v-component of (u,v), and red represents (0, v).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Variations of A, with respect to by and 5 for » =1 and v, = 2. In (a), by < 1 and v, = 4, while by = 0.6 and v5 > 2 in
(b) are taken to maintain E1(1,v1) < E1(r,v2).

(b) For by > 1, (semistrong competition) there exists Amax > E1(1,71), a mazimum patch size, such that
(4) has no positive solution for A > Amax. Moreover Amax s decreasing in by (see Figs. 17-18).

Figs. 16-18 illustrate Computational Result 4.3. This case gives similar conclusions as those in Compu-
tational Result 4.1.
We close this section with a proof of Theorem 4.1.

Proof of Theorem 4.1. Assume that vy, vy are two distinct positive solutions of (121) for A > Ey(1,71)

and let uy = Wi ,, be the unique positive solution of (120). Since z = 1 is a global supersolution of (121),

without loss of generality we can assume vy < vy; {2 and there exists an x¢ € £ such that ve(zo) < v1(x0)-
Now, employing Green’s Identity we have

/ —Avjvg + Avguider = / —%w + %vlds, (122)
Q o2 On on
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Fig. 13. Heatmap plot showing combined effects of by and 2 on A, for » =1 and v; = 2.
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Fig. 14. Variations of A, with respect to r and ~; for v» = 4 and by = 0.6. In (a), v; = 2 and r < 1.353, while v; < 4 and r =1
in (b) are taken to maintain E;(1,v1) < Eq(r, v2).

where the right-hand-side of (122) is clearly equal to zero. But, we also have

/ —Avjvg + Avgvida = / —Arvy(1 — vy — bouy)va + Arvg(1 — vg — bouy )vidx
Q Q

= )\r/ v10g [1 — vy — bouy — 1+ vy + bauy] dx
Q

= )\r/ v1v2 [v1 — ve] dz > 0. (123)
Q
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Fig. 15. Heatmap plot showing combined effects of » and v; on Ay, for by = 0.6 and v, = 4.
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(a) Fixed ba = 0.6. (b) Different values of by < 1.

Fig. 16. Bifurcation diagrams for (4) with various bs-values and r = 17’6,71 =1, and vy = \/ig implying that E;(r,v2) = E;1(1,v1).
The blue curve represents the u-component of (u,v), as well as (u,0), green represents the v-component of (u,v), and red represents

(0,v). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

This is a contradiction, giving that (121) has at most one positive solution. This completes the proof. [
5. Summary and conclusion

In this paper, we have explored structure of coexistence states of the diffusive Lotka—Volterra competition
model in a fragmented landscape. The model is built upon the reaction diffusion framework and includes
a boundary condition designed to model effects of differential matrix hostility and behavior response to
habitat edges between species. Our results are based on study of certain eigenvalue problems and sub-
supersolutions in the general case and time map analysis and shooting methods in the one-dimensional
asymmetric competition case. Since our coexistence results follow from instability of the trivial and semi-
trivial steady states, statements of coexistence here will always imply that both species are able to invade
the patch when rare with their competitor near equilibrium in the patch, and persist. In the literature, the
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Fig. 17. Bifurcation diagram for (4) showing existence of a maximum patch size, Apax, when r = %,'\/1 =1, v9 = %, and
by = 1.1 imply that E;(r,~v2) = E1(1,71). The blue curve represents the u-component of (u,v), as well as (u,0), green represents
the v-component of (u,v), and red represents (0, v). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 18. Plot of by versus Apax (maximum patch size) for r = %,'yl =1, and v, = %

diffusive L-V model has been extensively studied in the case of a closed patch (reflecting boundary) and to
a somewhat lesser degree in the case of an immediately lethal matrix (absorbing boundary). However, little
attention has been paid to the diffusive L—V model in a fragmented landscape with a framework that allows
for more realistic modeling of organismal behavior at the patch/matrix interface.

Our results show that in all levels of competition a necessary condition for coexistence is a large enough
patch size such that each organism is able to invade and colonize the patch when rare in the absence of
its competitor. In the weak competition case, a sufficiently large patch size guarantees coexistence with the
coexistence state bounded from below away from zero. For by, by sufficiently small, our results guarantee
uniqueness of this coexistence state, however, beyond our given sufficient condition, uniqueness in general
remains an open question. In the special case that both species’ growth-to-diffusion rates are equal (i.e. r = 1)
and matrix effects are comparable between species (i.e. 73 = 72), we actually have a closed form solution
which approaches the solution of the spatially homogeneous L—V model when patch size approaches infinity.
Considering neutral competition in this case, our results show existence of infinitely many coexistence states
for sufficiently large patch size, again with a closed form solution. Coexistence for strong competition is also
guaranteed for sufficiently large patch sizes with a closed form solution, though uniqueness of the coexistence
state is an open problem. Also, Theorem 1.4(A)(i) guarantees that for any level of competition, i.e., either
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b1 > 0 or by > 0, the coexistence state will occur at a lower density than the density of individuals inhabiting
the patch without competition. These results are qualitatively similar to those in previous studies where
either a closed patch (i.e. reflecting boundary: 41 = 0 = 7, in our framework) or a patch surrounded by an
immediately hostile matrix (i.e. absorbing boundary: 1,72 — oo in our framework) were considered (see,
e.g., [22,23,41]).

Perhaps the most interesting aspect of our results is finding coexistence for intermediate ranges of patch
size in the semistrong competition case. Recall that when a patch is completely isolated from its surrounding
matrix (i.e., a reflecting boundary), coexistence is not possible in the semistrong case. Though it is somewhat
intuitive to expect prediction of a minimum patch from a model such as (3) when some level of mortality
is induced at the patch/matrix interface (see, e.g., [29]), existence of a maximum patch size in this case
is remarkable. Thus, for a semistrong competition system inhabiting a fragmented landscape, we could
potentially observe sufficiently large and sufficiently small patches not being able to sustain coexistence,
but an intermediate sized patch where coexistence is possible. Though not comprehensive, our results as
summarized in Table 1 suggest that coexistence in this case arises from a situation where one species has an
advantage in being able to invade and colonize smaller patches in the absence of its competition, while the
other species has an advantage in being less affected by direct competition for resources. In the converse, if all
mechanisms (patch intrinsic growth rate, patch diffusion rate, behaviorial response to habitat edge, matrix
hostility, matrix diffusion rate, and direct competition for patch resources) either do not favor one species
over the other or confer advantage from one or all of them to the same species then coexistence is not possible.
In fact, we conjecture that such a counterbalancing of advantage (i.e., a tradeoff) is actually necessary for
coexistence in the semistrong competition case. Ecologists have theorized that a key mechanism promoting
the coexistence among competing species is a tradeoff between dispersal and competitive ability [7]. Here,
poorly competitive but highly dispersive species can coexist with highly competitive but poorly dispersive
species at the regional scale because of the spatial variation that arises in their distributions (e.g., [7,42—
45]). Our models suggest that poor competitive ability could be offset by either a high diffusion rate, low
matrix hostility, or some combination of the two. Whether the effect of dispersal-competition tradeoffs on
coexistence are modulated by patch size has never been tested empirically.

These results also have implications for conservation. A scenario could arise in which one species (say u)
of an endangered semistrong competition system inhabiting a fragmented landscape could have a significant
advantage in competition for resources over the other species (say v). If v has an advantage in being
able to invade and colonize smaller patches than u then we could have a counterintuitive scenario where
coexistence is not possible in large patches. In fact, coexistence would only be possible in an intermediate
range of patches where the different mechanisms giving favor to one or the other species is counterbalanced.
Although there are numerous empirical and theoretical studies of minimum patch size (e.g., [33,46,47]),
studies of a maximum patch size and, by extension, the possibility that an intermediate patch size is
necessary for coexistence, has not been investigated beyond the current study. However, if realistic conditions
involving competition and dispersal do favor coexistence in patches of intermediate size, it could upend the
longstanding SLOSS debate among conservation biologists [48,49] about whether a Single-Large Or Several
Small patches is best for the design of wildlife reserves.

If v had both advantage in competition for resources and the ability to invade and colonize smaller
patches than v then coexistence would never be possible for any patch size. In fact, experimentation in
a lab setting with closed patches would not be sufficient to fully understand coexistence in a more realistic
fragmented landscape. Also, focusing empirical research only on one of these mechanisms (direct competition
for resources or invasibility of a patch in the absence of competition when rare) alone may prohibit a full
understanding of when coexistence is possible. Our results suggest that more study, both theoretical and
empirical, is needed in more realistic scenarios where a patch is not completely isolated from its surrounding
matrix.
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