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a b s t r a c t

It is an ecological imperative that we understand how changes in landscape
heterogeneity affect population dynamics and coexistence among species residing in
increasingly fragmented landscapes. Decades of research have shown the dispersal
process to have major implications for individual fitness, species’ distributions,
interactions with other species, population dynamics, and stability. Although
theoretical models have played a crucial role in predicting population level effects
of dispersal, these models have largely ignored the conditional dependency of
dispersal (e.g., responses to patch boundaries, matrix hostility, competitors, and
predators). This work is the first in a series where we explore dynamics of the
diffusive Lotka–Volterra (L–V) competition model in such a fragmented landscape.
This model has been extensively studied in isolated patches, and to a lesser extent,
in patches surrounded by an immediately hostile matrix. However, little attention
has been focused on studying the model in a more realistic setting considering
organismal behavior at the patch/matrix interface. Here, we provide a mechanistic
connection between the model and its biological underpinnings and study its
dynamics via exploration of nonexistence, existence, and uniqueness of the model’s
steady states. We employ several tools from nonlinear analysis, including sub-
supersolutions, certain eigenvalue problems, and a numerical shooting method.
In the case of weak, neutral, and strong competition, our results mostly match
those of the isolated patch or immediately hostile matrix cases. However, in
the case where competition is weak towards one species and strong towards the
other, we find existence of a maximum patch size, and thus an intermediate
range of patch sizes where coexistence is possible, in a patch surrounded by an
intermediate hostile matrix when the weaker competitor has a dispersal advantage.
These results support what ecologists have long theorized, i.e., a key mechanism
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promoting coexistence among competing species is a tradeoff between dispersal
and competitive ability.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background and motivation

As a result of human activities, the landscapes within which species live have become increasingly
more heterogeneous—suitable habitats are becoming fewer in number, smaller in size and more isolated.
Compounding the problem, the matrix surrounding these habitat patches is becoming much more hostile
(e.g., through urbanization or agricultural development) with elevated risks of mortality for those individuals
who attempt to emigrate from a patch [1–3]. It is an ecological imperative that we understand how changes
in landscape heterogeneity affect population dynamics and coexistence among species residing in these
landscapes. Through decades of ecological research, it is clear that the dispersal process has major implica-
tions for individual fitness, species’ distributions, interactions with other species, population dynamics and
stability (e.g., [4–8]). In particular, theoretical studies have played an extremely important role in predicting
population level effects of dispersal [9]. However, models have largely ignored the conditional dependency of
dispersal; for example, the effects of an interspecific competitor or predator on dispersal (but see e.g., [10–
12]). Theoretical studies of competing species in fragmented habitats typically model dispersal as a regional
constant (e.g., [13]). This approach neglects realistic aspects of dispersal behavior that may affect the regional
persistence of the competitors. These behaviors include the relationship between conspecific density and em-
igration, responses to boundary conditions and matrix hostility [10,12,14–17]. It has been hypothesized that
intraspecific and interspecific competition may influence dispersal of a species differently [11,18,19], although
this has rarely been tested experimentally [11]. Clearly, both theoretical and empirical investigations are
needed that account for realistic aspects of animal movement behavior and interactions with other species
to understand the effects of landscape heterogeneity on species population dynamics and coexistence.

Here, we explore dynamics of the diffusive Lotka–Volterra (L–V) competition model in a fragmented
landscape, see Fig. 1. The model is built upon the reaction diffusion framework and includes a boundary
ondition designed to model effects of differential matrix hostility and behavior response to habitat edges
etween species. In the literature, the diffusive L–V competition model has been extensively studied in the
ase of a closed patch (reflecting boundary) and to a somewhat lesser degree in the case of an immediately
ethal matrix (absorbing boundary). However, little attention has been paid to the diffusive L–V competition
odel in fragmented landscapes with a framework that allows for more realistic modeling of organismal
ehavior at the patch/matrix interface. To date, we have not found any work which considers long term
ehavior under combined effects of changes in matrix hostility and patch size (but see [20] &[21] where
eversal of competitive dominance was studied as matrix hostility varied for fixed patch geometry). This
aper is the first in a series of works exploring the dynamics of the diffusive L–V competition model
n fragmented landscapes and focuses on the relationship between patch size and matrix hostility and
oexistence. In an upcoming paper, we will explore how competitive dominance changes as patch size and
atrix hostility vary. We note that results in the present work are in the spirit of those from [22] who studied

he diffusive L–V competition model with reflecting boundary (Neumann boundary condition) and [23]
ho considered an absorbing boundary (Dirichlet boundary condition). The authors of those works did not

xplicitly consider structure of coexistence states as patch size or matrix hostility varied.
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Fig. 1. Illustration of a fragmented habitat patch Ω0 and surrounding exterior matrix Ωc
0 .

1.2. Model formulation

We present and study the diffusive Lotka–Volterra two species competition model coupled with boundary
conditions which will allow study of the effects of habitat fragmentation on the system. The model is built
upon the reaction diffusion framework which has seen tremendous success in studying spatially structured
systems in the literature, see [24–30] and references therein for a detailed history of the framework. We
assume that two species are dwelling in a single focal patch Ω0 = {ℓx | x ∈ Ω} with patch size ℓ > 0 and
Ω = (0, 1) or Ω ⊂ Rn having unit measure (e.g. if n = 2 then the area of Ω is one) and smooth boundary with
n = 2, 3, that is surrounded by a hostile matrix, denoted by Ωc

0 = Rn\Ω0, where it is assumed that organisms
xperience exponential decay at fixed rate, say, S0 > 0 (see Fig. 1). Denote the boundary of Ω0 by ∂Ω0. The
ariable t represents time and x represents spatial location within the patch. The two organisms follow an
nbiased random walk inside both patch and matrix, while on the patch/matrix interface a discontinuity
etween the density in the patch and matrix is allowed at the interface (via a biased random walk), while
aintaining continuity in the flux (see e.g. [15,31,32]).
Here, organisms recognize the patch/matrix interface and modify their random walk movement probabil-

ty (i.e. probability of an organism moving at a given time step in the random walk process), random walk
tep length (i.e. distance that an organism moves during a given time step), and/or probability of remaining
n the patch (say α). In this patch-level setting, we equate dispersal from the patch to organisms reaching
he patch/matrix interface, leaving the patch with probability 1−α (taken to be constant), and entering the
atrix, where they still have the opportunity to re-enter the patch at the interface. Following the derivation

iven in [33], the diffusive competitive Lotka–Volterra system becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = D1∆u+ r1u(1 − u
K1

− a1
K1
v); t > 0, x ∈ Ω0

vt = D2∆v + r2v(1 − v
K2

− a2
K2
u); t > 0, x ∈ Ω0

u(0, x) = u0(x); x ∈ Ω0

v(0, x) = v0(x); x ∈ Ω0

D1α1
∂u
∂η + S∗

1 [1 − α1]u = 0; t > 0, x ∈ ∂Ω0

D2α2
∂v
∂η + S∗

2 [1 − α2] v = 0; t > 0, x ∈ ∂Ω0

(1)

and will exactly model the study system in the case of a one-dimensional patch in the sense that steady
states of (1) and their stability properties will be exactly the same as those of the study system (see [33] and
references therein). In the case of a simply connected, convex patch in two- or three-dimensions, the model
will provide a reasonable approximation of the study system.
3
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In this model, Di > 0 represents patch diffusion rate, ri > 0 patch intrinsic growth rate, Ki > 0
atch carrying capacity, ai ≥ 0 scale of competitive effect from the other competitor, u0(x), v0(x) initial
opulation density distributions in the patch, and αi the probability of an individual remaining in the patch
pon reaching the boundary (i = 1 for u and i = 2 for v). The term ∂

∂η denotes the outward normal

erivative operator. From the derivation in [33], the nonnegative parameter Si =
√
S0

i
D0

i
κ represents the

ffective matrix hostility towards an organism and has units of length by time. The parameter S0
i ≥ 0

epresents matrix death rate, D0
i > 0 represents matrix diffusion rate, and κ encapsulates patch/matrix

nterface assumptions (see Table 1 in [33]), is independent of S0
i , and may depend on D0

i . For example, if

Type II Discontinuous Density is assumed at the interface then S∗
i =

√
S0

i
Di√

D0
i

and is a strictly increasing

unction of matrix death rate for fixed Di and D0
i . The boundary is absorbing, i.e. all individuals that reach

he boundary will emigrate, when αi ≡ 0, whereas the boundary is reflecting, i.e. the emigration rate is zero,
hen αi ≡ 1.
We now introduce a standard scaling,

x̃ = x

ℓ
, t̃ = r1t, ũ = u

K1
, & ṽ = v

K2
. (2)

fter applying this scaling and dropping the tilde, (1) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = 1
λ∆u+ u(1 − u− b1v); t > 0, x ∈ Ω

vt = D0
λ ∆v + r0v(1 − v − b2u); t > 0, x ∈ Ω

u(0, x) = u0(x); x ∈ Ω

v(0, x) = v0(x); x ∈ Ω
∂u
∂η +

√
λγ1u = 0; t > 0, x ∈ ∂Ω

∂v
∂η +

√
λγ2v = 0; t > 0, x ∈ ∂Ω

(3)

with corresponding steady state equation:⎧⎪⎪⎨⎪⎪⎩
−∆u = λu(1 − u− b1v); Ω
−∆v = λrv(1 − v − b2u); Ω

∂u
∂η +

√
λγ1u = 0; ∂Ω

∂v
∂η +

√
λγ2v = 0; ∂Ω

(4)

here λ = r1ℓ
2

D1
, r0 = r2

r1
, D0 = D2

D1
, r = r0

D0
, bi = aiKj

Ki
; i, j = 1, 2 and i ̸= j, γ1 = S∗

1√
r1D1

1−α1
α1

, and

2 = S∗
2√

r1D1D0

1−α2
α2

are all unitless. Also, recall that Ω has length, area, or volume of one. Hence, for
xed r1, r2, D1, D2, the composite parameter λ is proportional to patch size squared, γ1 is proportional
o effective matrix hostility towards u, and γ2 is proportional to effective matrix hostility towards v. The
omposite parameter bi denotes scale of competitive effect of one organism onto the other, e.g., b1 measures

the competitive effect of v on u. We will consider b1, b2 ∈ [0, 1) and b1b2 ̸= 0 as weak competition, b1 = 1 = b2

as neutral competition, either 0 < b1 < 1 ≤ b2 or 0 < b2 < 1 ≤ b1 as semistrong competition, and
b1, b2 ∈ [1,∞) as strong competition.

In the case that γ1 = 0 = γ2, (3) becomes the classical diffusive homogeneous L–V competition model
whose dynamics have been studied extensively (see, e.g., [22,34,35]). Here we recall a well known result
(see, e.g., Section 12.4 in [36] and Theorems 3.6 & 4.3 in [37]) regarding coexistence for (3) in the reflecting
boundary case:
Theorem 1.1 ([36,37]). Let r > 0, γ1 = 0 = γ2, and b1, b2 ≥ 0. Then for all λ > 0 the following hold:
4
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(A) If b1, b2 < 1 (weak competition) then (3) has a globally asymptotically stable coexistence state given by:(
1 − b1

1 − b1b2
,

1 − b2

1 − b1b2

)
(B) If b1 < 1 ≤ b2 or b2 < 1 ≤ b1 (semistrong competition) then no coexistence state of (3) exists
(C) If b1 = 1 = b2 (neutral competition) then (3) has infinitely many asymptotically stable coexistence states

of the form:
(c, 1 − c) , c > 0

1.3. Single species model

Before stating our main results, we first recall the dynamics of the following single species model and
discuss some important eigenvalue problems for which our coexistence results are built upon:⎧⎨⎩

Wt = 1
λR∆W +W (1 − b−W ); t > 0, x ∈ Ω

W (0, x) = W0(x); x ∈ Ω
∂W
∂η +

√
λγW = 0; t > 0, x ∈ ∂Ω

(5)

with corresponding steady state equation:{
−∆W = λRW (1 − b−W ); Ω

∂W
∂η +

√
λγW = 0; ∂Ω (6)

here γ ≥ 0, W0 is a smooth nonnegative function, and either (1) b = 0 with either R = 1 and γ = γ1 or
= r and γ = γ2; (2) b = b1, R = 1, and γ = γ1; or (3) b = b2, R = r, and γ = γ2. From [38], the complete

ynamics of (5) can be determined via the sign of the principal eigenvalue σ0 = σ0(λ,R, b, γ) of{
−∆ϕ0 − λR(1 − b)ϕ0 = σ0ϕ0; Ω

∂ϕ0
∂η +

√
λγϕ0 = 0; ∂Ω (7)

ith corresponding eigenfunction ϕ0 which can be chosen such that ϕ0 > 0; Ω and ∥ϕ0∥∞ = 1. Also recall
rom [38] the eigenvalue problem, {

−∆ϕ = R(1 − b)Eϕ; Ω
∂ϕ
∂η + γ

√
Eϕ = 0; ∂Ω . (8)

For fixed R, b, & γ, let E1(R, b, γ) denote the principal eigenvalue of (8) with corresponding eigenfunction
ϕ which can be chosen such that ϕ > 0; Ω . We will make the convention that E1(R, 0,∞) = ED

1
R where

D
1 > 0 is the principal eigenvalue of Laplace’s equation with Dirichlet boundary conditions. Then from [38]
e obtain:

heorem 1.2 ([38]). Let R > 0, b ∈ [0, 1), and γ ≥ 0.

(a) If σ0 ≥ 0
(
λ ≤ E1(R,b,γ)

1−b

)
then W ≡ 0 is globally asymptotically stable and no positive solution exists

for (6).
(b) If σ0 < 0

(
λ > E1(R,b,γ)

1−b

)
then W ≡ 0 is unstable and there exists a unique globally asymptotically

stable positive solution WR,γ,b for (6). Moreover, the following properties of WR,γ,b hold:

(i) −σ(R,b,γ,λ)
λr ϕ0 ≤ WR,γ,b ≤ 1; x ∈ Ω

(ii) For fixed x and λ

(1) WR,γ,b is increasing in R for fixed b & γ

(2) W is decreasing in b for fixed R & γ
R,γ,b

5
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Fig. 2. Exact bifurcation diagram for positive solutions of (6).

(3) WR,γ,b is decreasing in γ for fixed R & b

(iii) WR,γ,b → (1 − b) uniformly on every closed subset of Ω as λ → ∞.

See Fig. 2 for an exact bifurcation curve of positive solutions of (6).
Throughout the paper, we will consider either (1) b = 0 and define (i) W1,γ1 = W1,γ1,0 and E1(1, γ1) =

E1(1, 0, γ1) and (ii) Wr,γ2 = Wr,γ2,0 and E1(r, γ2) = E1(r, 0, γ2), (2) b = b1, R = 1, and γ = γ1 and employ
W1,γ1,b1 and E1(1, b1, γ1), or (3) b = b2, R = r, and γ = γ2 and employ Wr,γ2,b2 and E1(r, b2, γ2).

Now, we consider the semitrivial steady states of (3) in which one population is present and the other is
absent, namely: {

−∆W = λW (1 −W ); Ω
∂W
∂η +

√
λγ1 W = 0; ∂Ω (9)

nd {
−∆W = λrW (1 −W ); Ω
∂W
∂η +

√
λγ2W = 0; ∂Ω . (10)

ence, (9) is (6) with R = 1, b = 0, and γ = γ1, represents the governing steady state equation for species
in the absence of v, and has unique positive solution W ≡ W1,γ1 whenever λ > E1(1, γ1). Also, (10) is

6) with R = r, b = 0, and γ = γ2, represents the governing steady state equation for the species v in the
bsence of u, and has unique positive solution W ≡ Wr,γ2 whenever λ > E1(r, γ2).

Let σ1 = σ1(λ, γ1) and σ2 = σ2(λ, r, γ2) be the principal eigenvalues of{
−∆ϕ1 − λϕ1 = σ1ϕ1; Ω
∂ϕ1
∂η +

√
λγ1ϕ1 = 0; ∂Ω (11)

nd {
−∆ϕ2 − λrϕ2 = σ2ϕ2; Ω
∂ϕ2
∂η +

√
λγ2ϕ2 = 0; ∂Ω , (12)

ith corresponding eigenfunctions ϕ1, ϕ2 which can be chosen such that ϕ1, ϕ2 > 0; Ω , respectively. The
ign of these principal eigenvalues will determine whether or not a species can colonize the patch when rare.

Finally, we consider two eigenvalue problems involving W1,γ1 and Wr,γ2 :{
−∆ϕ3 − λr (1 − b2W1,γ1)ϕ3 = σ3ϕ3; Ω

∂ϕ3
√ (13)
∂η + λγ2ϕ3 = 0; ∂Ω
6
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nd {
−∆ϕ4 − λ (1 − b1Wr,γ2)ϕ4 = σ4ϕ4; Ω

∂ϕ4
∂η +

√
λγ1ϕ4 = 0; ∂Ω . (14)

et σ3 = σ3(λ, r, γ2), σ4 = σ4(λ, γ1) be the principal eigenvalues and ϕ3, ϕ4 > 0; Ω be the corresponding
eigenfunctions of (13) and (14), respectively. The sign of σ3 (σ4) will ultimately determine if v (u) can invade
the patch when rare if u (v) is near its equilibrium.

In the absence of competition (i.e., b1 = 0 = b2) the principal eigenvalues, E1(1, γ1) and E1(r, γ2), can
be employed to determine when one species has an advantage over the other, in the sense that it has a
smaller minimum patch size, allowing it to invade and colonize smaller patches than the other species. To
see this, from the definition of λ we obtain the minimum patch size for u, ℓ∗

1 =
√

D1E1(1,γ1)
r1

and for v,
∗
2 =

√
D1E1(r,γ2)

r1
. Fixing r1 and D1, there are then three cases: (1) E1(1, γ1) = E1(r, γ2) implying that

∗
1 = ℓ∗

2: neither species has an advantage as their minimum patch sizes are the same; (2) E1(1, γ1) < E1(r, γ2)
mplying that ℓ∗

1 < ℓ∗
2: u has an advantage being able to invade and colonize smaller patches than v; and (3)

1(1, γ1) > E1(r, γ2) implying that ℓ∗
1 > ℓ∗

2: v has an advantage being able to invade and colonize smaller
atches than u. Crucial to this determination of advantage are the composite parameters, r, γ1, γ2, which
ncapsulate several biological mechanisms, i.e., r measures differences in the organisms in the patch and
1, γ2 measure the combined effect of a hostile matrix on the respective organisms.

To see this, we first assume that the matrix affects both species the same and there is no competition,
.e., γ1 = γ2 and b1 = 0 = b2. Note that r can be written as r =

r2
D2
r1
D1

and interpreted as a means to
ompare the two species by their patch growth-to-diffusion (G-D) ratio, defined as the ratio of patch intrinsic
rowth rate to patch diffusion rate. We employ Lemma 2.7(A) in Section 2 to explore the three cases: (1)
f r = 1, then both growth to diffusion ratios are the same, E1(1, γ1) = E1(r, γ1) implying that ℓ∗

1 = ℓ∗
2,

nd neither species has a G-D advantage; (2) if r > 1 then v’s growth to diffusion ratio is greater than u’s,
1(1, γ1) > E1(r, γ1) implying that ℓ∗

1 > ℓ∗
2, and v has a G-D advantage in having a smaller minimum patch

ize; and (3) if r < 1 then u’s ratio is greater than v’s, E1(1, γ1) < E1(r, γ1) implying that ℓ∗
1 < ℓ∗

2, and u

as a G-D advantage in having a smaller minimum patch size.
Secondly, we assume there is no overall difference in G-D ratios of the organisms and no competition,

.e., r = 1 and b1 = 0 = b2. The combined effect of matrix hostility and behavior response to detecting
patch edge is measured in the respective γi-value. For example, a large γ1-value could indicate a high
atrix mortality rate (i.e. S∗

1 ≫ 1) and/or a propensity of organisms to recognize the patch edge, bias their
ovement, and leave the patch with a high probability (i.e., α1 ≈ 0). We employ Lemma 2.7(B) in Section 2

o explore the there are three cases: (1) if γ1 = γ2 then E1(1, γ1) = E1(1, γ2), ℓ∗
1 = ℓ∗

2, and the combined
atrix effect benefits neither species over the other; (2) if γ1 > γ2 then E1(1, γ1) > E1(1, γ2), ℓ∗

1 > ℓ∗
2, and

he combined matrix effect causes more mortality in u through interactions with the hostile matrix, and thus,
ives v a smaller minimum patch size and a matrix advantage; and (3) if γ1 < γ2 then E1(1, γ1) < E1(1, γ2),
∗
1 < ℓ∗

2, and the combined matrix effect causes more mortality in v through interactions with the hostile
atrix, and thus, gives u a smaller minimum patch size and a matrix advantage. Since larger patches have
correspondingly larger core area within the patch where organisms have little chance of encountering
ortality at the patch/matrix interface, any differential matrix effect acting on the system will be more
ronounced for small patch sizes and diminish as the patch size goes to infinity. As we will see in the
ections that follow, advantage in growth-to-diffusion ratio and combined matrix effect will play vital roles

n predicting the outcome of this competition system.

7
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.4. Main results

In this subsection, we discuss nonexistence, existence, uniqueness, and stability of coexistence states of
3), i.e., positive solutions for (4). First, we state a result which provides sufficient conditions for nonexistence

of positive solutions for (4).

heorem 1.3 (Nonexistence). For r > 0, b1, b2 ≥ 0, and γ1, γ2 ≥ 0, (4) has no positive solution if any of
he following hold:

(A) λ ≤ max {E1(1, γ1), E1(r, γ2)}
(B) γ1 = γ2 and either of the following also hold:

(i) b2 ≤ 1 ≤ b1 and 1 ≤ r ≤ b1
b2

, with at least one inequality being strict;
(ii) b1 ≤ 1 ≤ b2 and b1

b2
≤ r ≤ 1, with at least one inequality being strict

(C) γ1 > γ2, b2 ≤ 1 ≤ b1, and 1 ≤ r ≤ b1
b2

(D) γ1 < γ2, b1 ≤ 1 ≤ b2, and b1
b2

≤ r ≤ 1
(E) b1 > 1, b2 <

b1−1
b1

, and λ ≫ 1
(F) b2 > 1, b1 <

b2−1
b2

, and λ ≫ 1
(G) E1(1, γ1) < E1(r, γ2), b2 > 0, and λ < E1(r, γ2) + δ(b2), for some δ(b2) > 0
(H) E1(1, γ1) > E1(r, γ2), b1 > 0, and λ < E1(1, γ1) + δ(b1), for some δ(b1) > 0.

We conjecture that the upper (lower) bounds on r in (B)(i) and (C) (respectively, (B)(ii) and (D)) and
he upper bounds on b2 in (E) and b1 in (F) are all artificial, due to limitations in our proof method. Next,
e present our main result giving sufficient conditions on coexistence of the competitors.

heorem 1.4 (Existence). Let r∗ = E1(1,γ2)
E1(1,γ1) . For r > 0, b1, b2 ≥ 0, and γ1, γ2 ≥ 0 the following hold:

(A) If b1, b2 < 1 then (4) has at least one positive solution, (u, v), for λ > max
{
E1(1,γ1)

1−b1
, E1(r,γ2)

1−b2

}
.

Furthermore, every positive solution of (4), (u, v), will satisfy:

(i) for λ > max {E1(1, γ1), E1(r, γ2)},

0 < u(x, λ) ≤ W1,γ1,0(x, λ); Ω ,

0 < v(x, λ) ≤ Wr,γ2,0(x, λ); Ω ,

(ii) for λ > max
{
E1(1,γ1)

1−b1
, E1(r,γ2)

1−b2

}
,

W1,γ1,b1(x, λ) < u(x, λ) ≤ W1,γ1,0(x, λ); Ω ,

Wr,γ2,b2(x, λ) < v(x, λ) ≤ Wr,γ2,0(x, λ); Ω ,

(iii) if r = 1 and γ1 = γ2 (implying that E1(1, γ1) = E1(r, γ2)) then for λ > E1(1, γ1),

u(x, λ) = 1 − b1

1 − b1b2
W1,γ1,0(x, λ); Ω ,

v(x, λ) = 1 − b2

1 − b1b2
W1,γ1,0(x, λ); Ω

(B) If b1 = b2 = 1, γ1 = γ2, and r = 1 (implying that E1(1, γ1) = E1(r, γ2)) then (4) has infinitely many
positive solutions for λ > E1(1, γ1), of the form:

(u(x, λ), v(x, λ)) = (sW (x, λ), (1 − s)W (x, λ)) ; Ω , s ∈ (0, 1)
1,γ1,0 1,γ1,0

8
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(C) If b1 < 1 ≤ b2, γ1 > 0, and r > r∗ (implying that E1(r, γ2) < E1(1, γ1)) then for b1 ≈ 0 there exist
λ1(r, b1, b2, γ1, γ2), λ2(r, b2, γ1, γ2) > E1(1, γ1) such that (4) has at least one positive solution, (u, v), for
λ ∈ (λ1, λ2). Furthermore, (u, v) will satisfy:

W1,γ1,b1(x, λ) < u(x, λ) < W1,γ1,0(x, λ); Ω ,

0 < v(x, λ) < Wr,γ2,0(x, λ); Ω

(D) If b2 < 1 ≤ b1, γ2 > 0, and r < r∗ (implying that E1(r, γ2) > E1(1, γ1)) then for b2 ≈ 0 there exist
λ1(r, b1, b2, γ1, γ2), λ2(r, b2, γ1, γ2) > E1(r, γ2) such that (4) has at least one positive solution, (u, v), for
λ ∈ (λ1, λ2). Furthermore, (u, v) will satisfy:

0 < u(x, λ) < W1,γ1,0(x, λ); Ω ,

Wr,γ2,b2(x, λ) < v(x, λ) < Wr,γ2,0(x, λ); Ω

(E) If b1, b2 > 1, γ1 = γ2, and r = 1 (implying that E1(r, γ2) = E1(1, γ1)) then (4) has at least one positive
solution for λ > E1(1, γ1), given by:

(u(x, λ), v(x, λ)) =
(

1 − b1

1 − b1b2
W1,γ1,0(x, λ), 1 − b2

1 − b1b2
W1,γ1,0(x, λ)

)
; Ω .

Notice that (A)(i) of Theorem 1.4 holds for b1, b2 ≥ 0 and the inequalities become strict if and only if
b1, b2 > 0. We now present sufficient conditions for uniqueness of positive solutions of (4).

Theorem 1.5 (Uniqueness). For r > 0, b1, b2 < 1, and γ1, γ2 ≥ 0 the following hold:

(A) If b1, b2 < 1, r = 1, and γ1 = γ2 then (4) has at most one positive solution for any λ > 0.
(B) For λ > max {E1(1, γ1), E1(r, γ2)} if

4 > b2
1
r

sup
Ω

{
W1,γ1(x, λ)
Wr,γ2(x, λ)

}
+ 2b1b2 + rb2

2 sup
Ω

{
Wr,γ2(x, λ)
W1,γ1(x, λ)

}
(15)

then (4) has at most one positive solution. In particular, if b1, b2 ≈ 0 then (15) holds and (4) has a
unique positive solution for λ > max

{
E1(1,γ1)

1−b1
, E1(r,γ2)

1−b2

}
.

Note that we provide a stronger uniqueness result for the asymmetric competition case (i.e. b1 = 0) in
ection 4.

Next we present results on stability of the semitrivial steady states for (3) and a condition for convergence
o a coexistence state. We consider stability in the Lyapunov sense (see [36,39], for example).

heorem 1.6 (Stability). Suppose that r > 0, b1, b2 ≥ 0, γ1, γ2 ≥ 0, and λ > 0 are such that σ1, σ2 < 0.
he following hold:

(A) If σ3 > 0 or σ4 > 0 then (W1,γ1 , 0) or (0,Wr,γ2) is asymptotically stable, respectively
(B) If σ3 < 0 or σ4 < 0 then (W1,γ1 , 0) or (0,Wr,γ2) is unstable, respectively
(C) If σ3, σ4 < 0 then there exist a max–min (u, v) and a min–max (u, v) positive solution of (4) with

0 ≤ u ≤ u ≤ W1,γ1 and 0 ≤ v ≤ v ≤ Wr,γ2 on Ω such that:

(i) if u(x) ≤ u(0, x) ≤ W1,γ1(x); Ω and 0 < v(0, x) ≤ v(x); Ω then the unique positive solution of
(3), (u(t, x), v(t, x)), converges to (u, v) as t → ∞.

(ii) if 0 < u(0, x) ≤ u(x); Ω and v(x) ≤ v(0, x) ≤ Wr,γ2(x); Ω then the unique positive solution of
(3), (u(t, x), v(t, x)), converges to (u, v) as t → ∞.
9
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Table 1
Summary of coexistence and nonexistence results in the semistrong competition case comparing matrix effect, G-D ratio, minimum
patch size in the absence of competition, and competitive effect. Recall that predictions of no coexistence are for all patch sizes,
while predictions of coexistence in the semistrong case are only valid for a finite range of patch sizes (see Theorem 1.4). For each
ategory, species advantage is given in parentheses, e.g., (N) represents neither species having an advantage, whereas (u) denotes u

aving an advantage over v in that category. Note that in Cases 1, 7, 13-15 we require γ2 > 0, while in Cases 6, 10-12, 18 we require
1 > 0. The rightmost column shows where our results hold in the two extreme cases of 1) D: Dirichlet boundary condition (absorbing
oundary) or 2) N: Neumann boundary condition (reflecting boundary). Note that R denotes Robin boundary condition which occurs
hen a γi ∈ (0, ∞). For example, Case 10 still holds even if u faces an immediately lethal matrix (D) and v is completely isolated

from matrix effects (N).

Case Matrix effect G-D Ratio Minimum patch size Competition Predicted outcome Other BCs

1 γ1 = γ2 (N) r < 1 (u) E1(1, γ1) < E1(r, γ2) (u) b2 < 1 ≤ b1 (v) Coexistence for b2 ≈ 0 u, v: D

2 γ1 = γ2 (N) r = 1 (N) E1(1, γ1) = E1(r, γ2) (N) b2 < 1 ≤ b1 (v) No Coexistence u, v: D or N

3 γ1 = γ2 (N) r ∈
(

1, b1
b2

)
(v) E1(1, γ1) > E1(r, γ2) (v) b2 < 1 ≤ b1 (v) No Coexistence u, v: D

4 γ1 = γ2 (N) r ∈
(

b1
b2

, 1
)

(u) E1(1, γ1) < E1(r, γ2) (u) b1 < 1 ≤ b2 (u) No Coexistence u, v: D

5 γ1 = γ2 (N) r = 1 (N) E1(1, γ1) = E1(r, γ2) (N) b1 < 1 ≤ b2 (u) No Coexistence u, v: D or N

6 γ1 = γ2 (N) r > 1 (v) E1(1, γ1) > E1(r, γ2) (v) b1 < 1 ≤ b2 (u) Coexistence for b1 ≈ 0 u, v: D

7 γ1 > γ2 (v) r < r∗ (u) E1(1, γ1) < E1(r, γ2) (u) b2 < 1 ≤ b1 (v) Coexistence for b2 ≈ 0 u: D, v : R

8 γ1 > γ2 (v) r = 1 (N) E1(1, γ1) > E1(r, γ2) (v) b2 < 1 ≤ b1 (v) No Coexistence u: D, v: N or R

9 γ1 > γ2 (v) r ∈
(

1, b1
b2

)
(v) E1(1, γ1) > E1(r, γ2) (v) b2 < 1 ≤ b1 (v) No Coexistence u: D, v: N or R

10 γ1 > γ2 (v) r ∈ (r∗, 1) (u) E1(1, γ1) > E1(r, γ2) (v) b1 < 1 ≤ b2 (u) Coexistence for b1 ≈ 0 u: D, v: N or R

11 γ1 > γ2 (v) r = 1 (N) E1(1, γ1) > E1(r, γ2) (v) b1 < 1 ≤ b2 (u) Coexistence for b1 ≈ 0 u: D, v: N or R

12 γ1 > γ2 (v) r > 1 (v) E1(1, γ1) > E1(r, γ2) (v) b1 < 1 ≤ b2 (u) Coexistence for b1 ≈ 0 u: D, v: N or R

13 γ1 < γ2 (u) r < 1 (u) E1(1, γ1) < E1(r, γ2) (u) b2 < 1 ≤ b1 (v) Coexistence for b2 ≈ 0 u: N or R, v: D

14 γ1 < γ2 (u) r = 1 (N) E1(1, γ1) < E1(r, γ2) (u) b2 < 1 ≤ b1 (v) Coexistence for b2 ≈ 0 u: N or R, v: D

15 γ1 < γ2 (u) r ∈ (1, r∗) (v) E1(1, γ1) < E1(r, γ2) (u) b2 < 1 ≤ b1 (v) Coexistence for b2 ≈ 0 u: N or R, v: D

16 γ1 < γ2 (u) r ∈
(

b1
b2

, 1
)

(u) E1(1, γ1) < E1(r, γ2) (u) b1 < 1 ≤ b2 (u) No Coexistence u: N or R, v: D

17 γ1 < γ2 (u) r = 1 (N) E1(1, γ1) < E1(r, γ2) (u) b1 < 1 ≤ b2 (u) No Coexistence u: N or R, v: D

18 γ1 < γ2 (u) r > r∗ (v) E1(1, γ1) > E1(r, γ2) (v) b1 < 1 ≤ b2 (u) Coexistence for b1 ≈ 0 u: R, v: D

(iii) (u, v) = (u, v) if and only if there is a unique positive solution of (4). Moreover, this coexistence
state is globally asymptotically stable.

(iv) There does not exist an asymptotically stable positive solution of (4) arbitrarily close to (W1,γ1 , 0)
or (0,Wr,γ2).

In the absorbing boundary case (Dirichlet boundary condition), we have that γ1, γ2 → ∞, E1(1, γ1) = ED1

nd E1(r, γ2) = ED
1
r , and Theorem 1.3 (A) & (B), Theorem 1.4 (A), (B), & (E), and Theorem 1.5 provide

esults similar to those in Theorems 3.1, 4.1, & 4.2 in [23]. In the reflecting boundary condition case
Neumann boundary condition, γ1 = 0 = γ2), we have that E1(1, γ1) = 0 = E1(r, γ2) and Theorem 1.3
A) & (B), Theorem 1.4 (A), (B), & (E) provide results similar to those in Theorems 3.6 & 4.3 of [37].

We close this subsection with a discussion of our results in the semistrong competitive case. In previous
tudies where both organisms were symmetrically affected by the matrix (i.e. either not at all via a reflecting
oundary or facing the harsh reality of an immediately lethal matrix via an absorbing boundary), coexistence

s not possible in the semistrong competition case with any G-D ratio and a reflecting boundary or when
he G-D ratio is one in the absorbing boundary case (see, e.g., [22,23]). Interestingly, our results show that
hen organisms are differentially affected by the surrounding patch matrix coexistence is possible even in

he semistrong case, at least for an intermediate range of patch sizes. Although our results do not prove
ecessity, they suggest that coexistence in this case requires counterbalancing of advantage and disadvantage
n contrasting mechanisms. In Table 1 we summarize Theorems 1.3 and 1.4 in the semistrong case and provide

detailed comparison of advantage/disadvantage between the species. The Matrix Effect, G-D Ratio, and

ompetition columns denote appropriate parameter value ranges in our framework, as well as an indication

10
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f which species has an advantage in a particular category given that the remaining categories show no
dvantage for a particular species. For example, r < 1 in the G-D Ratio category indicates an advantage for
in the absence of competition and with the same matrix effect (i.e., γ1 = γ2). We note that the Matrix

Effect and G-D Ratio columns together determine which species has the smallest minimum patch size (again
in the absence of competition) which is denoted in the Minimum Patch Size column.

As a first example, Case 10 shows the matrix affects u more severely than v (either u has a higher
emigration rate or higher effective matrix hostility relative to v) giving v the advantage in this category,
while a G-D ratio less than one indicates that u either has a higher patch intrinsic growth rate or lower
patch diffusion rate relative to v, which gives u the advantage in this category. However, r > r∗ indicates that
between these contrasting mechanisms, the negative matrix effects on u overcome its G-D ratio advantage
giving v a smaller minimum patch size requirement in the absence of competition. Thus, v has a combined
advantage over u in the absence of competition. But, the effects of competition for resources in the patch are
more severe towards v, giving u a competitive advantage. Our results then predict that coexistence is possible
for an intermediate (finite) range of patch sizes as long as b1 ≈ 0 (meaning that the competitive effect of v
onto u is sufficiently weak). This restriction on b1 is reasonable since we have placed no upper bound on b2. In
fact, we would expect that for b2 ≫ 1 we must also have b1 ≈ 0 in order to still allow for coexistence. In this
ase, we see a balancing act between v’s ability to invade and colonize smaller patches than u in the absence

of competition and the ability of u to better compete with v for resources in a patch enables coexistence for
finite range of patch sizes. Our nonexistence results also indicate that in semistrong cases such as Case

0, coexistence is not possible for large patch sizes when b1 <
b2−1
b2

. This nonexistence result is consistent
with previous work where it has been shown that as patch size increases, a large enough core area develops
in the patch where organisms are somewhat isolated from matrix effects (see, e.g., [29]). Thus, for large
enough patch sizes, dynamics of the model begin to resemble those of the reflecting boundary case. Recall
that coexistence is not possible for the semistrong case with a reflecting boundary condition. The Other BCs
column gives some indication as to when our results are still valid in the extreme cases of an immediately
lethal matrix (absorbing boundary or Dirichlet boundary condition (DBC)) and a completely isolated patch
(reflecting boundary condition or Neumann boundary condition (NBC)). Interestingly, if γ1 → ∞ (u faces
immediate mortality when encountering the patch/matrix interface, giving rise to an absorbing boundary
condition) and γ2 = 0 (v is completely isolated from matrix effects, giving rise to a reflecting boundary
condition) then coexistence is still possible for an intermediate range of patch sizes.

We also note that as γ1 → γ2 we have r∗ → 1 and Case 10 ceases to exist. A parallel scenario for Case 10
when γ1 = γ2 is found in Cases 4 & 6. Since r∗ = 1, Case 4 indicates a scenario where neither species has
a matrix effect advantage, but u retains an advantage in G-D ratio, and ultimately in minimum patch size.
Our results show that if u has an advantage both in being able to colonize smaller patches (in the absence of
competition) and better compete for resources in the patch then coexistence is not possible (we have already
conjectured that our result in this case can be extended to cover r ≤ b1

b2
). In stark contrast, Case 6 shows

scenario where v’s G-D ratio gives it an advantage in being able to colonize smaller patch sizes (in the
bsence of competition), combined with a counter-balanced advantage for u in competition for resources in

the patch, allow for coexistence for an intermediate range of patch sizes when b1 ≈ 0. We also note that
these results also hold when γ1, γ2 → ∞ giving rise to an absorbing boundary for both u and v. Cases 1, 3,
nd 15 show a similar setting as Cases 4, 6, and 10 but with the roles of u and v being swapped.

Maintaining a matrix effect advantage for v (γ1 > γ2) but taking a G-D ratio such that r < r∗ leads us
o Case 7 which is similar to Case 10 except that u’s G-D ratio allows for an advantage in u being able to
olonize smaller patches in the absence of competition. This advantage is offset by v’s competitive advantage
n the patch to allow coexistence in an intermediate range of patch sizes. A similar situation is found in Case
8, but where u and v roles are reversed. Unlike Cases 10 & 15, scenarios in Case 7 & 18 do not allow for

either species to have a reflecting boundary condition.

11
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When all mechanisms are either neutral with regard to awarding an advantage to one species over the
ther or favor the same organism when an advantage occurs, Cases 2, 5, 8, 9, 16, & 17 give predictions of
o coexistence for all patch sizes. Finally, Cases 11 & 13 give scenarios where either the G-D ratio is neutral
ith respect to advantage or favors v, giving rise to v having an advantage in terms of colonizing smaller
atches than u in the absence of competition. This offset by u’s competitive advantage in the patch yields
rediction of coexistence for an intermediate range of patch sizes. A symmetric set of cases is found in Cases
3 & 14 where the roles of u and v are reversed.

The overarching theme arising from our results as outlined in Table 1 is that advantage in either minimum
atch size (in the absence of competition) or direct competitive effect and disadvantage in the other is
ufficient to allow an intermediate (and finite) range of patch sizes for which coexistence occurs. Our results
uggest that such a balancing act is necessary for coexistence. In fact, we conjecture that one of the conditions
ust hold in order to have coexistence in the semistrong competition case:

E1(1, γ1) < E1(r, γ2) and b2 < 1 ≤ b1 (16)
E1(1, γ1) > E1(r, γ2) and b1 < 1 ≤ b2. (17)

Computational results in the asymmetric case (see Section 4) certainly agree with this conjecture. From a
mechanistic standpoint, these conditions are certainly consistent with intuition. In the case of (16), if for a
given level of competitive effect of u onto v (b2 > 0) a patch size was such that λ ∈ (E1(r, γ2), E1(r, γ2) +
(b2)) (for δ(b2) ≈ 0, whose existence is guaranteed by Theorem 1.3(G)) then a coexistence state is not be
ossible. In this case, we expect a range of patch sizes giving λ ∈ (E1(r, γ2), E1(r, γ2) + δ(b2)) where (u, 0) is
lobally asymptotically stable and (0, v) is unstable. But, for sufficiently large patches the dynamics of (3)
esemble that of the same model but with reflecting boundary conditions where coexistence is not possible,
u, 0) is unstable, and (0, v) is globally asymptotically stable. Under the sufficient conditions listed in our
esults, we see that this reversal of competitive dominance as patch size increases yields an intermediate
finite) range of patch sizes where coexistence arises.

.5. Structure of the paper

We will present some preliminary mathematical results in Section 2. Proofs of our main results are given
n Section 3, followed by an analysis of the asymmetric competition case in Section 4. Finally, we discuss
some consequences of our results in Section 5.

2. Mathematical preliminaries

Firstly, note that the general theory for reaction diffusion systems such as (3) is well established
(e.g., see [29,36]). In fact, since (3) is a quasimonotone nonincreasing system, an application of Theorem
3.2 of Chapter 8 in [36] with subsolution (0, 0) and supersolution (M1,M2) (M1,M2 ≥ 1) of (3) guarantees
existence and uniqueness of a solution to (3). Also, solutions with nonnegative initial data exist and remain
nonnegative and bounded for all time. Predictions of persistence, coexistence, and extinction in reaction
diffusion systems can be explored via determination of the stability of the trivial steady state (0, 0) and
semitrivial steady states (u∗, 0) and (0, v∗), via determination of the sign of σ1, σ2, σ3, and σ4 (see, e.g., [29]).
In fact, our main results show that the conventional view of “invasibility implies persistence” (see [29], for
example) also holds for the model in the sense that instability of both the trivial and semitrivial steady
states will imply a prediction that if an organism can invade the patch with small positive initial density
then that the organism can colonize the patch and persist.

We now present and prove several preliminary results which will be crucial in proving our main results.

Recall that we denote W1,γ1 = W1,γ1,0 and Wr,γ2 = Wr,γ2,0.

12
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emma 2.1. If λ > max {E1(1, γ1), E1(r, γ2)} and σ3, σ4 < 0 then (4) has a positive solution, (u, v), which
or m ≈ 0 satisfies:

(mϕ4,mϕ3) < (u, v) < (W1,γ1 ,Wr,γ2); Ω

here σ3, σ4 are the principal eigenvalues with corresponding eigenfunctions ϕ3, ϕ4 of (13), (14), respectively.

roof. Let m > 0 and define ψ = (mϕ4,mϕ3) and Z = (W1,γ1 ,Wr,γ2). By our choice of λ, σ1, σ2 < 0
nsuring that both W1,γ1 and Wr,γ2 exist. We will now show that ψ and Z are a sub-supersolution pair for
4) (see [36], for example). First, we check (ψ1, Z2):

− ∆ψ1 − λψ1 (1 − ψ1 − b1Z2) = mσ4ϕ4 +mλϕ4 −mλb1Wr,γ2ϕ4 − λmϕ4

+ λm2ϕ2
4 +mλb1Wr,γ2ϕ4

= mϕ4 [σ4 + λmϕ4]
< 0 (18)

for m ≈ 0 since σ4 < 0. Also, we have

− ∆Z2 − λrZ2 (1 − Z2 − b2ψ1) = λrWr,γ2 − λrW 2
r,γ2 − λrWr,γ2 + λrW 2

r,γ2

+ λrb2Wr,γ2mϕ4

= λrb2Wr,γ2mϕ4

≥ 0 (19)

since Wr,γ2 , ϕ4 > 0; Ω , λ, r > 0, and b2 ≥ 0. It is easy to see that

∂ψ1

∂η
+

√
λγ1ψ1 = 0 = ∂Z2

∂η
+

√
λγ2Z2. (20)

Next, we check (Z1, ψ2):

− ∆Z1 − λZ1 (1 − Z1 − b1ψ2) = λW1,γ1 − λW 2
1,γ1 − λW1,γ1 + λW 2

1,γ1 + λb1 mW1,γ1ϕ3

= λb1 mW1,γ1ϕ3

≥ 0 (21)

since W1,γ1 , ϕ3 > 0; Ω , λ, r > 0, and b1 ≥ 0. Also, we have

− ∆ψ2 − λrψ2 (1 − ψ2 − b2Z1) = mσ3ϕ3 +mλrϕ3 −mλrb2W1,γ1ϕ3 −mλrϕ3

+ m2λrϕ2
3 +mλrb2W1,γ1ϕ3

= mϕ3 [σ3 +mλrϕ3]
< 0 (22)

or m ≈ 0 since σ3 < 0. It is also easy to see that

∂Z1

∂η
+

√
λγ1Z1 = 0 = ∂ψ2

∂η
+

√
λγ2ψ2. (23)

lso, we can choose m ≈ 0 such that ψ < Z; Ω . Thus, ψ,Z are a strict sub-supersolution pair and Theorem
.2 in Chapter 8 of [36] gives that (4) has at least one solution, (u, v), with

(ψ1, ψ2) < (u, v) < (Z1, Z2); Ω . □ (24)

emma 2.2. If λ > max {E (1, γ ), E (r, γ )} then the following hold:
1 1 1 2
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(A) σ3
∫
Ω
Wr,γ2ϕ3dx = λr

∫
Ω
Wr,γ2ϕ3 [b2W1,γ1 −Wr,γ2 ] dx

(B) σ4
∫
Ω
W1,γ1ϕ4dx = λ

∫
Ω
W1,γ1ϕ4 [b1Wr,γ2 −W1,γ1 ] dx.

Proof. We only present a proof of (A) as the proof of (B) is similar. Using Green’s Identity, we have:∫
Ω

−∆Wr,γ2ϕ3 + ∆ϕ3Wr,γ2dx =
∫
∂Ω

−
∂Wr,γ2

∂η
ϕ3 + ∂ϕ3

∂η
Wr,γ2ds. (25)

t is easy to see that the right-hand side of (25) is zero, thus

0 =
∫
Ω

−∆Wr,γ2ϕ3 + ∆ϕ3Wr,γ2dx =
∫
Ω

λrWr,γ2ϕ3 − λrW 2
r,γ2ϕ3 − σ3Wr,γ2ϕ3 − λrWr,γ2ϕ3

+ λrb2W1,γ1Wr,γ2ϕ3dx

=
∫
Ω

−σ3Wr,γ2ϕ3 + λrWr,γ2ϕ3 [b2W1,γ1 −Wr,γ2 ] dx (26)

or, equivalently,
σ3

∫
Ω

Wr,γ2ϕ3dx =
∫
Ω

λrWr,γ2ϕ3 [b2W1,γ1 −Wr,γ2 ] dx. □ (27)

Lemma 2.3. Considering σ3, σ4 as functions of W1,γ1 ,Wr,γ2 , respectively, the following hold:

(A) σ3, σ4 is an increasing function of W1,γ1 ,Wr,γ2 , respectively
(B) If λ > E1(1, γ1) then

σ3(0) < σ3(W1,γ1) < σ3(1),

(C) If λ > E1(r, γ2) then
σ4(0) < σ4(Wr,γ2) < σ4(1).

The proof of Lemma 2.3 follows from Corollary 2.2 in [29].

Lemma 2.4. If (u, v) is a positive solution of (4) then the following holds:

λ

∫
Ω

uv [(1 − r) + (rb2 − 1)u+ (r − b1)v] dx =
√
λ(γ1 − γ2)

∫
∂Ω

uvds. (28)

roof. Again by Green’s Identity, we have that:∫
Ω

−∆uv + ∆vudx =
∫
∂Ω

−∂u

∂η
v + ∂v

∂η
uds. (29)

hus, we have ∫
Ω

−∆uv + ∆vudx =
∫
Ω

λu (1 − u− b1v) v

− λrv (1 − v − b2u)udx

=
∫
Ω

λuv − λu2v − λb1uv
2 − λruv

+ λruv2 + λrb2u
2vdx

= λ

∫
Ω

uv [(1 − r) + (rb2 − 1)u+ (r − b1)v] dx (30)

and ∫
∂Ω

−∂u

∂η
v + ∂v

∂η
uds =

√
λ(γ1 − γ2)

∫
∂Ω

uvds (31)

s desired. □
14
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emma 2.5. Suppose that D(x) := 1 − r + (rb2 − 1)u(x) + (r − b1)v(x). If r > 0, b1, b2 ≥ 0, γ1, γ2 ≥ 0,
nd (u, v) is a positive solution of (4) then the following hold:

(A) if b1 ≤ 1 ≤ b2 and b1
b2

≤ r ≤ 1 then D(x) ≥ 0
(B) if b2 ≤ 1 ≤ b1 and 1 ≤ r ≤ b1

b2
then D(x) ≤ 0.

Proof. To establish the result, we consider the following cases.
Case i: Assume that r ≤ min

{
b1,

1
b2

}
, which implies that rb2 − 1 ≤ 0 and r − b1 ≤ 0. Since u, v > 0; Ω ,

f r ≥ 1 then we have that:

D(x) = 1 − r + (rb2 − 1)u(x) + (r − b1)v(x) ≤ 1 − r

≤ 0; Ω . (32)

lso, since u, v ≤ 1; Ω , if r ≥ b1
b2

then we have that:

D(x) = 1 − r + (rb2 − 1)u(x) + (r − b1)v(x) ≥ 1 − r + rb2 − 1 + r − b1

= rb2 − b1

≥ 0; Ω . (33)

otice that for (32) to hold, it is necessary that b2 ≤ 1 ≤ b1 and for (33) to hold, that b1 ≤ 1 ≤ b2. Also,
D(x) < 0; Ω in (32) (D(x) > 0; Ω in (33)) if at least one of the inequalities is strict.

Case ii: Assume that b1 ≤ r ≤ 1
b2

, which implies that rb2 −1 ≤ 0 and r− b1 ≥ 0. Since u > 0 & v ≤ 1; Ω ,
f b1 ≥ 1 then we have that:

D(x) = 1 − r + (rb2 − 1)u(x) + (r − b1)v(x) ≤ 1 − r + r − b1

≤ 1 − b1

≤ 0; Ω . (34)

lso, since u ≤ 1 & v > 0; Ω , if b2 ≥ 1 then we have that:

D(x) = 1 − r + (rb2 − 1)u(x) + (r − b1)v(x) ≥ 1 − r + rb2 − 1
= r (b2 − 1)
≥ 0; Ω . (35)

gain, notice that for (34) to hold, it is necessary that b2 ≤ 1 ≤ b1 and for (35) to hold, that b1 ≤ 1 ≤ b2.
lso, D(x) < 0; Ω in (34) (D(x) > 0; Ω in (35)) if at least one of the inequalities is strict.
Case iii: Assume that 1

b2
≤ r ≤ b1, which implies that rb2 −1 ≥ 0 and r−b1 ≤ 0. Since u > 0 & v ≤ 1; Ω ,

f b1 ≤ 1 then we have that:

D(x) = 1 − r + (rb2 − 1)u(x) + (r − b1)v(x) ≥ 1 − r + r − b1

= 1 − b1

≥ 0; Ω . (36)

lso, since u ≤ 1 & v > 0; Ω , if b2 ≤ 1 then we have that:

D(x) = 1 − r + (rb2 − 1)u(x) + (r − b1)v(x) ≤ 1 − r + rb2 − 1
= r (b2 − 1)
≤ 0; Ω . (37)
15
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gain, notice that for (36) to hold, it is necessary that b1 ≤ 1 ≤ b2 and for (37) to hold, that b2 ≤ 1 ≤ b1.
Also, D(x) > 0; Ω in (36) (D(x) < 0; Ω in (37)) if at least one of the inequalities is strict.

Case iv: Assume that max
{

1
b2
, b1

}
≤ r ≤ 1, which implies that rb2 − 1 ≥ 0 and r − b1 ≥ 0. Since

u, v > 0; Ω , we have that:

D(x) = 1 − r + (rb2 − 1)u(x) + (r − b1)v(x) ≥ 1 − r

≥ 0; Ω . (38)

lso, since u, v ≤ 1; Ω , if r ≤ b1
b2

then we have that:

D(x) = 1 − r + (rb2 − 1)u(x) + (r − b1)v(x) ≤ 1 − r + rb2 − 1 + r − b1

= rb2 − b1

≤ 0; Ω . (39)

gain, notice that for (38) to hold, it is necessary that b1 ≤ 1 ≤ b2 and for (39) to hold, that b2 ≤ 1 ≤ b1.
lso, D(x) > 0; Ω in (38) (D(x) < 0; Ω in (39)) if at least one of the inequalities is strict.
The result now follows for (A) from (33), if 1

b2
≤ b1 then (36) or if 1

b2
> b1 then (35), and (38), and for

B) from (32), if 1
b2

≤ b1 then (37) or if 1
b2
> b1 then (34), and (39). □

emma 2.6. If b1, b2 < 1 and (u, v) is a positive solution of (4) then the following hold:

(A) if z(x) is a smooth function that satisfies{
−∆z = λz (1 − u− v) ; Ω

∂z
∂η +

√
λγ1z = 0; ∂Ω (40)

then z(x) ≡ 0
(B) if z(x) is a smooth function that satisfies{

−∆z = λrz (1 − u− v) ; Ω
∂z
∂η +

√
λγ2z = 0; ∂Ω (41)

then z(x) ≡ 0.

roof. We only provide a proof for (A) as the proof for (B) is similar. Note that when µ = 0, w ≡ u is a
olution of {

−∆w − λw (1 − u− b1v) = µw; Ω
∂w
∂η +

√
λγ1w = 0; ∂Ω . (42)

ince u > 0; Ω , the principal eigenvalue µ1 of (42) is zero. But, for any ϕ ̸= 0 smooth we must have:

µ1 = 0 ≤
∫
Ω

|∇ϕ|2 − λ (1 − u− b1v)ϕ2dx+
∫
∂Ω

√
λγ1ϕ

2ds∫
Ω
ϕ2dx

(43)

this can be seen from page 97 of [29]). But, we also have∫
Ω

−∆zzdx =
∫
∂Ω

−∂z

∂η
zds+

∫
Ω

|∇z|2 dx (44)

here ∫
Ω

−∆zzdx =
∫
Ω

λ (1 − u− v) z2dx (45)

nd ∫
−∂z

zds =
∫ √

λγ1z
2ds (46)
∂Ω ∂η ∂Ω

16



A. Acharya, S. Bandyopadhyay, J.T. Cronin et al. Nonlinear Analysis: Real World Applications 70 (2023) 103775

i

N

i

B

L
r

o
S

mplying that ∫
Ω

|∇z|2 dx−
∫
Ω

λ (1 − u− v) z2dx+
∫
∂Ω

√
λγ1z

2ds = 0. (47)

ow, using (43) we have

0 =
∫
Ω

|∇z|2 dx−
∫
Ω

λ (1 − u− b1v) z2dx+
∫
∂Ω

√
λγ1z

2ds +
∫
Ω

λ(1 − b1)vz2dx

≥
∫
Ω

λ(1 − b1)vz2dx (48)

mplying that ∫
Ω

λ(1 − b1)vz2dx ≤ 0. (49)

ut, this is a contraction since λ > 0, b1 < 1, and v > 0. Hence, z ≡ 0 as desired. □

emma 2.7. The principal eigenvalue, E1(r, γ), which is defined in (8) has the following properties for all
> 0 and γ ≥ 0 (note that b = 0 throughout this result):

(A) For fixed γ > 0

(i) E1(r, γ) is a decreasing function of r
(ii) E1(r, γ) → 0 as r → ∞

(iii) E1(r, γ) → ∞ as r → 0+

(B) For fixed r > 0

(i) E1(r, γ) is an increasing function of γ
(ii) E1(r, γ) → ED

1
r as γ → ∞

(iii) E1(r, γ) → 0 as γ → 0+

(C) E1(r, γ) = E1(1,γ)
r

(D) Fix γ1 > 0 and γ2 ≥ 0 and let r∗ = E1(1,γ2)
E1(1,γ1) ,

(i) if r < r∗ then E1(1, γ1) < E1(r, γ2)
(ii) if r = r∗ then E1(1, γ1) = E1(r, γ2)

(iii) if r > r∗ then E1(1, γ1) > E1(r, γ2)
(iv) if γ1 > γ2 then r∗ < 1
(v) if γ1 = γ2 then r∗ = 1

(vi) if γ1 < γ2 then r∗ > 1.

The proof of (A) – (C) can be found in [17] and (D) follows immediately from (C).
We close this section by discussing two computational methods that we will employ to numerically study

the structure of positive solutions of (4) in the asymmetric competition case in Section 4.

2.1. Quadrature method

Here, we recall in detail the quadrature method derived in [38] which we use to approximate the unique
positive solution u (= uλ) of (9) in the case of a one-dimensional patch. We note that such a quadrature
method for the Dirichlet boundary condition case was first introduced in [40]. Let f(u) = u(1−u), Ω = (0, 1),
and u be a positive solution to (9). Since (9) is autonomous, u must be symmetric about x = 1

2 , increasing
n

(
0, 1

2
)
, and decreasing on

( 1
2 , 1

)
. Let u(0) = u(1) = q and ∥u∥∞ = u

( 1
2
)

= ρ. Also, note that u′ ( 1
2
)

= 0.
ee Fig. 3 for an illustration of the structure of u.
17
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Fig. 3. Shape of a positive solution, u, to (9).

Multiplying the differential equation in (9) by u′ we have

− u′′u′ = λf(u)u′. (50)

y integrating both sides, we obtain

− [u′(x)]2

2 = λF (u(x)) + C (51)

here F (s) =
∫ s

0 f(t)dt. Now, applying u′ ( 1
2
)

= 0 and u
( 1

2
)

= ρ we must have that C = −λF (ρ). Thus

u′(x) =
√

2λ(F (ρ) − F (u(x))); x ∈
[
0, 1

2

]
. (52)

urther integration from 0 to x; x ∈
[
0, 1

2
)

yields∫ x

0

u′(x)ds√
F (ρ) − F (u(s))

=
√

2λx. (53)

hrough a change of variables and using the fact that u(0) = q we have∫ u(x)

q

ds√
F (ρ) − F (s)

=
√

2λx; x ∈
[
0, 1

2

)
. (54)

ow, letting x → 1
2 , we have

√
2

∫ ρ

q

ds√
F (ρ) − F (s)

=
√
λ. (55)

For the improper integral in (55) to exist, we must have f(ρ) > 0 and F (ρ) > F (s); s ∈ [0, ρ). Hence, in
this case we require ρ ∈ (0, 1). Using the boundary conditions in (9), we note that ρ and q must satisfy

F (ρ) = 2F (q) + γ2
2q

2

2 . (56)

t is easy to verify that given ρ ∈ (0, 1), there exists a unique q = q(ρ) ∈ (0, ρ) satisfying (56). Also,

G(ρ) =
√

2
∫ ρ ds√ (57)

q(ρ) F (ρ) − F (s)

18
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s well defined and continuous on (0, 1). Further, if λ, ρ, and q(ρ) satisfy
√
λ = G(ρ) =

√
2

∫ ρ

q(ρ)

ds√
F (ρ) − F (s)

, (58)

then it can be shown that for each x ∈
[
0, 1

2
)

there is a unique u(x) ∈ [0, ρ) that satisfies the equation∫ u(x)

q(ρ)

ds√
F (ρ) − F (s)

=
√

2λx. (59)

Now, defining u
( 1

2
)

= ρ, and u(x) = u(1 − x) for x ∈
( 1

2 , 1
]
, it can then be shown that u ∈ C2[0, 1] and

satisfies (6).
Hence (58), namely S = {(λ, ρ) | ρ ∈ (0, 1), G(ρ) =

√
λ}, describes the bifurcation diagram for

ositive solutions of (6). For given λ, ρ, and q satisfying (56) and (58), we will also use (59) to numerically
pproximate u.

.2. Shooting method

In this subsection, we discuss a numerical shooting method which will be employed to approximate the
ositive solution v of (4) in the asymmetric competition case when b1 = 0, namely:⎧⎨⎩

−v′′ = λrv [1 − v − b2u] ; (0, 1)
−v′(0) +

√
λγ2v(0) = 0

v′(1) +
√
λγ2v(1) = 0

(60)

here u = W1,γ1,0 is the unique positive solution of (6) and is numerically approximated using the quadrature
method.

Let v(0) = δ and v′ = z. Then we obtain the following system of ordinary differential equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v′ = z; (0, 1)

−z′ = λv(1 − v − b2W1,γ1); (0, 1)
z(1) = −

√
λγ1v(1)

v(0) = δ

z(0) =
√
λγ1δ.

(61)

or a given value of δ > 0, we employ the ParametricNDSolve command in Wolfram Mathematica (which
ses the “Runge–Kutta” numerical method) to approximate solutions of (61). This process can be explained
s shooting from x = 0 (where v(0) = δ and z(0) =

√
λγ1δ) and checking at x = 1 to see if z(1) = −

√
λγ1v(1)

see Fig. 4).

. Proof of main results

In this section, we provide proofs of our main results.

.1. Proof of Theorem 1.3

Assume that (u, v) is a positive solution of (4) for a fixed λ > 0.
A) First, assume that λ ≤ E1(1, γ1) which implies that σ1 ≥ 0 (see Theorem 1.2). Using Green’s Identity
nd the eigenfunction corresponding to σ1, we have that:∫

−∆uϕ1 + ∆ϕ1udx =
∫

−∂u
ϕ1 + ∂ϕ1

uds. (62)

Ω ∂Ω ∂η ∂η
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Fig. 4. Illustration of shooting from x = 0 to x = 1. Dotted lines indicate δ-values which yield solutions, v, that do not satisfy the
oundary condition at x = 1, whereas the solid line represents values that do satisfy the boundary condition.

ut, the right-hand-side of (62) is clearly equal to zero, and we also have:∫
Ω

−∆uϕ1 + ∆ϕ1udx =
∫
Ω

λuϕ1 (1 − u− b1v) − u (σ1ϕ1 + λϕ1) dx

=
∫
Ω

λuϕ1 − λu2ϕ1 − λb1uvϕ1 − σ1ϕ1u− λuϕ1dx

=
∫
Ω

−uϕ1 (u+ b1v + σ1) dx

< 0 (63)

since u, v, ϕ1 > 0; Ω and σ1 ≥ 0. This contradiction ensures that no positive solution of (4) exists when
λ ≤ E1(1, γ1). An almost identical argument follows when λ ≤ E1(r, γ2).
(B) – (D) Note that these parts follow immediately from Lemmas 2.4 and 2.5. For example, we provide a
proof of (C): Note that (A) implies that λ > max{E1(1, γ1), E1(r, γ2)}. Now, assuming γ1 > γ2 ensures
that the right-hand-side of (28) is strictly positive, whereas the left-hand-side of (28) is nonpositive from
Lemma 2.5 when b2 ≤ 1 ≤ b1 and 1 ≤ r ≤ b1

b2
(since u, v > 0; Ω and λ > 0). This contradiction implies that

no positive solution of (4) exists when b2 ≤ 1 ≤ b1 and 1 ≤ r ≤ b1
b2

.
E) Assume that b1 > 1 and b2 <

b1−1
b1

. Since we wish to prove nonexistence for large λ-values, it suffices to
how nonexistence for λ > E1(r,γ2)

1−b2
. Using Green’s Identity, we have:∫

Ω

−∆uW1,γ1 + ∆W1,γ1udx =
∫
∂Ω

−∂u

∂η
W1,γ1 + ∂W1,γ1

∂η
uds. (64)

ut, the right-hand-side of (64) is clearly equal to zero and the left-hand-side becomes:∫
Ω

−∆uW1,γ1 + ∆W1,γ1udx =
∫
Ω

λu (1 − u− b1v)W1,γ1 − λW1,γ1 (1 −W1,γ1)udx

=
∫
Ω

λuW1,γ1 [W1,γ1 − (u+ b1v)] dx

<

∫
Ω

λuW1,γ1 [W1,γ1 − b1Wr,γ2,b2 ] dx (65)

since u > 0; Ω and v ≥ Wr,γ2,b2 ; Ω (see proof of (D) in Theorem 1.4 and note that for λ > E1(r,γ2)
1−b2

,
heorem 1.2 ensures that Wr,γ2,b2 exists). Also, Theorem 1.2 ensures that:

W
1,γ1 − b1Wr,γ2,b2 → 1 − b1(1 − b2) on all closed subsets of Ω as λ → ∞. (66)
20
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ince b1 > 1 and b2 < b1−1
b1

, we have that 1 − b1(1 − b2) < 0 and can choose λ ≫ 1 such that
Ω
λuW1,γ1 [W1,γ1 − b1Wr,γ2,b2 ] dx < 0, which is a contradiction.

F) We omit this proof as it is almost identical to the one in (E).
G) Here, we show that there exists δ(b2) > 0 such that (4) has no positive solution for λ < E1(r, γ2)+δ(b2).
f λ ≤ E1(1, γ1) then from (A) (4) has no positive solution. Thus, we assume (u, v) is a positive solution of
4) for some λ ∈ (E1(1, γ1), E1(r, γ2)), which implies that σ2 > 0. By Green’s Identity, we obtain:∫

Ω

−∆vϕ2 + ∆ϕ2vdx =
∫
∂Ω

−∂v

∂η
ϕ2 + ∂ϕ2

∂η
vds, (67)

nd it is easy to see that the right-hand-side of (67) is zero. Now, we also have that:∫
Ω

−∆vϕ2 + ∆ϕ2vdx =
∫
Ω

λrv(1 − v − b2u)ϕ2 − (λr + σ2)ϕ2vdx

=
∫
Ω

(−λr − σ2 + λr − λrv − λrb2u)ϕ2vdx

=
∫
Ω

(−σ2,λ − λrv − λrb2u)ϕ2vdx

= λr

∫
Ω

(
−σ2

λr
− v − b2u

)
ϕ2vdx (68)

≤ λr

∫
Ω

(
−σ2,λ

λr
− v − b2 min

Ω
{u}

)
ϕ2vdx

≤ λr

∫
Ω

(
−σ2

λr
− b2 min

Ω
{u}

)
ϕ2vdx, (69)

hich gives rise to a contradiction since σ2 > 0. Further, from (68), we have 0 ≤ minΩ{u}
[

−σ2
λrmin

Ω
{u} − b2

]
nd we note that σ2 → 0 when λ → E1(r, γ2) and σ2 < 0 when λ > E1(r, γ2). Since b2 > 0, there exists
δ(b2) > 0 such that (4) has no positive solution for λ ∈ [E1(r, γ2), E1(r, γ2) + δ(b2)) and hence a positive

olution does not exist for λ < E1(r, γ2) + δ(b2). Furthermore, it is clear that a necessary condition for
xistence of a positive solution is H(λ, r) = −σ2

λrmin
Ω
u ≥ b2, as desired.

(H) We omit this proof as it is almost identical to the one in (G). □

.2. Proof of Theorem 1.4

(A) Assume that b1, b2 < 1 and λ > max
{
E1(r,γ2)

1−b2
, E1(1,γ1)

1−b1

}
. We first prove existence of a positive

olution of (4). Note that this implies σ1, σ2 < 0 ensuring that W1,γ1 ,Wr,γ2 (the unique positive solution of
6) with R = 1 and R = r, respectively) both exist. Now consider σ3(W1,γ1) with W1,γ1 ≡ 1 and σ4(Wr,γ2)
ith Wr,γ2 ≡ 1, namely, {

−∆ϕ3 − λr (1 − b2)ϕ3 = σ3ϕ3; Ω
∂ϕ3
∂η +

√
λγ2ϕ3 = 0; ∂Ω (70)

nd {
−∆ϕ4 − λ (1 − b1)ϕ4 = σ4ϕ4; Ω

∂ϕ4
∂η +

√
λγ1ϕ4 = 0; ∂Ω . (71)

y Lemma 2.3, we have that σ3(W1,γ1) < σ3(1) and σ4(Wr,γ2) < σ4(1), thus by Lemma 2.1 it suffices to
how that σ3(1), σ4(1) < 0 in order to prove existence. Comparing (70) with (8), uniqueness of the principal
igenvalue ensures that

σ3(1) + λr(1 − b2) = E1(R, γ)R
γ = γ , (72)
2
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r equivalently,
σ3(1) = E1(R, γ)R− λr(1 − b2). (73)

aking σ3(1) = 0, we see that R = r(1 − b2) and λ = E1(r(1 − b2), γ2) = E1(r,γ2)
1−b2

, using Lemma 2.7. Also,
using (73) we have that σ3(1) < 0 for λ > E1(r,γ2)

1−b2
.

Similarly, comparing (71) with (8), uniqueness of the principal eigenvalue ensures that

σ4(1) + λ(1 − b1) = E1(R, γ)R
γ = γ1, (74)

r equivalently,
σ4(1) = E1(R, γ)R− λ(1 − b1). (75)

gain, taking σ4(1) = 0, we see that R = (1 − b1) and λ = E1((1 − b1), γ1) = E1(1,γ1)
1−b1

, using Lemma 2.7.
sing (75), we have that σ4(1) < 0 for λ > E1(1,γ1)

1−b1
. Thus, for λ > max

{
E1(r,γ2)

1−b2
, E1(1,γ1)

1−b1

}
, Lemma 2.1

nsures existence of a positive solution of (4) with (mϕ4,mϕ3) ≤ (u, v) ≤ (W1,γ1 ,Wr,γ2) ; Ω for m ≈ 0.
i) Now assume (u, v) is any positive solution of (4) with λ > max {E1(r, γ2), E1(1, γ1)}. Then (u, v) also
atisfies: {

−∆u− λu (1 − u) = −λb1uv < 0; Ω
∂u
∂η +

√
λγ1u = 0; ∂Ω (76)

mplying that u is a strict subsolution of (9). Since Z ≡ M > 1 is a supersolution of (9) and u ≤ M ; Ω ,
niqueness of W1,γ1 gives that u ≤ W1,γ1 ; Ω . A similar argument gives that v ≤ Wr,γ2 ; Ω .
ii) We assume (u, v) is any positive solution of (4) with λ > max

{
E1(1,γ1)

1−b1
, E1(r,γ2)

1−b2

}
(which implies that

1,γ1,b1 ,Wr,γ2,b2 both exist). Now, since v ≤ Wr,γ2 ≤ 1; Ω , we have that (u, v) satisfies:{
−∆u− λu (1 − u− b1) ≥ −∆u− λu(1 − u− b1v) = 0; Ω

∂u
∂η +

√
λγ1u = 0; ∂Ω (77)

mplying that u is a supersolution of (6) with R = 1, b = b1, and γ = γ1. Using the principal eigenfunction,
ϕ0, corresponding to σ1 (which is negative by our choice of λ) gives that ψ = mϕ0 is a subsolution of (6)
with R = 1, b = b1, and γ = γ1 and satisfies mϕ0 < u; Ω both by choosing m ≈ 0. Uniqueness of W1,γ1,b1

the positive solution of (6) with R = 1, b = b1, and γ = γ1) gives that W1,γ1,b1 ≤ u; Ω . A similar argument
hows that Wr,γ2,b2 ≤ v; Ω .
iii) Finally, assume that r = 1 and γ1 = γ2. We will show that

(
1−b1

1−b1b2
W1,γ1 ,

1−b2
1−b1b2

Wr,γ2

)
will satisfy (4).

o that end, we see that:

− ∆u− λu(1 − u− b1v) = 1 − b1

1 − b1b2
λW1,γ1(1 −W1,γ1)

− λ

(
1 − b1

1 − b1b2

)
W1,γ1

(
1 − 1 − b1

1 − b1b2
W1,γ1 − b1(1 − b2)

1 − b1b2
W1,γ1

)
= 1 − b1

1 − b1b2
λW1,γ1

[
1 −W1,γ1 − 1 + 1 − b1

1 − b1b2
W1,γ1 + b1(1 − b2)

1 − b1b2
W1,γ1

]
+ 1 − b1

1 − b1b2
λW 2

1,γ1

[
b1b2 − 1 + 1 − b1 + b1 − b1b2

1 − b1b2

]
= 0 (78)

nd
∂u

∂η
+

√
λγ1u = −

(
1 − b1

1 − b1b2

)
W1,γ1

√
λγ1 +

(
1 − b1

1 − b1b2

)
W1,γ1

√
λγ1 = 0; ∂Ω . (79)

similar argument holds for v. Theorem 1.5 gives uniqueness of the solution in this case.

22



A. Acharya, S. Bandyopadhyay, J.T. Cronin et al. Nonlinear Analysis: Real World Applications 70 (2023) 103775

e
(

a

a

a

I
a

t
B
h

(B) Assume that b1 = b2 = 1, γ1 = γ2, and r = 1 and λ > E1(1, γ1). Notice that σ1 < 0 in this case
nsuring existence of W1,γ1 . Fix s ∈ (0, 1) and let (u, v) = (sW1,γ1 , (1 − s)W1,γ1). We will first show that
u, v) is a solution of (4). To that end, we see that:

− ∆u− λu(1 − u− v) = −∆sW1,γ1 − λsW1,γ1 (1 − sW1,γ1 − (1 − s)W1,γ1)
= s [−∆W1,γ1 − λW1,γ1 (1 −W1,γ1)]
= 0 (80)

nd

− ∆v − λv(1 − v − u) = −∆(1 − s)W1,γ1 − λ(1 − s)W1,γ1 (1 − (1 − s)W1,γ1 − sW1,γ1)
= (1 − s) [−∆W1,γ1 − λW1,γ1 (1 −W1,γ1)]
= 0 (81)

with
∂u

∂η
+

√
λγ1u = ∂sW1,γ1

∂η
+

√
λγ1sW1,γ1

= s

[
∂W1,γ1

∂η
+

√
λγ1W1,γ1

]
= 0 (82)

nd
∂v

∂η
+

√
λγ1v = ∂(1 − s)W1,γ1

∂η
+

√
λγ1(1 − s)W1,γ1

= (1 − s)
[
∂W1,γ1

∂η
+

√
λγ1W1,γ1

]
= 0. (83)

Now, we will show that all positive solutions of (4) must have this form. Assume that (u, v) is a positive
solution of (4). Following the same argument as in the proof of Lemma 2.6, the principal eigenvalue of (42)
with b1 = 1, µ1, must be zero. But, both u and v satisfy (42) and since µ1 is simple, we must have that
u = cv where c > 0. Substituting (u, v) into (4) yields:

− ∆u− λu(1 − u− v) = −∆u− λu

(
1 − u− 1

c
u

)
= −∆u− λu

(
1 −

(
1 + 1

c

)
u

)
(84)

nd

− ∆v − λv(1 − v − u) = −∆v − λv (1 − v − cv)
= −∆v − λv (1 − (1 + c) v) . (85)

t is now easy to see that u = c
c+1W1,γ1 and v = 1

1+cWr,γ2 . Let s = c
c+1 ∈ (0, 1) which gives that 1−s = 1

1+c ,
s desired.

(C) In this case, we assume that b1 < 1 ≤ b2, γ1 > 0, and r > r∗ (note that if γ2 = 0 then
here is no restriction on r), for which Lemma 2.7 implies that E1(r, γ2) < E1(1, γ1). Fix b2 ≥ 1.
y Lemma 2.1, it suffices to show that σ3(W1,γ1), σ4(Wr,γ2) < 0. Since E1(r, γ2) < E1(1, γ1), we

ave that W1,γ1 (x,E1(1, γ1)) ≡ 0 and Wr,γ2 (x,E1(1, γ1)) > 0; Ω . This implies that there exists a
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2(b2) > (≈) E1(1, γ1) such that b2W1,γ1(x, λ) < Wr,γ2(x, λ); Ω for λ ∈ (E1(1, γ1), λ2(b2)). Now, fix
0 ∈ (E1(1, γ1), λ2(b2)) and choose b1 such that

b1 < n1(λ0) := min
Ω

{W1,γ1(x, λ0)} . (86)

ince Wr,γ2(x, λ) < 1; Ω , this choice ensures that b1 <
W1,γ1 (x,λ)
Wr,γ2 (x,λ) ; Ω for λ ∈ (λ1(b1, b2), λ2(b2)) where

1(b1, b2) := λ0 − δ1 for some δ1(b1, b2) > (≈) 0. Thus, for λ ∈ (λ1(b1, b2), λ2(b2)) and b1 < n1(λ0), we must
ave

b2W1,γ1(x, λ) −Wr,γ2(x, λ) < 0; Ω (87)
b1Wr,γ2(x, λ) −W1,γ1(x, λ) < 0; Ω . (88)

emma 2.2 now gives that σ3(W1,γ1), σ4(Wr,γ2) < 0 for λ ∈ (λ1(b1, b2), λ2(b2)). The furthermore statement
ollows from the proof of (A)(i)-(ii) for the bounds on u and from Lemma 2.1 for the bounds on v, as desired.

(D) In this case, we assume that b2 < 1 ≤ b1, γ2 > 0, and r < r∗ (note that if γ1 = 0 then
here is no restriction on r), for which Lemma 2.7 implies that E1(1, γ1) < E1(r, γ2). Fix b1 ≥ 1.
y Lemma 2.1, it suffices to show that σ3(W1,γ1), σ4(Wr,γ2) < 0. Since E1(1, γ1) < E1(r, γ2), we
ave that Wr,γ2 (x,E1(r, γ2)) ≡ 0 and W1,γ1 (x,E1(r, γ2)) > 0; Ω . This implies that there exists a
2(b1) > (≈) E1(r, γ2) such that b1Wr,γ2(x, λ) < W1,γ1(x, λ); Ω for λ ∈ (E1(r, γ2), λ2(b1)). Now, fix
0 ∈ (E1(r, γ2), λ2(b2)) and choose b2 such that

b2 < n2(λ0) := min
Ω

{Wr,γ2(x, λ0)} . (89)

ince W1,γ1(x, λ) < 1; Ω , this choice ensures that b2 <
Wr,γ2 (x,λ)
W1,γ1 (x,λ) ; Ω for λ ∈ (λ1(b1, b2), λ2(b2)) where

1(b1, b2) := λ0 − δ2 for some δ2(b1, b2) > (≈) 0. Thus, for λ ∈ (λ1(b1, b2), λ2(b2)) and b2 < n2(λ0), we must
ave

b2W1,γ1(x, λ) −Wr,γ2(x, λ) < 0; Ω (90)
b1Wr,γ2(x, λ) −W1,γ1(x, λ) < 0; Ω . (91)

emma 2.2 now gives that σ3(W1,γ1), σ4(Wr,γ2) < 0 for λ ∈ (λ1(b1, b2), λ2(b2)). The furthermore statement
ollows from the proof of (A)(i) for the bounds on v and from Lemma 2.1 for the bounds on u, as desired.

(E) In the case of b1, b2 > 1, the argument in (A)(ii) gives existence of at least one positive solution of
he specified form. However, uniqueness is still open. □

.3. Proof of Theorem 1.5

A) We assume that b1, b2 < 1, r = 1, and γ1 = γ2. Now, suppose that (u, v) is any positive solution of (4),
or which we rewrite as: ⎧⎪⎪⎨⎪⎪⎩

−∆u− λu(1 − u− v) − λ(1 − b1)uv = 0; Ω
−∆v − λv(1 − v − u) − λ(1 − b2)uv = 0; Ω

∂u
∂η +

√
λγ1u = 0; ∂Ω

∂v
∂η +

√
λγ1v = 0; ∂Ω .

(92)

ow, multiply the first and third equations in (92) by (1−b2) and the second and fourth equations by (1−b1)
nd subtract the second from the first and then the fourth from the third giving:{

−∆ψ − λψ(1 − u− v) = 0; Ω
∂ψ

√ (93)

∂η + λγ1ψ = 0; ∂Ω
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here ψ = (1 − b2)u − (1 − b1)v. By Lemma 2.6, ψ ≡ 0 giving that (1 − b2)u ≡ (1 − b1)v. In other words,
e have that v = Ru and R = 1−b2

1−b1
. But, this gives

1 +Rb1 = 1 + b1(1 − b2)
1 − b1

= 1 − b1b2

1 − b1
(94)

nd hence

0 = −∆u− λu(1 − u− b1v)
= −∆u− λu (1 − (1 +Rb1)u)

= −∆u− λu

(
1 −

(
1 − b1b2

1 − b1

)
u

)
; Ω . (95)

hus, u satisfies {
−∆u− λu

(
1 −

(
1−b1b2
1−b1

)
u

)
= 0; Ω

∂u
∂η +

√
λγ1u = 0; ∂Ω .

(96)

rom Theorem 1.2, it is now easy to see that u = 1−b1
1−b1b2

W1,γ1 and, since v = Ru, v = 1−b2
1−b1b2

W1,γ1 . This
act combined with Theorem 1.4(A) (ii) & (iii) gives the result.
B) Here, we assume that r > 0, γ1, γ2 > 0, and b1, b2 < 1 with (u1, v1) and (u2, v2) both positive solutions
f (4). Let p = u1 − u2 and q = v1 − v2. Then we must have

− ∆p = λu1(1 − u1 − b1v1) − λu2(1 − u2 − b1v2)
= λu1 − λu2

1 − λb1u1v1 − λu2 + λu2
2 + λb1u2v2 + λu1u2

+ λb1u2v1 − λu1u2 − λb1u2v1

= λ(u1 − u2)(1 − u1 − b1v1) − λu2(u1 − u2) − λb1u2(v1 − v2)
= λp(1 − u1 − b1v1) − λu2p− λb1u2q; Ω

and, similarly,
− ∆q = λrq(1 − v2 − b2u2) − λrb2vp− λrv1q; Ω . (97)

Also,
∂p

∂η
+

√
λγ1p = ∂u1

∂η
− ∂u2

∂η
+

√
λγ1(u1 − u2) = 0; ∂Ω (98)

nd, similarly,
∂q

∂η
+

√
λγ2q = 0; ∂Ω . (99)

hus, (p, q) satisfies ⎧⎪⎪⎨⎪⎪⎩
−∆p− λp(1 − u1 − b1v1) + λu2p+ λb1u2q = 0; Ω

−∆q − λrq(1 − v2 − b2u2) + λrb2v1p+ λrv1q = 0; Ω
∂p
∂η +

√
λγ1p = 0; ∂Ω

∂q
∂η +

√
λγ2q = 0; ∂Ω .

(100)

rom the proof of Lemma 2.6, if z is a smooth function that satisfies{
−∆z = λz(1 − u− b1v); Ω

∂z
∂η +

√
λγ1z = 0; ∂Ω (101)

hen z also satisfies ∫
|∇z|2 dx−

∫
λ(1 − u− b1v)z2dx+

∫ √
λγ1z

2ds ≥ 0. (102)

Ω Ω ∂Ω
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imilarly, if w satisfies {
−∆w = λrw(1 − v − b2u); Ω

∂w
∂η +

√
λγ2w = 0; ∂Ω (103)

hen w also satisfies ∫
Ω

|∇w|2 dx−
∫
Ω

λ(1 − v − b2u)w2dx+
∫
∂Ω

√
λγ2w

2ds ≥ 0. (104)

ence, the following hold: ∫
Ω

z [−∆z − λz(1 − u1 − b1v1)] dx ≥ 0 (105)∫
Ω

w [−∆w − λrw(1 − v2 − b2u2)] dx ≥ 0. (106)

Now, we multiply the first equation in (100) by p and the second by q and integrating both of them over
Ω yields ∫

Ω

p [−∆p− λp(1 − u1 − b1v1)] + λu2p
2 + λb1u2pqdx = 0 (107)∫

Ω

q [−∆q − λrq(1 − v2 − b2u2)] + λrb2v1pq + λrv1q
2dx = 0. (108)

dding (107) to (108) gives∫
Ω

p [−∆p− λp(1 − u1 − b1v1)] + q [−∆q − λrq(1 − v2 − b2u2)]

+λu2p
2 + λb1u2pq + λrb2v1pq + λrv1q

2dx = 0. (109)

mploying (105) and (106) we further obtain

λ

∫
Ω

u2p
2 + (b1u2 + rb2v1)pq + rv1q

2dx ≤ 0. (110)

efine Qx(s, t) := u2(x)s2 + [b1u2(x) + rb2v1(x)] st + rv1(x)t2. If Qx(s, t) is positive definite for all x ∈ Ω

hen p, q ≡ 0 proving uniqueness. To that end, if the following holds then we are ensured the result:

(b1u2 + rb2v1)2 − 4u2rv1 < 0, (111)

r equivalently,
4 > b2

1
r

u2

v1
+ 2b1b2 + rb2

2
v1

u1
; Ω . (112)

t is now clear that if (15) holds then so does (111), giving the result. The final statement of the theorem
ollows immediately from the fact that both W1,γ1 and Wr,γ2 are bounded above and below (and in this case,
way from zero). Thus, taking b1, b2 ≈ 0 and λ > max

{
E1(1,γ1)

1−b1
, E1(r,γ2)

1−b2

}
, Theorem 1.3 and the previous

rgument together ensure existence of a unique positive solution for (4). □

.4. Proof of Theorem 1.6

Here, we assume that r > 0, b1, b2 ≥ 0, γ1, γ2 ≥ 0, and λ > 0 are such that σ1, σ2 < 0. We note that
A) and (B) are standard, omit their proofs, and direct the interested reader to, e.g., [39]. In particular,
he author in [39] proves in Theorem 7.6.2 that if a positive solution, (u, v), of (4) is stable then it is also

asymptotically stable. (Even though Theorem 7.6.2 specifically addresses a quasimonotone nondecreasing
system, a change of variables as suggested in [39] allows the theorem to apply to our quasimonotone
26
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onincreasing system, see also [36]). Also, note that (i)–(iii) of (C) follows immediately from our construction
f sub- and supersolutions of (4) in Lemma 2.1 and Theorems 5.2 and 5.5 in Chapter 10 of [36].

To prove (iv) of (C), fix λ > 0 such that σ3, σ4 < 0 and assume that there exists a sequence of
symptotically stable positive solutions of (4), {(un, vn)}∞

n=1, converging to (0,Wr,γ2) as n → ∞. Choose
> 1 such that for all n > N we have

−σ4

λ
> |un − b1 (Wr,γ2 − vn)| ; Ω . (113)

hus, there exists an ϵ > 0 such that

−σ4

λ
> ϵ > |un − b1 (Wr,γ2 − vn)| ; Ω . (114)

ow, we have that:

ut = 1
λ
∆u+ u(1 − u− b1v)

= 1
λ
∆u+ u (1 − b1Wr,γ2 − [u− b1(Wr,γ2 + v)])

≥ 1
λ
∆u+ u (1 − b1Wr,γ2 − ϵ) ; t > 0, x ∈ Ω (115)

as long as ϵ > |u− b1(Wr,γ2 + v)|. Fix an n > N and u(0, x), v(0, x) > 0; Ω with u(0, x) ≈ 0 and
v(0, x) ≈ Wr,γ2 on Ω . There must exist a K > 0 such that u(0, x) > Kϕ4(x); Ω , where ϕ4 is the eigenfunction
orresponding to σ4, chosen such that ϕ4(x) > 0; Ω and ∥ϕ4∥∞ = 1. Also, we can choose t0 > 0 such that

−σ4

λ
> ϵ > |u(t, x) − b1 (Wr,γ2 − v(t, x))| ; x ∈ Ω (116)

or all t > t0.
Define ψ(t, x) = Ke

( −σ4
λ

−ϵ
)
t
ϕ4(x) and h(x) = 1 − b1Wr,γ2 . For all t > 0, we have that:

ψt − 1
λ
∆ψ − (h(x) − ϵ)ψ = K

(
−σ4

λ
− ϵ

)
e

( −σ4
λ

−ϵ
)
t
ϕ4(x)

+ K

λ
e

( −σ4
λ

−ϵ
)
t [σ4 + λh(x)]ϕ4(x) −Ke

( −σ4
λ

−ϵ
)
t [h(x) − ϵ]ϕ4(x)

= 0 (117)

and, clearly,
∂ψ

∂η
+

√
λγ1ψ = 0. (118)

hus, u(t, x) is a supersolution and ψ(t, x) is a solution of:⎧⎪⎨⎪⎩
Wt = 1

λ∆W + (h(x) − ϵ)W ; t > 0, x ∈ Ω

W (0, x) = Kϕ4(x); x ∈ Ω
∂W
∂η +

√
λγ1 W = 0; t > 0, x ∈ ∂Ω .

(119)

A standard argument now implies that u(t, x) ≥ ψ(t, x) = Ke

( −σ4
λ

−ϵ
)
t
ϕ4(x); x ∈ Ω for t > t0. But, our

hoice of ϵ implies that −σ4
λ − ϵ > 0 giving that u(t, x) is unbounded as t → ∞. This is a contradiction, and

ence, no such sequence can exist. An almost identical argument holds for the case that (un, vn) converges
o (W , 0) as t → ∞ and is omitted. □
1,γ1
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. The asymmetric competition case

In this section, we explore the special case of asymmetric competition, where the competitive effect of v
nto u is negligible, i.e., b1 = 0, and in either the weak (b2 < 1) or semistrong (b2 ≥ 1) cases. Here, (4)

becomes {
−∆u = λu(1 − u); Ω
∂u
∂η +

√
λγ1u = 0; ∂Ω (120)

nd {
−∆v = λrv(1 − v − b2u); Ω

∂v
∂η +

√
λγ2v = 0; ∂Ω . (121)

Notice that u = W1,γ1,0, and thus Theorem 1.2 gives the complete structure of positive solutions for
(120). We first state an analytical result regarding uniqueness of positive solutions for (121) which improves
Theorem 1.5.

Theorem 4.1 (Uniqueness). There is at most one positive solution for (121) for all λ > 0.

A proof of Theorem 4.1 is presented at the end of this section.
Next, we explore the structure of positive solutions for (121) in the case of Ω = (0, 1). Using the

quadrature method discussed in Section 2.1 and Mathematica, we numerically approximate the unique
positive solution of (120), u, guaranteed by Theorem 1.2. Using this approximation, we next employ
the shooting method discussed in Section 2.2 to numerically approximate positive solutions of (121) and
generate bifurcation diagrams of the positive solutions of (4). Based on our analysis, we obtain the following
Computational Results 4.1–4.3. Here, we chose values of r, γ1, γ2 so that we obtain results for three different
cases: E1(r, γ2) < E1(1, γ1), E1(r, γ2) > E1(1, γ1) and E1(r, γ2) = E1(1, γ1).

Computational Results 4.1 (E1(r, γ2) < E1(1, γ1)). If r, γ1, and γ2 are fixed such that E1(r, γ2) <

1(1, γ1) and b2 ≥ 0 then the following hold:

(a) If b2 < 1 (weak competition) or b2 = 1 (semistrong competition) then (121) has a positive solution for
λ > E1(r, γ2) (see Fig. 5(a)). Moreover, there exists a positive constant b∗

2 < 1 such that for b2 = b∗
2,

∥v∥∞ is a constant for any λ > E1(1, γ1). Also, for λ > E1(1, γ1) and any b2 < b∗
2, ∥v∥∞ increases in

λ, and for any b2 > b∗
2, ∥v∥∞ decreases in λ. Furthermore, for b2 ≤ 1, ∥v∥∞ → 1 − b2 as λ → ∞. (See

Fig. 5(b)).
(b) If b2 > 1 (semistrong competition) then there exists a λmax > E1(1, γ1), a maximum patch size (see

Fig. 6), such that (121) has no positive solution for λ > λmax. Moreover, λmax decreases in b2 and γ2
and increases in r and γ1, for fixed values of the remaining parameters. (See Figs. 6–10).

Figs. 5–6 illustrate Computational Result 4.1. In particular, Figs. 7–10 give some insight into the behavior
of λmax as r, b2, γ1, and γ2 vary, with Figs. 8 and 10 showing behavior for two parameters changing
simultaneously. Two interesting cases arise here: 1) for weak competition (b2 < 1) existence of such a b∗

2
where ∥v∥∞ remains constant for all patch sizes yielding a λ > E1(1, γ1) and 2) for the special case of b2 = 1
(semistrong competition) the counterintuitive fact that as the patch size becomes large, ∥v∥∞ → 0. For (1),
a careful balancing of increased competitive pressure on v generated by u’s increasing density and v’s own
increasing density both as patch size increases seems to be a reasonable explantation of this phenomenon.
The interesting case (2) shows b2 = 1 as the boundary separating predictions of no maximum patch size for
b2 < 1 and existence of a maximum patch size when b2 > 1. Our computational results here are consistent
with our analytical results in Theorem 1.3 (E) & (F) for existence of a maximum patch size when b2 > 1,

and even suggest that the upper bounds on b1 in (E) and b2 in (F) are artificial.
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Fig. 5. Bifurcation diagrams for (4) with various b2-values and r = 1, γ1 = 4, and γ2 = 2 implying that E1(r, γ2) < E1(1, γ1) and
∗
2 ≈ 0.728074. The blue curve represents the u-component of (u, v), as well as (u, 0), green represents the v-component of (u, v), and
ed represents (0, v). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)

Fig. 6. Bifurcation diagram for (4) showing existence of a maximum patch size, λmax, when b2 = 1.1 and r = 1, γ1 = 4, and
2 = 2 imply that E1(r, γ2) < E1(1, γ1). The blue curve represents the u-component of (u, v), as well as (u, 0), green represents
he v-component of (u, v), and red represents (0, v). (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Our computational analysis of the behavior of λmax with respect to r, b2, γ1, and γ2 is fairly consistent
ith intuition. Fig. 7 shows that λmax increases as b2 (scale of competitive pressure of u onto v) and γ2 (v’s
atrix effect) decrease, both of which promote increasing v density in the patch, whereas Fig. 9 shows λmax

ncreases as r (G-D ratio, recall r > 1 implies an advantage for v) and γ1 (u’s matrix effect) increase, both
f which promote increasing v density in the patch. The heatmap plots in Figs. 8 & 10 confirm that b2 and
2 work in tandem to affect λmax, and similarly for r and γ1.

omputational Results 4.2 (E1(r, γ2) > E1(1, γ1)). If r, γ1, and γ2 are fixed such that E1(r, γ2) >

1(1, γ1) and b2 < 1 (weak competition) then the following hold:

(a) There exists a minimum patch size λmin > E1(r, γ2) such that (4) has a positive solution for λ > λmin
and no positive solution for λ ≤ λmin. Furthermore, ∥v∥∞ → 1 − b2 as λ → ∞ (see Fig. 11).

(b) The minimum patch size λmin increases in b2 and γ2 and decreases in r and γ1, for fixed values of the
remaining parameters. Moreover, λmin → ∞ as b2 → 1, but for a fixed b2 < 1, if γ1 → ∞, λmin is
bounded. (see Figs. 12–15).
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Fig. 7. Variations of λmax with respect to b2 and γ2 when r = 1 and γ1 = 4. In (a), γ2 = 2, while γ2 ∈ (0, 4) in (b) is taken to
maintain E1(r, γ2) < E1(1, γ1).

Fig. 8. Heatmap plot showing combined effects of b2 and γ2 on λmax for r = 1 and γ1 = 4.

Figs. 11 & 12 illustrate Computational Result 4.2. In particular, Figs. 12–15 give some insight into the
behavior of λmin as r, b2, γ1, and γ2 vary, with Figs. 13 and 15 showing behavior for two parameters changing
imultaneously. In fact, Figs. 11(b) & 12(a) give some insight as to why coexistence is lost for all patch sizes
hen b2 > 1 (see Theorem 1.3(D)), by examining behavior of λmin as b2 → 1. As can be seen in these figures,
min → ∞ as b2 → 1, implying that coexistence in not possible for b2 > 1. These computational results also
upport our conjecture that the lower bound on r in Theorem 1.3(D) is artificial. Theorem 1.3(G) is also
llustrated in Fig. 11 in that λmin > E1(r, γ2). In other words, competition effects from u onto v cause a
arger minimum patch size requirement than what would be needed in the absence of competition.

Our computational analysis of the behavior of λmin with respect to r, b2, γ1, and γ2 is again fairly
onsistent with intuition. Fig. 12 shows that λmin decreases as b2 (scale of competitive pressure of u onto v)
r γ (v’s matrix effect) decrease, both of which promote increasing v density in the patch, whereas Fig. 14
2
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Fig. 9. Variations of λmax with respect to r and γ1 for b = 1.1 and γ2 = 2. In (a), r > 0.764 and γ1 = 4, while r = 1 and γ1 > 2 in
(b) is taken to maintain E1(r, γ2) < E1(1, γ1).

Fig. 10. Heatmap plot showing combined effects of r and γ1 on λmax for b2 = 1.1 and γ2 = 2.

shows λmin decreases as r (G-D ratio, recall r > 1 implies an advantage for v) and γ1 (u’s matrix effect)
increase, both of which promote increasing v density in the patch. The heatmap plots in Figs. 13 & 15
confirm that b2 and γ2 work in tandem to affect λmin, and similarly for r and γ1.

omputational Results 4.3 (E1(r, γ2) = E1(1, γ1)). If r, γ1, and γ2 are fixed such that E1(r, γ2) =
1(1, γ1) and b2 ≥ 0 then the following hold:

(a) If b2 < 1 (weak competition) or b2 = 1 (semistrong competition) then (4) has a positive solution for
λ > E1(1, γ1) and no positive solution for λ ≤ E1(1, γ1). Furthermore, ∥v∥∞ → 1 − b2 as λ → ∞ (see
Fig. 16).
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Fig. 11. Bifurcation diagrams for (4) with various b2-values and r = 1, γ1 = 2, and γ2 = 4 implying that E1(r, γ2) > E1(1, γ1). The
blue curve represents the u-component of (u, v), as well as (u, 0), green represents the v-component of (u, v), and red represents (0, v).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Variations of λmin with respect to b2 and γ2 for r = 1 and γ1 = 2. In (a), b2 < 1 and γ2 = 4, while b2 = 0.6 and γ2 > 2 in
b) are taken to maintain E1(1, γ1) < E1(r, γ2).

(b) For b2 > 1, (semistrong competition) there exists λmax > E1(1, γ1), a maximum patch size, such that
(4) has no positive solution for λ > λmax. Moreover λmax is decreasing in b2 (see Figs. 17–18).

Figs. 16–18 illustrate Computational Result 4.3. This case gives similar conclusions as those in Compu-
ational Result 4.1.

We close this section with a proof of Theorem 4.1.

roof of Theorem 4.1. Assume that v1, v2 are two distinct positive solutions of (121) for λ > E1(1, γ1)
nd let uλ = W1,γ1 be the unique positive solution of (120). Since z ≡ 1 is a global supersolution of (121),
ithout loss of generality we can assume v2 ≤ v1; Ω and there exists an x0 ∈ Ω such that v2(x0) < v1(x0).
Now, employing Green’s Identity we have∫

−∆v1v2 + ∆v2v1dx =
∫

−∂v1
v2 + ∂v2

v1ds, (122)

Ω ∂Ω ∂η ∂η
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Fig. 13. Heatmap plot showing combined effects of b2 and γ2 on λmin for r = 1 and γ1 = 2.

Fig. 14. Variations of λmin with respect to r and γ1 for γ2 = 4 and b2 = 0.6. In (a), γ1 = 2 and r < 1.353, while γ1 < 4 and r = 1
in (b) are taken to maintain E1(1, γ1) < E1(r, γ2).

where the right-hand-side of (122) is clearly equal to zero. But, we also have∫
Ω

−∆v1v2 + ∆v2v1dx =
∫
Ω

−λrv1(1 − v1 − b2uλ)v2 + λrv2(1 − v2 − b2uλ)v1dx

= λr

∫
Ω

v1v2 [1 − v2 − b2uλ − 1 + v1 + b2uλ] dx

= λr

∫
v1v2 [v1 − v2] dx > 0. (123)
Ω
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Fig. 15. Heatmap plot showing combined effects of r and γ1 on λmin for b2 = 0.6 and γ2 = 4.

Fig. 16. Bifurcation diagrams for (4) with various b2-values and r = 16
9 , γ1 = 1, and γ2 = 4√

3
implying that E1(r, γ2) = E1(1, γ1).

The blue curve represents the u-component of (u, v), as well as (u, 0), green represents the v-component of (u, v), and red represents
(0, v). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

This is a contradiction, giving that (121) has at most one positive solution. This completes the proof. □

. Summary and conclusion

In this paper, we have explored structure of coexistence states of the diffusive Lotka–Volterra competition
odel in a fragmented landscape. The model is built upon the reaction diffusion framework and includes
boundary condition designed to model effects of differential matrix hostility and behavior response to

abitat edges between species. Our results are based on study of certain eigenvalue problems and sub-
upersolutions in the general case and time map analysis and shooting methods in the one-dimensional
symmetric competition case. Since our coexistence results follow from instability of the trivial and semi-
rivial steady states, statements of coexistence here will always imply that both species are able to invade
he patch when rare with their competitor near equilibrium in the patch, and persist. In the literature, the
34
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Fig. 17. Bifurcation diagram for (4) showing existence of a maximum patch size, λmax, when r = 16
9 , γ1 = 1, γ2 = 4√

3
, and

b2 = 1.1 imply that E1(r, γ2) = E1(1, γ1). The blue curve represents the u-component of (u, v), as well as (u, 0), green represents
the v-component of (u, v), and red represents (0, v). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 18. Plot of b2 versus λmax (maximum patch size) for r = 16
9 , γ1 = 1, and γ2 = 4√

3
.

iffusive L–V model has been extensively studied in the case of a closed patch (reflecting boundary) and to
somewhat lesser degree in the case of an immediately lethal matrix (absorbing boundary). However, little

ttention has been paid to the diffusive L–V model in a fragmented landscape with a framework that allows
or more realistic modeling of organismal behavior at the patch/matrix interface.

Our results show that in all levels of competition a necessary condition for coexistence is a large enough
atch size such that each organism is able to invade and colonize the patch when rare in the absence of
ts competitor. In the weak competition case, a sufficiently large patch size guarantees coexistence with the
oexistence state bounded from below away from zero. For b1, b2 sufficiently small, our results guarantee
niqueness of this coexistence state, however, beyond our given sufficient condition, uniqueness in general
emains an open question. In the special case that both species’ growth-to-diffusion rates are equal (i.e. r = 1)
nd matrix effects are comparable between species (i.e. γ1 = γ2), we actually have a closed form solution
hich approaches the solution of the spatially homogeneous L–V model when patch size approaches infinity.
onsidering neutral competition in this case, our results show existence of infinitely many coexistence states

or sufficiently large patch size, again with a closed form solution. Coexistence for strong competition is also
uaranteed for sufficiently large patch sizes with a closed form solution, though uniqueness of the coexistence

tate is an open problem. Also, Theorem 1.4(A)(i) guarantees that for any level of competition, i.e., either
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1 > 0 or b2 > 0, the coexistence state will occur at a lower density than the density of individuals inhabiting
he patch without competition. These results are qualitatively similar to those in previous studies where
ither a closed patch (i.e. reflecting boundary: γ1 = 0 = γ2 in our framework) or a patch surrounded by an
mmediately hostile matrix (i.e. absorbing boundary: γ1, γ2 → ∞ in our framework) were considered (see,
.g., [22,23,41]).

Perhaps the most interesting aspect of our results is finding coexistence for intermediate ranges of patch
ize in the semistrong competition case. Recall that when a patch is completely isolated from its surrounding
atrix (i.e., a reflecting boundary), coexistence is not possible in the semistrong case. Though it is somewhat

ntuitive to expect prediction of a minimum patch from a model such as (3) when some level of mortality
s induced at the patch/matrix interface (see, e.g., [29]), existence of a maximum patch size in this case
s remarkable. Thus, for a semistrong competition system inhabiting a fragmented landscape, we could
otentially observe sufficiently large and sufficiently small patches not being able to sustain coexistence,
ut an intermediate sized patch where coexistence is possible. Though not comprehensive, our results as
ummarized in Table 1 suggest that coexistence in this case arises from a situation where one species has an
dvantage in being able to invade and colonize smaller patches in the absence of its competition, while the
ther species has an advantage in being less affected by direct competition for resources. In the converse, if all
echanisms (patch intrinsic growth rate, patch diffusion rate, behaviorial response to habitat edge, matrix
ostility, matrix diffusion rate, and direct competition for patch resources) either do not favor one species
ver the other or confer advantage from one or all of them to the same species then coexistence is not possible.
n fact, we conjecture that such a counterbalancing of advantage (i.e., a tradeoff) is actually necessary for
oexistence in the semistrong competition case. Ecologists have theorized that a key mechanism promoting
he coexistence among competing species is a tradeoff between dispersal and competitive ability [7]. Here,
oorly competitive but highly dispersive species can coexist with highly competitive but poorly dispersive
pecies at the regional scale because of the spatial variation that arises in their distributions (e.g., [7,42–
5]). Our models suggest that poor competitive ability could be offset by either a high diffusion rate, low
atrix hostility, or some combination of the two. Whether the effect of dispersal-competition tradeoffs on

oexistence are modulated by patch size has never been tested empirically.
These results also have implications for conservation. A scenario could arise in which one species (say u)

f an endangered semistrong competition system inhabiting a fragmented landscape could have a significant
dvantage in competition for resources over the other species (say v). If v has an advantage in being
ble to invade and colonize smaller patches than u then we could have a counterintuitive scenario where
oexistence is not possible in large patches. In fact, coexistence would only be possible in an intermediate
ange of patches where the different mechanisms giving favor to one or the other species is counterbalanced.
lthough there are numerous empirical and theoretical studies of minimum patch size (e.g., [33,46,47]),

tudies of a maximum patch size and, by extension, the possibility that an intermediate patch size is
ecessary for coexistence, has not been investigated beyond the current study. However, if realistic conditions
nvolving competition and dispersal do favor coexistence in patches of intermediate size, it could upend the
ongstanding SLOSS debate among conservation biologists [48,49] about whether a Single-Large Or Several
mall patches is best for the design of wildlife reserves.

If u had both advantage in competition for resources and the ability to invade and colonize smaller
atches than v then coexistence would never be possible for any patch size. In fact, experimentation in
lab setting with closed patches would not be sufficient to fully understand coexistence in a more realistic

ragmented landscape. Also, focusing empirical research only on one of these mechanisms (direct competition
or resources or invasibility of a patch in the absence of competition when rare) alone may prohibit a full
nderstanding of when coexistence is possible. Our results suggest that more study, both theoretical and
mpirical, is needed in more realistic scenarios where a patch is not completely isolated from its surrounding
atrix.
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