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Abstract—Clustering data into meaningful subsets is a major
task in scientific data analysis. To date, various strategies rang-
ing from model-based approaches to data-driven schemes, have
been devised for efficient and accurate clustering. One important
class of clustering methods that is of a particular interest is the
class of exemplar-based approaches. This interest primarily stems
from the amount of compressed information encoded in these
exemplars that effectively reflect the major characteristics of the
corresponding clusters. Affinity propagation (AP) has proven to
be a powerful exemplar-based approach that refines the set of
optimal exemplars by iterative pairwise message updates. However,
a critical limitation is its inability to capitalize on known networked
relations between data points often available for various scientific
datasets. To address this shortcoming, we propose Geometric-AP, a
novel clustering algorithm that effectively extends the original AP
to take advantage of the network topology. Geometric-AP obeys
network constraints and uses max-sum belief propagation to lever-
age the available network topology for generating smooth clusters
over the network. Extensive performance assessment shows that
Geometric-AP leads to a significant quality enhancement of the
clustering results when compared to existing schemes. Especially,
we demonstrate that Geometric-AP performs extremely well even
in cases where the original AP fails drastically.

Index Terms—Affinity propagation, exemplar-based clustering,
label smoothing, max-sum belief propagation, message passing,
network-based clustering.

1. INTRODUCTION

LUSTERING refers to the process of partitioning data into
C groups of points that share specific characteristics where
similar instances are assigned to the same cluster. The definition
of similarity here is often subjective and greatly depends on
the ultimate goal expected from the analysis [1]. This makes
clustering a difficult combinatorial problem where researchers
continuously strive to develop innovative computational
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methods to address the increasing complexity associated with
new large-scale datasets. The vast majority of current clustering
methods are generally fed either with a vector of observations
in the feature space or with measures of proximity between data
points [2]. Their mission, consequently, is to identify expressive
clusters that dissect the dynamics present in the data. Towards
this goal, two broad classes of approaches have been proposed.
The first set of methods includes models such as kmeans [3] and
kmedoids [4] and directly operates on the original feature space
to group the data points based on raw pairwise similarities. The
other class of approaches maps the manifold structures of the
observed feature space into a different latent space where the data
might be more separable. Spectral clustering for instance tracks
clusters of irregular shapes by leveraging the eigenvalues of the
similarity matrix to embed the data into a lower dimensional
space [5]. A sub-class of such methods that is of particular
interest is the multi-view subspace clustering (MVSC). MSVC
aims at leveraging different perspectives of the data for more
efficient clustering, where each set of features is considered as
a separate view of the observed data. The resulting multiple
views are then combined to generate a latent representation in
a common subspace that aggregates the information collected
from the individual views. However, several limitations have
been identified for this class of methods. First, the increasing
computational complexity associated with the aggregation of
multi-view representations limits the scalability of the cluster-
ing method. Another limitation is that there is no guarantee
that the generated latent representation will capture the true
structure of the common subspace. Furthermore, as each view
contributes independently with respect to other views to the
optimization of the subspace representation, this makes the
algorithm converge to sub-optimal embeddings. To alleviate
these issues, various alternatives have been proposed in recent
years, where some approaches used linear order complexity
learners to extract intermediate view-specific representations in
a way to preserve the overall scalability [6]. To better reflect
the true subspace structure within the latent representations,
an additional latent representation assumption was considered
in [7] to better integrate the complete information from the
various training views. A recent study [8] investigated the prob-
lem of partial multi-view clustering where a joint representation
learning and clustering framework has been proposed to enable
the extraction of view-specific information during the clustering
process based on partial similarity matrices. Nevertheless, to
the best of our knowledge, there is currently no method that
can simultaneously address all the aforementioned limitations
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of MVSC. More recent approaches employ deep neural ar-
chitectures to train non-linear embeddings that better capture
the hidden interactions underlying complex systems [9], [10],
[11].

Despite the enhanced performance achieved by represent-
ation-learning-based approaches, methods that directly operate
on the primitive data remain highly sought after in the research
community. Exemplar-based approaches present an epitome of
such methods that have been extensively applied in diverse
fields. For example, exemplars have been widely used in man-
agement sciences to find optimal facility locations [12]. In the
multi-controller placement problem, exemplars were utilized to
locate the best controller sites for software-defined networks
to minimize the propagation latency with the switches [13].
Exemplars also play a critical role in recent applications such as
electronic commerce systems where the accurate identification
of key leaders [14] may yield a fast convergence to the optimal
cluster configuration. Affinity propagation (AP) [15] is one of
the most appealing exemplar-based clustering methods that have
been proposed in recent years. AP iteratively refines the set
of candidate points that best exemplify the entire dataset by
exchanging messages between all pairs of data points until a set
of representatives emerges. Many other implicit exemplar-based
methods, including kmeans, consider for “virtual” centroids that
may not belong to the original set of data points. For example,
each exemplar in kmeans clustering is determined by the average
features of the corresponding cluster members. The fact that AP
explicitly selects exemplars from the original dataset gives it
a significant advantage over other implicit methods—especially,
in terms of interpretation and utilization, since the identified
exemplars seamlessly relate to many real-world applications.
While finding the optimal set of exemplars is an NP-hard prob-
lem, AP has proven to be very efficient in realistic settings,
being capable of rapidly handling thousands of high dimensional
instances. This is enabled by an efficient belief propagation
scheme that can take advantage of parallel implementation,
which makes AP operate with only O(N?) messages, where
N represents the total number of data points [15]. In addi-
tion to computational efficiency, AP has been shown to yield
accurate clustering results, which are relatively insensitive to
initialization.

However, one notable shortcoming of the original AP is its
limited ability to integrate different levels of information to
perform clustering, since it solely relies on pairwise affinities
between data points for partitioning the dataset. In various
applications such as the discovery of communities in social
networks [16], finding functional modules in biological net-
works [17], [18], or optimizing the usage of communication
channels in transportation networks [19], the systems are often
described using node features as well as network information.
An obvious example that reflects the need for considering the
available network information is the study of epidemic spreading
on signed networks [20] where the negative or positive interac-
tions between data points significantly help to better understand
the influence of structural balance on the dynamics of epidemic
spreading in social networks. Unfortunately, AP is unable to
leverage such network knowledge to enhance the clustering
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accuracy. Also, AP faces challenges with datasets of irregularly
shaped clusters, sparse datasets, and multi-subclass systems.

A. Previous Work

To alleviate the aforementioned limitations, efforts have been
made to adapt AP to specific applications, which we briefly
review in this section. In the original formulation of AP, hard
consistency constraints have been placed on the elected exem-
plars that do not refer to themselves [15], which led to efficient
identification of convex clusters where data points are well
represented by their associated exemplars. To extend AP beyond
regularly shaped clusters, a soft-constraint AP (SCAP) method
has been proposed, in which the hard constraints have been
relaxed. Evaluation on clustering microarray data has shown
that SCAP is more efficient than AP in analyzing noisy and
irregularly organized datasets [21]. For sparse datasets such as
sparse graphs, a fast implementation of AP sets the similarity
between unconnected nodes to very small values. This confines
the exemplars within direct adjacency of the data points, leading
to finely fragmented clusters. To mitigate this shattering pattern,
a greedy hierarchical AP (GHAP) algorithm has been pro-
posed [22]. GHAP repeatedly clusters the set of exemplars that
emerge from the previous iterations and updates the exemplars
labels until a satisfactory coarse clustering is obtained [22].
An evolved theoretical approach for hierarchical clustering by
affinity propagation, called Hierarchical AP (HAP), adopts an
inference algorithm that disseminates information up and down
the hierarchy [23]. HAP outperforms GHAP that clusters only
one layer at a time. A semi-supervised AP was proposed in [24],
which considers clustering when prior knowledge exists for
some pairs of data points indicating their similarity (must-link
(ML)) or dissimilarity (cannot-link (CL)). Building on [21], a
soft instance-level constraint version has been presented for the
semi-supervised AP [25]. Furthermore, AP has been utilized
to analyze data streaming dynamics. Instead of operating on
high-throughput data, Streaming- AP puts in cascade a weighted
clustering step to extract subsets from the data and then per-
forms hierarchical clustering followed by an additional weighted
clustering procedure [26]. Another attractive advantage of AP
is that it automatically identifies the number of clusters in the
data, but its downside is the lack of control over the desired
size of the identified clusters. To remedy this limitation, AP has
been extended to make the cluster size more manageable. For
example, various priors such as the Dirichlet process priors have
been integrated into the clustering process for this purpose [27].
Notably, hierarchical clustering principles have been widely
utilized to extend the original AP. The main reason is that the
single-exemplar design of AP becomes inadequate when applied
to model multi-subclass systems. In this regard, a more explicit
approach called multi-exemplar affinity propagation (MEAP)
has been proposed to address the limitations of AP for multi-
subclass problems. In MEAP, two types of exemplars are being
identified: A set of sub-exemplars are associated with super-
exemplars to approximate the subclasses in the category [28].
MEAP has shown consistent performance in handling problems
like scene analysis and character recognition.
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As for network information, it has been less considered in
exemplar-based clustering literature. Fundamentally, it is more
difficult to combine pairwise similarity measures obtained from
two different observations: node features and network topology.
Additionally, a unified criterion for identifying exemplars and
cluster membership based on a compound affinity needs to
be determined. For AP, an early attempt employed diffusion
kernel similarities obtained using the Laplacian matrix of the
network to perform a community detection task [29]. A more
recent approach has addressed the same problem by adaptively
updating the similarity matrix during the message updates using
the degree centrality of potential exemplars [30]. Although
tailored similarity measures can slightly improve the efficiency
of AP as discussed in [15], they are known to be insufficient
and very limited in handling problems with complex underlying
structures [27].

B. Extension of Affinity Propagation to Geometric-AP

Motivated by the increasing availability of network informa-
tion in many structured datasets, this article extends the feature-
based affinity propagation (AP) algorithm to a geometric model,
which we call Geometric Affinity Propagation (Geometric-AP),
where the original energy function is being minimized under
additional topological constraints. Indeed, our work builds on
top of the latest advances in graph clustering research and
endorses two universally accepted properties of connectivity
and density for any desired graph cluster. That being said, a
good graph cluster should intuitively be connected. Also, its
internal density should be significantly higher than the density
of the full graph [31]. In the context of our work, we adopt a
more lenient definition of connectivity and density as we are
not strictly performing graph clustering. Instead, we require
that members of each desired cluster should lie within the same
region in the network. Additionally, we promote higher internal
density of identified clusters by assuming that highly interacting
nodes should belong to the same cluster.

To implement the above requirements for AP, we jointly
modify the exemplar identification mechanism and the mem-
bership assignment procedure to incorporate the connectivity
and density properties, respectively. First, we require that a
potential exemplar should lie within the local neighborhood
of referring nodes with respect to the network. Second, highly
interacting nodes must share the same cluster membership. The
first connectivity constraint is ensured through an additional
penalty term in the optimized net similarity of AP. The second
density requirement is secured using a new assignment policy
that promotes membership selection among neighbor exemplars.
Afterwards, a label smoothing operation is applied to reduce the
misassignments and enable a better generalization.

Compared to the original feature-based AP, Geometric-AP
has the following advantages.

® [t can seamlessly integrate the network information into

the clustering setup and notably improve the performance
without increasing the model complexity.

® Unlike other approaches, Geometric-AP does not use the

network information to tailor the feature-based similarity
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but instead it jointly employs the node features along with
the network information to conduct efficient clustering.

Our fundamental research contribution in this article is to
suggest a novel iterative clustering algorithm to minimize an
energy-based function that depends on two different measures
of similarity as illustrated in Fig. 4. In addition to the stan-
dard feature-based similarity used by AP, we consider also a
topology-based property that reflects the knowledge encoded
by the available network information for graph-structured data.
To efficiently minimize the novel energy function, we perform a
max-sum belief propagation over a factor graph where the data
points are represented by variable nodes and the exemplars are
represented by function nodes. Depending on the granularity of
the desired clustering and the density of the network topology,
the distribution of the identified exemplars over the network
is expected to respect the constraints set for the optimization
task but does not guarantee the presence of an exemplar in
the topological neighborhood of every data point. As such, we
propose a novel two-stage cluster assignment policy that, at a
first stage, prioritizes the selection among neighbor exemplars
and then relaxes the selection constraint to consider all the
available exemplars if no exemplar exists within a specified
distance from a given data point. This step is followed by a
corrective label smoothing operation that uses graph coverings
to generate more reliable cluster labels by looking at the direct
neighborhood of every data point. Our extensive evaluation
experiments on citation and social networks show the clear ad-
vantages of Geometric-AP over traditional approaches that lack
the ability to leverage the network information independently
from the feature-based knowledge.

The remainder of this article is organized as follows: In
Section II, we briefly provide a general description of AP. In Sec-
tion III, we introduce the new Geometric- AP algorithm. The new
model is first described and its underlying rationale is discussed.
Then the new message updates are derived using a max-sum
belief propagation algorithm to optimize the redesigned net
similarity. A comparative study between AP and Geometric-AP
is conducted to show that the Geometric-AP algorithm can be
viewed as a special case of AP that penalizes some clustering
configurations under topological constraints. Sections IV and V
report the experimental results on two citation networks and one
social network, respectively. Section VI summarizes the insights
gained from our analysis and provides some guidelines about
the hyper-parameters tuning. The limitations of the proposed
approach are also discussed with an emphasis on some potential
future research directions. In Section VII we provide concluding
remarks for this article.

II. BRIEF REVIEW OF AFFINITY PROPAGATION

Affinity Propagation (AP) is a message passing algorithm that
takes as input user-defined similarity measures for all data point
pairs. Real-valued messages called responsibility and availabil-
ity are iteratively exchanged between data points until a set
of high-quality clusters gradually emerge around representative
data points referred to as exemplars [15]. Based on the provided

Authonzed licensed use limited to: Texas A M University. Downloaded on November 07,2023 at 18:29:10 UTC from IEEE Xplore. Restrictions apply.



11422

input s(z, 7), AP subsequently exchanges the two types of mes-
sages between data points to decide which instance would serve
as a good exemplar. The first message, called responsibility and
denoted by r (i, j), designates the message sent from point 7 to
candidate exemplar point 7. The second communicated message
is called availability and is denoted by a(%, 7). The exchanged
messages are defined and updated as follows:

(i) ¢ 3(i.) ~ max,_{ali. ) + (5} M

a(i,7) < min g 0,7(5,7) + max {0,7(¢, j)}

>

i's.t.i'¢{i,j}

2

Initially, all the availability messages are set to 0, except for the
self availability, which is computed as follows:

a(j,j) < Y max{0,r(i,j)}. (3)
it #]
This ensures that the self availability of a given point is not
inflated by higher responsibilities received from other points.
In order to avoid numerical instabilities that may result from
oscillating updates, an exchanged message m is damped as
follows:

m® « Am®D 4 (1 - A)m®, @)

where A is the damping factor. Finally, at each iteration, we can
determine the exemplar associated with each point by evaluating
the following equation:

exemplar(i) = argmax {a(i, /) +7(i,7)} . (5)

AP converges when the clustering configuration remains steady
for a predefined number of iterations.

III. GEOMETRIC AFFINITY PROPAGATION

Geometric Affinity Propagation (Geometric-AP) stems from
the original formulation of AP where the clustering task has
been viewed as a search over a wide set of valid configurations
of the class labels ¢ = (¢, €2, ...,cn) for N data points [15].
Given a user-defined similarity matrix [s;;] v« n. the search task
has been defined in [15] as an optimization problem that aims
at minimizing an energy function:

N
E(c)=-) s(ic), ©)
i=1
where s(1, ¢;) is the similarity measure between data point  and
its corresponding exemplar ¢;. With s(Z, ¢;) being a negative
distance measure, minimizing E'(c) aims at assigning each data
point to its nearest cluster exemplar.
Under valid configuration constraints, it has been shown
in [15] that the optimization problem can be reformulated as
the maximization of a net similarity S, defined as:

N
S(c) ==E(c)+) (o)

k=1
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Fig. 1. Node neighborhood using shortest_path distance. Neighbors
around node 7 are color-coded based on their corresponding shortest_path
distance layer. Orange color represents directly adjacent nodes, blue color
highlights nodes at 2 hops from node 7, and red color labels the remaining
nodes in the graph.

N N
=Y "s(,c)+ ) Gk (c), (7
i=1 k=1

where dx(c) is a penalty term expressed as:

@@:{a

¥

oo, ifexF#kbut3di: ¢ =%,
otherwise.

®)

In this formulation, a hard constraint has been set on top of
configurations where a non-exemplar data point is being selected
by another point as an exemplar. In other words, no data point is
allowed to be elected by other data points as an exemplar, unless
it has identified itself as an exemplar too. In Geometric-AP,
for valid association between any pair of data points (%, k) that
satisfies ¢; = k, we further require that & € N (i) where Ng (i)
is the topological neighborhood of diameter T with respect to
graph G for the point 7 defined as:

Ng (i) = {z : distanceg(z,7) < 7}, 9

where distanceg represents a topological distance with respect
to graph G. This means that no data point is allowed to elect
an exemplar outside of its topological neighborhood that is
specified by Ng.

Fig. 1 illustrates the node neighborhood using a shortest
_path distance.

A. The Geometric Model

By implementing the network constraints, we aim at avoiding
the configurations where a data point 7 chooses k as its exemplar
(ie.,c; =k)while k ¢ Ng(z’). Towards this end, we amend the
penalty term éx(c) in (8) to a new penalty term ~(c) that takes
the form:

—oo, ifegx#Fkbutdi: ¢;=k%,
Ye(€c) =4 —oo, ifJi: ¢;=kbutk ¢ Ng (i), (10)
0, otherwise.
The net similarity S in (7) becomes:
N N
S(e) =) sC.e)+> w(e). (11)
i=1 k=1
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(a) Geometric-AP (b) AP

Fig. 2. Geometric-AP versus AP. Identified clusters are color-coded. The
shared preferences for AP and Geometric-AP are preselected to get the same
number of clusters. The node features are the plane coordinates. Geometric-AP
has been launched with the shortest_path distance and a neighborhood
threshold of 2 (T = 2). Cluster exemplars are labeled by ETD.

In addition to maximizing the within-cluster feature-based sim-
ilarity, this new formulation intuitively maximizes the within-
cluster topological similarity. As a result, the optimization task
jointly searches for valid configurations that account for both
feature-based and network-based similarities. From this per-
spective, Geometric-AP can be viewed as a more constrained
special case of AP. We straiten the search space of proximal
exemplars for a given point i to the local neighborhood N (i).
When no exemplar exists in Ng (), the point i is allowed to
select among the full list of emerged exemplars. Clearly, this
assignment policy may raise some misassignments when the
exemplar selection occurs outside of the local neighborhood.
To remedy this deficiency, we smooth the labels throughout the
network using adjacency majority voting. Indeed, the network
adjacency of any given point ¢ with respect to a graph G, denoted
by Ag(), can be viewed as an a-cover of the reduced graph
formed by ¢ and Ag(). For instance, in [32] the authors provided
alabel selection strategy using graph coverings and have derived
an upper-bound expression for the error committed by majority
voting in binary labeled graphs.

Fig. 2 illustrates the clustering properties of Geometric-AP
as compared to AP when applied to one synthetic dataset.
Obviously, Geometric-AP is more robust against outliers and
generates better connected modules in the network. In contrast,
AP is hypersensitive to an unconnected vertex (node 12) as it
only relies on feature similarities. Additionally, the exemplars
identified by Geometric-AP occupy more centric locations in
the network when compared to the ones selected by AP.

B. Topological Neighborhood

Geometric-AP greatly depends on the neighborhood function
Ng defined in (9). In order to probe the effect of the topological
distance “distanceg” on the performance of Geometric-AP, we
consider throughout this article three widely used topological
distance metrics. We evaluate the performance of our geometric
model using the Jaccard, cosine, and shortest path distances.
Unless otherwise stated, we consider in this study a network
information in the form of an undirected graph G = (V, £) where
)V is the set of vertices of size N mapped to the observed data
points in the feature space (i.e., every data point is mapped to a
unique vertex in G). £ represents the set of undirected edges in
the graph G.
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1) Jaccard Distance: The Jaccard distance is derived from
the Jaccard index defined for two sets A and B as:

4|0 1B
A]U1B

From a topological viewpoint, we characterize every vertex V' &
V by an M-dimensional binary vector V = (vy,va,...,var)
such that v;,_, ,, =1 if vertex V and V; are connected in
G and 0 otherwise. The Jaccard distance between two vertices
Vi= (’Uu,’b‘]g, iy T..']Mr) and V5 = (1)21: V99, .. .,UQM) eVis
then defined as:

distanced®amd (Vy,V3) = 1 — p (Va, Va)

___Cio+Coa a3
Cio+Co1+Cia

p(A,B) = 12)

where C; ; is the number of positions k € [1..M]in which v, =
7 and Mg = _;.'
2) Cosine Distance: The cosine distance between two ver-

tices V1 = (vi1,v12,. .., vim) and Va2 = (va1,v22,...,02m) €
V is given by:
i.V;
distanceg ™™ (V1, Vo) = e
\/Zk 1 V- \/Ek 1 V3%
(14)

3) Shortest Path Distance: The shortest path distance be-
tween two vertices V7 and V3 € G is universally defined as the
shortest sequence of edges in £ starting at vertex V; and ending
at vertex V5. To fully determine the neighborhood function Ng
we need only to know about the existence of shortest paths with
specified lengths but not the full sequence of edges. This obser-
vation leads to an efficient implementation of the neighborhood
function N based on the shortest path distance. Indeed, for any
vertex 1, the determination of N (7) is straightforward if we
observe that the vth power of a graph G is also a graph with the
same set of vertices as G and an edge between two vertices if
and only if there is a path of length at most v between them.If
we denote by A(G) the adjacency matrix of graph G and by
A(G") the adjacency matrix of graph G”, the entries of A(G")
are derived using an indicator function as follows:

A(G") = (15)

[z, 40y
where the indicator function 1 of matrix X with entries x;;, is
a matrix of the same dimension as X and entries defined by:
1x[i, 7] = 1if z;; # 0 and 1x [1, j] = O otherwise.

C. Optimization

Similar to the original AP algorithm, the optimization of
the objective function introduced in Geometric-AP is NP-hard.
In order to estimate the optimal label configuration we follow
similar derivation as the one introduced in [15]. We solve this
optimization problem using max-sum belief propagation over
the factor graph depicted in Fig. 3. We note that the function node
in Fig. 3 is different from the one presented in [15] as it leverages
the network information to account for the topological similarity.
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Fig. 3. Factor graph for Geometric-AP.

In the max-sum belief propagation algorithm, a bipartite mes-
sage communication between two types of nodes is conducted
with an alternation between summation and maximization steps
as illustrated in Fig. 3(a). The first type of nodes is called variable
node and it sums up the received messages from all second type
nodes, called function nodes, other than the one receiving the
message (Fig. 3(b)). Likewise, every function node maximizes
its value over all the variables except the variable the message
is being sent to (Fig. 3(c)). We next provide the set of derived
message updates that govern Geometric-AP.

1) Message Updates: With analogy to AP, the message sent
from variable node ¢; to function node 7 sums together all the
messages received from the remaining function nodes. As shown
in Fig. 3(b), this message is denoted by p;_, and takes the form:

pisk (€i) = s(i,¢:) + Z ik (€3) -

k':k'£k

(16)

Similarly, the message sent from function node ~y; to variable
node ¢; computes the maximum over all variable nodes except
¢; (Fig. 3(c)) and can be given by:

max

Qi k (Ci) .
(Cl-.82s---.~Ci-1_~Ci+1-.~-sCN)

Tk (81: C2yeuny Ci—laci:‘ci-l-l:! e CN) + Z pi'—}k (C‘!.')
RS
a7
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Using a set of mathematical simplifications utilized in [15]
we derive two message updates that we also call responsibility
and availability. Here, the responsibility message, denoted by
(i, k), replaces the message p;_,x and the availability message
designated by a(z, k) substitutes the message o, r as shown
in Fig. 3. Ultimately, the simplified messages are given by (18)
and (19) shown at the bottom of this page.

(i, k) = s(i, k) —:E:Lax[s(i,j)—i—a(i,j]]. (18)

J#k

The detailed derivation of message updates for Geometric-AP
is provided in Section I of the supplemental material, which can
be found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2023.3237630. Obvi-
ously, the responsibility message remained unchanged as com-
pared to AP. However, the availability message has accom-
modated the network constraints and contained an additional
update that takes into account the network neighborhood be-
tween data points and potential exemplars. This is reflected
in the message update in (19) since the availability message
remains unchanged when the candidate exemplar falls within
the topological neighborhood of the communicating data point
but takes a new expression whenever the potential exemplar
is located outside the network proximity of the data point of
interest. In the next section we discuss an updated assignment
policy that consolidates the underlying concepts of the derived
messages.

2) Assignment of Clusters: At any given iteration of AP, the
value of a variable node ¢; can be estimated by summing together
all messages that c; receives. Subsequently, the argument that
maximizes these incoming messages, denoted by ¢;, will be a
good estimate for ¢; [15].

¢; = argmax [a(z,7) + s(2,7)] - (20)

J
In Geometric-AP, this rule is amended to be consistent with the
joint similarity criteria respected during the derivation of the
message updates. Indeed, Geometric-AP prioritizes the assign-
ment of data points to the closest exemplar that lies within the lo-
cal neighborhood of each data point. As the number of emerging
exemplars is automatically determined by the algorithm, some
proximal exemplars may breach the topological constraint. To
remedy this possible deficiency, we prioritize at a first stage the
selection among close exemplars that fall within the topological
sphere determined by N . As Geometric-AP does not guarantee
that at least one exemplar emerges in the network neighborhood
of every data point, we allow at a second stage a more lenient
selection among all available exemplars. The new updated rule
takes then the form: (21) shown at the bottom of the next page.

a(i, k) = @ik (ci = k)
Zi’:i‘(ék max (03 (e (ia’ 'l")) 1

— ] min (0,7(k, k) + Crogring max([],r(i,'k)]),

if k=1,

if k£ & k € N3 (3), (19)

— max (O,T(k, B) + X uwgqn max (0,7 (i) k))) , ifk#£i&k¢ NI().
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3) Label Smoothing: The misassignments that may happen
in Geometric-AP, particularly when the exemplar selection takes
place outside of the local neighborhood, reduces the perfor-
mance of the carried out clustering. To mitigate this issue we
adopt a label smoothing strategy that has been widely used
in label selection on graphs. To this end, we consider graph
coverings that use a-cover sets to label the remaining nodes
in the graph by majority vote [32]. By definition, we say
that a set S a-covers a graph G = (V,€) if Vi € V either ¢ €
S or 3 ;g Wij > where Wy; denotes the weight on the
edge between vertex i and j. For unweighted graphs W;; takes
a binary value. Realistically, a vertex V' in G can be labeled
efficiently by majority vote if some voting nodes are adjacent to
V w.rt G. From this perspective, we target all adjacent voters
and we consider the network adjacency of any given point ¢
w.r.t G, denoted by Ag(z), to form a reduced graph formed by
¢ and Ag(z). In this reduced graph, for & =1, Ag(i) can be
viewed as an a-cover for Ag(z) U <. In our work, we perform an
inclusive label smoothing throughout the full network in a way
to prevent Geometric-AP from being overconfident. We propose
the following label smoothing policy:

Y dle=a)l,
J€Ag(1)
where 4(.) is the Dirac delta function, such that the sum in (22)
counts the number of vertices in Ag(z) that have class ¢g. In
order to comprehensively handle all vertices in G, including
disconnected nodes, Geometric-AP counts the vote of the vertex
7 as well.

(22)

¢; = arg max
k

D. Comparison to Affinity Propagation

Geometric-AP leverages the available network information
by implementing a more constrained optimization problem as
compared to AP. This implementation assumes that significant
clusters are jointly compact in two different domains that are
the node-feature domain and the network topological domain.
Under this assumption, Geometric-AP is expected to boost the
clustering performance when the information carried by the node
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features and the network topology about the ground-truth clus-
ters is consistent. From this standpoint, the network information
can be viewed as a chaperone for the clustering task to achieve a
more significant partitioning of the data by avoiding some local
optimum traps. To further elucidate this notion, we rewrite the
message updates in (19) using the identity:

z — max(0, ) = min(0, z), (23)
which leads to the expression given in (24) shown at the bottom
of this page. This new result outlines the difference between
Geometric-AP and AP as a penalty term deducted from the
availability message sent from the potential exemplar k to the
data pointi when k ¢ N (i). The expression of the penalty term
is given by:

r(k,k)+ ) max(0,r (i) k). (25)

ii'¢ ik}

Except the time required to compute the neighborhood function
N¢, the expression provided in (24) sets the computational
complexity of Geometric-AP to O(N?) since the expression
of the penalty term is already computed and is reusable without
any additional computational cost. All these advantages make
the implementation of the proposed Geometric-AP as efficient
as that of AP while keeping the benefits carried by the network
information.

IV. UNSUPERVISED DOCUMENT CLUSTERING

We thoroughly study, in this section, the improvement of
Geometric-AP with reference to AP in unsupervised document
classification on two benchmark citation networks, that are the
cora dataset [33] and the cifeseer dataset [34]. Additionally,
we select and perform a variety of clustering methods that
span many state-of-the-art clustering approaches for comparison
purposes. Our findings show that Geometric-AP consistently
outperforms AP on the studied datasets and exhibits high com-
petitiveness with other long-standing and popular methods.

Ci = argmax [a (E:J) +S(Z:J)]
j € Ng (i) -
e & , if[EIkEi"\fg{z):l1
; : Bl
Cj =1
i otherwise.

2D

a(i, k) = @ik (ci = k) =

Zi':i’ x Max (03 r (ia’ k)) 1
min 03 T(k! k) b Zi‘:i'e{i,k} max (03 r (i:’ k)) ’

ifk =4,
ifk #i&k € Nj(i),

min (0,7(k, k) + Ygugs 4y max (0,7 (i, k) ) [1—(15= k)X p.g iy max (0,7 (i, k))] , ifk#i&k ¢ NI(i).

(24)
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A. Methods and Settings

The list of clustering methods selected to benchmark
Geometric-AP along with their tuned hyper-parameters are de-
tailed as follows:

1) Exemplar-based clustering methods. The selected com-
peting methods are kmedoids [4] and AP [15]. We denote
the convergence parameters of AP and Geometric-AP by
MaX;e,, CONV;er, and A to designate the maximum number
of iterations, the number of iterations for convergence,
and the message damping factor, respectively. We choose
values reported to guarantee high convergence rates [35].
maXjer = 1000, convye, = 100, and A = 0.9. kmedoids
relates to the kmeans [3] algorithm but it identifies the
medoid of each cluster by minimizing the sum of distances
between the medoid and data points instead of sum-of-
squares. Unlike centroids, medoids are selected from the
existent data points.

2) Centroid-based clustering. The most popular method, that
is kmeans [3], is performed. kmeans is run 1000 times
with random centroid seeds and the best performance is
reported.

3) Structural clustering. The clustering method spectral-
2 [36], which takes the network adjacency matrix as the
similarity matrix, is selected and compared. In spectral-g,
the eigenvectors of the graph Laplacian are computed and
the kmeans algorithm is used to determine the clusters. The
assignment process is repeated 1000 times with random
initialization and the best result is recorded.

4) Hierarchical clustering. To mimic the operating mode of
AP where initially all data points can be exemplars, we
select a bottom-up hierarchical clustering method that
is the hierarchical agglomerative clustering (HAC) [37].
To prioritize compact clusters with small diameters we
further consider the complete linkage criterion for merging
similar clusters.

5) Model-based clustering. We also test a Gaussian mixture
model (GMM) [38] method that utilizes the Expectation-
Maximization (EM) algorithm to fit a multi-variate Gaus-
sian distribution per cluster. Initially, the probability dis-
tributions are centered using kmeans and then EM is
used to find local optimal model parameters using full
covariances. The mixture model is employed afterwards to
assign data points to the classes to maximize the posterior
density. 100 random restarts are performed and the best
performance is reported.

6) Variational inference clustering. We perform a Bayesian
variational inference clustering by fitting a Gaussian mix-
ture model with an additional regularization from a prior
Dirichlet process distribution (DPGMM) [39]. Similar
to GMM, 100 random restarts with full covariances are
performed and the best result is reported.

7) Density-based clustering. We test a spatial density-based
clustering algorithm (DBSCAN) that identifies core data
points of high density and expands from them to obtain
the target clustering. To attain the desired number of clus-
ters, we leniently reduce the required size of core points’
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neighborhood and we adjust the distance threshold within
each cluster accordingly.

8) Graph-based clustering. We select a minimum spanning
tree (MST) approach that identifies the desired clusters
as sub-graphs that connect node members in a way to
minimize the sum of the graph edges. The number of final
clusters is controlled through a cutoff threshold.

Geometric-AP is implemented in 64-bit python 3.6.8 on a

workstation (Windows 64 b, 2.8 GHz Intel Core i7-7700HQ
CPU, 16 GB of RAM).

B. Similarity Metrics

Many methods have been devised in the past few decades to
provide vector representations for textual data [31], [40]. Most
popular representations that have been extensively used in the
literature include the binary word vector and the term-frequency
inverse-document-frequency (tf-idf) [40] representations. Dis-
tance measures that have been reported as congruent with these
representations include the Euclidean, Manhattan, and cosine
distances as reviewed in [31]. For unbiased comparison, we
independently run the kmedoids algorithm using the aforemen-
tioned distances on the cora and cifeseer datasets to predict the
ground-truth class labels and we retain the distance measure
that gives the best clustering result on each dataset. In an
M-dimensional space, the considered distances between two
data points p = (p1,p2,....,pm) and g = (g1,92,...,qn) are
defined as follows:

* Euclidean Distance: distguc(p,q) = > orq /(i — 0:1)2.

e Manhattan Distance: distpran(p, q) = Zfil |pi — ail-

¢ Cosine Distance: distcos(p, ) =

P-q
. Vs Py ()
Consequently, the off-diagonal elements of the similarity

matrix [s;;|n <y between N data points are defined as:

(27)

Sij = _diStmet'riC(éa J)’

where dist, ;i refers to one of the previously discussed dis-
tance measures. The preference values s;; are controlled over a
range of values to generate different number of clusters.

C. Clustering Evaluations

In the absence of a unified criterion universally accepted for
assessing clustering performance, many evaluation metrics have
been proposed. The list of popular metrics include, but not
limited to, average purity, entropy, and mutual information [41].
More recently, mutual information measures become accepted
with appreciation by the research community as they provide
a plausible evaluation of the information shared between the
compared clusterings. We adopt three widely used performance
measures as discussed in [42] that are: normalized mutual in-
formation (NMI), classification rate (CR), and macro F1-score
(F1).

D. Performance Assessment Results

1) Cora Dataset: The cora dataset [33] contains 2708 ma-
chine learning papers from seven classes and 5429 links between
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Geometric-AP leverages the network information to better unveil the hidden data structures. The clustering task is reformulated as an energy-based

optimization problem under additional topological constraints imposed by the available network information.

them. The links indicate a citation relationship between the
papers. Each document is represented by a binary vector of 1433
dimensions marking the presence of the corresponding word.
The documents in cora are short texts extracted from titles and
abstracts where the stop words and all words with document
frequency less than 10 are removed [43]. Stop words include
non-informative words like articles and prepositions and are
filtered out to avoid inflating the dimensions. Each document
in cora has on average 18 words and the network is regarded,
in the context of this work, as an undirected graph. After ap-
plying the selection procedure described in Section IV-B, the
most appropriate similarity metric on the cora dataset has been
identified as the negative Euclidean distance.

Next, we plot in Fig. 5(a), (b), and (c) the clustering results
of Geometric-AP with different neighborhood functions Ng
as a function of T when the ground-truth classes are being
considered. In this experiment we aim at tuning N defined
in (9) by identifying the best topological distance “distanceg”
and the optimal threshold value 7 that lead to the top clustering
result w.r.t NMI, CR, and F1. In case of conflicts or ties, the
reference metric for identifying the optimal threshold is always
the NMI and the smallest optimal threshold is retained. For
each topological distance, we run the algorithm with T ranging
from 1 to 5 for the shortest path distance and from 0.5 to
0.9 for the Jaccard and cosine metrics when the actual classes
are being used, i.e., 7 in the case of cora. As illustrated in

Fig. 5(a), the optimal clustering results are obtained using the
shortest_path distance with a neighborhood threshold 7 = 3.
In the remainder of this discussion about the cora dataset the
neighborhood function Ng will be defined as follows:

N¢ (i) = {z : shortest_path(z,i) < 3}. (28)

We show in Fig. 5(d), (e), and (f), respectively, the NMI, CR, and
F1 histograms for the different algorithms. Clearly, Geometric-
AP significantly outperforms all other algorithms including
non-exemplar-based methods on the three evaluation metrics.
This result suggests that the network information comprises a
substantial knowledge about the structure of the ground-truth
categories. Additionally, the edge distribution captured by the
neighborhood function Vg in (28) seems to be highly compatible
with the identified exemplars as it increases the affinity of cluster
members to the most appropriate representatives.

In Fig. 5(g), (h), and (i) we plot NMI, CR, and F1 as functions
of K, the number of identified clusters. Detecting variable K
is possible by calibrating the self-preferences [s;;]vxn Over a
range of values in AP and Geometric-AP. Remaining clustering
methods generate the desired number of clusters by specifying
the preferred number of cluster components in initialization.
Whenever kmeans is used, the simulations are repeated 1000
times with random restarts and the best performance is plotted.
Henceforward, the aforementioned setup is used when reporting
the NMI, CR, and F1 values as functions of number of clusters
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Fig. 5.

Hyperparameter tuning and evaluation results on the cora dataset. (a-c) The three distance metrics with variable threshold values are tested to predict the

ground-truth categories, i.e., 7. By referring to the NMI metric, the optimal clustering results are obtained using the shortest_path distance and T = 3. Plot
(d-f) NMI, CR, and F1 evaluation metrics are reported for Geometric-AP and the rest of benchmark algorithms. (g-i) Plots of evaluation metrics as function of

K (number of identified clusters).

K. The figures show that Geometric-AP consistently outper-
forms other methods by a significant amount w.r.t NMI, CR,
and F1 when the number of identified clusters spans the number
of ground-truth categories.

2) Citeseer Dataset: The citeseer dataset [34] contains 3312
labeled publications spread over six classes with 4732 links
between them. The links between documents indicate a citation
relationship and each paper is represented by a binary word
vector of dimension 3703 after stemming and removing stop
words. Similar to cora, words with document frequency less
than 10 are removed. On average, each document in cifeseer
has 32 words [43] and we harness the provided network infor-
mation as an undirected graph. The metric selection procedure
discussed in Section IV-B yields to the negative cosine distance
as the best similarity measure on cifeseer w.r.t our setup. Plots
in Fig. 6(a), (b), and (c) illustrate the clustering results of

Geometric-AP with different neighborhood functions N¢ as a
function of 7 when the ground-truth classes are being predicted.
This hyper-parameter tuning step is crucial and should be per-
formed for any studied dataset. In cifeseer, parameter tuning
serves to identify the best neighborhood function N/ defined in
(9) by searching for the finest topological distance “distanceg”
and the most adequate threshold value 7 that engender the high-
est clustering result w.r.t NMI, CR, and F1. Deterministically,
the optimal threshold value corresponds to the one that gives the
largest NMI. For each topological distance, Geometric-AP is
run with 7 ranging from 1 to 7 for the shortest path distance and
from 0.5 to 0.9 for the Jaccard and cosine metrics. The reference
task for tuning the model parameters is the prediction of the
true class labels, i.e., 6 in the case of cifeseer. Fig. 6(a) shows
that the shortest_path distance should be considered with
a neighborhood threshold = = 5. Thereafter, the neighborhood
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Fig. 6.

Hyperparameter optimization and evaluation results on the citeseer dataset. (a-c) Three topological distances are tested over a range of threshold values to

predict the ground-truth categories, i.e., 6. By consulting the NMI measure, the optimal clustering results are obtained using shortest_path distance and T = 5.
(d-fy NMIL CR, and F1 evaluation metrics are reported for the set of tested algorithms. (g-i) Plots of evaluation metrics as functions of

K (number of identified clusters).

function N, (_;f is set as follows:

(29)

It should be noticed that, on the cifeseer dataset the optimal
neighborhood function encompasses larger diameter (7 = 5) as
compared to cora dataset where the best 7 found to be 3. The
main reason is that the network in cora dataset is more dense
(network density of 14.812%¥10~%) and has higher average node
degree (4) while the cifeseer dataset has a network density of
85.179 *10~° and an average node degree equal to 2 [44]. As
expected, increasing sparsity in the network usually compels
Geometric-AP to delve deeper into the network to locate the
best clustering structure.

We plot in Fig. 6(d), (e), and (f), respectively, the NMI, CR,
and F1 histograms for the different algorithms. Like on cora,
Geometric- AP significantly outperforms its counterparts AP and

Ng (i) = {z : shortest_path(z,7) < 5}.

kmedoids and still behaves comparably to other top performing
methods.

In Fig. 6(g), (h), and (i) we plot NMI, CR, and F1 as functions
of K. The simulations confirm that Geometric-AP consistently
outperforms exemplar-based methods and generates comparable
results when confronted with other methods. A comparative
analysis of the results obtained on cora and cifeseer stipulates
that the increase in clustering performance harvested from the
network information diminishes as the true categories become
more spread over the network. This observation is consistent
with findings previously summarized in [31]. Additionally, the
shortest_path distance has been identified on both datasets
as the best distance measure. This is explained by the high flexi-
bility offered by this metric to the potential exemplars as they are
allowed to declare availability to non-neighbor nodes and data
points at more than 2 hops in the network. In contrast, Jaccard
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Fig.7.

Hyperparameter tuning and evaluation results on the Zachary s Karate Club network using the club split as ground-truth classes. (a-c) Selected topological

distances are optimized over a range of threshold values to predict the ground-truth categories, i.e., 2. By referring to the NMI measure, the optimal clustering
results are produced via Jaccard distance and 7 = 0.5. Plot (d-f) NMI, CR, and F1 evaluation metrics are reported for the different tested algorithms.

and cosine distances quantify only the shared neighborhood
between two nodes in the network and as such the exemplars
are unable to communicate their availability to nodes far more
than 2 hops in the graph. Figs. 5(a) and 6(a) demonstrate that
declaring availability to fewer data points than the optimal num-
ber engenders scarcity in the communication required to identify
good clusters. Also, advertising the availability of exemplars in
a broad manner introduces an additional noise that deteriorates
the identification of good exemplars and misleads the search for
valid label configurations.

V. CLUSTERING OF SOCIAL NETWORKS
A. Zachary’s Karate Club

The Zachary’s karate club [45] is a social network of a
university karate club that was monitored for two years. The
network contains 34 members and 78 links between them. The
links document the interaction between members outside the
club. During the study, a conflict between the instructor and the
administrator arose, which resulted in the split of the club into
two sets. Each club member is represented by a binary vector of
34 dimensions indicating the interaction outside the club with
other members. In the remaining of this section we evaluate
the ability of Geometric-AP and other algorithms in retrieving
the correct split of the club members. Also, we consider an

additional 4-class partition obtained by modularity-based clus-
tering [46] and we assess the clustering performance w.r.t these
pseudo ground-truth labels.

Indeed, modularity has been first introduced in [47] as a qual-
ity measure for graph clustering. Thenceforth, it has attracted
considerable research attention and becomes widely accepted
as a quality index for graph clustering. By considering the
additional modularity-based classes we aim at analyzing the
power of Geometric-AP in sensing the modularity within graph-
structured datasets. We note that the metric selection procedure
presented in Section I'V-B for both ground-truth class labels
(club split and modularity-based classes) identifies the optimal
similarity measure as the negative cosine distance.

1) Club Split Clusters: Similar to cora and cifeseer datasets,
we initially start by searching for the optimal topological dis-
tance and its corresponding threshold. Fig. 7(a), (b), and (c)
shows that the Jaccard distance with a threshold value of 0.5
performs the best in retrieving the club split. The neighborhood
function is then given by:

N¢ (i) = {z : Jaccard(z,i) < 0.5} . (30)

As illustrated in Fig. 7(d), (e), and (f), Geometric-AP consis-
tently outperforms its counterparts of exemplar-based methods
and performs comparably to other top performing algorithms
such as kmeans and Gaussian mixture models. While the stan-
dard AP failed to compete in recovering the actual split and
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Hyperparameter optimization and evaluation results on the Zachary's Karate Club dataset using the modularity-based classes as ground-truth labels. (a-c)

Distance metrics are evaluated with variable threshold values to predict the ground-truth categories, i.e., 4. By taking the NMI measure as reference, the optimal
clustering results are obtained with the Jaccard distance and T = 0.8. (d-f) NML, CR, and F1 evaluation metrics are reported for the different tested algorithms.

misassigned 7 members, Geometric- AP has successfully identi-
fied the two sets with only one misclassified member. Obviously,
our geometric model boosts the clustering accuracy with respect
to all evaluation metrics with the largest enhancement being
recorded for NMI, which has increased by 52% as compared to
the standard AP.

2) Modularity-Based Clustering: Likewise, for the three
topological distances being tested, the NMI, CR, and F1 scores
plotted in Fig. 8(a), (b), and (c) show that the Jaccard distance
detects the best neighborhood function N¢ for a threshold value
of 0.8. As such, Ng is defined as follows:

Ng (i) = {z : Jaccard(z,i) < 0.8} . (31)

As expected, Geometric-AP achieves the best NMI value of
76.76% outperforming all other studied methods while the clos-
est result has been attained by “Spectral-g” (76.01%). Mean-
while, for CR and F1, Geometric-AP remains comparable with
the state-of-the-art graph clustering method “Spectral-g”.

Obviously, the obtained results for recovering the various
ground-truth class labels on the Zachary’s karate club network
have proven the consistent performance of our proposed method
albeit the network information is redundant and explicitly ex-
tracted from the node features. This observation confirms that
Geometric- AP effectively leverages the topological local neigh-
borhood to better unveil irregularly shaped clusters associated
with the analyzed data.

B. Clustering With Node Embeddings

Like the majority of machine learning algorithms, the per-
formance of Geometric-AP greatly depends on data represen-
tation. For instance, different node embeddings may entangle
or expose more or less the structure of the clusters present
in the data [48]. With the fact that exemplar-based clustering
methods are more successful with regularly shaped structures,
representation learning becomes a key factor in achieving sat-
isfactory clustering results. To provide a proof of concept that
Geometric-AP can seamlessly be integrated with state-of-the-art
representation learning methods while maintaining its efficiency
we replace the node features used in the Zachary’s Karate Club
network by two different node embeddings obtained by two em-
bedding methods widely used in the literature. We first consider
the Fruchterman-Reingold force-directed algorithm (FRFD) that
mimics forces in natural systems to embed undirected graphs
in two dimensional spaces [49]. Similarly, we use t-SNE (t-
distributed Stochastic Neighbor Embedding) method [50] that
is well suited for visualization of high-dimensional datasets to
project the network into the plane. Both embedding methods
are observed as an aggregation of dimensionality reduction and
representation learning techniques. As FRFD and t-SNE are
randomly initialized, we generate 1000 sets of node embeddings
per method and we analyze the average clustering performance
of the different clustering algorithms being tested. For each
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Fig. 9. Average clustering results using 1000 sets of FRFD node embeddings. Error bars show the standard deviations. (a-c) Results when using the club split

classes. (d-f) Results when using the modularity-based classes.

evaluation metric we also report the standard deviation. For all
sets of node embeddings we consider the negative Euclidean
distance as the affinity measure for both Geometric-AP and AP.
Hereafter, we tune the neighborhood function N¢ for an arbi-
trary selected random seed and we retain the best configuration
throughout all other repetitions. In our simulations we have used
a random seed of value 13579. We also provide in Section II of
the supplemental material, available online a visualization ex-
ample of clustering by Geometric-AP that illustrates the efficacy
of the proposed method in identifying high quality exemplars.
Notice that for each set of node embeddings we produce the
desired number of clusters by automatically adjusting the shared
preference s;; via dichotomic search. Node embeddings for
which Geometric-AP or AP diverges are regenerated.

1) Fruchterman-Reingold Force-Directed Embeddings: We
produce 1000 sets of FRFD node embeddings and we run
Geometric-AP and other benchmark algorithms presented in
Section I'V-A for two clustering tasks. At first stage, we use the
actual classes resulted from the club split. Then, we consider
the classes obtained by modularity-based clustering. We report
histograms of average NMI, CR, and F1 score values along with
standard deviation bars for the tested algorithms. For methods
that do not depend on node features such as Spectral-g or for

those that show negligible standard deviations (< 10~>) we omit
the error bars.

Fig. 9(a), (b), and (c) show that a significant improvement
has been achieved by Geometric-AP in modeling the correct
club split. Additionally, Geometric-AP manifested the low-
est variability on the three evaluation metrics. The reason is
that the network information makes the algorithm less sensi-
tive to the random noise associated with node features. Like-
wise, Fig. 9(d), (e), and (f) illustrate the consistent perfor-
mance of Geometric-AP in retrieving the correct modularity-
based classes. Overall, Geometric-AP remained the most ro-
bust method against the randomness associated with the used
embeddings.

2) t-SNE Embeddings: Similarly, we employ the t-SNE al-
gorithm to generate 1000 sets of node embeddings and we use
the same setting discussed in Section V-B1 to run the simu-
lations. We plot in Fig. 10(a), (b), (c) and 10(d), (e), and (f)
the clustering results when using the club split classes and the
modularity-based labels, respectively. Obviously, Geometric-
AP outperforms exemplar-based methods by significant mar-
gins in all evaluation metrics. Also, it surpasses all feature-
dependent methods including the state-of-the-art kmeans. On
the other hand, Geometric-AP performs either comparably or
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classes. (d-f) Results when using the modularity-based classes.

proximally to the popular graph clustering method Spectral-g
even though Geometric-AP is not principally designed for graph
clustering.

By considering the clustering performance of Geometric-AP
using node embeddings, the comparative results establish the
steady efficiency of Geometric-AP in leveraging the available
network information to boost the clustering accuracy. Addi-
tionally, Geometric-AP demonstrates high compatibility with
representation-learning-based methods and shows promising
potentials if combined with data-driven methods.

VI. INSIGHTS AND LIMITATIONS

Our analyses have shown the potential advantages of using
the available network information in conjunction with data
features to perform an efficient clustering. The performance of
Geometric-AP on citation and social networks has demonstrated
the ability of topological information to shrink the search space
of the optimal clustering configuration without increasing the
model complexity (see Table I). Theoretically, the accurate topo-
logical information leveraged by Geometric-AP helps to avoid
some local optimum traps during the iterative search towards
the optimal clustering. Such local optima are penalized by the

Exemplar-Based Non Exemplar-Based

(e) CR

Exemplar-Based Non Exemplar-Based

() F1

Average clustering results using 1000 sets of t-SNE node embeddings. Error bars show the standard deviations. (a-c) Results when using the club split

topological constraint in the minimized energy function derived
for Geometric-AP. Indeed, the hard constraint, set for distant
exemplars with respect to the network, inhibits data points from
selecting distant centroids in the presence of proximal ones. This
selection procedure is consolidated by the new cluster assign-
ment policy proposed by Geometric-AP that prioritizes closer
neighbor exemplars in the network. As there is no guarantee
that a given data point finds a good exemplar in its topological
proximity, Geometric-AP accounts also for misassignments that
could arise during the clustering. This is enabled by a label
smoothing strategy that relies on graph coverings to determine
more confidently the correct cluster labels.

On the other hand, achieving the best performance for
Geometric-AP is contingent upon the identification of the ap-
propriate topological distance metric and threshold to be used to
characterize the neighborhood function N¢ . In order to facilitate
the utilization of our algorithm, we provide a few guidelines
on how to tune the framework hyperparameters. Our analyses
have shown that, based on the interactions between the cluster
members and the characteristics of the network information,
two classes of distance metrics can be considered. The first class
corresponds to topological measures, such as the Cosine and Jac-
card distances, that quantify the shared neighborhood between
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TABLEI
TIME COMPLEXITY STATISTICS ON THE CORA, CITESEER, AND ZACHARY'S KARATE CLUB DATASETS IN TERMS OF EXECUTION TIME TO
CONVERGENCE EXPRESSED IN SECONDS

| Cora | Citeseer | Zachary's Karate Club |
| NbClusters | 5 7 9 11 13 15 17 19 | 4 6 ] 10 12 14 16 B | 2 4 |
| Geometric AP | 2818  58.62 5878 6145 59.14 59.05 6196 7373 | 9334 92 110.88 94.88 9241 _91.96 92.87 9358 | 004 _D.05 |
| AP | 3732 2841 36T 5463 264 52.14 54.8 W19 | HX TR 79.34 8522 86.24 B7.15 8845 8974 | 005 005 |
|  Kmedoids | 033 035 04 04 035 037 037 048 | 107 101 115 099 155 102 1 101 | om 0.01 |
|  Kmeans | 209012 27183 339.04 41321 45043 52075 60044 72357 | 59322  780.19  1067.34 120365 13709  1607.96 183997 196841 | 14 212 |
| Spectralg | 112 1328 1918 188 W66 2339 2848 2859 | 1572 230 4014 416 4438 4444 49.08 549 | 132 183 |
| HAC | 746 737 7.76 727 743 739 751 763 | 2885 28.86 3016 2872 2837 28.89 28.26 2839 | 0. 0.02 |
| CMM | 58284 B4677 112617 142618 152656 173156 220753 242463 | 28993 573592 948389 1199624 1496114 1744043 1861779 244408 | 058 09 |
| DPGMM | 6665 98999 127162 15654 177512 2004  2540.56 2877.02 | 492163 653567 10409.62 1343146 1736551 19509.34 2172706 2865425 | 0.66 01 |
| DBSCAN | 04 042 041 045 0.41 043 0.42 046 | 1ls 128 107 13 119 113 L1 L1 | 0001 0.001 |
| MST | 241 262 252 258 24 238 253 295 | 487 431 4.24 44 471 436 433 435 | 003 0.003 |

Top three methods in terms of classification rate accuracy are expressed in bold font for each clustering scenario. top performing method with the minimum

execution time is also underlined.

a pair of data points. Such distance metrics are well suited for
small datasets (hundreds of data points) where the actual cluster
members have direct interactions with respect to the network
structure. This observation has been confirmed by our analysis
on the Zachary’s Karate Club dataset. Based on the desired
clustering granularity we can also select the appropriate thresh-
old 7. If the desired clustering is finely fragmented, it is more
likely that the exemplar corresponding to any data point rests
within a small radius from its neighborhood and setting a large
threshold T will better lead the search for such close exemplars
(On the Zachary’s Karate Club dataset, with modularity-based
classes we found optimal 7 = 0.8). In contrast, coarse clustering
requires a larger topological radius and hence a smaller T (unlike
to shortest path distance, we note that for Cosine and Jaccard
distance metrics, T is inversely proportional to the neighborhood
radius). For instance, considering the club split classes, the best
T was equal to 0.5.

The second class of distance metrics probes the neighborhood
depth within a network (i.e.,: shortest path distance). Such
measures are adequate for large datasets (more than thousands of
data points) where the good exemplars are within few hops w.r.t.
the network from their cluster members (i.e.,: citation networks).
To better select 7 in this case, we can rely on the network density
that reflects the degree of interactions between the network
nodes. As the network becomes more sparse, T needs to be
increased to look for broader topological neighborhood. These
recommendations are also consolidated by our findings on the
cora and cifeseer datasets. Nevertheless, in the absence of any
prior domain knowledge about the clustering structure and the
network properties, the parameter tuning can be exploratory
based on the available data.

Despite the aforementioned advantages of Geometric-AP
over traditional approaches, relying on network information can
also have limitations. For instance, noisy or inaccurate network
information could be misleading for the clustering task. For
Geometric-AP, to be successful in dissecting the complex struc-
ture of data clusters requires the node features and the network
topology to be consistent. In other words, the topology-based
similarity between clusters members should not contradict their
feature-based similarity. This consistency rule has been verified
by our ablation experiments in Section III of the supplemental
material, available online where the usage of a randomized net-
work information has significantly deteriorated the performance

of Geometric-AP. This setting presents a major challenge for
our proposed approach to determine which information is more
reliable.

From this perspective, a potential improvement of Geometric-
AP is to account for the possible uncertainty related to the
accuracy of the network information. For instance, one may
quantify the differences between two clustering tasks carried
with and without network information and set a decision thresh-
old for using the topology information. A recently established
approach introduces the identifiability [51] of communities as
the discrepancy between the similarity matrix extracted from the
node features and the normalized community incidence matrix
extracted from the network information. A promising research
direction is to leverage the identifiability of communities to
quantify the improvement of the clustering after considering the
network information. Another direction could be based on the
latest advances in network vulnerability analysis [52] where the
network information could be pruned based on Markov global
connectivity metrics to keep only pertinent information. Alter-
natively, a transformation could be applied on the node features
based on the available network information before conducting
the clustering task. For example, an application for disease
marker identification [53] has shown that relying on latent graph
embeddings to cluster the gene nodes in a protein-protein inter-
action network (PPI) is very successful in discovering robust
and reproducible biomarkers for complex disorders. Ultimately,
an interesting research direction is to extend Geometric-AP by
performing a linear fusion at the feature level for two similarity
matrices that encode for the node features and the network
topology. As performed in [54], deriving an estimate for the
latent similarities by optimizing the cosine similarity between
the estimate and the latent representations could be very efficient
in leveraging the network information.

VII. CONCLUSION

In this article, we proposed a novel geometric clustering
scheme, Geometric-AP, by extending the original feature-based
AP to effectively take advantage of network relations between
the data points, often available in various scientific datasets.
Geometric-AP locks its focus on the local network neighborhood
during the message updates and makes potential exemplars
only available within a predefined topological sphere in the
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network. The underlying objective is to maximize the similarity
between the data points and their respective exemplars based
on the node features while respecting the network topology to
ensure the proximity of each data point from its exemplar in the
network. Using max-sum belief propagation over a factor graph,
the new model has been optimized under the given network
constraints at the level of function nodes. With an adjusted
cluster assignment policy, the hybrid model further smooths
the node labels throughout the network via majority voting.
By initially considering all data points as potential exemplars,
Geometric-AP generates clusters insensitive to initialization.

Extensive validation based on two benchmark citation net-
works and one social network has clearly demonstrated the
effectiveness of the proposed method and has confirmed the
statistical significance of the obtained results. It has been shown
that Geometric-AP results in higher accuracy and robustness
than the original AP in clustering the data points by lever-
aging relevant network knowledge. Furthermore, comparative
performance assessment against other state-of-the-art methods
have shown that Geometric-AP consistently yields favorable
clustering results.
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