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Abstract
Object counting in images has been studied extensively, in par-

ticular using deep network models recently. The existing counting
models typically output the point estimates of the object counts
in given images. However, none of these can provide reliable un-
certainty quantification of the derived count estimates, which is
critical for consequent decision making when adopting these count-
ing models in real-world applications. In this paper, we propose
a novel deep counting model in a Bayesian framework. With the
designed Bayesian attention module and Bayesian counting loss
function, our deep Bayesian counting model not only improves the
accuracy of count estimates with varying object and background
appearance; but also enables their uncertainty quantification. We
specifically focus on plant counting, which plays important roles
in AI-augmented agriculture, for example crop yield estimates and
farm management. Our ablation studies and experiments with the
real-world agriculture data in the GlobalWheat dataset have demon-
strated that our deep Bayesian counting model obtains high count
estimation accuracy as well as reliable uncertainty quantification.
In addition, with the integrated Bayesian attention modules, it may
help improve the interpretability of the derived count estimates,
especially when the distribution of the interested plants in images
is heterogeneous.

CCS Concepts
• Computing methodologies → Computer vision tasks; • Ap-
plied computing→ Agriculture; •Mathematics of computing
→ Bayesian computation.
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1 Introduction
Object counting based on density map estimation (DME) has

diverse computer vision applications in event detection and daily
decision making. For example, reliable object counting can help
estimate the number of people in rallies [1, 2, 11, 14, 16, 20–25, 28,
30–32], traffic volume in transportation [10, 27], and cell counts in
biomedical microscopy images [19, 34]. It is especially useful when
the objects we are interested in the given images are highly dense
and overlapped.

One key challenge that recent DMEmethods face is that both the
object and background appearances can vary significantly across
different images. The variability could exist in object shape, scale,
resolution, and objects can appear with different background. In
crowd counting, for example, the images might be taken in different
distance and different angle, causing the changes of object shape,
scale, and appearance. If the objects in a specific image are either
larger or sparser than the others, often these end-to-end DME
methods with deep neural networks (DNNs) may not be able to
adapt due to their inherent limited receptive fields, leading the
higher biased estimated counts in that area.

This paper focuses on the application of automated object count-
ing in agriculture applications, where the deployment of drones or
unmanned aerial vehicles (UAVs) to monitor growing fields in farms
and ranches is becoming commonplace [9, 12, 17]; however, these
UAV-captured site images also pose unique challenges to accurate
and reliable counting. For example, if a trained model is adopted
for different subspecies or different growth stages, it may not be
able to produce an accurate prediction.

One important focus of this paper is to enable uncertainty quan-
tification in counting. In agriculture, counting is required so that
better decision making regarding planting, fertilizing, irrigation,
and other farm management for example, can be derived to help
minimize the cost and risk while maximizing the potential yields.
In addition to accurate count estimates, it is desirable to also have
reliable uncertainty estimates so that robust and sustainable deci-
sion making can be achieved when uncertainty arises [6] due to
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possible data noise, abnormal UAV image quality, the limitation
of adopted machine learning (AI/ML) models, or when deploying
AI/ML models that are trained using different data sources, es-
pecially considering the challenges of collecting annotated UAV
images with the specific crops or plants of interest to different
growing fields, farms, or ranches.

We propose a novel uncertainty-aware deep countingmethod. To
achieve accurate and robust object counting, it is important to tackle
challenges in analyzing UAV plant images, especially considering
the significant variability in object and background appearance, as
well as image quality. What’s more, with the designed Bayesian
attention module and Bayesian counting loss function, our deep
Bayesian counting model not only improves the accuracy of count
estimates but also enables their uncertainty quantification, without
relying on additional deep ensemble model samples as done in
previous works [26, 29]. Our ablation studies and experiments with
the real-world agriculture data have demonstrated that our deep
Bayesian counting model obtains high count estimation accuracy
as well as reliable uncertainty quantification. In addition, with the
integrated Bayesian attention modules, it may help improve the
interpretability of the derived count estimates, especially when the
distribution of the interested plants in images is heterogeneous.

2 Related works
2.1 Object Counting

Density-map-estimation (DME) based object counting, proposed
first by [19], predicts a density map of a given image. Each pixel
value of the density map can be interpreted as the estimated proba-
bility of having the object in the corresponding image region. The
number of objects can then be calculated by integrating over the
density map. More recently, convoluational neural network (CNN)-
based DME methods have been proposed by [5], demonstrating
its superior performance over traditional object counting meth-
ods based on handcrafted features. The counting performance has
been further improved to achieve the state-of-the-art (SOTA) per-
formance. Multi-branch CNN proposed in [37] can capture the
scale variance. End-to-end deep DME methods [21, 24] utilized
bounding box predictions while generating estimated density map
predictions. To deal with the issues due to the lack of labelled data,
recent research efforts have also beenmade to explore unsupervised,
weakly-supervised or semi-supervised object counting methods
using unlabelled or partially labelled data [22, 23, 30, 33]. Those
CNN-based DME methods, though mainly aimed at solving the
crowd counting problems, can also be applied for vehicle count-
ing [10, 27], counting in cell microscopy images [19, 34], and remote
sensing [7]. Some recent works [26, 29] also attempted to develop
crowd counting models with the uncertainty quantification capabil-
ity. In [26], the authors modelled the decomposed uncertainty of the
derived crowd density by bootstrap ensembles. In [29], the authors
further developed an active sample selection strategy guided by
the quantified uncertainty to reduce the amount of labeled data for
training. In this work, we focus on the uncertainty quantification of
wheat-head counting. Unlike the previous works based on sampled
ensembles [26, 29], we directly learn the Bayesian posterior of a
modified Bayesian attention module to quantify the uncertainty of
the predicted density map for counting.

2.2 Attention Mechanisms in Deep Learning
Attention mechanisms can put different weights to correspond-

ing features to further refine the derived feature maps and highlight
features that are important to help make better model predictions.
In many computer vision tasks, attention mechanisms are intro-
duced to refine the extracted image features at different levels,
capturing long-term dependence and dealing with the limited re-
ceptive field of CNNs. Residual Attention modules [35] insert an
encoder-decoder network in the residual branch to generate an
attention map. SENet [15] generates channel attention weights by
pooling the image features over the spatial dimension and recali-
brates the derived features. Convolutional Block Attention Mod-
ules (CBAM) [36] add a spatial attention map to SENet and thus can
further refine the derived features. Those methods have achieved
good performance on image classification, detection and semantic
segmentation tasks.

Many recent research efforts have been made to apply attention
mechanisms to object counting [11, 14, 16, 21]. In [21], a regression-
based density map and a detection-based density map are jointly
learned with an attention network. In [14], the authors used both
global and local attention branches to scale the whole density map
and finetune pixel values in local image regions respectively. In [11],
the features extracted by applying convolution operations with dif-
ferent dilation rates are fused to enlarge the receptive field and
capture features at different scales. In [16], the input image is seg-
mented into sparse and dense regions and the count estimates are
derived in these regions respectively. Although these methods can
deal with the image appearance variation and achieve good count-
ing accuracy, most of them are trying to use an attention branch to
focus on their assigned regions, specifically, dense or sparse ones,
to adaptively estimate the corresponding object counts. Some of
those attention networks require to be trained separately.

3 Uncertainty-aware counting
In this section, we introduce our Bayesian counting model for

agriculture. We first introduce our formulation of the counting
problem in Section 3.1. Then in Section 3.2 we discuss how we
modify Bayesian attention module and efficiently parameterize the
attention module. Lastly in Section 3.3, we describe how we can
quantify the counting uncertainty.

3.1 Problem Formulation
Given an image I with {x𝑗 ∈ R2, 𝑗 = 1, 2, . . . , 𝐽 } denoting the

corresponding pixel location in the domain of I, let {{(𝑦𝑛, z𝑛)}𝑁I
𝑛=1}

be the corresponding labels of the 𝑁I objects of interest in I, where
z𝑛 denotes a point position and 𝑦𝑛 = 𝑛 is the corresponding label.
Our objective is to find a mapping 𝑓 (·) from the given image I to a
density map DI. The estimated number of objects in I can then be
calculated by integrating this density map over the image domain:
𝑁 𝑒𝑠𝑡I =

∑𝐽
𝑗=1 DI (x𝑗 ). This mapping is often modeled by a deep

neural network, denoted by 𝑓𝜃 (·) where 𝜃 is the network model
parameters. To train the neural network by backpropagation, we
need a loss function to measure the difference of the prediction
𝑓𝜃 (·) on our training samples to the ground-truth counting label.
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One of the most popular loss function is the mean-square er-
ror (MSE) loss. Assume that the ground-truth density map of inter-
esting objects in I and annotated object locations {y𝑛}

𝑁I
𝑛=1, denoted

as D𝑔𝑡I , can be modelled by the summation of 2-D Gaussian func-
tions with the mean at z𝑛 and the variance 𝜎2 corresponding to
each object in I:

D𝑔𝑡I (x𝑗 ) =
𝑁I∑︁
𝑛=1

N(x𝑗 ; z𝑛, 𝜎2), (1)

where the Gaussian function N(x𝑗 ; z𝑛, 𝜎2) models the probability
of the 𝑛−th object appearing at the corresponding pixel locations
in I. More recently, the authors in [25] have proposed a novel
Bayesian loss function for counting, combining local constraints
in a Bayesian framework. Given I and its corresponding labelled
object locations {y𝑛}

𝑁I
𝑛=1, the Bayesian loss for each training image

I is calculated as:

L𝐵𝑎𝑦𝑒𝑠 (I) =
𝑁I∑︁
𝑛=1

���1 − N(x𝑗 ; z𝑛, 𝜎2)∑𝐽
𝑗=1N(x𝑗 ; z𝑛, 𝜎2)

D𝑒𝑠𝑡I (x𝑗 )
���. (2)

As we have discussed in Section 1, the variability in object and
background appearance can be a great challenge to derive reliable
count prediction. The self-attention module, which has been shown
to be capable of highlighting the fine-detailed features, could pos-
sibly be an effective way of addressing such a problem in object
counting. Unlike other existing works that model attention weights
to be deterministic, inspired by the recently developed Bayesian at-
tentionmodule [4], wemodel attention weights as random variables
to enable a Bayesian counting framework.

Assumewe are given a datasetD which contains images {𝐼𝑎}𝐴𝑎=1,
point labels {{(𝑦𝑛, z𝑛)}

𝑁𝐼𝑎

𝑛=1}
𝐴
𝑎=1, and let 𝑀 denote the predicted

weight of self-attention module. We formulate the counting prob-
lem as learning the variational distribution 𝑞𝜙 (𝑀) parameterized
by a neural network. Minimizing the Kullback-Leibler (KL) diver-
gence between this variational distribution and the true posterior
𝐷𝐾𝐿 (𝑞𝜙 (𝑀) | |𝑝 (𝑀 |{𝐼𝑎}𝐴𝑎=1, {D

𝑔𝑡

I𝑎 }
𝐴
𝑎=1)) is equivalent to maximizing

the evidence lower bound (ELBO) given the data, which has the
following expression:

𝐸𝐿𝐵𝑂 = E𝑞𝜙 (log𝑝𝜃 ({D
𝑔𝑡

I𝑎 }
𝐴
𝑎=1 |𝑀, {𝐼𝑎}𝐴𝑎=1))−𝐷𝐾𝐿 (𝑞𝜙 (𝑀) | |𝑝𝜂 (𝑀)),

where 𝜃 is the parameter of the density prediction model and 𝑝𝜂 (𝑀)
is the prior distribution of𝑀 parameterized by 𝜂. Assume the factor-
ized Gaussian likelihood of the density map given 𝐼𝑎 and attention
weight 𝑀 , 𝑝𝜃 (D

𝑔𝑡

I𝑎 (x𝑗 ) |𝐼𝑎, 𝑀) = N(𝑓𝜃 (x𝑗 , I𝑎, 𝑀), 𝜎′2), the likeli-
hood of the density map of the dataset 𝑝𝜃 ({D

𝑔𝑡

I𝑎 }
𝐴
𝑎=1 |𝑀, {𝐼𝑎}𝐴𝑎=1)

can be written as:

𝑝𝜃 ({D
𝑔𝑡

I𝑎 }
𝐴
𝑎=1 |𝑀, {𝐼𝑎}𝐴𝑎=1)

=

𝐴∏
𝑎=1

𝐽∏
𝑗=1

𝑝𝜃 (D
𝑔𝑡

𝐼𝑎
(x𝑗 ) |𝐼𝑎, 𝑀)

∝
𝐴∏
𝑎=1

𝐽∏
𝑗=1

exp(−(
(D𝑔𝑡I𝑎 (x𝑗 ) − 𝑓𝜃 (x𝑗 , I𝑎, 𝑀))2

2𝜎′2
)).

(3)

We derive the negative ELBO, which is our minimization objec-
tive as follows:

L𝑀𝑆𝐸 =

𝐴∑︁
𝑎=1

𝐽∑︁
𝑗 ′
(
(D𝑔𝑡I𝑎 (x𝑗 ) − 𝑓𝜃 (x𝑗 , I𝑎, 𝑀))2

2𝜎′2
)

+ 𝐷𝐾𝐿 (𝑞𝜙 (𝑀) | |𝑝𝜂 (𝑀)).

(4)

Under the independence assumption in [25] and Laplacian like-
lihood, we can similarly derive the negative ELBO corresponding
to the Bayesian loss as follows:

L𝐵𝑎𝑦𝑒𝑠 =
𝐴∑︁
𝑎=1

𝑁I𝑎∑︁
𝑛=1

(
|1 −∑𝐽

𝑗=1 𝑝 (𝑦𝑛 |x𝑗 ) 𝑓𝜃 (x𝑗 , I𝑎, 𝑀) |
𝑏

)

+ 𝐷𝐾𝐿 (𝑞𝜙 (𝑀) | |𝑝𝜂 (𝑀)).
(5)

3.2 Parameterization of Self-Attention Modules
We adopt Convolution Block Attention Module (CBAM) [36] as

our self-attention module. Given the feature map at layer 𝑙 , 𝐹 𝑙 , the
attention weights 𝑇 of the intermediate activation 𝐹 𝑙 at layer 𝑙 can
be written as:

𝑇 (𝐹 𝑙 ) = Φ𝑙2 (ReLU(Φ
𝑙
1 (𝐹

𝑙
pool))), (6)

Φ𝑙1 and Φ𝑙2 are the weights of two fully connected layers, and 𝐹 𝑙pool
denotes the feature map 𝐹 𝑙 pooled along the width and height
dimension. The attention weights𝑀 is further derived by applying
a sigmoid activation function on each entry of 𝑇 .

Similar as [4], we model the intermediate attention weights 𝑆
as random variables whose distribution is parameterized by 𝜙 , and
the distribution of attention weights 𝑀 is implicitly defined by
𝑆 . Keep the definition of 𝑇 in (6), we model 𝑆 to be the Weibull
random variables: 𝑞𝜙 (𝑆) ∼ Weibull(𝑘, 𝑅𝑒𝐿𝑈 (𝑇 )

Γ (1+1/𝑘 ) ) and a Gamma
prior 𝑝𝜂 (𝑆) ∼ Gamma(𝛼, 𝛽) where 𝑘, 𝛼 and 𝛽 are hyper-parameters.
The KL-divergence between a Weibull distribution and a Gamma
distribution has the following closed form:
𝐷𝐾𝐿 (Weibull(𝑘, 𝜆) | |Gamma(𝛼, 𝛽))

=
𝛾𝛼

𝑘
− 𝛼 log 𝜆 + log𝑘 + 𝛽𝜆Γ(1 + 1

𝑘
) − 𝛾 − 1 − 𝛼 log 𝛽 + log Γ(𝛼).

As in [4], instead of directly minimizing 𝐷𝐾𝐿 (𝑞𝜙 (𝑀) | |𝑝𝜂 (𝑀))
in (3) and (5), we alternatively minimize the 𝐷𝐾𝐿 (𝑞𝜙 (𝑆) | |𝑝𝜂 (𝑆)),
and the 𝐷𝐾𝐿 (𝑞𝜙 (𝑀) | |𝑝𝜂 (𝑀)) will be implicitly minimized.

3.3 Inference and Uncertainty Quantification of
Object Counts

The posterior distribution of the density map given 𝐼𝑎 has the
following expression:

𝑝 (D𝑔𝑡
𝐼𝑎
|𝐼𝑎) =

∫
𝑝𝜃 (D

𝑔𝑡

𝐼𝑎
|𝑀, 𝐼𝑎)𝑝𝜙 (𝑀 |𝐼𝑎)𝑑𝑀. (7)

We infer the density map D𝑔𝑡
𝐼𝑎

by sampling from 𝑝𝜃 (D
𝑔𝑡

𝐼𝑎
|𝑀, 𝐼𝑎)

and 𝑝𝜙 (𝑀 |𝐼𝑎). To quantify the uncertainty of the distribution 𝑝 (D𝑔𝑡𝐼𝑎 |𝐼𝑎),
here we consider the variance of the estimated density maps D𝑒𝑠𝑡 .
Consider the estimated density map of 𝐼𝑎 , we can get multiple sam-
ples of the density map of 𝐼𝑎 D1

𝐼𝑎
,D2

𝐼𝑎
, · · · ∼ 𝑝 (D𝑔𝑡

𝐼𝑎
|𝐼𝑎). The variance
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(a) Training Set (b) Validation Set (c) Testing Set

Figure 1: Histograms of wheat head counts in Global Wheat
Dataset.

of the density map of 𝐼𝑎 at pixel x𝑗 is estimated by:

Var𝑀𝑎𝑝 (𝐼𝑎 ; x𝑗 ) = Var(D𝐼𝑎 (x𝑗 )),D𝐼𝑎 ∼ 𝑝 (D𝑔𝑡
𝐼𝑎
|𝐼𝑎) . (8)

To use one number to represent the uncertainty of the test image,
we integral over the variance of the density map:

Var𝑒𝑠𝑡 (𝐼𝑎) =
𝐽∑︁

x𝑗=0
(Var𝑀𝑎𝑝 (𝐼𝑎 ; x𝑗 )). (9)

4 Experiments
We evaluate our Bayesian counting model on the Global Wheat

dataset [3]. To deal with the challenge due to insufficient annotated
training image data, we augment the training set using random
cropping and random flipping. We compare our Bayesian counting
method with the baseline models. Ablation studies are performed
to validate the effect of each model component. To evaluate the
counting accuracy and uncertainty estimation reliability, we cal-
culate the mean error and variance of the predicted counts. In the
following sections, we first detail the experimental setups and then
present our experimental results with discussion.

4.1 Global Wheat Dataset
The Global Wheat Dataset [3] is a large-scale dataset for bench-

marking wheat head detection and count estimation. It contains
4,700 high resolution images and 190,000 wheat head labels. In our
experiments, we only focus on estimating the number of wheat
heads in each image. In 3,373 images that have annotated wheat
heads and counts openly accessible to the public, we randomly
select 2,362 images for training, 506 images for validation, and 505
images for testing.

Figure 1 illustrates the wheat head count distributions of our
training, validation, and testing images. The training images contain
on average 43.59 wheat heads, with the standard deviation 20.13.
The validation images contain on average 45.20 wheat heads, with
the standard deviation 21.20. The test images contain on average
43.59 wheat heads, with the standard deviation 20.58.

4.2 Backbone Architecture and Training Details
We adopt the ResNet18 backbone [13] as the baseline architec-

ture.We remove the last two residual blocks and fully connected lay-
ers of ResNet-18, and change the stride of the 5th block of ResNet18
to 1, following [8]. The decoder network contains two 1×1 convolu-
tion layers [8] to capture image features. The output is upsampled
by 8 to match the size of input images. The network is implemented
on PyTorch based on [8]. We use the Adam optimizer [18] and set
the learning rate to be 1e-5. The batch size is set to be 25.

4.3 Counting Accuracy Evaluation
MeanAbsolute Error (MAE) and RootMean Squared Error (RMSE)

are two widely used evaluation metrics for object counting, which
are defined as follows:

𝑀𝐴𝐸 =
1
𝐴

𝐴∑︁
𝑎=1

|𝑁I𝑎 − 𝑁 𝑒𝑠𝑡I𝑎 |, (10)

𝑅𝑀𝑆𝐸 =

√√√
1
𝐴

𝐴∑︁
𝑎=1

|𝑁I𝑎 − 𝑁 𝑒𝑠𝑡I𝑎 |2, (11)

where 𝑁I𝑎 is the number of object in I𝑎 , and 𝐴 is the total number
of images. The term 𝑁 𝑒𝑠𝑡I𝑎 in (10) and (11) is the estimated number
of objects in I𝑎 , which is calculated by the integral over the whole
density map:

𝑁 𝑒𝑠𝑡I𝑎 =

𝐽∑︁
𝑗=1

D𝑒𝑠𝑡I𝑎 (x𝑗 ) . (12)

4.4 Ablation Studies
Our ablation experiment design can be split into three parts.

We first evaluate different loss functions and data augmentation
methods. Then we add attention modules. Finally, we evaluate
the effect of Weibull shape parameter 𝑘 for stochastic attention
modules on three different settings. We will explain the details of
each experiment below.

Loss function and data augmentation We experimentally compare
the counting performance of Bayesian loss to pixelwise Euclidean
loss and evaluate the effect of data augmentation. For Bayesian loss,
we set 𝜎 to 20. For Pixel-wise Euclidean loss, we set 𝜎 to be 10. To
help the neural networks trained using pixelwise Euclidean loss to
converge correctly, we magnify the ground truth density map by
10.

To speed up the training procedure, we resize all the training
images and test images to 512 × 512. To augment the training data,
we randomly select 50% training images and crop them to 512×512,
and resize the remaining training images to 512 × 512. We also flip
the training images horizontally and vertically.

Experimental results can be summarized in Table 1. We fur-
ther plot the ground truth 𝑁I with respect to the absolute errors
(|𝑁I − 𝑁 𝑒𝑠𝑡I |) and relative errors ( |𝑁I−𝑁 𝑒𝑠𝑡

I |
𝑁I

) of each test images in
Figure 2. We can see that the absolute errors are higher when the
test images contain highly dense wheat heads, while the relative
errors are higher when wheat heads in test images are sparse. The
network trained using Bayesian loss can produce more accurate
count prediction than pixelwise Euclidean loss. Data augmentation
can improve the counting accuracy on both pixelwise Euclidean
loss and Bayesian loss. We observe that with data augmentation, the
model will make better count prediction especially on images which
the networks trained without data augmentation. This suggests
that on highly varying images, the data augmentation is a critical
part for training an accurate and robust counting model. In our
final model, we train it with Bayesian loss and data augmentation.
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Description RMSE MAE
ResNet18 + Euclidean loss (w/o aug.) 4.34 3.26
ResNet18 + Bayesian loss (w/o aug.) 3.87 2.88
ResNet18 + Euclidean Loss (with aug.) 4.20 3.13
ResNet18 + Bayesian loss (with aug.) 3.57 2.59

Table 1: Effect of training loss functions and data augmenta-
tion. Counting accuracy is measured by root-mean-square
error (RMSE) and mean-absolute error (MAE).

(a) Abs. error
with pixelwise
loss (w/o aug.)

(b) Abs. error
with pixelwise
loss (with aug.)

(c) Abs. error
with Bayesian
loss (w/o aug.)

(d) Abs. error
with Bayesian
loss (with aug.)

(e) Rel. error
with pixelwise
loss (w/o aug)

(f) Rel. error
with pixelwise
loss (with aug.)

(g) Rel. error
with Bayesian
loss (w/o aug.)

(h) Rel. error
with Bayesian
loss (with aug.)

Figure 2: Comparison of absolute (abs.) and relative (rel.)
errors with respect to the ground-truth counts with different
loss functions and augmentation (aug.) setups.

Attention module and data augmentation: Although we have
achieved better counting accuracy by integrating with Bayesian
loss and data augmentation, the absolute errors on highly dense
images and relative errors on sparse images are still high. In this
experiment, we evaluate the effectiveness of attention modules for
counting results. We compare the counting accuracy of the network
models with and without attention modules on two augmentation
setups. We insert CBAM attention modules between the 5th and
6th residual blocks, and between the 6th residual block and decoder
network. We do experiments to see how attention modules will
affect the counting errors of images of different wheat head density.

Similarly, we report our experimental result in Table 2, and plot
the ground-truth 𝑁I with respect to the absolute errors (|𝑁I−𝑁 𝑒𝑠𝑡I |)
and relative errors ( |𝑁I−𝑁 𝑒𝑠𝑡

I |
𝑁I

) of test images in Figure 4. We ob-
serve that the performance are almost the same when the networks
are trained without augmented data; however, the counting accu-
racy improves dramatically by applying attention modules on the
augmented dataset. In addition, from Figure 4, we can find that the
counting errors reduced on both highly dense images and sparse
images. In summary, although the attention modules is a powerful
tool that has improved the performance on many other computer
vision tasks, we still need to carefully design and train the network
to make the best use of them.

Throughout these two ablation studies, we study the effect of loss
functions, data augmentation and attention modules on counting
accuracy. Our final network architecture design is shown as in
Figure 3. We train our Bayesian counting network using Bayesian
loss with the aforementioned data augmentation.

Discription RMSE MAE
ResNet18 + Bayesian loss (w/o aug.) 3.87 2.88

ResNet18 + Bayesian loss + CBAM (w/o aug.) 3.91 2.85
ResNet18 + Bayesian loss (with aug.) 3.57 2.59

ResNet18 + Bayesian loss + CBAM (with aug.) 3.19 2.33

Table 2: Ablation studies with attention modules.

k RMSE MAE 3
√
Var𝑒𝑠𝑡 2

√
Var𝑒𝑠𝑡 1

√
Var𝑒𝑠𝑡

0.99 3.24 2.36 77.6% 59.1% 33.4%
1 3.23 2.33 92.5% 82.2% 53.6%
5 3.30 2.38 32.0% 22.7% 12.1%

Table 3: Effect of the hyperparameter 𝑘 of stochastic atten-
tion module. Uncertainty estimation is measured by the
percentage of the ground-truth in an interval centered at
the prediction 𝑁 𝑒𝑠𝑡 with a bandwidth of six standard de-
viation Pr(𝑁 ∈ 𝑁 𝑒𝑠𝑡 ± 3

√
Var𝑒𝑠𝑡 ), four standard deviation

Pr(𝑁 ∈ 𝑁 𝑒𝑠𝑡 ± 2
√
Var𝑒𝑠𝑡 ), and two standard deviation Pr(𝑁 ∈

𝑁 𝑒𝑠𝑡 ±
√
Var𝑒𝑠𝑡 ).

Description RMSE MAE
ResNet18 + pixelwise Euclidean loss (baseline) 4.34 3.26

ResNet18 + Bayesian loss + Attention 3.19 2.33
ResNet18 + Bayesian loss + Bayesian Attention 3.23 2.33

Table 4: Results on Global Wheat Dataset.

Shape parameter 𝑘 and different stochastic attention module se-
tups: In the last part of our ablation studies, we study the effect of
different stochastic attention modules andWeibull shape parameter
𝑘 . We model the CBAM attention module between the 6th residual
block and decoder network to be stochastic. In the first and second
settings, we model the channel attention weights and spatial atten-
tion weights as random variables, respectively. In our third setting,
we model both the channel attention weights and spatial attention
weights as random variables.

We report our experimental results in Table 3. As we can see,
modeling the attention module to be stochastic will only slightly de-
grade the counting performance. The counting accuracy degrades
the least when we use stochastic channel attention and set 𝑘 = 1.
We also evaluate our uncertainty estimation using the percentage
of the cases that the ground-truth counts being within the inter-
vals centered at prediction 𝑁 𝑒𝑠𝑡 with a bandwidth of 6

√
Var𝑒𝑠𝑡 ,

4
√
Var𝑒𝑠𝑡 , and 2

√
Var𝑒𝑠𝑡 . We report the corresponding percentage

values in Table 3. With 𝑘 = 1, 92.5% of the predictions are within
three standard deviation of the ground-truth counts, indicating
reasonable uncertainty quantification performance.

4.5 Results on the Global Wheat Dataset
We have evaluated our uncertainty-aware Bayesian counting

model together with the baseline models on the Global Wheat
Dataset [3]. The results are reported in Table 4. By incorporating
the Bayesian loss, attention modules, and appropriate data augmen-
tation, our model outperforms the baseline models. By introduc-
ing stochastic attention weights, we can enable the uncertainty
quantification capability of the counting model without significant
degradation on counting accuracy.
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Figure 3: The overall architecture of our proposed model.

(a) Abs. error
w/o attention
(w/o aug.)

(b) Abs. error
with attention
(w/o aug.)

(c) Abs. error
w/o attention
(with aug.)

(d) Abs. error
with attention
(with aug.)

(e) Rel. error
w/o attention
(w/o aug.)

(f) Rel. error
with attention
(w/o aug.)

(g) Rel. errorw/o
attention (with
aug.)

(h) Rel. error
with attention
(with aug.)

Figure 4: Comparison of absolute (abs.) and relative (rel.)
errors with respect to the ground-truth counts with different
augmentation setups and with/without (w/o) attention.

4.6 Visualization and Discussion
In this section, we provide several examples to help visualize

the derived predictions by our Bayesian counting model on the
Global Wheat Dataset [3]. Figure 5 shows several examples of the
test images, density map predictions and attention maps. In the
second, third, and forth rows, warmer colors denote higher values
while cooler colors denote lower values.

In Figure 5, we can observe that on the Global Wheat Dataset [3],
the counting errors are low, even when the background appearance
or illumination is complex. In highly dense images, however, the
counting accuracy drops significantly. Although the model captures
the locations of the most of wheat heads correctly, the model can
not give an accurate estimation of the density. Further improvement
of the counting accuracy in highly dense plant images will be our
future research direction.

5 Conclusions
In this paper, we study object counting in agricultural applica-

tions. To improve the performance and tackle the uncertainty issue
in object counting, we have introduced attention modules and mod-
elled the attention weights statistically to enable uncertainty quan-
tification in counting, which is the first uncertainty-aware counting

(a) GT:22 (b) GT:12 (c) GT:5 (d) GT: 80

(e) Pred:21.43 (f) Pred:14.61 (g) Pred:4.93 (h) Pred: 67.20

(i) (j) (k) (l)

Figure 5: Visualization of test images (5a, 5b, 5c and 5d), count
prediction (5e, 5f, 5g and 5h), and Bayesian attention map
for uncertainty quantification (5i, 5j, 5k and 5l).
method in UAV-captured images to the best of our knowledge. In
particular, we use Weibull random variables to model attention
weights so that we may derive a distribution of predicted counts
instead of only providing point estimates as in many existing object
counting models. We evaluate our Bayesian counting model on the
Global Wheat Dataset and perform ablation studies to understand
the effects of different model setups on counting accuracy with
uncertainty quantification. Our experimental results demonstrate
that adding attention modules can improve the the accuracy of
count estimates, especially when images have varying quality and
appearance. More importantly, introducing the randomness to the
attention weights enables our first Bayesian counting model with
uncertainty quantification, without harming the counting accuracy.
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