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Abstract: In this work, we look to compare three methods of feedback for the ultimate purpose of
measuring the transverse vector components of a magnetic field using a synchronous light-pulse
atomic scalar magnetometer with a few tens of fT/

√
Hz sensitivity in Earth-field-scale magnetic

environments. By applying modulation in the magnetic field to orthogonal axes, the respective
vector components may, in principle, be separated from the scalar measurement. Success of this
technique depends in significant part on the ability to measure and respond to these perturbations
with low measurement uncertainty. Using high-speed least-squares fitting, the phase response of
the atomic spins relative to the first harmonic of the optical pump pulse repetition rate is monitored
and correspondingly adjusted into resonance with the natural Larmor precession frequency. This
paper seeks to motivate and compare three distinct methods of feedback for this purpose. As a first
step toward the full development of this technique, the present work uses a simplified version with
modulation applied only along the bias field. All three methods investigated herein are shown to
provide results that match well with the scalar magnetometer measurements and to depend on both
the applied modulation amplitude and optimal feedback response to achieve low relative uncertainty.

Keywords: magnetometers; vector measurement; feedback

1. Introduction

Magnetometry has been approached and realized in many different ways, and is
foundational to many modern technologies. Ultrahigh-sensitivity magnetometers have
applications in a number of fields, including biomagnetism [1–7], gravitational wave
detection [8], geosensing [9], dark matter searches [10], astrophysics [9,11], infrastructure
monitoring [12], materials inspection [13], navigation aiding [14], and so on. Improvements
in production techniques and quality of components, accompanied by increased portability
and sensitivity, has resulted in increased interest in optical atomic magnetometers, often
called “optically pumped magnetometers” (OPMs). Recent work has demonstrated their
ability to achieve sub-fT/

√
Hz sensitivities in near-zero field environments [15] and 3-axis

vector sensitivity in near-zero-field environments [4,5,16–18], µT-level environments with
relatively small vector components orthogonal to the bias field [19], and yet more advances
have been made in extending the operational range of spin-polarized optically pumped
magnetometers into the Earth-field regime [20–23].

The current gold standard in ultrahigh-sensitivity vector magnetometry in the Earth
field is the superconducting quantum interface device (SQUID) magnetometer. The SQUID
magnetometer is inherently a vector sensor and detects field projections along its sensitive
axis. Furthermore, its capacity to achieve ultrahigh sensitivity has been demonstrated
in Earth-field environments [24]. In contrast, optically pumped atomic magnetometers
capable of operating in Earth-field-scale magnetic fields typically function by measuring
the Larmor precession frequency of atomic spins of vapor-phase alkali metals [25] or
helium [26] in the presence of magnetic fields, and thus are inherently scalar field sensors.
However, methods have been proposed for the measurement of the vector components of
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the incident field using these sensors, with at least one example making use of microwave
polarization reconstruction [27]. Thus, 3-axis magnetic sensing using an OPM does not
inherently require three physically separate devices which would add complexity and
potentially degrade the measurement accuracy for nearby sources of the magnetic field.
Additionally, unlike SQUID magnetometers, OPMs do not require cryogenic cooling, thus
reducing operating costs and improving portability.

While in many settings, scalar field measurements are sufficient, full knowledge of
vector components provides additional insight into the ambient field, which is useful for
many applications, such as magnetoencephalography [4,5], magnetometer-based tracking
of a magnetic object (for example [28]), and the enhancement of magnetic-field-based navi-
gation aiding, using a greater portion of the information available in Earth’s magnetic field
as compared to scalar measurement alone [29]. There is further interest in utilizing vector
component information to correct for inherent “heading errors” in alkali-based magnetome-
ters, which results from the non-zero nuclear spin of alkali atoms [30]. Magnetic vector
component measurement further enables the measurement of the magnetic gradient tensor
[31], which may improve the precision and accuracy of, for example, navigation aiding [32].

In this work, a Bell–Bloom [33,34] magnetometer with a single optical axis utilizes the
intensity modulation of an optical pump beam along x̂ passing through a vapor cell (a 1 cm
diameter by 1 cm length internal dimension cylinder containing isotopically enriched
87Rb and nitrogen buffer gas) to drive the coherent spin precession of 87Rb spins in an
Earth-field-scale magnetic field. The intensity of the optical pump is modulated as a series
of short-duty-cycle pulses in a manner similar to that described in [20]. The optical pulse
repetition rate is approximately resonant with the natural Larmor precession frequency ωL
of the spins, with a first harmonic component cos(ωt), where ω ≈ ωL. A linearly polarized
optical probe beam co-propagating with the pump measures the x̂ projection of the spin
polarization ~P; the linear polarization of the optical probe rotates proportional to ~P · x̂.

The polarization rotation of the optical probe beam is measured using a balanced
polarimeter with a custom differential transimpedance amplifier circuit, and the resulting
electrical signal is digitized using an analog-to-digital converter with 14-bit resolution at
250 million samples per second. An FPGA reads the digitized signal and performs real-time
least-squares fitting of the observed polarimeter signal to measure the phase response
of atomic spins relative to a digital reference model consisting of cos(ωt) and sin(ωt)
components synchronized to the optical pump pulses. Closed-loop feedback adjusts the
pump pulse repetition rate to drive ωp → ωL by any of the three feedback methods as
described herein.

In general, by applying three spatially orthogonal oscillating magnetic fields to the
inherently scalar magnetometer, each vector component of the incident magnetic field may be
extracted from the resulting modulation of the overall measured measured magnetic field [35],
herein based on the natural Larmor precession frequency of the spins. For each vector direction
î, the magnetic field component along î takes the form Bi(t) = Bi,0(t) + B′isin(ωit). Given
three orthogonal vector directions (x̂, ŷ, and ẑ in the instrument reference frame, for example)
the total magnetic field ~B observed by the instrument is

|~B| =
√

∑
i

B2
i (1)

The squared magnitude along each î can be written as the square of the sum of the
low-frequency component Bi,0 and modulation component B′isin(ωit):

Bi(t)2 = (Bi,0 + B′isin(ωit))2

= Bi,0(t)2 + 2Bi,0(t)B′isin(ωit) +
B′2i
2

(1− cos(2ωit))
(2)

As a result, it is possible to find both Bi,0 and B′i by demodulating the square of
the measured magnetic field (Larmor frequency as observed by way of the pump pulse
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repetition rate) at the first and second harmonics of the applied fields B′isin(ωit). As the
measured quantity is specifically the pump pulse repetition rate, the success of this method
depends on the ability to measure and respond to each applied (B′isin(ωit)). A top-level
block diagram of the implemented algorithm is shown in Section 3. This paper seeks to
compare three feedback methods for tracking the Larmor frequency, with the ultimate goal
of minimizing errors in vector calculations for a full three-axis implementation. As a first
step toward this goal, the present work implements only a single modulation field, super-
imposed on the bias field such that |~B|2 = (Bz,0 + B′zsin(ωzt))2, significantly simplifying
the analysis and interpretation of results as compared to a full 3-axis implementation.

Note that in Equation (2), the assumption is made that the applied magnetic fields
form an orthogonal basis set. In reality, effects such as build tolerances, mechanical stresses,
differential thermal expansion, and so on guarantee that there will exist some finite devia-
tion from orthogonality of the magnetic field coils producing these fields. As shown in [36],
one may form an orthogonal basis set from the three magnetic field coils using a carefully
measured mapping matrix.

2. Experimental Apparatus and Methods

A block diagram of the apparatus is shown in Figure 1. At the core of the experiment is
a cylindrical glass vapor cell (1 cm internal diameter by 1 cm internal length; chosen for size
compatibility with the electrical resistive heaters already on hand in our lab from previous
work [3]) containing a droplet of 87Rb and 0.8 amagat N2. The vapor cell is surrounded
by ceramic RF heating coils that are designed to minimize induced magnetic fields [37]
and thermal insulators consisting of aerogel sheets to maintain a 87Rb vapor pressure of
approximately 3 × 1012 cm−3. In accordance with [37], each RF heating coil is a planar
3-layer thick-film-on-substrate ceramic circuit board with a magnetic 16-pole winding
pattern around the substrate perimeter, designed for minimum self-inductance (minimum
induced magnetic field and minimum reactive impedance); the vapor cell is surrounded by
a pair of these heating coils, oriented opposite to each other for a net 32-pole RF magnetic
coil pattern surrounding the vapor cell.

Perturbation of the spins induced by the residual magnetic fields that are generated
by the current flowing through the coils is further reduced by way of driving the current
at approximately 2 MHz with a dissipated heat power of approximately 0.3 W, far off the
resonance relative to the spin precession frequency and far outside the response bandwidth
of the magnetometer. In principle, one may also heat the vapor cell without any local
sources of magnetic field using a laser of an appropriate wavelength to be absorbed by
the glass of the vapor cell itself or an appropriate attached optical absorption element [38].
The insulated vapor cell assembly is housed inside a 3D printed custom mount within a
4-layer magnetic shield (Twinleaf MS-2), which provides access to the co-propagating probe
and pump lasers to pass through the shield and vapor cell assembly without any optical
elements internal to the magnetic shield. Within the shielding are integrated magnetic field
coils capable of generating both uniform and gradient fields.

A Twinleaf CSUA-1000 current supply drives the current through one of the uniform
field coils to generate an ultra-low noise bias field on the order of 29 µT, allowing measure-
ment and verification of the instrument noise floor down to approximately 10 fT/

√
Hz, an

impressive fractional noise value of roughly −190 dB/
√

Hz. Using a function generator to
provide a sinusoidal driving signal, perturbations up to 267 nT can be superimposed on the
bias field through the CSUA modulation input; this was insufficient for the largest-amplitude
modulation signals applied in this experiment, so the CSUA-1000 is placed in parallel with
a custom current supply circuit capable of significantly larger modulation fields but with
a white noise floor of approximately 60 fT/

√
Hz and a 1/f noise limit of approximately

2 pT/
√

Hz at 0.1 Hz, thereby dominating the observed magnetic noise spectrum.
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Figure 1. Block diagram of the experimental apparatus. The 795 nm optical pump beam pulses are
generated using a continuous-wave laser with a custom shuttering system based on an electro-optic
modulator (EOM). The pump beam is circularly polarized using a quarter-wave plate (λ/4). A
non-polarizing beam splitter cube (NPBS) combines the optical pump and probe beams such that
they co-propagate into the magnetically shielded enclosure and through the 87Rb vapor cell. On
the opposite side of the magnetically shielded enclosure is a dichroic high-pass filter designed to
reflect the optical pump beam back toward the vapor cell and transmit the optical probe beam to a
Wollaston prism, which functions as a polarization beam splitter; S and P polarization components of
the probe beam are each sent to a respective photodetector (PD). The Wollaston prism is oriented
at approximately 45 degrees relative to the unrotated plane of polarization of the probe beam such
that the photodetectors generate approximately equal photocurrents in the absence of probe beam
polarization rotation. The observed photocurrents are differenced and converted to a differential
voltage signal using a custom transimpedance amplifier (TIA). Finally, the signal is read into the NI
PXI-based digital system; feedback controls the optical pump pulse repetition rate by way of signals
triggering the EOM.

The atomic vapor is polarized using a circularly polarized pump laser tuned near to the
795 nm D1 line of 87Rb and pulsed with a short duty cycle at a repetition rate approximately
equal to the natural Larmor precession frequency in the magnetic bias field. The pump
pulse repetition rate is controlled using a direct digital synthesis (DDS) scheme with up to
64 bits of precision; the DDS is internal to a FPGA (field-programmable gate array), which
outputs logic control signals to drive the state of the optical pump beam (on or off) via an
electro-optical modulator (EOM). The closed-loop feedback described below updates the
DDS frequency (and phase, if applicable) to drive the pump pulse repetition rate to the
natural Larmor precession frequency in the presence of perturbations to the scalar field
observed by the sensor, and the DDS frequency is captured and recorded as representative
of the Larmor precession frequency.

Each pump pulse exhibits an “on” state intensity of roughly 10 mW, incident on the
vapor cell, and the magnetometer sensitivity under our normal operating conditions is
observed to maximize at a duty cycle of 0.07, corresponding to 0.7 mW time-average optical
pump power incident on the vapor cell, as measured by a Coherent® LaserCheck™ optical
power meter. Between pulses, the polarized spins precess about the external bias field at the
Larmor frequency ωL = γB such that the spin polarization relative to the bias field axis can
be written as P(t) = P⊥cos(ωLt + φ) + P‖. For this experiment, the bias field is nominally
orthogonal to the optical pump beam such that P‖ → 0. The pump pulse repetition rate is
tuned near the first harmonic of the natural Larmor precession frequency of the spins in
the scalar magnetic field observed by the instrument.

A linearly polarized CW (continuous wave) probe laser passes through the cell to
track the spin-dependent index of refraction of the 87Rb vapor via Faraday rotation. This
polarized light is detuned multiple linewidths away from the broadened 87Rb D2 optical
resonance near 780 nm in order to reduce the spin relaxation effects of photon scattering
from the probe light and exhibits an optical power of 3 mW incident on the polarimeter.
The angle θ of rotation of the linear polarization of the detected probe light then follows
θ(t) ∝ Nx̂ · P(t), where N is the number of spins interacting with the probe beam and the
probe is propagating along x̂. The resulting polarization rotation angle is measured with a
balanced polarimeter; for small polarization rotation angles, the differential photocurrent
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is proportional to the rotation angle. Given a pair of photodetectors in the balanced
polarimeter with photocurrents I1 and I2,

θ ≈ 1
2

I1 − I2

I1 + I2
(3)

The noise output from the polarimeter is consistent with the photon shot noise limit.
The polarization angle noise δθ in a 1 Hz bandwidth for small angles is based on the
electrical current shot noise from the photodetectors, given elementary charge q on a
single electron:

δθ ≈ 1
2

√
2q(I1 + I2)

I1 + I2
=

1
2

√
2q

I1 + I2
(4)

For a 3 mW probe at 780 nm wavelength, the silicon phototdetectors provide a re-
sponsivity of slightly over 0.5 A/W for a total polarization rotation noise of approximately
7 nano-radians per square root Hz (nrad/

√
Hz). The measured slope of the response

( d
dB (I1 − I2)) is typically in the range of 3000 to 5000 amps per Tesla; based on Equation (4),

at low frequencies ω � Γ, where Γ is the transverse spin polarization relaxation rate, the
photon shot noise limit of magnetic field detection is therefore at or below 7 fT/

√
Hz, well

below the observed total magnetic noise.
The differential photocurrent signal is converted to voltage with a custom differential

transimpedance amplifier; the voltage signal is sent to an analog-to-digital converter (ADC)
input of a NI PXIe-5171 FPGA reconfigurable PXI oscilloscope module (14 bits per sample,
250 million samples per second, 125 MHz FPGA clock rate). The on-board Kintex-7 410T
FPGA on the NI PXIe-5171 module is used for the real-time signal processing, feedback, and
generation of optical pump pulse trigger signals (Figure 1), using custom LabVIEW-based
FPGA firmware. Real-time least-squares demodulation of the observed voltage signal
based on the driven pump pulse repetition rate allows for the recovery of φ with 47 bit
precision in 0.43 µs, making it a useful tool for tracking and correcting repetition rate errors
δω = ωL −ω.

The method of pulsing the optical pump beam at a rate of approximately ωp = ωL
effectively pumps the spins in their rotating reference frame; the Fourier transform of a
sequence of square pulses contains the pulse repetition rate as a major component. Starting
from the Bloch equation for spins in a magnetic field, it can be shown [22] that the observed
phase difference φ between the spins and the pump pulses near resonance corresponds to
the difference δω between the pump pulse repetition rate and the natural Larmor precession
frequency of the spins, and further includes contributions from the phase response φpol of
the polarimeter circuitry and the electronics system latency δt:

φ = tan−1(Γδω) + φpol + ωδt (5)

In the limit where Γδω � 1, the phase shift resulting from δω is directly proportional
to δω, and the response is assumed to be linear such that

φ→ Γδω + φpol + ωδt (6)

Each of the feedback methods investigated herein is designed to correct the pump
pulse repetition rate directly using the measured phase φ as the error signal driving the
loop. The phase shift (accumulated phase error) δφ is measured over some period of time,
in this case typically a single precession cycle of the spins. Noting that d

dt δφ = δω, where
δω is the difference between the angular frequency of precession of the spins and the pump
pulse repetition rate, it becomes clear that feeding back to the frequency based on the
measurement of phase inevitably leads to a precession–frequency-dependent feedback
gain component that can lead to instability in the closed-loop response upon increasing
the scalar field magnitude and adversely affect bandwidth upon decreasing the scalar field
magnitude. This gain component can be mitigated by any of a number of different methods,
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such as feeding back based on the product δφT, where δφ is again the accumulated phase
error and T is the measurement period, rather than feeding back based directly on δφ. The
signal-to-noise ratio (SNR) for the measurement of oscillating magnetic fields at a frequency
ωosc is based on the SNR at very low frequencies (SNR0; ωosc � Γ), the frequency of
interest ωosc, and the SNR bandwidth ω0 = Γ/π; in the limit of high gain at ωosc, this
SNR is independent of the feedback method chosen. Thus, the instrument exhibits a
“signal-to-noise ratio bandwidth” that is essentially independent of the closed-loop −3 dB
response bandwidth. At low frequencies, then, each feedback method is expected to exhibit
effectively identical SNR.

SNR(ωosc) ≈
SNR0√
1 + ω2

osc
ω2

0

(7)

2.1. PI Feedback

The input to the PI (proportional plus integral) gain stage in the first of the three closed-
loop feedback schemes discussed herein takes the δφ value calculated by the least-squares
algorithm and continuously calculates updates to the pump pulse repetition rate as the
sum of the proportional and integral gain components. The proportional gain component
is a simple multiple of δφ, and the integral gain component multiplies δφ by a second
gain and sends the result to a digital accumulator. A top-level block diagram is shown in
Figure 2. For this work, the PI gain stage is tuned by maximizing the absolute gains while
avoiding instability.

Figure 2. A top-level block diagram of the PI feedback scheme. The block labeled DDS is the digital
representation of the Rb spin precession phase and frequency and includes a look-up table (LUT) to
convert the DDS phase word into a sinusoidal model of the spin precession; its output is compared to
the incoming digitized precession signal (data) in a least-squares filter (LSF) that outputs the value
of δφ. δφ is then used to drive the PI gain stage (block labeled PI). The result of the PI calculation
modifies the DDS phase increment word M.

2.2. Nonlinear Feedback

In general, the accumulation of phase between two sinusoids, such as the precession
signal and the reference signal, occurs as in Equation (8):

dδφ(t)
dt

= ωre f (t)−ω(t) (8)

Meanwhile, Equation (5) indicates that the frequency offset is directly proportional to
the tangent of phase rather than proportional to the phase per se; an important point is that
Equation (6) holds only for the following cases: (1) in a steady-state condition and (2) only
for small phase offsets. One may more accurately capture a portion of the nonlinear phase
response to rapid deviations in precession frequency through a slightly more sophisticated
method. More generally, a shift in the ambient field is detected as a temporary shift in
the precession frequency relative to the reference frequency (Equation (8)). Comparing in
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discrete time the most recent measurement of phase at time interval n (φ[n]) to the previous
measurement of phase (φ[n− 1]), based on the time between measurements Tre f [n], one
may deduce the shift in resonant frequency from the previous to present measurements:

φ[n]− φ[n− 1]
2πTre f [n]

= fre f [n]− f [n], (9)

where fre f is the reference frequency to which the actual data are being compared (the
output of the DDS block in Figure 3). Making a first-order approximation of the time
derivative of Equation (9) and inserting the result into Equation (8), it is possible to solve
for the present actual resonant frequency f [n] of the spins (Equation (9)). One may then
predict a first-order approximation of the expected precession frequency f [n + 1] at the
next measurement interval and preemptively update the model ( fre f [n + 1]) by way of the
DDS phase increment word M. From this, a feedback scheme is constructed, which has a
similar form to the PI gain stage (Equation (10)):

fre f [n + 1] = fre f [n](1− Kp(φ[n]− φ[n− 1])− Kiφ[n]) (10)

A proportional term (Kp) approximates the derivative between consecutive phase
terms, while an integral term (Ki) approximates the derivative to zero phase. Conceptually,
this scheme can be seen as a translation from a derivative-proportional (DP) controller into
a PI (proportional-integral) controller via a frequency-dependent multiplicative factor. So,
this method captures both the phase deviation itself and a multiple of its time derivative,
and therefore generates a gain response that is nonlinear in phase deviation. A top-level
block diagram is shown in Figure 3. For this work, the gain stage is tuned to maximize the
closed-loop -3dB response bandwidth at approximately 17.5 kHz.

Figure 3. A top-level block diagram of the non-linear feedback scheme.

2.3. Hybrid Self-Oscillator

Based on Equation (5), it can be understood that the control of the pump pulse
repetition rate is required in order to drive δφ→ 0. In a “pure” self-oscillator, the periodic
incoming data directly generate the driving signal. Stated another way, rather than driving
the frequency in order to alter the phase, the phase of the pump pulses is driven in order to
alter the frequency.

In this method, the phase deviation δφ of the periodic input ∝ P(t) directly drives
the phase of both the pump pulses and the reference sinusoid. However, the frequency
of the reference must be deduced based on the phase to ensure that the drive frequency
matches the reference frequency. In discrete terms, the number of steps taken by the DDS
accumulator in one period follows as N = 2n/m, where m is the DDS phase word and n is
the bit width of the accumulator. A non-zero phase can be corrected with a shift in the size
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of the accumulator with a new phase word m′ = (2n + K′iφ)/N. Reorganizing these terms
results in an updated phase word m′ and a third feedback scheme:

m′ = m(1− Kiφ) (11)

For a “pure” self-oscillator approach, direct feedback of the measured phase response
as a phase shift in the timing of the optical pump pulses now takes the place of the
proportional feedback in the PI and nonlinear feedback schemes. For the PI and nonlinear
approaches, the proportional feedback term directly modifies the repetition rate of the
optical pump pulses rather than directly modifying their phase. However, since the pure
self-oscillator feedback approach does not directly influence the closed-loop−3 dB response
bandwidth, it was found to be beneficial to implement a combination of both phase and
proportional feedback; hence, it was designated as a hybrid self-oscillator based on this
mixing of the nonlinear and self-oscillator methods. A top-level block diagram is shown in
Figure 4. For this work, the response bandwidth was maximized at approximately 19 kHz.

Figure 4. A top-level block diagram of the hybrid self-oscillator feedback scheme.

2.4. Feedback Loop Summary

A comparison between the three feedback loop schemes may be understood quali-
tatively as follows. First, the PI scheme measures the phase difference between the DDS
model of the expected precession signal and the actual signal itself and directly uses this
phase to update the pump pulse repetition rate (and DDS). The PI scheme is therefore only
reactive—it responds to a measured phase deviation and makes corrections. Second, the
nonlinear scheme takes advantage of the time derivative of the phase to predict the next
observed spin precession frequency and updates the DDS phase increment word accord-
ingly. The nonlinear scheme is therefore both reactive and predictive; it deliberately seeks
to predict the next observed signal increment rather than only responding to the presently
observed signal increment. Finally, the hybrid scheme takes the nonlinear scheme and adds
a direct phase modification of the next pump pulse based on the observed phase of the
present signal with respect to the model (DDS). The hybrid scheme is therefore reactive
and predictive, and includes an additional correction factor for further improvement of the
timing of the optical pump pulses to coincide with the resonant precession of the spins.

While the PI feedback scheme may accurately correct for frequency offsets, for in-
creasing dB/dt, the latency δt in calculating δφ and updating frequency increasingly limits
the phase margin. Predictive modification of the pump pulse repetition rate as in the
nonlinear scheme recaptures some of this margin. Meanwhile, a direct adjustment to the
phase as in the hybrid self-oscillator feedback mechanization can be expected to allow for
faster response times to larger dB/dt, as it does not solely rely on the accumulation of
phase inherent in the δφ error signal calculation that drives the PI and nonlinear schemes.
Thus, at larger values of the frequency–magnitude product ωiB′i (i.e., a larger dB/dt) the
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hybrid scheme can be expected to more closely track the spin precession frequency per-
turbation induced by the applied oscillating magnetic fields as compared to the PI or
nonlinear schemes.

2.5. Measurement Uncertainty

As shown in Equation (2), measurement of the vector components of the incident
magnetic field requires observation of the first- and second-harmonic components of the
square of the measured total magnetic field in the presence of a modulation applied along
the axis for which the vector component is to be observed. Uncertainty in the measurement
of these components, such as that arising from the finite gain of the feedback loop, will
result in uncertainty in the calculated vector component solution. A key point in the
evaluation of the effects of uncertainty in the closed-loop response is that the instrument
is inherently a scalar magnetometer. Extension of the instrument’s operation to vector
magnetic field measurement is achieved through applied modulating magnetic fields and
by way of processing the signals in magnetic-field-squared space.

The scalar magnetic field Bs is perceived by the closed-loop measurement system
as measurement value M. Note that M is simply an appropriately scaled version of the
DDS phase increment word m mentioned above, converted into magnetic field units: the
instrument in the present work is a magnetic-field-to-frequency transducer by way of the
relationship between the scalar field, frequency, and the gyromagnetic ratio γ of the spins:
ω = γBs. The value of M includes the actual scalar magnetic field Bs at any particular
epoch and an additional uncertainty δB, which includes effects from the finite gain of the
feedback loop as well as noise and effects from any applied filtering. Thus, the vector
measurement portion of the system perceives

M2 = (Bs + δB)2 (12)

One may expand the Bs term as a function of time, defining the static (low frequency)
portion of each vector component as Bi,0 with applied modulation of amplitude B′i and
frequency ωi:

B2
s (t) = ∑

i
(Bi,0 + B′icos(ωit))2

(13)

where B0 is the low-frequency component of the incident magnetic field; here, low frequency
is defined as lower than ωi. In the general case i = {x̂, ŷ, ẑ} and it is assumed that
modulation is applied along three orthogonal components of the incident magnetic field
(i.e., modulations along x̂, ŷ, and ẑ in the instrument reference frame). In this work, as a
first step toward 3-axis measurement, a single oscillating field is applied along the bias field
to simplify analysis and interpretation of the experimental results, reducing Equation (13)
to simply

B2
s (t) = (B0 + B′cos(ωt))2 (14)

One may separate δB into its Fourier components at integer multiples of ω to provide
additional insight:

δB =
∞

∑
k=0

δBkcos(kωt + φk) (15)

Combining Equations (12), (14) and (15) yields

M2 = B2
0 + 2B0B′cos(ωt) + B′2cos2(ωt)

+2
∞

∑
k=0

[δBkcos(kωt + φk)(B0 + B′cos(ωt))]

+(
∞

∑
k=0

δBkcos(kωt + φk))
2

(16)
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Equation (16) demonstrates that one may measure the amplitude of the applied
oscillating field based on demodulation of the square of the scalar field at 2ω (note:
cos2(ωt) = 1

2 [1 + cos(2ωt)]); this result combined with demodulation of the square of
scalar field at ω provides a solution for the vector component of magnetic field along the
applied oscillating field direction. Equation (16) also clearly demonstrates that the process
of squaring the magnetic field will generate the mixing of harmonics; particularly relevant
are mixed components that result in observed frequency content at ω and 2ω. Significant
benefits can therefore be realized through appropriate filtering of the scalar field before and
after the squaring operation, prior to demodulation.

This work utilizes a sinc (in frequency) filter prior to squaring; a bandpass filter at ω
prior to squaring for detection of the 2ω component; and bandpass filters at ω and 2ω after
squaring (Figure 5). In this work, B′ ≤ 534 nT (3740 Hz precession frequency perturbation
amplitude), while B0 ≈ 29,000 nT (200 kHz precession frequency amplitude); thus, in
Equation (16), it becomes apparent that B′2 � 2B0B′ � B2

0. Given the presence of noise
in the measurement, then, the dominant source of uncertainty in the measurement of B0
by way of the vector component measurement technique described in Equation (2) is the
uncertainty in the measurement of B′:

B′measured = B′{1 + 2δB1cos(φ1)

B′

+2 ∑
k

δBkδBk+2

B′2
[cos(φk + φk+2) + cos(φk − φk+2)]}

1
2

(17)

Figure 5. A comparison of residual errors between open loop and closed loop operation in a 29 µT bias
magnetic field (200 kHz precession frequency) with a 20 Hz, 0.534 nT (3.74 Hz precession frequency
perturbation amplitude) oscillation.

Equation (17) demonstrates that, in general, the uncertainty can reasonably be ex-
pected to decrease with increasing amplitude B′ of the applied oscillating field in addition
to benefiting from any filtering prior to the squaring operation that reduces the δBk 6=1
components. Additionally notable is that an increase in the feedback loop gain and im-
provement in phase response at kω will suppress any feedback loop contributions to the
uncertainty shown in Equation (17). Though not explicit in Equation (17), each δBk includes
uncertainty δBk,noise from the instrument noise as well as uncertainty δBk, f eedback based on
the finite gain of the closed-loop system and an offset δBo f f set, which may arise from such
effects as any noise rectification.

The error term δBk, f eedback can be understood as follows. The closed-loop system
includes a transfer function G(2π f ) as a function of frequency f for the instrument and
electronics along with a feedback transfer function K(2π f ), resulting in a finite open-loop
transfer function GK(2π f ). The residual error δBk, f eedback in the presence of applied oscil-
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lating field B′ due to the finite response of the closed loop system is therefore proportional
to the magnitude of the applied oscillating field:

δBk, f eedback = B′
1

1 + GK(kω)
(18)

In the limit that δBk, f eedback � δBk,noise, the contribution to uncertainty in the measurement
of B′ arising from the feedback loop will dominate. As described in Equations (17) and (18),
the uncertainty will no longer appreciably decrease with increasing amplitude B′. Thus, for
G(2π f ) → f ixed, an improvement in the feedback loop transfer function becomes the sole
means of further reduction in uncertainty, which is the focus of this work. Note that for a 3-axis
system, this condition will depend on the direction of the bias field relative to a respective
applied oscillating field; the feedback uncertainty contribution will depend on the observed
modulation of the scalar field imparted by the respective applied oscillating field. Comparing
extreme cases in which the bias field is orthogonal to the applied oscillating field versus the
case studied here, in which the applied oscillating field is along the bias field, Equation (2)
demonstrates that in the extreme case, the applied oscillating field must be much larger than in
the case studied here to meet the condition that δBk, f eedback � δBk,noise.

3. Results

For each of the three feedback methods investigated in this work, 60 s of scalar magne-
tometer data were collected using each feedback loop method; in each case, an oscillating
magnetic field was superimposed on the bias magnetic field by applying a modulating current
through the same magnetic field coil that provides the bias field itself. These oscillating fields
were applied at four frequencies (20 Hz, 200 Hz, 2 kHz, and 20 kHz) at each of four magnetic
perturbation amplitudes (0.534, 5.34, 53.4, and 534 nT, corresponding to 3.74, 37.4, 374, and
3740 Hz perturbation amplitude in precession frequency units). The amplitudes of the applied
oscillating fields were calibrated by way of measuring the change in spin precession frequency
per unit drive signal input. For each data set, Equation (2) is used as the basis to solve for the
vector component of the bias field that is oriented along the applied oscillating field. In this
case, the bias field and oscillating field are co-aligned, simplifying the process of evaluating the
accuracy of the vector field measurement as compared to the scalar magnetometer using this
technique. In particular, if a result shows a high relative accuracy, the vector field component
that is measured based on the ω and 2ω components of M2 as shown in Equation (2) will be
equal to the observed scalar field B0.

Each of the 48 data sets (four amplitudes at each frequency, four frequencies, and three
methods) is analyzed by way of the algorithm shown in Figure 6 using MATLAB. The
calculations shown in Figure 6 are implemented as follows. First, the scalar magnetometer
data are upsampled using cubic spline interpolation (the “Spline” block in Figure 6) to
increase the effective data rate of all data streams to a uniform pre-selected effective data
rate, chosen such that every frequency of applied oscillating field is represented by an
integer countdown of the effective data rate; this significantly simplifies the design of
Sinc (in frequency) filters that may be applied to the data. The upsampled data are then
filtered using a Sinc filter that is implemented as a simple moving average using the
MATLAB command movmean(data, n), where n is the number of data points in the moving
average. This filter suppresses undesired frequency components of M, which would lead
to additional frequency mixing and corresponding uncertainty in the measurement of the
2ω component of M2, such as noise in the vicinity of Nω, where N is an even integer up
to a limit imposed by the sample rate. The magnitude part of the transfer function of the
Sinc filter can be easily understood in a continuous-time approximation. The average over
period T of cos(κt) and starting at an arbitrary time t0 = 0 is simply a Sinc function:∫ T

0

cos(κt)
T

dt =
sin(κT)

κT
= Sinc(κT) (19)
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As noted in the discussion above regarding Equation (17), the suppression of δBk 6=1
components will minimize uncertainty in the measurement of B′; thus, prior to squaring
the magnetic field for the measurement of B′, a bandpass filter at ω (i.e., k = 1) is applied to
suppress these undesired components in M. The M2 data sets are further bandpass filtered
at ω and 2ω as appropriate, then demodulated at the appropriate phase to measure values
corresponding to the oscillating terms in Equation (2) so that a solution can be found for the
measurement of the vector component of field along the oscillating field direction. In each
case, the bandpass filter is designed using MATLAB’s built-in functionality for generating
a minimum-order Chebyshev Type II filter; for maximum commonality of filter behavior
across the range of frequencies, the filter bandwidth is kept at a constant fraction of the
filter center frequency for both the pass-band and the stop-band, and the pass-band ripple
and stop-band attenuation specifications remain constant across all filter instances.

The “Phase” block in Figure 6 refers to the calculation of the ideal phase for demodulation
of M2. Consider an applied magnetic field modulation component 2B0,iBac,isin(ωit + φB)
(Equation (2)), where φB is an unknown phase relationship between the modulation signal
as observed in the data and the start of the data set. The ideal demodulation signal to
measure the amplitude 2B0,iBac,i of the resulting oscillation will of course be to multiply the
signal by sin(ωt + φB). The most precise possible value of φB can be calculated based on
the entire data set—an advantage of post processing. Consider multiplication of the entire
data set of a given M2 separately by cos(ωit) and sin(ωit). Examining the effect on the
2B0,iBac,isin(ωit + φB) component of the signal and ignoring the amplitude for the moment
in order to visually simplify the equations,

sin(ωit)sin(ωit + φB) =
1
2
[cos(φ)− cos(2ωi + φB)]

cos(ωit)sin(ωit + φB) =
1
2
[sin(φ)− sin(2ωi + φ)B]

(20)

Taking the mean of these outputs over the full data set (effectively eliminating the 2ωi
components), one may solve for φB:

φB = tan−1 mean[cos(ωit) ∗M2(t)]
mean[sin(ωit) ∗M2(t)]

(21)

This same technique for the extraction of the appropriate demodulation phase will
apply to any signal of interest, and will allow the calculation of both the magnitude response
and the (magnitude * phase) response of an incident signal, the in-phase and quadrature
components of the signal. In a real-time system, this calculation may be implemented by
way of replacing the “mean” with appropriate low-pass filtering.

Figure 7 shows the ratio (scale factor) between the vector component of magnetic field
as measured using our vector measurement algorithm (Figure 6) and the magnetic field as
measured by the scalar magnetometer, after correction for the gains of the filters shown
in Figure 6. Ideally, the vector measurement algorithm will yield exactly the same result
as the scalar measurement; in such a case, the scale factor would be exactly 1. As shown
in Figure 7, the scale factor error for our measurement method is less than 1% in all cases
(excluding error bars); in many instances, the scale factor is consistent with exactly 1 within
three standard deviations.
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Figure 6. A top-level block diagram of the implemented vector calculation algorithm for a single
axis, for each data set. The block labeled Spline represents cubic spline interpolation of the data
for optimal sinc filtering (block labeled Sinc). After the sinc filter, the data are either immediately
piecewise-squared (each data point in the time series is itself squared) or filtered first to suppress δBk 6=1

components (Equation (17)) and then piecewise squared. The blocks labeled BPF represent band-pass
filters at ω and 2ω. The blocks labeled Phase represent phase detection to determine the appropriate
demodulation phase (Equation (21)). The blocks labeled SIN represent sinusoidal demodulation,
in which the signal is multiplied by a sine wave at the appropriate frequency and phase and then
low-pass filtered to observe the low-frequency component of the output; these then feed into a solver
block to measure the incident vector field (Bi) and the oscillating field (B′) magnitude.

Figure 7. The relative accuracy of the oscillating field method compared to the scalar magnetometer
(line plots with data points) and precision (error bars) of each method. The scale factor (Y axis) is the
ratio between the measured vector field using the oscillating field method and the actual magnetic
field as measured by the scalar magnetometer, while the precision is measured as the Allan deviation
value of the measured vector time series at one second integration time.

Recall from Equations (17) and (18) that it is specifically in the limit that δBk, f eedback > δBk,noise
wherein an appreciable improvement in uncertainty based on the response of the feed-
back loop is expected. Figure 8 is consistent with this prediction; no clear advantage in
precision is gained for the nonlinear or hybrid feedback methods over the PI method for
any B′ amplitude investigated herein at 20 Hz and 200 Hz, where |GK| � 1 for all three
methods. Meanwhile, at 2 kHz and 20 kHz, the precision follows the expected progression
of δBk,PI > δBk,Nonlinear > δBk,Hybrid based on the respective closed-loop response charac-
teristics, with the difference between the nonlinear and hybrid methods being most clear
at the highest frequency. It is, therefore, concluded that in this work, magnetometer noise
dominates the precision of the vector measurement method shown in Equation (2) when
δBk, f eedback < δBk,noise, magnetic measurement noise dominates the scale factor error, and
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the chosen feedback method will dominate the relative uncertainty at larger B′ and larger
ω, where δBk, f eedback > δBk,noise.

Figure 8. (color online) The fractional uncertainty of the measured static vector magnitudes, measured
as the Allan deviation value at one second of integration time for each data set.

4. Conclusions

This work examined and analyzed the comparative suitability of three different feed-
back methods for the closed-loop operation of a Bell–Bloom magnetometer [33,34] operat-
ing in Earth-field-scale magnetic fields and driven by intensity-modulated optical pump
light [20] with the intent of measuring the vector components of the incident magnetic
field by way of applying oscillating magnetic fields [35]. The present work takes a first
step toward 3-axis vector measurement by applying a single oscillating field along the bias
field so that the effects of the feedback method on the relative accuracy and precision of the
vector component measurement can be robustly evaluated in a simple and straightforward
manner. The investigated feedback methods include proportional integral (PI), nonlinear,
and hybrid self-oscillator feedback methods.

This work demonstrated, in accordance with Equations (17) and (18), that with a
combination of sufficiently large amplitude and sufficiently high frequency applied os-
cillating magnetic field, appreciable improvements in measurement uncertainty can only
be realized by way of improvements in the feedback loop response. In this work, these
improvements are demonstrated when using feedback methods which capture a greater
portion of the nonlinear response of the instrument to the increased perturbation amplitude
and frequency (Equation (5)). It is further important to note that the method outlined herein
for the measurement of the vector magnetic field components [35] draws its accuracy from
the accuracy of the scalar magnetometer itself in addition to any accuracy considerations
in the feedback method and the vector calculation process (Figure 6). Thus, to meet any
particular absolute accuracy specification for the measurement of the vector components
of the incident magnetic field, the scalar magnetometer must be at least as accurate as the
desired vector accuracy.

In future work, the vector measurement and feedback methods described herein may
be extended to 3-axis vector magnetic field measurement. Further, the vector component
measurement algorithms may be implemented in real time for the active measurement of
the vector components of the magnetic field. Additionally, as described above, the error
signal δφ that drives the feedback loop can be updated to improve the response in a wide
variety of magnetic field magnitudes. Finally, the magnetometer performance may be
evaluated in an unshielded magnetic environment.
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