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ABSTRACT

Methods for making high-quality recommendations often rely on
learning latent representations from interaction data. These meth-
ods, while performant, do not provide ready mechanisms for users
to control the recommendation they receive. Our work tackles this
problem by proposing LACE, a novel concept value bottleneck model
for controllable text recommendations. LACE represents each user
with a succinct set of human-readable concepts through retrieval
given user-interacted documents and learns personalized represen-
tations of the concepts based on user documents. This concept based
user profile is then leveraged to make recommendations. The design
of our model affords control over the recommendations through a
number of intuitive interactions with a transparent user profile. We
first establish the quality of recommendations obtained from LACE
in an offline evaluation on three recommendation tasks spanning
six datasets in warm-start, cold-start, and zero-shot setups. Next,
we validate the controllability of LACE under simulated user inter-
actions. Finally, we implement LACE in an interactive controllable
recommender system and conduct a user study to demonstrate that
users are able to improve the quality of recommendations they
receive through interactions with an editable user profile.
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1 INTRODUCTION

Recommendation systems play a ubiquitous role in influencing
the information we consume and the decisions we make. Despite
this, these systems fall short of allowing sufficient control to users
[18] or any transparency to system aspects [36]. And effective
recommenders involve learning opaque user profiles and item rep-
resentations from user interaction data [74]. The value of control in
recommendation has been emphasized by prior work demonstrat-
ing greater user satisfaction [30], improved trust in the system [28],
and an intention to continue consuming content [71]. However,
prior work also notes that while users value control, they often pre-
fer hybrid strategies combining automatic methods with interactive
strategies for preference elicitation and control, indicating there to
be a sweet spot between automation and control [31, 33, 71].

Given the importance of this tradeoff, we develop a perfor-
mant recommender that facilitates control over recommendations
through an editable user profile. For our model, we lay the follow-
ing goals: (1) to facilitate interactive control, user profiles should be
human-readable i.e. transparent, (2) users should be able to edit the
profile to express their preferences in various intuitive ways with
the recommender system interactively updating its recommenda-
tions after profile edits, and (3) the recommender system should
make performant recommendations — ensuring that controllability
does not degrade the recommendation quality. Some recent work
is relevant to these goals [7, 52]. Balog et al. [7] construct transpar-
ent user profiles as a set of weighted tags, subsequently used for
scrutable recommendation. Despite desirable aspects, their fully
transparent approach presents drawbacks in relying on pre-tagged
items, not leveraging item content beyond determination of item
tags, and remaining inapplicable in the absence of interaction data.
On the other hand, Radlinski et al. [52] make a case for natural
language user profiles that may be used to prompt large-language
models (LLM) for few-shot scrutable recommendations - while rep-
resenting an exciting prospect the scrutability of LLMs approaches
remains unknown [13].

In this paper, we introduce a fundamentally different approach
for controllable recommendations where our model formulation
ensures controllability, effective use of item content, and its use of
pre-trained LMs allows effective performance in challenging zero
and cold-start scenarios. The starting point for our approach is
provided by Concept Bottleneck Models [35] developed for control-
lable prediction. Our approach, LACE!, builds each user profile as
a small set of readable concepts retrieved from a large inventory of
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Figure 1: Our proposed approach, LACE represents users with
human readable concept profiles and uses these for control-
lable recommendations. LACE presents two key novelties: a
retrieval-enhanced concept profile allowing users to edit the
profile and personalized concept values computed from user
documents for performant recommendations.

concepts given user interacted documents. Next, to effectively use
user documents, it computes a personalized concept value as a func-
tion of user documents and the profile concepts. These personalized
concept values are computed through a sparse matching of user
content to profile concepts computed with an Optimal Transport
procedure [51]. These are then used for computing recommenda-
tions. LACE admits edits such as positive or negative selections
to specify preferences on profile concepts or textual edits to the
concepts, which then change the personalized concept values and
the recommendations.

We evaluate several aspects of LACE in a series of extensive ex-
periments. We conduct offline evaluations on six real-world datasets
spanning three recommendation tasks: scientific paper recommen-
dation, TED Talk recommendation, and paper-reviewer matching
for peer review. We validate the efficacy of LACE for generating
effective recommendations in three evaluation settings: warm-start,
cold-start, and zero-shot. Next, we validate the ability of our model
to demonstrate control under simulated user interactions. Finally,
we implemented LACE in an interactive system and conducted a
user study to evaluate its interaction ability in a realistic usage sce-
nario. We find LACE to outperform several reasonable baselines in
offline evaluations and interactively allow users to make significant
improvements to their recommendations.

Therefore, our contributions include: 1) Proposing a performant
model for controllable recommendations, 2) Demonstrating effec-
tive empirical performance in numerous evaluation settings, and 3)
Establishing the effectiveness of LACE in a realistic user study. Our
code is online: https://github.com/iesl/editable_user_profiles-lace

2 PROBLEM FORMULATION

Desiderata. In building a controllable recommender we assume
access to users u € U, where each user u has interacted with a set of
items Dy, = {di}l.fl“l. Each d; represents a text document of natural
language sentences. To generate recommendations for a user u,
a ranking system f must generate a ranking R, over candidate
documents D. In building an editable user profile, we aim to build a
human-readable representation, P, of user interactions D;,. This is
subsequently used for making recommendations as Ry, = f(Py, D).
A user may control R, by manipulating #,,. This editable user
profile $,, must fulfill the following desiderata:
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D1: Communicate interests to the user. Users must be able to
understand their profile to edit it and control their recommenda-
tions. Thus, the profile #,, should communicate their interests as
captured by D,,. Importantly, we only aim to have a transparent
user profile to facilitate interactive control over recommendations.
This does not necessitate a “white-box” or transparent model [37] -
therefore, we don’t pursue this goal.

D2: Control recommendations via profile edits. The profile #,,
should provide edit operations to the user, which are then reflected
in the recommended results R* = g(P/,, D). The profile should
broadly support positive and negative preference specifications for
interests and correction of errors represented in #,,. Further, to
enable users to develop a mental model for control over recom-
mendations, the system must allow fast inference with updated
recommendations serving as feedback for user actions [15, 58]. Our
goal of control draws on prior work illustrating its benefits [27, 71].

D3: Performant recommendations. Finally, the profile #;, should
allow for high-quality recommendations before and after profile
edits. This follows from users’ desire for a sweet spot between
automation and control over recommendations [33, 71].

Profile Design. In this work, we choose to represent #, as a
set of natural language concepts describing a user’s interests. This
design follows from a common choice in prior work [5, 24, 34]
and findings suggesting that users often find concepts/keyphrases
to be intuitive descriptors of groups of items [7, 11]. Specifically,
given user documents Dy, and a inventory of concepts K, a profile
construction model g must induce a user profile of P concepts, Py, =
{k1,...kp} to describe D, where k € K. In our work, interactions
include positive or negative selection of concepts in ;, to indicate
interest or disinterest in them or edit actions like adding, removing,
or renaming concepts to account for variations or errors in P,.

3 PROPOSED APPROACH

The problem of building a controllable recommender that represents
users with human-readable concepts and uses these for making
controllable recommendations may be viewed as an instance of a
concept bottleneck model (CBM) [35, 44]. CBMs are neural network
models representing input data x with human-readable concepts k
and then using these to predict targets: x — k — y. The concepts
allow examination of the model and interventions on y.

CBMs involve learning functions g : x — k and f : k — y from
input data paired with concepts and targets: (x, k, y). However,
learning a model of this type presents some challenges: 1) Paired
user profile data of the form (D, P,,) for training g is often hard
to obtain. 2) Since we aim to allow edit actions such as addition,
deletion, or renaming of concepts in $;, g must support these
actions and allow interactions to influence downstream predictions.
3) Given that strong text recommendations [8, 50] rely on rich user
document features, models g and f should leverage neural network
features of Dy, to generate recommendations.

Our proposed approach (Figure 1), LACE, represents a CBM with
two components: profile construction: g : D, — Py, and ranking
f: Pu — Ry. To tackle the challenges outlined above, we present
two key novelties in profile construction: i) A retrieval enhanced
concept bottleneck: We formulate g as a retrieval function, retrieving
concepts from a global concept inventory K to construct a profile
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Figure 2: Profile concepts in LACE, obtained using retrieval,
serve as keys used to compute personalized concept values
from user documents; these are used for ranking.

P, with pre-trained LM encoders. This formulation allows users to
make edits to an induced concept bottleneck, with encoders used
for concept retrieval also used to encode user edits. Further, use
of pre-trained LM encoders allows the construction of $;, with-
out labeled data (D, ). ii) Concept personalization: To leverage
features of user documents in representing the profile concepts,
each concept is represented with a personalized concept value, V;
computed as a function of the concept and user documents. Since
the personalized concept value is a function of the concept, any user
edits to the concept also update the personalized concept value. For
this, we leverage Optimal Transport (OT), a method for computing
assignments and distances between sets of vectors [51]. Here OT
is used to make a sparse assignment of user documents to profile
concepts. The assigned document content is then used to compute
the personalized concept values. The concepts and their personal-
ized values may also be viewed as keys and values, resulting in a
concept-value bottleneck model. These personalized concept values
V¢ = {Vi}f:1 represent a multi-vector user representation that
is used for ranking. For ranking, we follow recent work [48] and
represent candidate documents as multi-vectors $¢ computed from
their sentences and generate recommendations by using OT once
again to compute distances between sets of user and document
vectors: V¥ and S¢. Next, we briefly review Optimal Transport.

3.1 Background on Optimal Transport

The optimal transport problem may be seen as a way to compute a
minimum cost alignment between sets of points given the pairwise
distances between them. Specifically, given the set of points, S, €
R™*d and S , € R"™¥4_ and distributions xp and x, according to
which the set of points is distributed. The OT problem involves
computation of a soft assignment, the transport plan Q, which
converts X, into x, by transporting probability mass from x,, to
x, while minimizing an aggregate cost ‘W of moving mass between
the points. ‘W is computed from pairwise costs C. Further, Q is
constrained such that its columns and rows marginalize respectively
to xp and xp. Therefore, computation of Q takes the form of a
constrained linear optimization problem:
s ’

W—g}lgg(&Q) (1)
Where W refers to the Wasserstein or Earth Movers Distance and
Q minimizes Eq (1), and the feasible set S = {Q’ € RT"™*"|Q’1,, =
Xp, o1, = Xy }. In our work costs C are pairwise L2 distances
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between S, and S - For computing the solution above, Cuturi [16]
introduced an entropy regularized variant of Eq (1). This can be
used with end-to-end differentiation and allows GPU computation.
We leverage this formulation in our work. We do this at two stages
of our model: in profile construction, we use the OT plan Q, and
for ranking, we use the minimum cost Wasserstein distance W. In
our implementations, we use the geomloss package for solving OT
problems with entropy regularizer A = 20 and uniform x,, X,

3.2 Model Description

Retrieval enhanced concept bottleneck. Given the user doc-
uments D (we drop user subscripts for brevity), we leverage pre-
trained language model encoders to retrieve concepts from a con-
cept inventory K to describe the user documents. This design allows
interaction from users who may add concepts not present in the
user profile or K, and rename (remove-then-add) existing concepts
in P (Figure 3). Therefore the function, g : D — % is factored
into a document and concept encoders: Ency and Encg. Specifically,

we represent user documents D = {si}5_. with sentences due to

i=1
their ability to capture finer-grained information in documents [48].
Sentence vectors Sp and concept vectors K, are obtained from Ency
and Encg. To construct the profile concepts = {k;...kp} the

top-P concepts are retrieved as follows:
P = top-P(Sp,K)
dist(Sp,k;) = minj||k; —sj||

@)
®)
The distance for individual concepts k; is computed as the minimum
L2 distance to the sentences. Further, K € RIKIXE and Sp € RSXE,
where E represents the embedding dimension. This set of retrieved
concepts for a user is revised during training as Sp and K are
updated. In practice, K may consist of a large number of concepts,
so to update ¥ during training a smaller set of pre-fetched concepts
K are used for construction of # in Eq (2).

Personalized concept values. Now given a users profile con-
cepts P and their embeddings from Ency as Kp. The representa-
tions of the same concepts across different users will be identical.
However, stronger personalization performance can be achieved if
user content influences concept representations. To achieve this,
we pair each profile concept with a personalized concept value: V;.
Specifically, given Ko and sentence vectors Sp we compute a soft
matching Qp_,p of sentences in D to profile concepts . We lever-
age the optimal transport procedure (§3.1) to compute this matching.
Computation of V; involves computing an assignment weighted
average of sentences:

1
Z]S:I Qji
Here we drop subscripts for Q and S > P. Note that computation
of Q involves the use of profile concept vectors Ky and sentence
vectors Sp through the pairwise cost C in Eq (1).

These values V¥ represent concept semantics grounded in user
content allowing strong personalization performance. Further, OT
computes sparse assignments Q [61], ensuring that sentences are
only assigned to a small number of relevant concepts. Therefore,
the concepts partition the sentences into soft clusters described by
their concept. This enables users to specify positive or negative

©
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preferences for specific concepts, which includes or excludes topical
clusters of sentences in generating recommendations. Further, user
edits to the text of concepts influence their embeddings, which in
turn influence Q, V¥, and Ry, - allowing edits to reflect in recom-
mendations. In this sense, the profile concepts may be seen as keys
paired with personalized concept values. Finally, since Q remains
differentiable, it allows gradient descent based training.
Candidate Ranking. Both user and candidate document rep-
resentations, V¥ € RPXE and $¢ € REXE are multi-vector repre-
sentations. To compute a score w,,q4, to rank the documents d € C,
we seek to align user interests with document content optimally.
Further, we expect only a subset of user interests to match the doc-
ument. Therefore, we score S¢ against the top |77| elements of V¥,
ie Vl,;_ = V¥[T,:] where |T| < P. 7 is obtained according to the

minimum L2 distances of V*[i,:] and S¢. To compute the distance
between multi-vector representations of the user and document, we
leverage optimal transport once more [48]. Having computed pair-
wise costs Cs, between Vi and 7 and a minimum cost alignment
Q.y, the distance w,,g = (Cyy, Qw), is used for ranking.

Document Encoder. Our approach leverages sentence represen-
tation of user documents D,, and candidate items d € 9. Our work
uses pre-trained transformer language model encoders for Ency.
Given document d, we obtain contextual sentence representations
s; € Sy by averaging contextualized word-piece embeddings from
Ency. In experiments, we use Sentence-Bert [54] for web text and
the AsPIRE for scientific text [48]. Both models are strong 110M
parameter BERT models pre-trained on document-similarity tasks.?

Concept Encoder. Control over LACE is achieved through pro-
file concepts. These concepts are encoded with Encg. This requires
Encg to capture the semantics of concepts to ensure intuitive in-
teraction with users. Further, vectors obtained from Encg must be
aligned with those obtained from the sentence encoders Ency. In
this sense, Ency may be considered a “query encoder”. For web-
text datasets, Encg uses Sentence-Bert, making it identical to Ency.
For scientific datasets, we pre-train a concept encoder using the
contrastive Inverse Cloze Task (ICT) objective of Lee et al. [39]
given the lack of performant short text encoders for scientific text.
For ICT pre-training, we use 1M concept-document context pairs.
Concepts were extracted using the unsupervised concept extraction
method of King et al. [32] from the S20RC corpus [42].

3.3 Training and Inference

Training. Training our model involves fine-tuning the parameters
of the sentence and concept encoders: Ency, Encg. The primary ob-
jective, Lyec, updates the parameters of Encj from recommendation
interactions. Specifically, given a users documents D, = {d,}‘lfl" I,
we treat each document d; in turn, as a positive document d* for
obtaining candidate sentence vectors 4" with the other documents
D}, = Dy \ {dy;} used for computing profile values A Giving
us the loss: Lrec = Dueu Zl.fl"l max[wl"ldJr - Wzitd* + 6,0]. Here,
w,,. denotes the distance between the user profile and candidate
document. Negative document d~ is randomly sampled from the
interactions of a different user u’, and margin § = 1. Second, we

ZHF Transformers: sentence-transformers/bert-base-nli-mean-tokens, allenai/aspire-
contextualsentence-multim-compsci
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Figure 3: Users may interact with their concept-based pro-
files through positive/negative selection of concepts or edit
concepts directly through addition, deletion, or renaming.

continue to train Encg on an ICT objective [39] used to pre-train
this encoder to ensure that Encq remains updated as Encg is trained.
Not updating Encg with Lyec follows from the intuition that this
encoder presents a way for users to interact with the model via edits.
Therefore, it only captures the semantics of concepts and concept-
sentence matches. Consequently, Encg is continually trained on
the ICT loss for the user documents D, using a random half of
pre-fetched concepts K. Note that though we fine-tune our model,
our semi-parametric model with pre-trained encoders allows zero-
shot prediction (see §4). Finally, our ICT objective may be seen as
a search objective with LACE trained as a joint search and recom-
mendation model [73]. However, we focus on the recommendation
task here.

Recommendations. Making recommendations with LACE in-
volves computing ranked documents R, from candidate documents
D. Since our approach relies on a set of dense vectors to represent
users and candidate documents with V¥ and Sd, these can be com-
puted as per §3.2 and cached. Ranking involves computation of the
Wasserstein distance w,,4 — recent work has explored approximate
nearest neighbor (ANN) methods for Wasserstein distances [4].
This paves the way for interactive large-scale recommendations
with LACE - an important element of our desiderata (§2, D2). While
we indicate the potential of ANN, we leave exploration of this to
future work. We opt for a simpler approach - computing w,,; for
all candidates D or opting to use LACE as a re-ranker where fast
and performant first-stage rankers are available.

Interactions. Our model allows two forms of interaction through
the profile concepts P;,. Users may specify a positive or negative
preference for profile concepts or edit the concepts through addi-
tions, deletions, and renaming to account for variations and errors
(Figure 3). These are achieved as follows. 1. Positive/negative selec-

tion. After construction of profile concepts $;, and the correspond-
ing values V¥, users may positively or negatively select elements of
V¥ to generate recommendations. E.g., for a user with “sentiment
analysis” in their profile, positive selection is akin to saying: “I
want only sentiment analysis” and a negative selection: ‘T don’t
want sentiment analysis”. These amount to the recommendations
computed from a topical subset of D,,. Positive selection results in
the positively selected values, V¥[p,:] being used for computing
Ry,. Similarly, negative selection results in a compliment of the se-
lections V¥[7, :] being used for computing Ry,. 2. Profile edits. Users
may also directly change the text of concepts in P, triggering re-
computation of V¥ i.e a reorganization of documents in D,,. Profile
edits may span two types: deletion, addition, or modification of con-
cepts consistent with the interests represented in D, and addition
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of new interests not captured in D,,. While adding new interests is
an important interaction [5], it represents a problem more similar
to search, different from recommendation. More generally, we ex-
pect profile interactions to take many forms and to be informed by
subsequent model results, much like query reformulations [12, 29].
A full understanding of this requires thoroughly examining user
behaviors [25]. However, our user study (§5) explores the efficacy
of these interactions for improving recommendations.

4 RECOMMENDATION EVALUATION

We conduct an offline evaluation of LACE on three recommenda-
tion tasks: scientific paper recommendation, TED talk recommenda-
tion, and scientific reviewer-paper matching for peer review. This
presents a task where papers suitable and of interest to reviewers
must be recommended for review [59].

4.1 Experimental Setup

Datasets. For paper recommendation, we use the two public datasets
CrTeULIKE-A (Sparsity: 99.78%) and CITEULIKE-T (Sparsity: 99.93%)
[63, 64]. Here, user’s past history Dy, consists of scientific papers (ti-
tle and abstract) that the user saved in their personal “libraries” on
the CrTEULIKE platform, collected between 2004-2013. For TED talk
recommendation (Sparsity: 99.70%) [50], we use a public dataset of
users and their saved talks (title and description) which form D,, -
referred to as TEDREC in §4.2. For reviewer-paper matching, we ob-
tain three private datasets of reviewer-paper assignments from the
ICLR 2019, ICLR 2020, and UAI 2019 conferences in collaboration
with the OpenReview peer-review platform. Here, users represent
expert reviewers, their authored papers (title and abstracts) repre-
sent Dy, and to-be-reviewed papers represent candidate documents
D. The relevance of candidate documents is captured in two ways:
bids and assignments. Bids are made by reviewers on a paper to ex-
press interest in reviewing the paper, and assignments are made by
conference organizers indicating the suitability to review a paper.

Implementation Details. Next, we describe important dataset-
specific and model details and include other hyperparameters in
our code release. The concepts in K used for user profiles must be
able to describe documents and be interpretable to users - we use
different inventories per dataset. For the TED Talk dataset (web-
text), we use the inventory of categories in the dataset, |X| = 200.
For Openreview datasets (scientific text), we use user-contributed
concepts in the dataset, | K| = 8000. For the CiteULike datasets (sci-
entific text), we extract scientific concepts using the unsupervised
method of King et al. [32] from a corpus of 2.1 million computer
science and biomedical papers in the S20RC corpus [42] giving
|| = 116k. Next, as the encoders in our model are updated during
training, we update #,, from a pre-fetched set of concepts Ky by
retaining 50% of these for constructing #, (P of §3.2). This results
in a variable length profile per user. To build K we retrieve a single
concept per sentence from K for the documents in D,,. For web
text, we build 7(f with a Sentence-Bert model. For scientific text,
we use TFIDF followed by reranking with our pre-trained encoders
and retain the top concept. To compute profile-document distances
for ranking, we use 20% of the user profile (i.e. |77| of §3.2). The
choice of Ky and 7~ were made from development set performance.
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Evaluation Setup. We evaluate models in warm-start, cold-
start, and zero-shot recommendation setups. We evaluate the paper
and TED talk recommendation tasks in all three setups and paper
reviewer matching in the zero-shot setup since it represents the
natural application setup. Specifically, (1) Warm-start: Evaluates a
method’s ability to recommend items seen in training. For every
user, we randomly sample 20% of a user’s items and treat these
as test items to be retrieved, treating the remaining items per user
as a training set. (2) Cold-start: Evaluates a method’s ability to
recommend items unseen in training — a persistent challenge in rec-
ommender systems. Here, a test set is created by randomly sampling
20% of all items in the dataset and ensuring that these are unseen
for any user. Models are trained on the remaining 80% of the data.
(3) Zero-shot: This setup is identical to that of cold-start recommen-
dation but is one where no training on interaction data is permitted
and represents a task setup explored in more recent work [60]. This
is apt in recommendation applications with privacy commitments
against use of interaction data as in reviewer-paper matching. More
generally reviewer-paper matching presents a natural cold-start
setup where candidate items are unobserved during training. It also
represents a significant domain shift where authored papers are
likely to follow a different distribution than to-be-reviewed papers
requiring zero-shot generalization at inference time. Model devel-
opment was performed on a randomly sampled development set
of 10% of users. Following prior work, CiteULike items are chosen
such that they are saved by at least 5 users [8, 63], TEDREC ex-
cluded users with fewer than 12 interactions [50], and OpenReview
used all items. We report performance in NDCG@20 and recall@20
in the interest of space, noting that result trends hold at rank 5.

Baselines. In the following experiments, we aim to benchmark
the recommendation performance of LACE against various classes
of established, scalable, and well-performing baselines spanning
matrix factorization, content-based, and hybrid models — often
found to outperform more complex architectures [19]. Note, how-
ever, that all the baselines cannot be applied in all three evaluation
setups. Popular: A non-personalized baseline recommending items
by popularity among users. BPR: Bayesian Personalized Ranking
represents a strong matrix factorization method [55]. ALS: Alter-
nating Least Squares regression represents a matrix factorization
method allowing positive interactions to be weighted over negative
ones. Popular, BPR, and ALS only work for our warm-start setup.

HysrID: This method of Bansal et al. [8] presents a strong hybrid

recommendation method where users are represented by learned
latent vectors, and items are represented with a neural network
encoder - intended for cold start recommendation. We train this
approach with dataset-specific pre-trained transformer language
models. We freeze the LM encoder during training. It can only work
for our warm- and cold-start setups. NEUKNN: This represents a
transformer LM-based item nearest neighbor method making a
recommendation by ranking candidates D based on the minimum
L2 distance to documents in user interactions Dy,. For training, we
fine-tune these models for pairwise user document similarity. Zero-
shot performance relies only on pre-trained parameters. NEUKNN
presents a controllable method for making recommendations by
excluding items in user interactions — in our user study of §5.2,
this serves as a baseline. For HyBriD and NEUKNN models, we use
SPECTER [14] for scientific text datasets and Sentence-Bert [54] for
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Table 1: Offline evaluation for warm-start setups.

C1TEULIKE-A CITEULIKE-T TEDREC
Warm-start NDCG@20 R@20 NDCG@20 R@20 NDCG@20 R@20
1Popular 0.64 1.25 1.68 3.04 7.34 12.10
2ALS 16.82 25.55 16.58 2858 6.49 11.07
3BPR 12.90 20.34 13.49 24.14 480 8.57
4HYBRIDSp/sB 10.37 17.46 6.22 12.05 158 2.55
SNEUKNNgps8  5.79 17.45 5.95 1519 157 5.22
LACE 8.86 20.20%3 836 19.27  3.69 7.78
LACE graLs 24.86 44.92 19.74 35.63 12.50 27.27

Table 2: Offline evaluation for cold-start and zero-shot setups.

Ci1TeULIKE-A CrTeULIKE-T TEDREC

Cold-start NDCG@20 R@20 NDCG@20 R@20 NDCG@20 R@20
IHyBRIDS,  22.93 31.64 13.61 23.45 7.32 11.51
2NEUKNNg,  26.31 37.36  18.38 28.75  17.49 25.69
LACE 29.39 39.72  21.20 32.11 17.93%2  27.06%2
Zero-shot

INEUKNNsg,  21.25 3046  15.21 24.07  16.30 22.77
LACE 27.47 38.86 18.76 29.15 1741 24.86

TED talk recommendation (HYBRIDsp/sg, NEUKNNGgy/sp). Finally,
in warm-start, we use LACE to re-rank the top 100 results for an
established approach, ALS - denoted LACE ggars-

4.2 Experimental Results

Tables 1, 2, and 3 present our empirical results across datasets and
evaluation setups. Here, metrics are in percentage, bold indicates
the best metric, and statistical significance of LACE models was
measured against all baselines with two-sided t-tests at p < 0.05
with Bonferroni corrections. Superscripts (**) indicate non signifi-
cant results in Table 1, 2, and 3. Unmarked results are significant.
Warm-start. In Table 1, we first examine the performance of
the non-personalized baseline, Popular. In both CrTEULIKE-A/T, it
underperforms all other approaches. In TEDREC, however, it sees
strong performance — indicating a strong bias for popular talks in
viewer preferences. Next, given the sparsity of these datasets, matrix
factorization approaches ALS and BPR show strong performance
compared to approaches leveraging content: Hybrid and NEUKNN.
This gap is larger in the more sparse CiteULike-T, matching prior
understanding [20]. ALS and BPR also leverage the popularity sig-
nal more effectively in TEDREC. Next, while LACE underperforms
non-controllable matrix factorization approaches, we see it matches
or outperforms approaches leveraging item content. This may be
attributed to LACE learning personalized representations of user
content through its profile values and aggregating the strength of
multiple user items in computing user-candidate item similarity.
Finally, LACE as a re-ranker for ALS, LACE ggars, outperforms all
other approaches with large percent improvements over best base-
lines: 47-75% in CITEULIKE-A, 19-25% in CITEULIKE-T, and 70-125%
in TEDREC. This strategy leverages the benefits of matrix factoriza-
tion approaches while retaining the benefits of controllability and
a content-based model for cold-start and zero-shot recommenda-
tion presented by LACE. Re-ranking also presents a path to scaling
LACE and adopting it into existing matrix factorization systems.
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Table 3: Offline evaluation on the Openreview platform in a
zero-shot setup - the realistic setup for this task.

ICLR-2020 ICLR-2019 UAI-2019
Bids NDCG@20 R@20 NDCG@20 R@20 NDCG@20 R@20
INEUKNNg, ~ 15.52 13.22 1521 1191 2298 22.76
LACE 18.02 15.74 18.33 14.81 28.05 28.17
Assignments
INEUKNNg, ~ 7.52 1285  6.51 12,58 17.21 28.16
LACE 9.13 15.31 11.88 17.72  20.09%! 33.13

Cold-start. Table 2 presents results in a setup where test set
items are never seen during training. This precludes comparison to
Popular, ALS, and BPR. Here, across datasets, a content-based ap-
proach NEUKNN sees stronger performance than a Hybrid method
indicating the value of content-based representations in the cold-
start setup. In the more dense TEDREC dataset, NEUKNNgp sees
stronger performance with LACE matching or slightly outperform-
ing it. This matches prior understanding with item nearest neighbor
methods seeing a stronger performance in denser datasets [23]. In
the sparser CITEULIKE-A/T datasets, we see LACE improve upon
the best baselines by 5-11% and 11-15% respectively. This indicates
the potential of LACE for application in the challenging cold-start
setup while providing the benefits of interactive control.

Zero-shot. Tables 2 and 3 present results in the challenging
zero-shot setup where recommendations must be made without
any training data — when presented only with user items D,,. Here
we only compare against NEUKNNsp/sg a model which can be
applied only with its pre-trained weights. In Table 2, we see trends
similar to the cold-start setup. In CITEULIKE-A/T, we see gains of 27-
29% and 21-23% respectively and 7-9% in TEDREC. Next, consider
Table 3, presenting results on reviewer-paper matching datasets of
OpenReview with two measures of relevance: Bids and Assignments.
Across datasets, we observe that LACE improves on NEUKNNGg,
by 16-24% on bids and 17-82% on assignments. These datasets also
represent a difference in distribution between user items (authored
papers) and candidate items (to-be-reviewed papers) — the strong
performance of LACE also indicates its robustness to these shifts.
Finally, NEUKNNGs; forms part of the system used for reviewer-
paper matching on OpenReview. This performance of LACE also
indicates its potential for adoption in the important peer-review
application of reviewer-paper matching.

Ablation Study. In table 4 we ablate elements of LACE and
important baselines to demonstrate the design trade-offs involved.
We report performance in zero-shot and cold-start setups on two
datasets, given the ability of our models to be applied in these
settings and the interest of space.

Minus CV bottleneck. Recall that LACE represents documents
with sentences and computes personalized concept values, which
aggregate sentences for computing user-item scores. A lack of this
concept-value bottleneck results in a model which uses sentence
vectors of user documents (Sp of §3.2) directly for computing user-
item scores. In C1ITEULIKE-A, we see LACE outperform this model
(I) in the zero-shot setup and show smaller gains with training as in
cold-start. This indicates the benefit provided by the inductive bias
of the concept-value bottleneck, which may be overcome with train-
ing data. In TEDREC, we see similar performance for both models,
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Table 4: Ablations indicating trade-offs in model design.

Cold-start Zero-shot

CrTEULIKE-A NDCG@20 R@20 NDCG@20 R@20

LACE 29.39 39.72  27.47 38.86

NEUKNNGgp 26.31 37.36  21.25 30.46
I LACE-CV bottleneck 28.10 38.21 24.30 35.22
I  LACE-concept values 12.66 19.85 03.90 06.63
III  NeuKNN-+more pretraining  26.28 37.39 24.89 35.38

TEDREC

LACE 17.93 27.06 17.41 24.86

NEUKNN;g 17.49 25.69 16.30 22.77
I LACE-CV bottleneck 17.78 27.02 17.85 24.79
I  LACE-concept values 09.85 16.18  08.80 14.53
III  NEuKNN+more pretraining  17.45 25.89  16.09 21.40

indicating the value of learning dataset-specific patterns. Recall,
however, that this simplified model (I) does not offer controllability
beyond that offered by NEUKNN.

Minus concept values. Next, we consider a model with a concept-
based profile as in LACE but not using the personalized concept
values of LACE. Instead, this uses embeddings of profile concepts
%, to compute user-item scores. This approach offers controllabil-
ity similar to LACE. However, we see (II) this approach consistently
underperforms LACE indicating the value provided by the person-
alized concept values of LACE. Note that this may also be seen
as a tag-based recommender as in Balog et al. [7] - showing per-
sonalized concept values to be a more effective use of interacted
documents beyond determination of a tags alone.

More pretraining. Finally, to examine the benefits of extensive
text similarity pre-training for ItemKNN models, we examine the

performance of NEUKNN variants with more extensive pre-training.3.

For CITEULIKE-A, we see (IIT) improved performance in the zero-
shot setup compared to NEUKNNs, with gains disappearing upon
training as seen in cold-start. In TEDREC, we see more pre-training
not to benefit performance, indicating the importance of learning
dataset-specific patterns. Broadly, we also see patterns similar to
Table 2 and performance comparable or lower than LACE.

5 INTERACTION EVALUATION

To evaluate the efficacy of LACE to control recommendations, we
first validate some of the interactions provided by LACE through a
series of simulations (§5.1). Then we conduct a task-oriented lab
evaluation of users interacting with LACE and use the resulting
data to evaluate the interactive aspects of LACE (§5.2).

5.1 Simulation Evaluation

Before our lab evaluation, we use simulations to evaluate sim-
pler interactions in LACE: validating the positive and negative
selection (§3.3) of individual concepts to perform as expected and
synonymous edits (e.g., replacing “passage retrieval” with “docu-
ment retrieval”) to individual profile concepts not to cause large
changes in the recommendations received. To measure the efficacy
of positive and negative selection, we measure Concept Recall@20
(CR@20) - testing for the presence of a concept in the recommended

SHF Transformers, CITEULIKE-A: allenai/aspire-biencoder-compsci-spec, TEDREC:
sentence-transformers/all-mpnet-base-v2
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Table 5: Simulation evaluation of LACE for positive/negative
selection and robustness to synonymous profile edits.

Positive Negative Robustness
CR@207T CR@20 | R@20 =
Teses
Initial 36.67 36.67 42.23
LACE
Tuned  49.75! 25.94! 42.14

documents compared to all documents before and after a tuning
interaction - a metric also used in prior work [49]. An effective
model should increase CR@20 for positive selection and decrease it
for negative selection. We measure robustness through Recall@20
with interactions data, expecting a robust model not to cause large
changes after a synonymous edit. Given its cleaner text, we conduct
our simulations with user data in CITEULIKE-A. We begin by select-
ing the 14 most frequent concepts in user profiles*, and randomly
select 20 users with the concept in their profile. The resulting 280
concept user pairs are used in simulations. For each concept-user
pair, we positive/negative select the personalized concept value for
the concept in the user’s profile, followed by generating recommen-
dations. To simulate synonymous edits, we use a separate Sentence-
Bert [54] encoder to encode and generate nearest neighbors for
the 14 frequent concepts and select one of the top 20 concepts as
a replacement for a user’s profile. Table 5 depicts the results of
our simulations. Positive and negative selection cause CR@20 to
increase and decrease significantly (two-sided t-test, p=0.05). We
also see synonymous edits not to cause significant changes to R@20.
These indicate the effectiveness of simple interactions with LACE.

5.2 Task Oriented User-Study

Next, we conduct a task-oriented within-subjects lab evaluation
of LACE with 20 users consisting of computer science researchers.
Here, users interacted with two models LACE (system name, Maple)
and NEUKNN (system name, Otter) to receive research paper rec-
ommendations, saved the papers they found interesting, and tuned
the recommendations to their liking through interactions with the
systems. Through the data collected, we aim to answer the fol-
lowing research questions: LACE Controllability, RQ1: Does LACE
allow users to improve the recommendations they receive? LACE
vs. NEUKNN, RQ2: Does LACE allow users to improve their rec-
ommendations more effectively than NeuKNN? Besides answering
these RQs, we also report realistic usage patterns with the data
gathered in our user study.

System Description. To conduct our study, we developed two
interactive recommendation systems for making scientific paper
recommendations - Otter and Maple. For both systems, candidate
documents D consisted of 100k computer science papers from
the S20RC corpus [42]. Of this, 50k were the most highly cited
computer science papers to ensure familiarity, and the other half
was sampled randomly. Choosing popular items is also common
in prior work [7]. Otter used a NEUKNN model and served as our
baseline system. Maple used LACE. NEUKNN used a SOTA docu-
ment bi-encoder model for document similarity [48] - we denote
it as NEUKNNagp. LACE was implemented similarly to Section 3;

4Selected to ensure familiarity to the author running the semi-automatic simulation.


allenai/aspire-biencoder-compsci-spec
sentence-transformers/all-mpnet-base-v2
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however, a Sentence-Bert model was used to retrieve profile con-
cepts and optimal transport was implemented using the POT library
[21]. Our system used a re-ranking strategy for LACE. Retrieving
500 documents from D for each d € D, using NEUKNNjgp and
re-ranking these documents with LACE. Both systems ran on 2
CPUs and 16 GB RAM. They used identical interfaces, only varying
in their recommendation tuning methods.

Study Participants. Participants for our study were recruited
through university mailing lists and announcements made on social
media. To ensure that users had formed research interests and
could identify papers of interest to them, we asked respondents to
confirm that they were involved in a research project and briefly
describe their research in our sign-up form. Of the respondents, 20
were selected as participants/users for our study on a first-come-
first-serve basis while ensuring they were involved in research.
Participants received $25 gift cards for hour-long participation.
All study procedures were approved by the university IRB. As a
proxy for their expertise, participants noted authorship for research
papers: 1-5 research papers (14/20), none (5/20), and 6-10 (1/20).

User Study Description. Our within-subjects study consisted
of three main phases, (A) preference elicitation, (B) evaluation of
an initial list of recommendations, and finally, (C) multiple itera-
tions of edits to a user profile followed by an examination of the
recommended list to improve the initial recommendations. While
(A) was performed offline through a web form, (B) and (C) were
performed in a 1-hour study session over Zoom.

Preference Elicitation. In our offline preference elicitation, users
were instructed to submit 2 distinct sets of 4-5 papers or 2 authors
of interest to any of their prior, current, or likely future research
interests. The submitted information was used to construct a seed
set of 20-25 papers representing user documents (D) per system.
To build Dy, we expanded the user-submitted papers by randomly
sampling the references cited in each submitted paper or by gath-
ering the 20 most recent papers by the submitted author. These
methods are common for discovering relevant papers [3]. Data was
gathered through the Semantic Scholar APL

We avoided gathering extensive item ratings to keep a low bur-
den on participants. Further, having participants submit papers of
interest to their research ensured that they were experts in these ar-
eas and could evaluate recommendations relevant to their research
interests. Additionally, a semi-automatic method for gathering D,
also ensured that while many papers in D,, were topically relevant
to users, some were undesirable - necessitating tuning. Finally, our
study also used distinct sets of seed papers D,, per system; this en-
sured that users remained engaged in examining recommendations
from both systems. However, this meant that comparisons between
both systems could only be made in aggregate across all users.

Study Procedure. Next, in an hour-long session conducted via
Zoom, users used the Maple and Otter systems for 20-25 minutes
each or until they decided to stop. They did not know the proposed
vs baseline systems, and the order of system use was random to
prevent fatigue or learning effects privileging a system.

In Maple, users first skimmed the seed papers D, to familiarize
themselves with their contents. Next, they examined the inferred
profile concepts $,,. Here, users removed concepts if they were
redundant, nonsensical, or did not represent the seed papers or
added concepts if there were aspects of the seed papers which were
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Table 6: User study evaluation of LACE compared against the
baseline NEUKNN ¢p for improving recommendations.

MRR  NDCG@5 NDCG@20
nitial 66.97  48.30 69.16
NEUKNNAg,  Tuned 85.38  67.54! 82.03!
+Gain 1842  19.24 12.88
Initial  70.76  50.93 71.68
LACE  Tuned 90.00¢ 74.83% 86.16%
+Gain 1924  23.90 14.48

missing in Py,. These were used to compute personalized concept
values V* and produce an initial list of 30 recommendations RJ.
Users were told to examine the recommended papers and save the
ones they wanted to read in more detail. To ground their interest
and mirror preference elicitation, users were encouraged to con-
sider papers relevant to prior, current, or future research interests.
Following examination of RY, users were free to find as many more
interesting papers as they could by interacting with the profile,
examining the recommendations, and saving the ones they found
interesting. Users could make positive or negative selections from
Py to refine their recommendations by focusing on specific con-
cepts or excluding some concepts, respectively. Alternatively, they
could edit concepts in Py, if there were aspects of D,, they wanted
to focus on or to accomplish other intents.

The study procedure for Otter mirrored that of Maple. However,
users did not make concept corrections in Otter (NEUKNN). Further,
to refine their recommendations, users could only exclude papers
in Dy, and recompute their recommendations (i.e negative/positive
selection) — the only interaction possible with NEUKNN. We gath-
ered tuning actions (additions, deletions of concepts or seed items),
recommended lists, and saved papers in both systems. In our subse-
quent analysis, user saves are treated as binary relevance measures.

User-study Results. Our user study allows us to answer RQ1
and RQ2, examining if LACE allows users to improve their recom-
mendations and if it is more effective than a baseline NEUKNN. We
answer both questions through ranking metrics: MRR, NDCG@5,
NDCG@20 in Table 6. We omit recall metrics since they cannot
be computed from our study, and superscripts indicate statistical
significance at p=0.05 with a paired t-test. Note that, Table 6 shows
higher metrics than §4.2 due to the fully judged recommendation
lists obtained from users in the user study, unlike the incomplete
relevance labels of implicit feedback datasets.

LACE Controllability. Comparing Initial vs. Tuned performance
in Table 6, users saw statistically significant gains of 20-47% through
interactions with LACE. Therefore we answer RQ1 in the affirmative
- LACE is effectively able to improve the quality of recommendations
users receive. We also note that NEUKNN g, also saw gains of 18-
40% from tuning. In using LACE and NEUKNNgp, users made 2.65
and 2.20 tuning iterations respectively. Both systems were used for
the same duration or until users choose to stop.

LACE vs NEUKNN. To compare the two systems, we examine
both models’ Initial, Tuned, and Gain performance. In Table 6, we
note that LACE outperforms NEUKNN ¢, at the Initial and Tuned
stages by 4-6% and 5-10%, respectively. We also note slightly larger
Gained metrics for LACE. However, these were not statistically
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significant. Therefore, our results indicate that LACE sees improved
performance before and after tuning compared to NEUKNNxp.
However, larger-scale studies with diversity in users, and larger
candidate document sets are necessary to establish significance.

Characterizing Usage of LACE. Next, we characterize usage with
LACE as implemented in Maple. Based on the changes users made to
Py, for redundancy and correctness we found the initially inferred
%y, to have a precision of 74.25% on average. Here, users deleted 5.15
concepts and added 1.25 concepts. Fewer additions indicate that the
inferred profiles had sufficient coverage of Dy, but suffered from
redundant or incorrect concepts. In tuning their recommendations,
users made 7.2 positive/negative selections and 0.68 additions to
their initially corrected profile, indicating a preference for selection
operations over edits to P;,.

6 RELATED WORK

Next, we discuss the rich body of prior work on which we build.

Interacting with Recommenders. A line of work has explored
interfaces to control recommenders and their influence on users.
This line of work has explored user profile-based interaction, with
profiles constructed automatically [5, 24, 47] or from user input [53].
Here, automatic methods often construct profiles using supervised
methods for keyphrase or entity extraction, enrich the extractions
via linking to existing knowledge bases, and then, use them to
compute recommendations. This line of work has also explored
other forms of control, ranging from a selection between different
algorithms, applying keyword filters to a generated list of recom-
mendations [26, 31, 33], and changes to algorithms themselves [27].
Different from our work which contributes a performant interactive
recommender this work has used existing methods and focused on
studying the rich ways in which recommenders influence users.

Critiquable Recommenders. Critiquable recommenders allow
control over recommendations in one of three ways, at present:
1) one-time user feedback on recommended item explanations fol-
lowed by retraining whole or parts of a model [22, 38]. 2) Con-
versational feedback via item keyphrases or explanations with a
latent user representation updated incrementally given a critique
[1, 2, 40, 45, 67, 69]. 3) Feedback via item attributes which endow
latent user or item dimensions with information of item attributes
[49, 65]. This allows user feedback to influence user or item repre-
sentations, which are then reflected in recommendations. Each of
these bears differences to LACE. Our approach does not require re-
training as in one-time user feedback methods. Next, while methods
for one-time or conversational feedback via explanations control
recommendations by interaction with individual items, LACE allows
control over sets of items, a more intuitive and efficient structure for
expressing preferences [7, 11]. Finally, current methods for conver-
sational and item attribute feedback rely on observing keyphrase
usage of users or item attributes for training, not allowing expansion
at test time — LACE allows test expansion of keyphrases/attributes
to user-specified keyphrases, offering greater flexibility.

Another notable aspect of the work in critiquable recommen-
dations is their use of variational autoencoders to capture user
preferences via a single latent vector and model components to
update this vector from feedback [1, 46, 49, 65, 69]. The concept-
value bottleneck of LACE models multiple user interests explicitly
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as human readable concepts which can be directly interacted with
- not requiring modeling for aligning latent dimensions to human
interpretable ones or updating them with feedback.

Richer User and Item Modeling. As in LACE, prior work in
information filtering and recommendation has developed content-
based recommenders [8, 43, 63] allowing performant recommenda-
tion in cold-start and zero-shot setups. Further, prior work has also
modeled the multiple interests of users in collaborative filtering
models via multiple latent prototypes[9, 66, 70]. Our work primar-
ily differs from these in building interactive and transparent user
profiles to control content-based recommenders.

User Profile Construction. A line of work has sought to build
user profiles for a range of applications leveraging approaches in
matrix factorization [10], learning to rank [56], and information
extraction [41, 72]. This line of work often attempts to build general-
purpose user profiles while leveraging labeled data such as tagging
behavior of users [10], profile attribute values extracted from social
networks [41], and user-assigned document tags [56, 72]. While
this line of work leverages supervised data for constructing profiles
we contribute a method for inducing user profiles in the absence of
labeled data and influencing a downstream recommender.

7 CONCLUSION AND FUTURE WORK

Our paper introduces a novel retrieval-enhanced concept-value bot-
tleneck model, LACE, for constructing a human editable user profile
and making performant text recommendations. We demonstrate
strong performance in 3 recommendation tasks and 6 datasets in
offline evaluations. Then we validate the controllability of LACE
through simulated edits and a task-oriented user study. We demon-
strate that users can make significant improvements to their rec-
ommendations through interaction with LACE.

LACE presents several opportunities for future work. The concept-
value user representation may be used for controllable personal-
ization in other applications, e.g. search [62] and text generation
[17, 57], perhaps by augmenting transformer language models with
a rich and compact personalized memory [68]. Further, richer struc-
tured user data in the form of personal knowledge graphs may
motivate more structured profile representations and accompany-
ing interactive learning and inference algorithms [6]. Further, the
intuitive profile edit interactions supported in LACE call for the
design of interactive recommenders leveraging this strength. These
may then be studied and evaluated in larger-scale online evalua-
tion spanning impactful applications, such as peer-review and text
recommendation — presenting benefits to end users and providing
a rich canvas for future research spanning multiple communities.
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