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ABSTRACT

Archaeologists have long recognized that spatial relationships are an important influence on and driver of all
manner of social processes at scales from the local to the continental. Recent research in the realm of complex
networks focused on community detection in human and animal networks suggests that there may be certain
critical scales at which spatial interactions can be partitioned, allowing researchers to draw potential boundaries
for interaction that provide insights into a variety of social phenomena. Thus far, this research has been focused
on short time scales and has not explored the legacies of historic relationships on the evolution of network
communities and boundaries over the long-term. In this study, we examine networks based on material cultural
similarity drawing on a large settlement and material culture database from the U.S. Southwest/Mexican
Northwest (ca. 1000-1450 CE) divided into a series of short temporal intervals. With these temporally sequenced
networks we: 1) demonstrate the utility of network community detection for partitioning interactions in
geographic space, 2) identify key transitions in the geographic scales of network communities, and 3) illustrate
the role of previous network configurations in the evolution of network communities and their spatial boundaries

through time.

1. Introduction

General network thinking and relational perspectives have a long
history in archaeology, but it is only recently that we have seen a dra-
matic increase in the frequency of empirical work explicitly using formal
network analytical tools to explore archaeological questions (see dis-
cussions in Brughmans and Peeples 2017; Peeples 2019; Mills 2017).
The most popular network approaches in archaeology in recent years
have included both explicitly spatial networks where connections are
assessed in terms of the distances, paths, or travel costs among features
often using GIS tools (e.g., Broodbank 2000; Menze and Ur 2012; Rivers
et al. 2013; Verhagen et al. 2013, 2019; Wernke 2012) as well as non-
spatial networks where connections are assessed in terms of the pres-
ence/absence, frequency, or similarities in material culture (e.g., Birch
and Hart 2018; Blake 2013, 2014; Buchannan et al. 2019; Coward, 2013;
Golitko and Feinman, 2015; Mills et al., 2013a; Mizoguchi, 2013; Pee-
ples, 2018; Mills et al., 2013b, etc.). In the latter group, interactions are
defined and assessed without direct reference to the relative or absolute
spatial configurations of nodes though spatial relationships are some-
times assessed after the networks have been generated (see Buchanan

et al.,, 2019; Golitko et al., 2012; Golitko and Feinman, 2015;
Gravel-Miguel, 2016; Hill et al., 2015; Lulewicz, 2019; Mills et al.,
2013a, 2013b, 2015). Indeed, one of the most robust patterns that has
emerged from such considerations of material culture networks
embedded in space is the frequent close relationship between likely
vectors of interaction and spatial distance (Brughmans and Peeples
2023:Chapter 7). It is perhaps not surprising that social networks and
spatial distance are often closely related, but the varied nature and
strength of this relationship in different contexts and data sets suggests
that this is a topic ripe for further study.

The relationship between formal networks of interaction and space
has been a topic of great concern in the broader world of network sci-
ence across geography, ecology, physics and other fields in recent years.
Work addressing such issues is quite diverse, but there is a growing body
of work that illustrates how social interactions of all kinds in human and
animal networks can be influenced by spatial configurations and further
that certain kinds of interactions tend to be concentrated within specific
geographic ranges (Alessandretti et al. 2018; Balsa-Barreiro et al 2022;
Barbosa et al. 2021; Gliickler et al. 2017; Hamedmoghadam et al. 2019;
Fletcher et al. 2013; Leng et al. 2021; Menezes and Roth 2017). For
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example, Fletcher and colleagues (2013) present an analysis of modu-
larity, or the tendency of networks to be decomposed into smaller
sub-groups, in animal movement networks derived from recapture and
population genetic data for several species. Through this work they were
able to identify statistically significant partitions of networks of move-
ment and gene flow that were larger than the individual ranges of ani-
mals but smaller than the landscape scale of the species distributions.
This suggests that there are key meso-scale partitions of certain animal
populations that may represent fundamental scales for activities like
mate selection that have been given substantially less attention than
they warrant. In another recent study, Menezes and Roth (2017)
explored geotagged social media content to identify natural scales of
human movement based on a network connecting locations with shared
check-ins or tagged images by multiple users. They found that study
areas ranging in size from cities up to entire countries were marked by a
small number of break points where slightly changing the radius of
movement that they considered dramatically altered the detectable
sub-divisions in that network. Further, they show that networks from the
local to regional were decomposable into distinct geographic partitions
at remarkably similar geographic scales.

Both of the studies briefly described above illustrate that the rela-
tionship between interaction and space is not always gradual but may be
marked by major junctures, where small changes in spatial scale result in
dramatic differences in network properties. Such critical scales are often
interpreted as the scales at which key processes of interaction change,
with different kinds or intensities of interaction occurring on either side
of the transition. Critical scales for interaction are of great importance
for tracking and modeling network behavior but are often difficult to
directly identify without formal data for tracing interactions and/or
mobility across broad geographic scales that cover several orders of
magnitude in distance (see Fletcher et al. 2013; Hamedmoghadam et al.
2019; Keitt et al. 1997; Menezes and Roth 2017). Recent work in the
realm of complex network science has attempted to address the issue of
identifying such critical scales using network community detection
methods (Menezes and Roth 2017). Specifically, algorithms for defining
partitions or sub-groups within networks that are not based on spatial
information can be applied and then any spatial patterns that exist in the
sub-group structure can be assessed to determine whether patterns of
interaction are tied to specific geographic scales. Such work has proven
useful in decomposing large networks into sub-groups in a variety of
settings but, as of yet, such work has been focused on single periods of
measurement and has not tracked change through time or the legacies of
network configurations.

The approach to identifying and assessing critical scales in networks
has some general commonalities with the ways archaeologists have
often discussed interactions embedded in space. Archaeologists have
certainly long recognized that different kinds of interactions and
mobility are likely to be organized around different geographic scales. It
is common for archaeologists to draw on ethnographic or experimental
information to model the most likely zones of certain types of behavior
or mobility. For example, observations of Kofyar farmers in the Sahel of
Nigeria (Stone 1991, 1992; see also Marchetti 1994 for another
example) illustrate that in agricultural communities in this semi-arid
environment the maximal distance that farmers typically travel for
intensive agricultural activities is about two kilometers. This observa-
tion agrees well with archaeological observations in the U.S. Southwest
of archaeological evidence of field locations in relation to settlements
perhaps suggesting this observation can be generalized to a degree (see
Adler et al., 1994; Varien et al. 2000). Indeed, distance thresholds based
on this and similar work have proven useful in modelling settlement
distributions in many regions (Kase et al. 2022; Kruse 2007; Varien
1999). Similarly, drawing on a broad array of ethnographic and
archaeological examples Arnold, Heidke, and others (Arnold, 1988;
Arnold et al., 1991; Heidke et al. 2007) have argued that the distances
that potters travel for resources fall off sharply from residences and most
potters stay within about seven kilometers of their residences when
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gathering clay and other resources for pottery production. Drennan
(1984) modeled the potential for the long-distance movement of goods
across highland Mesoamerica based on his and others experiences and
calculations of caloric requirements for overland travel with goods,
suggesting that a burdened traveler can travel about 36 km in a day. This
observation has frequently been used to model the potential for move-
ment of goods and people in archaeological case studies in the U.S.
Southwest (Hill et al. 2004; Wilcox et al. 2007; Wilcox 1996). Although
the degree to which they are universal or even broadly generalizable is
certainly an open question, such thresholds are useful as they help to put
real-world limits on the kinds of movements and interactions we might
expect within specific spatial frames. In most cases, however, such
thresholds or critical scales are defined based on one particular ethno-
graphic setting or body of comparative data and then applied to other
areas without direct assessment. Further, such thresholds are often
limited to the scales at which ethnographic and ethnoarchaeological
research have been conducted, which is frequently small relatively to
regional scales of archaeological analysis. To address some of these
specific issues, in this analysis, we assess the degree to which it might be
possible to generate similar assessments of critical scales of interaction
from the ground up by directly assessing changing patterns of interac-
tion intensity in network data.

In this study, we adapt methods for defining and evaluating critical
scales using assessments of network clustering (drawing in particular on
work by Menezes and Roth [2017] for geotagged image data) and apply
them to archaeological data from the U.S. Southwest and Mexican
Northwest. The goals of this process include 1) determining whether
there is any evidence for critical scales or natural geographic scales
across which these interaction networks can be divided and whether we
can identify those with archaeological ceramic similarity data, 2)
determining the degree to which the scales of any divisions identified
are similar across time and space, and 3) determining the degree to
which boundaries between spatial divisions persist or change through
time. By tracking such dynamics through time, we will further investi-
gate the timing of changes in network community boundaries across our
study area to see how past network configurations or divisions might
have influenced those in subsequent intervals. As we draw on methods
and tools from network research spanning several disciplines, termi-
nology for referencing specific network properties and analyses can be
difficult as similar terms are sometimes used to refer to different things.
To help with this issue, we provide a brief glossary of some of the key
terms and define exactly how we use them in the context of this article
(Table 1).

Table 1
Network terminology used in this study.
Term Definition
Modularity A formal measure of the structure of networks characterizing

the tendency toward division into sub-groups

Community A sub-group of nodes that is densely connected internally.
Partition A formal assignment of all nodes in a network into mutually
exclusive sub-groups or communities
Community A term used to refer to various algorithmic approaches to
detection detecting and defining sub-group structure (communities) of a

network. In this study we use the Louvain community detection
algorithm.

A term referring to geographic/spatial scales associated with
abrupt changes in network connectivity. In other words,
critical scales are geographic scales where small changes in the
scale considered result in dramatic changes in network
properties.

Following Menezes and Roth (2018), the prototypical scale is
the distance between a pair of identified critical scales that is is
most similar to all other distances within the same sub-division.

Critical scale

Prototypical scale
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2. The study area and the cyberSW database

For the purposes of this study, we focus on a large portion of the U.S.
Southwest and Mexican Northwest including southern Utah and Colo-
rado, along with Arizona, New Mexico, portions of Texas, as well as the
Mexican states of Sonora and Chihuahua. Temporally, we focus on the
interval from 1000 CE to 1450 CE, which encompasses the maximal
extent of agricultural settlement across this region as well as a period of
dramatic transformation in settlement distribution and location
including the depopulation of portions of the study area and the
development of new population centers in areas that were previously
relatively sparsely occupied (see Hill et al. 2004; Doelle 2000). The
geographic and physiographic diversity of this study area along with the
major shifts in settlement through time make this an excellent context
for tracking critical scales as we will be able to assess how scales of
interaction change or persist in light of major shifts in settlement dis-
tribution as well as whether certain locations or physiographic features
consistently drive the creation of persistent network boundaries or sub-
divisions.

The data used in this study come from the cyberSW project online
database. The cyberSW.org platform is an online resource and collabo-
ration tool focused on standardizing and sharing archaeological settle-
ment and material culture data from the U.S. Southwest and Northern
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Mexico, ca. 800-1800 CE (Mills et al. 2020). The cyberSW platform
includes tools that allow users to query, download, map, and analyze
archaeological data from across the region directly in a web browser or
on their own computer. The archaeological data included in the data-
base were generated over more than a century by academic archaeo-
logical research and compliance projects and have been compiled and
standardized by a team of specialists including archaeologists, geo-
chemists, sociologists, computer scientists, physicists, data infrastruc-
ture specialists, and others collaborating over more than two decades
across several projects; the Coalescent Communities project (Hill et al.
2004), the Southwest Social Networks Project (Mills et al. 2013a, 2013b,
2015; Peeples et al. 2016), and the Chaco Social Networks project (Mills
et al. 2018). These data represent and immense amount of effort by the
field as a whole and the compilation of these data involved collaboration
with numerous cultural resource management firms, museums and re-
positories, individual researchers, tribal organizations, land managers,
and others.

The current version of the cyberSW database includes information on
more than 20,000 archaeological sites in the region including a large
number of sites with systematic counts of ceramic materials identified to
standardized ware and type designations. In this study, we use data from
a set of 1,790 settlements across the study area dating between 1000 and
1450 CE. The settlements selected are limited to those with at least 10

Fig. 1. Map showing the locations of all archaeological settlements in the cyberSW online database as of January 2023.
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rooms and 30 systematically identified painted ceramic sherds (see Mills
et al. 2013: Supplemental Materials for a discussion of the selection of
sample size cut offs). These ceramic data are attributed to more than
1,100 ceramic type designations representing nearly ten million ceramic
objects (see Fig. 1). In addition to the systematic ceramic counts we also
use settlement location information (although those data are not avail-
able on the publicly accessible cyberSW.org platform due to concerns for
site protection) as well as chronological and settlement size data from
previous publications and observations. The expansive geographic scope
and density of data available for this analysis meets the criteria for
identifying critical scales of providing information on interaction across
several orders of magnitude in distance and provides an excellent
context for exploring issues of scale and evaluating whether there are
critical scales marking changes in the relationships among these settle-
ments and through time.

3. Generating network representations from archaeological data

In this study, we build on methods developed across several past
regional scale archaeological network studies in the cyberSW study area
(e.g., Borck et al. 2015; Mills et al. 2013a, 2013b, 2015, 2018; Peeples
and Haas 2013; Peeples et al. 2016, etc.) to generate empirical networks
of ceramic similarity for distinct 50-year intervals. We have chosen 50-
year intervals as that corresponds with the typical chronological reso-
lution of ceramic date ranges in our study area and represents
essentially-two human generations. As the analyses presented here are
complex and involve many steps applied to many different sub-divisions
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of the data, we have created a flow chart to help describe the analytical
steps and the relationships among them (Fig. 2).

Since we are interested in change through time, we must first define
the relevant chronological periods for each site and apportion the
ceramic materials into the appropriate temporal intervals. In this study
we rely on an empirical Bayesian approach for modelling site occupation
spans known as “Uniform Probability Density Analysis” which was first
developed by Ortman (2016) and later applied to archaeological
ceramic network data by Mills and colleagues (2018). This approach,
which is similar in many ways to approaches to generating summed
probability distributions from radiocarbon data (e.g., Bird et al. 2022;
Shennan et al. 2013), entails combining information on the chronolog-
ical ranges associated with specific ceramic types with type frequency
data to generate a model of the probability that a site was occupied or
that a sherd was deposited in any given year. Briefly, every ceramic type
present at a site is modeled using a uniform distribution representing the
production dates for that type in the literature and then each distribu-
tion is multiplied by the frequency of that type in the assemblage. Data
across all types are then summed to generate a composite prior distri-
bution. In addition to this a modified conditional distribution is then
calculated which models the overlaps among type dates for multiple
types to estimate the most likely interval of deposition for each type
(assuming that intervals when multiple types were present are more
likely than intervals when just a single type was present). The prior and
conditional distributions are finally multiplied to create a posterior dis-
tribution which accounts for both the original uniform distribution and
the conditional model which prioritizes overlaps in date ranges for each

Fig. 2. Flow chart of analytical procedures for the analyses presented here.
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type. This approach has been shown to generate dates shorter than the
maximal possible range based on ceramic assemblages, to help eliminate
minor secondary occupations, and to produce probability distributions
that conform well to absolute dates where available (see Ortman 2016;
Mills et al. 2018). The resulting posterior distribution for each type at
each site provides estimates of the probability of deposition for every
year a site was occupied so the estimated ceramic assemblages for a
given interval can be generated simply by summing the relevant years in
the posterior distribution for the interval desired. For this study, we
divided our ceramic sample for each site into 50-year intervals between
1000 and 1449 CE (1000-1049 CE, 1050-1099 CE, etc.). The R code (R
Core Team 2022) and data used to generate these temporal intervals and
all other analyses in this article are provided in the supplemental
materials.

After the procedure above we are left with discrete ceramic fre-
quency datasets for each 50-year interval. To generate network models
based on these data we define each individual settlement occupied in
each interval as a node and then assess the presence and strength of
edges between pairs of nodes in terms of the similarities in the propor-
tional representation of ceramic wares present at those sites. Wares in
the US Southwest/Mexican Northwest are broad categories of ceramics
defined in terms of ceramic technology and materials (e.g., temper,
paint types, etc.) that combine multiple temporally sequenced ceramic
types which typically vary in terms of design style and other specific
details. Wares are general categories that can often be attributed to
broad regions of production and are relatively easy to identify and thus
provide a good means for assessing the general degree of overlap in
assemblages among sites. Similarities in ceramic assemblages are likely
generated through an array of processes including exchange, the trans-
mission of production practices, population movement, emulation, and
shared expressions of social group membership or boundaries (e.g., Mills
and Crown 1995; Stark 1998; Mills et al. 2016). Although we cannot
typically be sure which of these processes (or others) are responsible for
similarities in ceramic assemblages at macroregional scales, such simi-
larities likely capture some of the most important social relationships
among sites and broader regions across our study area (see Mills et al.
2016). In general, we interpret similarities in ceramic assemblages
among pairs of sites as indicative of probabilities of interaction rather
than direct interaction in a strict sense.

To assess similarities among pairs of sites we use a modified and
rescaled version of the Brainerd-Robinson (Brainerd 1951; Robinson
1951) measure of similarity. This measure defines the similarity S be-
tween a pair of sites a and b as:

S = 2 Zk'pnk *Pbk|
2

where k represents all ceramic wares, pgx and ppi represent the pro-
portions of ware k at site a and b respectively. This version of the
measure is scaled to range between 0 (indicating no similarity) and 1
(indicating perfect similarity) and we argue it provides a measure of the
likely strength of connection between pairs of sites. Although in some
past studies (e.g., Mills et al. 2013a, 2013b, 2015, 2018) these contin-
uous similarity data have been reclassified into binary present/absent
network ties for the purposes of visualization, in this study we simply use
the raw similarities among every pair of sites as the weight of the ties
between them (see also Peeples and Roberts 2013 for further explana-
tions of such weighted similarity networks). In network terms, thus, we
create an undirected weighted network of similarity for each 50-year
interval.

We are further interested in evaluating the presence of detectable
communities or sub-group structures within our weighted similarity
networks. In order to do this, we use the Louvain method for community
detection (Blondel et al. 2008) which is an algorithmic method for
clustering nodes based on the optimization of network modularity based
on the relative weight and density of connections within and between
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communities (see also Girvan and Newman 2002; Newman and Girvan
2004; Newman 2006 for related modularity-based approaches). The
Louvain approach iteratively evaluates the density and strength of
connections within a given community assignment compared to a
random network to find the optimal partition of that network. The
Louvain method is well-suited to the data used here as it can be applied
to weighted networks and because it does not require that the analyst
define the number of communities to be generated beforehand but
rather determines community memberships and number of sub-groups
automatically. In the analyses described below, this Louvain approach
will be used to identify network sub-groups across a range of geographic
scales (using the igraph R package; Csardi and Nepusz 2006).

4. Identifying critical scales in ceramic similarity networks

To assess the presence of critical scales or junctures in the spatial
scale of network communities in the ceramic similarity networks
generated here we follow the procedures described by Menenzes and
Roth (2017) for social media geospatial data, modifying these methods
where necessary for our ceramic similarity network data. The basic
premise of this approach is that, if there are any breaks in interaction at
certain geographic distances in our network, we would expect to see big
changes in the composition and/or scale of network communities
defined across relatively small changes in the distance considered. In
other words, we are asking whether there are any key distances where
the strength and scale of interactions tend to change rapidly or if instead
changes are simply gradual across a range of distances. In their previous
study, Menenzes and Roth (2017) not only found that communities and
interactions tended to vary considerably at different distances, but also
that the distances at which such junctures tended to occur were
remarkable similar across many different study areas. This perhaps
suggests fundamental geographic scales of certain kinds of human social
networks. We are interested in determining whether such critical scales
are detectable in our ceramic similarity networks.

The first step in this approach involves applying the Louvain network
community detection algorithm to our weighted similarity networks for
each interval constrained by increasing percentiles of the overall
geographic distances among sites. Specifically, we take the full weighted
network of ceramic similarities for a given interval and define commu-
nities using the Louvain algorithm. The map on the left in Fig. 3 shows
clusters defined based on the full weighted network across all distances.
We then do the same Louvain community detection procedure consid-
ering only the 99 % geographically closest distances among pairs of
sites, and then the 98 % percent closest and so on all the way down to the
very short distance ties represented by the 1 % closest distances between
pairs of sites. At every distance considered, we use the Louvain algo-
rithm to define communities. Fig. 3 shows a small number of illustrative
examples of the 100 percentile community definitions generated for this
study for just one temporal interval. Note that as shorter and shorter
distances are considered, the number of communities increases as the
longest distance connections are removed from consideration. We
complete this same set of procedures for each of the nine 50-year in-
tervals between 1000 and 1449 CE. For each temporal interval we then
have 100 different definitions of communities among nodes each based
on a slightly different distance cut-off (at 1 % intervals). It is important
to point out here that, although there is clearly a spatial character to
many of the communities detected by the Louvain algorithm as we can
see in Fig. 3, no spatial data were used to define these communities. This
instead represents independent evidence of the close relationship be-
tween social interaction and spatial distance.

The next step in this analytical process is to evaluate evidence for
transitions or break points in the community definitions created across
different distances. Our goal is to identify critical scales in the distri-
bution of similarities in partitions where small changes in the distance
considered lead to big changes in community membership. To compare
multiple partitions of the same set of nodes we use a metric called the
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Fig. 3. Map of settlements in the 1250-1299 CE interval with community definitions considering different percentiles of distance (indicated by the associated
histogram above each map). Nodes are color coded by community membership. Note that due to the large number of communities, colors are reused for multiple

groups in the two maps on the right.

adjusted Rand Index (Gates and Ahn 2017; Rand 1971). This measure is
frequently used to compare clustering results or partitions across mul-
tiple criteria or clustering methods (Hubert 1985) and is well-suited to
the assessment we need here. The simple Rand Index between two
partitions X and Y can be defined as:

a+b
n(n—1)/2

where a is the number of pairs of items that are in the same community
in both partitions X and Y, b is the number of items that are in different
communities in both X and Y and the denominator is the total count of
pairs in the relationships considered. In other words, this measure is the
ratio of the total number of agreements in partition assignment for pairs
divided by the total number of possible pairs. The adjusted version of the
Rand Index extends this procedure by accounting for the size and
number of communities to compare the number of agreements observed
to the number of agreements that could be expected by chance. This
adjusted Rand Index will typically range from 0 to 1 where higher values
indicate greater agreement between two sets of partitions but the value
can also be negative if two partitions overlap less than would be ex-
pected in a random model. In this analysis we use the R implementation
of the adjusted Rand Index in the FreeSortR package (Courcoux 2017).
Fig. 4 illustrates a heatmap which compares partitions at each of the
100 percentile distance cut-offs to all others using the adjusted Rand
Index for one temporal interval. Looking at this plot there are clear
discontinuities where small changes in percentile of distance lead to
dramatic changes in partition agreement which is evidence in favor of
the existence of critical scales across which networks of ceramic simi-
larity operate. Following Menezes and Roth (2017), we define such
critical scales using an adaptive energy agglomerative algorithm which
iteratively finds the break points that maximize the within group simi-
larity and between group dissimilarity (see Szekely and Rizzo, 2005;

Fig. 4. A symmetric heat plot showing the adjusted Rand Index similarities
among community partitions at distance percentiles from 1 to 100% for the
1400-1449 CE interval. White lines represent the critical scales (break points)
between intervals and the red dots represent the prototypical distances for each
sub-division.

Rizzo and Szekely, 2010; using the ecp R package; James and Matteson
2015). The details of this algorithm are beyond the scope of this article
but in general this procedure iteratively finds optimal break points be-
tween clusters by merging adjacent segments of an ordered matrix (in
this case ordered by the percent distance threshold) and assessing
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goodness-of-fit at each stage until merging no longer improves the fit.
Discontinuities and break points were first identified within the entire
range of adjusted Rand Index comparisons and then potential sub-
divisions were assessed by running the same algorithm in the bottom
quartile of distances to capture variation at a smaller scale. The lines
dividing sets of relations in Fig. 4 represent the critical scales (break
points) identified using this procedure for the interval represented.

Finally, we identify what Menezes and Roth (2017) call “prototypi-
cal” scales between each set of consecutive critical scales or break
points. That is, the distance that is most similar to all other distances
within a given sub-division. We interpret this as essentially the typical
scale across which interactions focused across a given range operate
(shown as red dots in Fig. 4). We conducted all of the analyses outlined
above for each 50-year interval to allow us to compare results across
periods and to determine whether there are any commonalities in break
points and prototypical distances in ceramic similarity networks
through time. With all of the procedures above we have identified the
distances at which dramatic changes in interactions tend to occur as well
as the distances that characterize typical interactions between those
distances. Following Menezes and Roth (2017) we interpret these pro-
totypical distances as the distances across which different kinds of in-
teractions captured by our material culture similarity networks were
concentrated.

5. Comparing distances and spatial boundaries

For all intervals analyzed in this study the methods outlined above
generated between 5 and 7 spatial divisions that represent prototypical
distances as we define them here. Fig. 5 shows boxplots of the proto-
typical distances for each partition from shortest to longest. Fig. 6 shows
these same data with a line for each sequential prototypical distance
within a given case and with time on the x-axis. In general, these two
figures illustrate that, not only are there similar numbers of sub-
divisions in each interval (at least for short to moderate distances) but
the specific prototypical distances associated with these partitions are
remarkably similar between periods, especially at shorter distances
where the distributions are quite tight. This is particularly interesting
because the study area saw major changes in settlement and regional
scale population movements and even depopulation of substantial por-
tions of the region during the interval considered here but we still see
these similarities, at least at scales less than about 200 km. Thus, despite
these major reconfigurations of settlement and regional population or-
ganization, interactions at short to moderate distances continued to
operate at similar scales. Variability in longer distance ties is interesting
but we argue is at least partially attributable to changes in the overall

Fig. 5. Boxplot showing the distance in kilometers of sequential prototypical
distances for all periods considered.
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Fig. 6. Plot showing prototypical distances in kilometers through time across
all sub-divisions for each interval. Where a given sub-division (6 or 7) is not
indicated that sub-division was undefined for the interval indicated.

regional distribution of settlements. Specifically, settlements coalesced
into fewer and fewer areas marked by larger settlements with gaps in the
distribution over the course of the thirteenth and fourteenth centuries
(see Hill et al. 2004; Mills et al. 2013a). Thus, changes in the longest
distance critical scales and prototypical distances are perhaps a product
of the increased distances between clusters of settlement through time
such that comparing spatially expansive network communities between
the earlier and later half of the period considered here is somewhat like
comparing apples to oranges since the underlying distribution of the
upper mode of distances are so dramatically different.

As we have a series of temporally sequenced networks, it is further
possible to assess the degree to which prototypical distances and the
specific boundaries they entail change or persist through time. Since the
specific settlements occupied through time differ between periods,
however, we cannot directly compare community assignments. Another
useful assessment of change through time could be generated by iden-
tifying potential spatial boundaries among network communities and
the degree to which they overlap in space for comparisons for different
temporal periods. In order to make this comparison, we divide our study
area using smoothed Voronoi polygons which represent the boundaries
around community assignments across space (Fig. 7). We define these
polygons and then select boundaries using the divchain function within
the deldir R package, which retains polygon edges that divide settle-
ments in different partitions for communities that have at least two
members (Turner 2021). The areas marked by edges of the Voronoi
polygons thus represent areas where the community membership of sites
changes substantially across a short distance. The maps in Fig. 7 each
show such spatial divisions for a pair of consecutive intervals both for
the second prototypical distance defined for each interval (on the order
of about 80 kms). We can then assess agreement between intervals by
evaluating the degree to which boundaries overlap between intervals. In
order to do this, we calculate a buffer of 18 kms around each boundary
(which equates to roughly-one day of travel roundtrip from a starting
point; see Hill et al. 2015). We then calculated the percent agreement in
boundary definition by creating a buffer around each of these bound-
aries, rasterizing them, and calculating the total percent overlap in
raster cells between time periods. The map on the left in Fig. 7 shows
about 39 % agreement suggesting moderate relationship between the
spatial character of partitions across time periods and the map on the
right shows about 23 % agreement suggesting a somewhat weaker
temporal relationship though both of these represent pairs of consecu-
tive intervals. Notably the map on the right highlights two intervals on
either side of a major regional scale migration which likely dramatically
altered the spatial relationships among connected social groups (see also
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Fig. 7. Maps showing boundaries between network communities for consecutive pairs of intervals. For each map, the orange boundaries represent the first interval
and blue represents the second interval. Where the two overlap, boundaries are shown as purple.

Mills et al. 2013a).

When considering overlap across all time periods the spatial
boundaries at consecutive intervals are clearly more closely related than
boundaries among intervals that are not consecutive. Fig. 8 shows
comparisons among consecutive intervals and among non-consecutive
intervals. Overall, this suggests that community membership and
spatial relationships among communities do have a strong temporal
dimension but similarities among intervals separated by more than one
time-step (50-years) are considerably lower and drop off quickly.
Interestingly, this perhaps gives some indication of the temporal rhythm
of spatial network community creation and maintenance in the study
area where boundaries persist to a degree across about 100 years but
seldom beyond.

6. Discussion

The analyses and results above provide clear evidence of critical
scales in networks of material similarity in our study area through time.
Across all intervals considered from 1000 to 1450 CE we see strong

Fig. 8. Boxplots showing the proportional overlap in spatial boundaries be-
tween consecutive periods (in red) and non-consecutive periods (blue) for all
comparisons.

indications of transitions in the relationship between spatial and social
distance suggesting that there are a small number of scales across which
interaction can be sub-divided. Beyond this, the prototypical distances
across which these transitions are typified are remarkably similar
through time at short to moderate distances despite major changes in
settlement distribution, size, and organization. This finding is similar to
the results presented by Menezes and Roth (2017) for their analysis of
contemporary geotagged social media data which also illustrated that
networks could be decomposed into quite similar distances across a
range of locations and geographic scales of analysis (although the ab-
solute scale of the distances involved differ between our study and the
contemporary social media data networks).

In our current study, larger partitions at the scale of about 150-200
km or more (which would likely represent many days travel on foot in
the ancient Southwest/Northwest) were considerably more variable
through time. We argue that these changes are at least in part driven by
the changing overall distribution of settlements and distances as por-
tions of the study area saw dramatic reductions in population as popu-
lation concentrated in fewer locations with larger gaps between them
(see Hill et al. 2004). The differences we see between short to moderate
distances (<150-200 Kilometers) and longer distances may, in and of
itself, provide some indication of the scales across which broad regional
networks may have operated. For example, although the archaeological
definitions of culture areas are complex and certainly do not encapsulate
well-defined social units like contemporary cultures or ethnic pop-
ulations, such distances are consistent with traditionally drawn bound-
aries of many such archaeological units. For example, 175 km is
approximately the distance from Chaco Canyon to the furthest outlying
Great Houses and Great Kivas (architectural features indicative of
participation in the Chacoan World). In southern Arizona, a similar
distance also captures the outer extent of areas where Hohokam Middle
Gila Buffware is common from the production area south Phoenix,
Arizona (see Wilcox 1996). This suggests our analysis may be hinting at
the scales across which consistent and regular interactions of the kind
that generate broad similarities we recognize as archaeological culture
areas may operate in the Southwest/Northwest study area.

Another important aspect of the analyses presented above is that this
provides a rare opportunity to explore the critical scales of network
partitions over long periods of time. The results presented above show
that network communities and the potential spatial boundaries between
them are moderately similar between consecutive 50-year intervals and
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often quite different if we consider non-consecutive intervals. This il-
lustrates that past network configurations impact subsequent network
definitions in detectable ways. Interestingly, this also suggests that
network configurations more than about two generations back (more
than about 50 years) have relatively little bearing on subsequent
network configurations in our study area. In many contemporary studies
of network dynamics researchers are interested are interested in topo-
logical features that make network resilient (able to retain basic func-
tionality after shocks) to disturbances over comparatively short time-
scales (Gao et al. 2016). This analysis suggests that when we consider
scales across decades or centuries, we may see junctures involving major
changes to the overall network topology and transitions that interrupt
trajectories of network development. Previous work in the region has
hinted at the patterns explicitly identified here. For example, Mills and
colleagues (2013a) showed that long-distance migrations from the Four
Corners region into central and southern Arizona led to transformations
of network structures and scale (including features like network diam-
eter and shortest path lengths) during the period marked by the greatest
degree of population movement, but that many network features
rebounded to levels similar to those seen prior to the major migration in
subsequent intervals. Overall, this suggests an interesting gap in the
study of network dynamics which has focused on relatively short time-
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scales that miss these long-term adjustments in network trajectories.
We argue that the issue of the temporal scale of network topological
trajectories and change is an area that archaeological networks are well
suited to contribute to in the future.

As we outlined above, one the primary purposes of identifying critical
scales and prototypical distances is to define distances across which
certain kinds of interaction are concentrated and to postulate what those
interactions may be. Given the consistency in prototypical distances
through time across our study area, can we evaluate what kinds of in-
teractions such scales may have entailed? To address this, we can first
explore the prototypical distances defined here in terms of potential
scales of human movement. The mean distance for the smallest proto-
typical distance across all time periods is 35 km. Although this distance
threshold was defined based on partitions created without any spatial
information, the value is remarkably similar to the estimated average
distance that a burdened traveler can walk in a day which was previ-
ously estimated by Drennan (1984) at approximately 36 Kms. Interest-
ingly, the mean value for the next partition is 81 km or a bit more than
double the distance represented by the first partition distance. The mean
distance for the third partition is 151 km which is again nearly double
the second partition distance though notably there is considerably
greater variation in this partition distance through time.

Fig. 9. Map of the Chaco World showing concentric buffers of 35, 81, and 151 km centered on Chaco Canyon.
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The consistency in the distance thresholds in network partitions and
their relationships to typical estimates for overland travel suggests that
the geographic scale of partitions based on ceramic similarity may have
been influenced in part by the ease of travel on foot between settlements.
The thresholds at approximately 1, 2, and 4 days travel perhaps further
suggest natural scales across which different kinds of interaction and
activity may have been organized across the region. We might expect
food sharing and regular contact to occur across the first distance and for
other kinds of resources to flow across the second distance. For example,
80 km is approximately the median distance from the center of its dis-
tribution that ceramic wares are circulated in the U.S. Southwest (see
Bischoff and Peeples 2020). As noted above, there is considerable vari-
ation for the third distance and beyond, but as we discuss above, the
range of distances we see for this third critical scale roughly encom-
passes the scale of archaeological regional traditions. Fig. 9 helps to
illustrate the spatial relationships defined by these concentric buffers
with regard to the Chaco Canyon area showing our mean critical dis-
tances as concentric circles centered on Chaco itself. The first distance
threshold includes the canyon and the adjacent Great Houses in the area
often defined as the Chaco Halo or Chaco Core (see Lekson 2006) which
is seen as the area of most frequent interaction. The next buffer conforms
well to the extent of the major roads extending from Chacon Canyon and
includes major sources of resources such as wood, lithic materials, and
ceramics which were brought into Chaco Canyon. Finally, the third
buffer captures most of the areas where great houses and great kivas are
most common and notably most of the pre-1050 CE Great Houses.

We are not the first to note such a pattern of nested scales of inter-
action in the region. David Wilcox and colleagues (Wilcox 1996; Wilcox
et al. 2007) described a similar spatial partitioning of settlement systems
into regions and macroregions of concentric days of travel around major
centers across the U.S. Southwest, and notably drew similar conclusions
to those outlined here in terms of the specific buffers and distances
involved. For example, Wilcox (1996) suggested key scales across which
what he called macroregional polities operated on the order of about
175 km in radius. This was an estimate he generated based on the scale
of Chaco Great House and Hohokam ball court communities suggesting
an extent at about four to five days travel on foot as the upper limit
across which reasonably frequent exchange and interaction could be
maintained. Interestingly, Wilcox (1996; Wilcox et al. 2007) past work
was based explicitly on the geographic locations and sizes of settlements
alone. In the analyses presented here, spatial divisions and prototypical
distances are based only on similarities in ceramic inventories between
sites defined without reference to spatial relationships. The fact that we
see critical scales at similar distances to those identified based on set-
tlement distributions and hierarchies provides further evidence of the
close connection between space and social interaction at the scales of
frequent human movement.

One additional question that arises from this work is whether there
are any predictable features of the landscape (i.e., mountains, canyons,
rivers) that might be important delimiters of movement and network
community boundaries through time. In order to consider this possi-
bility, we can map all of the Voronoi polygon boundaries defined be-
tween network communities for all periods together in a single map with
areas where boundaries overlap across multiple time periods indicated
by the color scale (Fig. 10). To those familiar with the U.S. Southwest/
Mexican Northwest, this map clearly bounds well-defined archaeolog-
ical regional traditions and regions, which is not surprising given the
discussion above. When we look at only the areas marked by boundaries
across six or more periods, we can see further interesting patterns. For
example, the San Juan River in Northwestern New Mexico appears to
have consistently marked the edges of network communities. Further in
central New Mexico the area between the Northern and Middle Rio
Grande region is consistent through time and importantly this is also an
ethnic and linguistic boundary in the historic era. In central Arizona
there is a clear and consistent break marked by the Mazatzal Mountains.
In this case this physiographic feature, with relatively few major
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Fig. 10. Map showing overlain boundaries between network partitions for al
time periods with the number of overlapping periods indicated. The lower map
shows only those areas with greater the 6 overlaps.

settlements found within its boundaries, perhaps presents a barrier to
travel which generated a social boundary detectable in the network
data. Overall, however, it appears that the most consistent spatial breaks
in this study area cannot be easily explained by settlement distribution
or physiographic features and perhaps instead relate to persistent social
boundaries through time.

7. Conclusion

The analyses here have illustrated: 1) that critical scales in networks
can be identified using material culture similarity data, 2) that such
critical scales occur at similar distance thresholds through time despite
major changes in settlement distribution and organization, and 3) that
spatial boundaries defined in relation to network communities for one
temporal interval influence boundaries in subsequent intervals though
influence drops off rapidly through time. Further, this research illus-
trates that the nested patterns of human movement and mobility in the
contemporary world (see Menezes and Roth 2017) have analogs in the
ancient past, though the specific distances involved change. This sug-
gests that there were similar constraints on human mobility related to
specific kinds of interaction in the past as in the present. Finally, this
work also has the potential to expand insights into the scalar nature of
networks in this region and generally.

First, as Mills and others (2015) argue, analyzing the historical
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trajectories of networks at varying scales can lead to complementary
insights into the structural properties of those networks. One of the key
challenges of such scalar examinations of networks is defining the
boundaries across which each scale will be considered. In previous work
(Mills et al. 2015) this has been done using traditional archaeological
tradition boundaries, but that runs the risk of missing ties that extend
across such traditional regional designations. The methods we have
presented here illustrates a potential tool for formalizing the creation of
hierarchical scales for exploring and comparing network properties and
topologies. Such an approach also provides insights relevant for recent
research in archaeology and other fields focused on settlement scaling
theory (e.g., Lobo et al. 2020; Ortman et al. 2015). Settlement scaling
theory posits predictable relationships between settlement size and areal
extent and certain aggregate properties of those areas such as the total
amount of infrastructure and the rates of socioeconomic outputs per
person. The efficiencies of infrastructure and outputs are typically
attributed, at least in part, to network effects concentrated at a given
scale. Although much of this work has focused on relationships among
individual settlements, cities, or metropolitan statistical areas there is
further research that suggests scaling relationships may also play out at
larger scales among sets of interconnected cities/settlements (e.g., Ort-
man 2023; Prieto Curiel et al. 2022). The work here focused on identi-
fying critical scales perhaps provides an avenue to facilitate comparisons
when exploring scaling relationships above the level of the settlement.
Overall, the approach outlined here has the potential to expand our
understanding of the nature of network interactions from the micro to
the meso to the macro scale and also provides a consistent means for
defining such units of analysis that would be broadly relevant across
archaeological and contemporary network contexts.
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