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Optimizing Representations of Multiple
Simultaneous Attributes for Gait Generation

Using Deep Learning
Abhishek Sharma , Member, IEEE, and Eric Rombokas , Member, IEEE

Abstract— Rich variations in gait are generated accord-
ing to several attributes of the individual and environment,
such as age, athleticism, terrain, speed, personal “style”,
mood, etc. The effects of these attributes can be hard to
quantify explicitly, but relatively straightforward to sample.
We seek to generate gait that expresses these attributes,
creating synthetic gait samples that exemplify a custom
mix of attributes. This is difficult to perform manually,
and generally restricted to simple, human-interpretable
and handcrafted rules. In this manuscript, we present
neural network architectures to learn representations of
hard to quantify attributes from data, and generate gait
trajectories by composing multiple desirable attributes.
We demonstrate this method for the two most commonly
desired attribute classes: individual style and walking
speed. We show that two methods, cost function design
and latent space regularization, can be used individually
or combined. We also show two uses of machine learning
classifiers that recognize individuals and speeds. Firstly,
they can be used as quantitative measures of success; if
a synthetic gait fools a classifier, then it is considered to
be a good example of that class. Secondly, we show that
classifiers can be used in the latent space regularizations
and cost functions to improve training beyond a typical
squared-error cost.

Index Terms— Resentation learning, autoencoders, gen-
erative models, multi-task learning, style transfer, assistive
devices, exoskeletons, personalization.

I. INTRODUCTION

MANY applications in computer vision and robotics
require generating novel human movement profiles.

One such application is control of an assistive exoskeleton,
for which we might need reference trajectories that vary
according to desired speed, terrain, and the personal style of
the user. References [1], [2], [3], and [4] are some previous
approaches to producing trajectories. Some have included
multiple attributes, for example speed and ramp terrain [1]
and [4]. These methods use careful selection of basis functions,
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and optimize the error w.r.t. the training samples. This works
well if a limited number of attributes are to be used to generate
trajectories, and more importantly, when the attributes can
be easily represented. However, with increasing availability
of multi-modal datasets, there is a need for general-purpose
methods that generate gait based on multiple attributes e.g.,
speed, personal style, terrain, mood etc. (Fig. 1a) There are
also no general methods for prioritizing different attributes or
to introduce new ones. In addition to reducing the need for
hand-crafted features, these methods also need to maintain
a degree of interpretability, which is essential for clinical
applications.

In other domains, eg. computer vision and audio synthesis,
the notion of style transfer has been introduced, where the
idiosyncrasies or fundamental attributes of one example are
combined with those of another to generate a completely novel
sample. Fig. 2 shows an example of this, for the MNIST
dataset, where digits are generated with desired handwriting
styles. We adapt the method used for handwriting style trans-
fer [5], for personalized gait generation at desired speeds, and
show that can be made to work for this application domain.
However, it doesn’t allow us to simultaneously optimize for
multiple attributes, and doesn’t provide an interpretable way
to split the problem into distinct subsystems.

To address these limitations, we show two methods that can
be used individually or combined. The first is cost function
design: multiple attributes may be simultaneously optimized
for by adding terms to the cost function, and prioritized by
varying their importance in the cost term. This allows for
tuning the overall system to generate gaits that explicitly meet
the multiple desired criteria. However, it doesn’t allow us to
guide the system internally to cleanly and distinctly create
representations that capture the attributes. To address this,
we demonstrate latent space regularization: the architecture
is split into attribute-specific subsystems, each calculating
targeted latent representations for a single attribute. Then these
representations can be combined to solve the overall problem.

For style transfer and trajectory generation, there are no
well-accepted standards for quantitatively assessing success.
Instead, researchers rely on visual inspection or on minimizing
squared error with examples. The problem with focusing on
error is that it doesn’t necessarily capture the differences
that distinguish examples from different attribute classes. For
example, a synthetic image of a cat might have large error
from any particular example image of cats, but still would be
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Fig. 1. (a) Multiplicity of gait attributes, (b) Gait cycles of hip, knee, and ankle angles from 7 subjects at speeds ranging from 0.5 m/s to 1.8 m/s.
Different colors represent different subjects. Note that each subject shows a distinct and largely consistent strategy for movement.

recognizable as a cat and not mistaken for a dog. Therefore we
propose a quantitative success measure: classifiers that identify
which group an example was drawn from. If a synthetic gait
trajectory is correctly classified, it is considered successful in
emulating that gait attribute.

A. Multiplicity of Gait Attributes and Style Transfer
There can be multiple attributes that contribute to the

generation of gait, from anthropometrics and body dimensions,
to the environmental constraints, speed, to the somewhat
ineffable personal style or mood of the walker. Generating gait
from diverse attributes of gait can be challenging to do manu-
ally; especially for personal style which can be influenced by
developmental history, injuries and other inexpressible event
and thus hard to define.

We want to generate synthetic trajectories and we want
them to be appropriate in multiple ways simulataneously.
Individuality and speed are the most obvious examples. In the
literature, there are methods for generating trajectories that are
appropriate in a single way, usually in terms of low root mean
square error (RMSE). What we are showing here is a general
way to use representation learning for an arbitrary number of
simultaneous constraints.

In machine learning, “style transfer” has been used to
generate samples that meet multiple simultaneous criteria.
Style transfer has primarily been used in computer vision for
generating images. The content of one image can be recast
into the style of another. Fig. 2 shows an application using an
adversarial autoencoder [5] in rendering digits of the MNIST
dataset in the style of other example digits. Each row in
the figure has the same handwriting style, generated by a
distinct individual. This technique was used to transfer a single
attribute, dubbed to be “style”, but in the current manuscript
paper we transfer both style and speed. We limit our analysis
to style and speed in this manuscript but the methods we
present can be used to transfer an arbitrary number of distinct
attributes, simply by including more attribute-specific encoders
and terms in the cost functions (See section I-C).

B. Quantitative Assessment of Generated Trajectory
Quality

A person’s style of walking is an important aspect of gait,
perhaps even the most important component of prediction error
in gait models [6], yet it is hard to measure and quantify.
Fig.1b shows how different even relatively simple treadmill

Fig. 2. An example of style transfer in computer vision. Images of
handwritten numbers (MNIST dataset) are used as example inputs.
given examples of handwriting style, synthetic handwritten numbers can
be generated. adapted from [5].

Fig. 3. Concept diagram for generating gait with multiple desired
attributes. examples taken with different attributes, such as style, mood,
or terrain, are encoded into attribute-specific representations. These
latent spaces are learned, where that learning is encouraged to rep-
resent differences in that attribute and discouraged from representing
differences in the other attributes. These representations are decoded to
create synthetic trajectories. The decoder is learned using a multi-term
cost function designed to encourage simultaneous transfer of each of
the attributes.

walking can be across subjects. To assess the quality of a
generated trajectory, previous methods [4] use RMSE between
the generated trajectory and a single representative trajectory
or an ensemble of example trajectories. If a personalization
method leads to reduction in RMSE, that is considered an
indication of better personalization. However, the same RMSE
can be achieved by two very different pairs of trajectories,
potentially very different in their personalization success. For
example, a trajectory with joint angles that briefly overshoot
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and then stabilize could have the same RMSE as one with a
small bias that persists. These differences are potentially quite
important to the subjective experience of personalization, but
are not well expressed by RMSE.

To help address this, we propose a quantitative method
based on training classifiers on the example data. The success
rate of the classifier can be considered the ceiling for how
discriminable the classes are. If a generated trajectory is
sufficiently similar to the desired person or speed, it will fool
that classifier, and this can be quantitatively measured.

C. Optimizing Trajectory Synthesis via Optimal
Representation Learning

The method used for handwriting style transfer (Fig. 2)
can be directly adapted to generate gait, where instead of
handwriting style, we synthesize walking style, and instead
of which digit, we synthesize trajectories for different speeds.
However, this straightforward adaptation of the method doesn’t
allow us to have much control over the output of the network.
Firstly, minimizing RMSE doesn’t necessarily lead to best
person and speed appropriate performance. Secondly, the rep-
resentations learned are not necessarily encoding the intended
attributes (personal style in this manuscript). To address this,
we split gait generation into two distinct components: learning
appropriate representations, and composing the learned repre-
sentation to generate trajectories. Thus optimization can be
applied at both stages (Fig. 3): at the output generation stage
using cost function design, and at the attribute encoding stage
using latent space regularization.

1) Cost Function Design: Training gait models by minimiz-
ing RMSE doesn’t necessarily promote attribute specificity in
the output of the model, and might not be the best indicator
of clinical suitability of the generated gait. The same RMSE
can be achieved by two very different trajectories, and neural
network convergence to lower RMSE doesn’t necessarily mean
that the solution is adequate. For example, certain phases
of gait are more crucial to get right than others e.g., heel
strike or toe-off. Therefore, constraining model outputs in
more desirable ways by adding more attribute specific cost
could be beneficial. In this work, we penalize the outputs
of the model by using person and speed specific classifiers
pre-trained on real trajectories from the training data. This
approach could be extended to include cost terms for other
desirable attributes. These cost terms can then be weighed to
emphasize one attribute in the output than other. For example,
a diffusion-model approach to creating human motion for
animation used a custom foot contact loss term to constrain
realistic foot-ground interactions [7].

2) Latent Space Regularization: Learning appropriate repre-
sentations is crucial for successful machine learning systems.
Not only can it help achieve better performance, but can
help in interpretation of the results and in diagnosing model
outputs. This is even more crucial when it comes to generative
models. There are several examples in machine learning of
regularization to achieve desired latent representations. For
example, variational autoencoders enforce a Gaussian distribu-
tion on the bottleneck. This prevents fractured representation
in the latent space and allows the decoder to create more
plausible samples. Adversarial autoencoders use adversarial

training to enforce any desirable distribution on the latent
space. In this manuscript, we show the benefit of controlling
the latent representation for the task of generating personalized
gait trajectories. We do this by not only promoting the desired
attribute (i.e., style) in the latent space but also penalizing it
from encoding speed information. This helps achieve drastic
performance gains over the other approaches that don’t explic-
itly control the latent representation.

D. Using Classifiers in Two Distinct Ways
It should be noted that this research is using classifiers in

two distinct and independent ways. The first is as a quantitative
measure for person and speed specificity of the synthetic
trajectories (Section I-B). These classifiers need to be able
to classify real trajectories in terms of person and speed with
a high degree of accuracy, and are trained on all the data
from all the subjects. The second is in training: differentiable
classifiers are used to regularize the latent representations or
as terms in the cost function, to enforce desired attributes
in generated trajectories, as described in Section I-C. These
classifiers are trained using the training data only to prevent
information leakage from the test data during training.

E. Personalization in Practice: How Would This Be
Used?

Fig. 4 describes how the personalization process (Fig.3)
could be used. Envision a lower-limb assistive device such as a
prosthesis or exoskeleton, that needs to generate personalized
gait at several desired speeds. Gait samples from the target user
are recorded, at a few selected speeds for which the assistive
device has been tuned as per current clinical practice. These
trajectories are then mixed with a databank of gait samples
for a wide range of individuals and speeds. The resultant
dataset is used to train neural network based encoder-decoder
models (See Figs. 5-7). Speed information about the input
trajectories is used to disentangle speed and style informa-
tion. This allows the encoder to learn to extract personal
style from input trajectories. The decoder learns to compose
style and speed to generate trajectories of desired style and
speed. Thus, we can extract style from a few optimized
examples of the target user and combine them with desired
speeds to interpolate and extrapolate across a wider range
of speeds.

F. Contributions
• We demonstrate that classifiers can be used as a quan-

titative metric, beyond the more generally used RMSE,
to evaluate the person-specificity and speed-specificity of
a generated gait.

• We present a style transfer based framework for personal-
ization of assistive devices. Style is extracted by a neural
network encoder from samples of human gait at known
speeds and used by a decoder to generate personalized
gait at a variety of desired speeds.

• We use two generalizable regularization methods, cost
function design and latent space regularization, to opti-
mize the learned representations. These methods are more
interpretable and customizable than a baseline style trans-
fer method, and yield improved synthetic trajectories.
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Fig. 4. How the system would be used in practice. Step 1: gait examples
are recorded for a sparse set of speeds, tuned according to current
clinical practice for eg. slow, medium, and fast walking. These data,
plus the databank of gait examples, form the training data for the model.
Training results in a model that is well calibrated to the target user. Step
2: User-specific style representations are pre-extracted to be used at
run-time. Step 3: Style representations and desired speeds are input to
the decoder to create a combined user-and-speed-appropriate synthetic
trajectory.

II. METHODS

A. Dataset
We used the publicly available dataset from [8]. The data

were recorded from 22 able-bodied subjects walking at various
speeds. In this manuscript, we only consider the data from
treadmill walking and use the data at 14 speeds 0.5 m/s to
1.8 m/s at an increment of 0.1 m/s. The resultant dataset
has a total of 9073 trajectories. We selected 2 subjects at
random as target users, and use the data from the remaining
20 subjects to form the “databank of unaffected population”
(See Fig. 4).

B. Data Processing
The right hip, knee and ankle kinematics data at desired

speeds was extracted from the MATLAB files available on
Camargo et al. The kinematics data was segmented into gait
cycles and time normalized to 100 points. Thus each gait
sample is in a R100×3 space, where 100 is the number of time
points and 3 is the number of joints. Each joint is normalized
using its mean and standard deviation across all the training
data. Each input gait sample is flattened into a R300 vector,
for the neural networks to process.

C. Analysis
1) Root Mean Square Error: We use the commonly used

root mean square error (RMSE) to measure the distance (in
degrees) between the real and generated trajectories. We report
the mean of pairwise RMSE between the real and the gen-
erated trajectories, and compare it with the previous gait
generation methods. (1), as shown at the bottom of the next
page.

2) Person Specificity and Speed Specificity: As described
in Section I-B, we use classifiers to quantify the quality of
generated trajectories. If the generated trajectories can fool

classifiers trained on real trajectories, then the generator can
be considered successful. The strongest example of this would
be if the generator can fool classifiers from a different model
class. Since we use neural network classifiers within the gen-
erator, (see Section II-E) we first need to see how successful
non-neural-network classifiers can be. These classifiers (see
Table II) were trained on all the ground truth data (both
training and test sets), validated using 5-fold cross-validation.
We chose a set of well-established classifier types whose
behavior is well understood, and are arguably more inter-
pretable and can be vetted by clinicians. We trained the follow-
ing 5 model types- Decision Trees, Linear Discriminant, Naive
Bayes (NB), Support Vector Machines (SVM) and K-Nearest
Neighbor (KNN) using the MATLAB 2020b classification
learner toolbox, to separately classify real trajectories in terms
of person and speeds. The hyperparameters corresponding to
the best model for each model type are listed in Table I
The SVM models perform the best with person classification
accuracy of 99.8% and speed classification accuracy of 83.9%.
Table II shows the speed and person classification performance
for the best model in each model type.

The second purpose of the classifiers is to guide train-
ing. Neural Network classifiers are used to regularize latent
spaces and design cost functions, as described in section II-E.
Using Neural Networks classfiers allows differentiable layers
through which gradients can be computed and backpropa-
gated, and can be easily integrated with the Encoder-Decoder
backbone see Fig. 5. These classifiers are trained on only
the real trajectories from the training data to prevent leak-
age from the test data. The classifiers are validated using
5-fold cross validation to ensure robustness in hyperparameter
selection.

D. Baseline Encoder-Decoder Architecture
Based on the concept described in Fig. 3 and the supervised

adversarial autoencoder used for hand writing style transfer
on the MNIST dataset in [5], we use an encoder-decoder
architecture. The encoder extracts the information independent
of speed i.e., person-specific style. The decoder synthesizes
the trajectories by combining the style information in ‘z’,
with the desired speed information injected using one-hot
encoding in ‘y’. The model is trained by reconstructing the
input trajectories with RMSE as the loss function. This is
different from the MNIST style transfer in that the output
for each dimension in the MNIST case is binary and hence
the task can be framed as pixel-wise classification problem,
while here the task is fundamentally a regression problem due
to continuous trajectories. This model serves as our baseline
for performance and we introduce regularization on top of
this architecture in the next section to improve over the
baseline.

1) Encoder Details: The architecture of the baseline
encoder-decoder is shown in Fig. 5. The encoder has 4 layers,
which transform R300 input trajectories to their R3 latent
style representation. Latent style space is chosen to be 3-D to
make visualization easy. The first 2 layers of the encoder have
leaky-ReLU activation with a slope of 0.1 for negative values.
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TABLE I
HYPERPARAMETERS FOR PERSON AND SPEED CLASSIFIER

TABLE II
PERSON AND SPEED CLASSIFICATION ACCURACY ON REAL

TRAJECTORIES FOR DIFFERENT CLASSIFIERS

The following two layers use linear activation. We do not
present an exhaustive search of architecture choices here; the
presented architecture generally resembles our previous suc-
cessful learned latent representations for human movement [9],
[10].

2) Decoder Details: The decoder (Fig. 5) takes the style rep-
resentation of the input trajectory concatenated with one-hot
representation of the corresponding speed, and uses it to
reconstruct the input trajectory. The decoder has 4 layers, with
the first 3 layers using leaky-ReLU activation functions with a
slope of 0.1 for negative values. The final layer uses a linear
activation function. A root-mean-squared reconstruction error
loss is minimized to reduce the distance between the real and
generated trajectories. (Eq. 2)

Ltotal = Lrecon (2)

E. Gait Generation Using Latent Space Regularization
and Cost Function Design

The baseline encoder-decoder architecture uses speed injec-
tion at the decoder input to encourage the encoder to learn the
complementary information i.e., personal style. This however

Fig. 5. Baseline style transfer architecture, based on [5]. The encoder
extracts person specific style from the input trajectories and the decoder
uses the style information and desire speed concatenated at the latent
space, to generate person and speed specific trajectory.

is contingent on factors like the size of latent space ‘z’,
and doesn’t allow much control over what information is
preserved in ‘z’. This also doesn’t allow us to control how
the decoder combines ‘y’ and ‘z’ to generate the trajectory.
Thus, we introduce two additional changes: 1) cost function
design at the output of the decoder to emphasise the desired
attributes in the synthesized trajectories, and 2) latent space
regularization to control what information is encoded in the
‘z’ space.

1) Output Regularization Using Cost Function Design: We
used person and speed classifiers, trained on real trajectories
from the training set, to regularize the model at the output via
terms in the loss function. The classifiers take the trajectories

mean pairwise RM SE =

∑
i
∑

j
∑

ni j

∑
mi j

RM SE(xmi j , x̂ni j )∑
i
∑

j
∑

ni j

∑
mi j

1

i = person index, j = speed index
mi j = real trajectory index for person i and speed j
ni j = generated trajectory index for person i and speed j

xmi j = mth
i j real trajectory for person i and speed j

x̂ni j = nth
i j generated trajectory for person i and speed j (1)
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Fig. 6. Output Regularization using cost function design. In addition
to the reconstruction loss, classifier losses are added, weighted by
coefficients αand β.

generated by the decoder as input, and output the person
and speed classification losses, which are weighed by corre-
sponding parameters α and β, and added to the reconstruction
RMSE loss. Grid search over α and β is used to find the
optimal weights. These classifiers enforce desirable traits i.e.,
person-specificity and speed-specificity in the outputs from the
decoder. In this way, we are directly rewarding the system
for achieving our goal - to creating synthetic trajectories
that resemble the person or the speed, beyond RMSE. This
approach is depicted in Fig. 6.

Ltotal = (1 − α − β) ∗ Lrecon + α ∗ Lperson + β ∗ Lspeed

(3)

2) Latent Space Regularization: Using classifiers at the
output doesn’t allow us to explicitly control the attributes
encoded in the latent space ‘z’. The designer’s control is
only exerted at the cost function, but it’s up to the learning
algorithm to organize how the latent space is encoded and
decoded. This can be difficult to interpret, and doesn’t provide
a detailed way to encourage distinct parts of the architec-
ture to take on distinct purposes. To address this, we use
latent space regularization to directly force the latent space
to encode person-specific information, while penalizing the
inclusion of speed-specific information (See Fig. 7). Latent
regularization is done in two steps: First, the encoder is
trained to take real trajectories as input and produce a person
classification. A negative speed classification cost is added
to remove speed information in ‘z’. These cost functions are
weighed by a parameter ‘γ ’, which is tuned using grid search.
In the second step, after the encoder has been completely
trained, the decoder portion of the architecture is trained to
minimize reconstruction loss, with the encoder weights frozen.
This prevents encoder representations learned in step 1 from
changing. This approach is depicted in Fig. 7.

Lstep 1 = (1 − γ ) ∗ Lperson(latent) − γ ∗ Lspeed(latent)

Lstep 2 = Lrecon (4)

3) Combining Output and Latent Regularizations: Output
regularization helps us emphasize desired attributes in the out-
put of the decoder, while latent space regularization gives us
explicit control over attribute specific representations learned
in the latent space ‘z’ and therefore what information is avail-
able to the decoder for trajectory synthesis. These methods

Fig. 7. Latent Space Regularization. The encoder is trained first.
Latent representations are regularized by classifiers in the latent space.
The person classifier should be successful, indicating that latent rep-
resentations of individuals are separated in the latent space. Speed
classification, on the other hand, should fail, indicating that speed
information is not encoded into the latent space. This is reflected by
the negative coefficient for the speed loss term. The trained encoder
weights are fixed, and the decoder is trained as in the baseline according
to reconstruction loss.

have mutually exclusive advantages and combining them could
lead to overall better performance. Thus, we present a model
that combine the two methods. The combined model is trained
by first pretraining the encoder similar to latent regularization
(Fig.7; Step 1). Then, the entire model is trained like step
2 with person speed classification cost applied to the output
of the decoder.

Lstep 1 = (1 − γ ) ∗ Lperson(latent) − γ ∗ Lspeed(latent)

Lstep 2 = (1 − α − β) ∗ Lrecon + α ∗ Lperson + β ∗ Lspeed

(5)

F. Calibration Using Target User Examples
Everyone has a unique walking “style” which depends on

several factors like height, weight, medical history etc. Thus,
we require a few sample trajectories from the target user,
to extract style representations and calibrate our models to
the target users.. These ‘calibration samples’ can be obtained
by capturing target user gait at a few speeds. In the case of
prostheses/orthoses users these trajectories can be obtained
by handtuning as per the standard clinical practices i.e.,
tuned trajectories at selected slow, medium and fast speeds.
Then, trajectories at rest of the speeds can be interpolated or
extrapolated.

For comparison among baseline, output regularization,
latent regularization, and combined, we used sample trajec-
tories at 3 speeds: slow (0.7 m/s), medium (1.1 m/s), and
fast (1.5 m/s), mixed with trajectories from a databank from
subjects with no mobility impairments, for training. Three
example speeds were chosen because it is a reasonable amount
of data to expect a user to provide during a single visit. The
three speeds span from the slowest to the fastest speeds to cap-
ture the maximal variations due to speed. However, we wanted
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Fig. 8. Calibration modes: Easy mode is where trajectories at 3 speeds
from target users are included in the training data. Moderate mode
includes 2 speeds while the hard mode only includes slow speed.

TABLE III
OPTIMAL HYPERPARAMETERS FOR BASELINE, AND OUTPUT

REGULARIZATION. NETWORK WERE TRAINED FOR 10000 EPOCHS

to determine how sensitive the results are to this choice.
Therefore, we have conducted another experiment using fewer
example speeds. The best method from the above comparison
was chosen (combined, see Section III) and trained using fewer
speeds from the target user data training data (Fig. 8). The
easiest mode for the system has the most examples trajectories,
at 3 speeds (slow, medium, and fast) from the target user. The
moderate mode has only 2 speeds (slow and medium), and the
hardest mode has only 1 speed (slow), included in the training
data.

G. Hyperparameter Tuning

We compared 4 methods in this manuscript, all using vari-
ations on the encoder-decoder architecture. The tuned hyper-
parameters were learning rates, person cost weight (α), speed
cost weight (β) and latent speed cost weight (γ ). Grid search
was used to find the optimal hyperparameters. A random
selection of 20% samples from the training data is used as
validation set for optimal hyperparameter selection (not used
for model weights updates). Baseline and output regularization
are trained in a single step. The range of hyperparameter
values tested and the optimal values for both the methods
are shown in Table III. Latent regularization and combined
regularization are trained in 2 steps. The first step trains the
encoder and the second step trains the decoder. Table IV shows
the corresponding hyperparameters.

In the original work with hand writing style transfer, [5]
regularization using an adversarial network was used as well,
to force enforce a Gaussian distribution in the latent space.
In our experiments we found that using adversarial network
made training difficult and reduced the overall performance
for the baseline model in terms of the key RMSE metric.
Therefore, we set the learning rate for the adversarial update
to 0 for all the experiments. Thus, the Gaussian distribution
was not enforced on the latent space.

TABLE IV
OPTIMAL HYPERPARAMETERS FOR LATENT REGULARIZATION, AND

COMBINED REGULARIZATION. EPOCHS FOR ENCODER AND DECODER

TRAINING ARE 10000 AND 5000 RESPECTIVELY

For step 1 of latent regularization, the use of negative weight
for the speed classification loss sometimes led to exponential
blowup of the speed cost term, effectively stagnating improve-
ments in person loss. We found that very small cost weights
were required to train the encoder effectively (Table IV). For
the combined method, we used the encoder from step 1 of
latent regularization.

III. RESULTS AND DISCUSSION

Fig. 9 shows the mean trajectories generated by each
method superimposed with the the mean real trajectories of
a randomly drawn target user, for all the speed. Table V
shows the performance of different methods in terms of
RMSE, person classification accuracy and speed classification
accuracy. The leftmost column of Table V shows pairwise
RMSE between two real trajectories of same speed and person.
This indicates the inherent variability of the real trajectories,
even for a given person and speed. The baseline model,
which we adapted from handwriting style transfer [5], was
capable of generating trajectories with RMSE of 1.29, 2.87 and
1.78 degrees for hip, knee and ankle respectively. For com-
parison, the method shown in [1] show RMSE values of 2.31,
3.46 and 2.60 degrees respectively. Thus, the baseline model
performs slightly better in terms of RMSE. They personalize
across speeds (albeit a smaller range) as well as incline as
compared to speed only in our case, which might explain a
higher RMSE.

However, the trajectories generated by the baseline method
show relatively low performance for person and speed appro-
priateness. Even though the RMSEs are similar (Table V, first
3 rows), the classification success is quite poor (Table V,
bottom two rows.) The trajectories are not capturing the
unique features that make them person and speed specific. This
supports our initial guess that RMSE might not necessarily
capture other attributes like personal style and speed. This also
provides evidence that there is a need to use other metrics to
assess our models, similar to how we use the SVM person and
speed classifiers here.

The baseline style transfer method also doesn’t provide
explicit control over attributes of generated trajectories.
For example, if an application prioritized accurate person
specificity, with less importance placed on speed, there is
no straightforward way to adjust the method accordingly.
As shown in Fig. 5, the decoder simply takes in the one-hot
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vector y representing the desired speed, and combines that
with the latent representation of personal style, z, to out-
put a trajectory that is penalized for reconstruction loss.
In exploratory experiments, we varied the number of dimen-
sions of the latent representation z. We found that a low
number of dimensions would lead to better speed performance
while reducing person performance, while a higher number of
dimensions would result in better person performance and bad
speed performance.

A. Regularizations
Neural network classifiers trained only on the training data

were used to penalize speed and person performance, allowing
us to emphasize these desired attributes in the generated
trajectories, along with low RMSE, by designing a cost
function including classifier loss terms. Table V shows that
output regularization leads to performance improvement over
the baseline in terms of speed and person classification as well
as RMSE. While this enhances overall performance, it doesn’t
allow us to control the representations learned in the latent
space ‘z’. To do this, we regularized the latent space explicitly,
which also results in overall performance improvement over
the baseline. The performance improvement is drastic in terms
of person specificity, but not as great for speed specificity. This
is in contrast to output regularization, which shows drastic
improvement in terms of speed-specificity.

By combining the two complementary approaches, we get a
system that provides almost as successful person classification,
and much improved speed classification (Table V Combined,
rightmost column). So we conclude that for this data, the
combined strategy is the overall best if one cares about both
person and speed classification simultaneously.

B. Latent Space Visualization
Using bottlenecked, low-dimensional, latent spaces is not

only advantageous in terms of overall model performance, but
also allows for visualization or manipulation of the encoded
data in a tractable space. Fig. 10 shows the latent style rep-
resentations learned by the baseline model (left) and the two
regularization methods (center and right) from 2 viewpoints
each. The latent space of the combined approach is the same as
the latent regularization only, because the same encoders were
used. Each subject is assigned a unique color. The orientation
of axes was chosen so that the target users are clearly visible
for each method. We see that output regularization doesn’t
greatly change the pattern and arrangement of subjects in the
latent space from the baseline method or make the subjects
more separable. It does, however, create better clusters for the
target users, albeit not completely separable from the other
users. Latent regularization distinctly makes tighter clusters,
with easily separable subjects. It also tends to push subjects
far apart from each other in the radial direction. This indicates
the usefulness of pretraining the attribute specific encoder
(here style encoder) with emphasis on removing information
related to other attributes (here speed). This creates more
interpretable and unadulterated representations, which can then
be used for various downstream tasks, e.g., personalization.

In this manuscript we used these representations for a specific
task i.e., to generate gait trajectories at a few desired speeds.
However, these representations can potentially be used to
personalize other predictive models of gait [11], [12], [13],
instead of using more standard quantifiable attributes like
height, weight etc.

C. Amount of Calibration Data
We performed a sensitivity analysis to understand how the

results would degrade given fewer examples. Other methods
like [1], [3], and [14] have also been shown to work with
a single sample. In this analysis, we use two other metrics
i.e., person and speed classification, in addition to RMSE
which is used by other studies. Thus, We chose two additional
relatively challenging scenarios: a moderate version where the
user provides walking examples at 0.7 m/s and 1.1 m/s, and
a hard version where the user provides walking examples
only at 0.7 m/s. For all three, the combined latent and output
regularization strategy was used. As can be seen in Table VI,
performance degradation is quite small. We see a worst-case
reduction of 1.03% in person classification accuracy and even
a 0.13% increase in speed classification accuracy. Considering
the variability of trajectories (See Table V; leftmost column),
this appears to be functionally equivalent. From this experi-
ment we infer that a single example speed should be sufficient
to use the proposed system. This is a significant result since
this has the potential to greatly reduce the amount of effort
required to tune prostheses controllers, which currently limits
their capabilities.

D. Beyond Personalization
In this manuscript we showed an application of the con-

cept illustrated in Fig. 3, where we chose personalization of
generated gait at different speeds. However, the methods are
application agnostic. With the recent rise in multi-modal gait
datasets [8], [15], [16], [17], [18], [19], [20], we can also learn
representations of hard to define factors in a similar way the
representations of style were learned in this manuscript. Sim-
ilarly, we could encode terrain in an appropriate latent space
and then compose different representations using the decoder.
As we have shown here, these approaches to representation
learning are compatible with optimization of the decoder by
including attribute specific cost terms, and these can be related
to the performance of classifiers. This means that we don’t
necessarily have to have first-principles understanding of what
makes the classes different, if we can simply sample many
examples from them.

E. Limitations
This work does not present any analysis of the clinical

effects of personalized prosthesis control. Whether a more
personalized trajectory would lead to any improvements in
the quality of life of the target users stands to be tested
and should be investigated in future works. The methods
presented here depend on the assumption that the user can
walk optimally with at least one speed. Thus, the method relies
on the clinician’s expertise to tune the device at the calibration
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Fig. 9. The mean generated trajectories for Hip (top), Knee (middle), Ankle (bottom) of one target user are shown, for the 4 methods: Baseline
(red), Output Regularization (blue), Latent Regularization (Cyan), and Combined Regularization (Magenta). The trajectories are superimposed on
the mean real trajectories (shown in black). We see that the regularization method capture the changes in speed better compared to the baseline,
more so for the hip and knee joints.

TABLE V
COMPARISON OF THE BASELINE AND REGULARIZATION METHODS. THE LEFTMOST COLUMN SHOWS THE MEAN OF RMSE BETWEEN EACH PAIR

OF REAL TRAJECTORY FROM THE SAME CLASS (PERSON AND SPEED), AND THE PERFORMANCE OF PERSON AND SPEED CLASSIFIERS ON REAL

TRAJECTORIES (SEE TABLE II). NUMBER OF TARGET USER SAMPLES AND GENERATED TRAJECTORIES 166 AND 2324, RESPECTIVELY

Fig. 10. Latent space visualization: Each row shows two different views
of latent encoding of the trajectories from all the subjects, for baseline,
output regularization and latent regularization methods. The encoding
for the combined regularization is same as that for latent regularization.
Different colors correspond to different subjects The two arrows indicate
the target users.

speeds. Also, while we present person and speed classification
as additional metrics, the final evaluation about suitability of
the trajectories to a user should still be made by a clinician.

The total amount of data available for learning models was
relatively small, 9073 trajectories, compared to millions of

TABLE VI
PERFORMANCE FOR THE SENSITIVITY ANALYSIS TO THE NUMBER OF

EXAMPLE SPEEDS GIVEN

samples that are present in some datasets. Even [5], upon
which the baseline model was based, used the MNIST dataset
which is comprised of over 60,000 samples. Thus, it remains
to be tested how cost function design compares with latent
space regularization when using dramatically larger datasets.
Regardless, for small datasets this manuscript shows the
strengths and weakness of the different methods.

In this work, we represented 14 speeds using 14-
dimensional 1-hot encodings, similar to how [5] used digits,
but speed being a continuous signal arguably can be best
represented as a single continuous variable. The effect of this
choice can be invested in the future work.
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Using interpretable classifiers for quantification of
attribute-specific performance (speed or style) is ideal
for communicating the trustworthiness of the generated
trajectories to stakeholders. In this work, we avoid using
neural network classifiers to evaluate the generated trajectories.
Instead, we used SVMs with quadratic and cubic kernels
for person and speed classifiers, since they yielded the best
classification performance for real trajectories. However,
more interpretable methods like KNN [21], which also
perform good enough (see Table II) can be used as well.
In this manuscript we don’t present an exhaustive analysis
of how the cost function weights α, β and γ influence
the performance of the models. We only presented the
best performance achieved by each model in a sparse grid
search. However, understanding the behaviour of model
under interaction of different cost terms can be useful for
downplaying or emphasizing an attribute over the other.

F. Future Work
A study with users using a device controlled to achieve these

trajectories would be necessary to understand the effects of
personalization. We have limited the scope of the manuscript
to generating the trajectories, but what trajectory variations are
important, and what properties result in clinical meaningful-
ness, remains to be shown.

We used person classification along with negative cost on
speed classification to regularize the latent space. This is a
variation on contrastive learning [22], which is a deep and
active topic in modern representation learning. In contrastive
learning, samples from different classes are explicitly pushed
apart from each other in the latent space, not necessarily
by using classifier loss. Examples from the same classes
can be pushed closer to one another as well. This is sim-
ilar in spirit to what we present here and would likely
have different trade-offs that would be potentially fruitful
to explore.

We do not present a rigorous search over the architecture
size and type. However, we anticipate that convolutional neural
networks (CNN) or recurrent neural networks (RNN) instead
of the fully connected network could further improve trajectory
generation performance. This is because the real trajectories
have a local temporal continuity built into them, and the the
fully connected network generates each dimension (out of
the 300 dimensions here) independently. CNN or RNN based
encoders and decoders could emphasize this time-continuous
aspect of the trajectories.
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