Ecological Economics 214 (2023) 107979

| =]
E ECOLOGICAL

Contents lists available at ScienceDirect ECONOMICS

Ecological Economics

ELSEVIER journal homepage: www.elsevier.com/locate/ecolecon

Check for

Climate and socioeconomic impacts on Maine's forests under alternative i
future pathways

Jianheng Zhao ®" ", Adam Daigneault ", Aaron Weiskittel >", Xinyuan Wei *"

@ School of Forest Resources, University of Maine, Orono, ME 04469, USA
b Center for Research on Sustainable Forests, University of Maine, Orono, ME 04469, USA

ARTICLE INFO ABSTRACT

Keywords:

Alternative futures

Climate change

Scenario analysis

Shared socioeconomic pathways
Fiber supply

This study investigates the combined effects of climate and socioeconomic change on fiber supply and forest
carbon in Maine, USA, for broad alternative futures. We conduct an econometric analysis to project forest
resource use over the next 80 years under a range of shared socioeconomic pathways (SSPs) and representative
concentration pathways (RCPs). Results show that continued forest successional dynamics — without any har-
vesting — contribute the most to Maine's aboveground carbon (AGC) accumulation, with 2100 AGC potentially
increasing by 140% compared to 2020. On this basis, climate change could result in 2.44-2.64 times greater AGC
in 2100 compared to today. Harvest activities are major drivers of forest C dynamics, resulting in 2100 AGC
being only 16% >2020. Socioeconomic factors (SSPs) had much larger effects on total harvest and carbon stocks
than climate change (RCPs). Harvest volume were projected to increase by 9-29% between 2020 and 2100 for
favorable socioeconomic development scenarios (SSP1/SSP2/SSP5) and decrease by 3-29% for unfavorable
socioeconomic development scenarios (SSP3/SSP4). Overall, Maine's forest C pools were projected to increase by
end-century for RCPs x SSP1/SSP2. This study offers valuable insight on possible methods for region-specific
socioeconomic and climate change assessments, particularly in areas with extensive and diverse working for-
ests with mixed ownership.

Timber harvesting, the major human introduced forest disturbance,
can laterally remove the carbon from forest ecosystems and either

1. Introduction

Forests are a critical component of the global carbon cycle because
they take up and store carbon in vegetation biomass (Fahey et al., 2010).
In the United States, net forest sequestration reached 173 Tg C per year,
offsetting about 10% of greenhouse gas (GHG) emissions from trans-
portation and energy sectors (Wear and Coulston, 2015). In 2022, the
estimated carbon dioxide equivalent (CO2e) sink derived from land use,
land-use change, and forestry (LULUCF) activities was estimated to be
754 million metric tons (EPA, 2023). Ongoing global warming is pro-
jected to significantly affect carbon uptake and release rates in forest
ecosystems, either by directly modifying photosynthesis and ecosystem
respiration or by indirectly introducing disturbances such as fire, storm,
and insect outbreaks (Chen et al., 2019; Wei et al., 2018), although
overall impacts can vary by region, forest type, and management
response (Favero et al., 2021).

immediately release it into the atmosphere or store it within harvested
wood products (HWPs) —such as paper, furniture, and construction
materials—thereby constituting an additional forest carbon pool. By
using historical records, Johnston and Radeloff (2019) revealed that the
carbon sequestered within global end-use HWPs represented a net sink
of 90 Tg Cin 2015. Similarly, Zhang et al. (2020) found that the average
annual carbon sink in global end-use HWPs was 122 Tg C during the
period of 1992-2015, accounting for 3.2- 6.1% of the annual carbon
sink within the global forest sector (2400 + 400 Tg C per year) (Pan
et al., 2011). In addition, Eggers (2002) reported that carbon stored in
the HWP pool constituted 13% in Australia, 8% in Finland, 13% in
Germany, 8% in Norway, and 26% in Portugal across the entire forestry
sector and all wood products. Smith and Heath (2008) updated this
fraction to 10% in the USA, while Dewar and Cannell (1992) reported a
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high 33% in the UK. Further, active forest management can enhance the
growth rate and carbon sequestration in standing forests, thereby off-
setting some of the impacts of natural and anthropogenic disturbance
(Daigneault et al., 2022).

Numerous factors, including climate change, forest management
strategies, utilization standards, and socioeconomic variables can sub-
stantially influence both the carbon stored in standing forest and the
HWPs carbon pool (Johnston and Radeloff, 2019; Li et al., 2022).
Climate change can threaten the function and productivity of forest
ecosystems; for example, higher temperatures may reduce photosyn-
thesis and timber yield within tropical forest ecosystems. However,
within boreal forest ecosystems, warmer temperatures might enhance
photosynthesis and prolong the growing season, thus bolstering timber
output (Kirilenko and Sedjo, 2007). In water-deficient forest ecosystems,
heightened precipitation can stimulate timber production, while a
wetter climate can inhibit photosynthesis and impede tree growth in
water-sufficient regions ecosystems (Husen et al., 2017). In addition,
modeling studies indicate that increasing concentrations of atmospheric
CO2 are likely to drive modifications in forest ecosystems and could
potentially boost the rate of tree growth through the carbon fertilization
effect, there are also several factors that have the potential to limit this
effect, including nutrient and water availability, ozone pollution, and
tree species, age, and size (Janowiak et al., 2018).

The rapid development of the global economy in parallel with the
boom of population over the past four decades has accelerated the de-
mand for wood products, leading to a considerable expansion of the
HWP carbon pool (Li et al., 2022; Zhao et al., 2022b). Churkina et al.
(2020) pointed that the demand for wood products can be directly
promoted by the increasing population. Concurrently, urbanization
processes have driven an increased need for timber, which is used in
constructing buildings and making furniture (Mishra et al., 2022).
Higher household income is also typically associated with greater de-
mand for forest products (Sohngen et al., 1999; Tromborg et al., 2000).
In addition, Brack (2018) identified a positive correlation between the
quality and durability of wood products consumed and household in-
come. This association contributes to a reduced carbon outflow rate by
extending the lifespan of wood product use. Although paper products
are generally of shorter service life, the high demand for these products
can form a sizable quick-turnover carbon pool. Therefore, incorporating
these socioeconomic influences is necessary to predict the dynamics of
the HWPs carbon pool.

Several studies have incorporated ecological and economic factors to
evaluate the impacts of climate change and harvest behavior on forest
growth, carbon, and timber supply using a range of analytical methods
applied at the stand (e.g., Mei et al., 2019) regional (e.g., Beach et al.,
2015), and global (e.g., Golub et al., 2022) scale. Ecological-economic
modeling approaches to quantify climate and socioeconomic impacts
to the forest sector include integrated assessment (e.g., Tavoni et al.,
2007), global (e.g., Buongiorno, 2015; Favero et al., 2021) and regional
(e.g., Baker et al., 2023; Solberg et al., 2003) dynamic optimization,
stochastic dynamic (e.g., Siebel-McKenna et al., 2020), and econometric
methods (e.g., Haynes et al., 2007; Wear et al., 2013). Many forest sector
analyses incorporate the impact of climate change through changes in
forest yield functions (e.g., Perez-Garcia et al., 2002), while some also
account for potential disturbance and stock effects through biome shifts
and forest dieback (e.g., Tian et al., 2016). Approaches also vary in how
the markets and agents in the models respond to economic and
ecological shocks, with some holding prices constant (e.g., Hanewinkel
et al., 2013) while others including endogenous price responses to
changes in supply and demand (e.g., Favero et al., 2018). Nearly all
studies account for adaptation via changes in forest management,
including adjusting harvest timing and intensity (Rose, 2014). As a
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result of the differences in the models, scenarios, and input data
employed, the estimated impacts of climate and socioeconomic change
on the forest sector are highly variable (Aaheim et al., 2011).

The RCP-SSP scenario framework has been developed and used to
model the effects of socioeconomic development and climate change on
global harvesting and carbon storage (Ebi et al., 2014; Favero et al.,
2017; Kriegler et al., 2012; O'Neill et al., 2014). The Shared Socioeco-
nomic Pathways (SSPs) are five alternative socioeconomic trajectories,
namely sustainable development, middle-of-the-road development,
regional rivalry, inequality, and fossil-fuel development (Riahi et al.,
2017). The Representative Concentration Pathways (RCPs) represent
greenhouse gas concentration trajectories that encompass a broad range
of climatic outcomes, from lower (RCP 2.6) to higher (RCP 8.5) CO5
concentrations.

Maine's forest ecosystem is characterized as a transitional ecotone,
composed of a broad mixture of boreal forest and central hardwood
species that are highly sensitive to climate change. Janowiak et al.
(2018) conducted an assessment of forest vulnerability in the Northeast
USA and found that a warmer climate may hinder the growth of
northern and boreal tree species (e.g., spruce-fir), while other species (e.
g., hardwoods and pine-oak forests) may benefit from this change.
Boulanger et al. (2017) also found that these boreal tree species display
lower growth rates under warming conditions. Given the important role
of the forest industry in Maine, USA, a quantitative understanding of the
impacts of climate change and socioeconomic change on Maine's forest
resource is essential.

In this study, we synergize forest sector modeling with climate and
economic projections to explore and assess the impacts of climate-
induced changes on statewide forest resource uses and carbon storage
in Maine. We use an alternative futures framework to evaluate the ef-
fects of various socioeconomic and climate drivers on the region's for-
ests, modeling a total of 20 RCP-SSP scenarios. This integrated modeling
approach quantifies the extent to which various drivers can affect
Maine's forest sector through to 2100. Decision- and policymakers in the
Northeast US and other forested regions can use this framework to help
direct the sector towards a desired pathway and societal outcomes.

2. Materials and methods
2.1. Study area

This study is a state-level analysis for Maine, USA, which has a
forested area of >7 million ha and the highest forest cover rate in the
country, at nearly 90% (Butler, 2018). Much of the forest is uneven aged
and comprised of multiple species. Natural regeneration constitutes
97.9% of stand renewal, while plantations contribute a mere 2.1%
(Brissette, 1996; McWilliams, 2005). About 141,000 ha were harvested
in 2020, with over 91% managed through partial harvesting methods,
encompassing both partial and shelterwood harvests (Maine Forest
Service, 2020).

Maine's forest is a critical terrestrial carbon storage pool and se-
questers over 70% of the annual GHGs in Maine, with about than 10
million metric tons of CO; equivalent (MtCOqe) sequestered annually in
standing forests and another 1.6 MtCOze/yr stored in the harvested
wood products carbon pool (Bai et al., 2020; Domke et al., 2020; Li et al.,
2022). In addition, the forest products industry is a critical component of
the economy in Maine, contributing more than $8 billion/yr in eco-
nomic output, which is 4% of the state's gross domestic product (Bailey
and Green, 2021). Maine's area designated as conservation increased
from about 5% in the 1980s to >20% today (Irland, 2018; Zhao et al.,
2020), but about 85% of that area is still working forest with regular
logging activities (MLTN, 2017), However, Maine's forests are still
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facing development pressures, and decreasing at a rate of about 2000 ha
per year (Daigneault et al., 2021). In addition, the state's climate is
becoming warmer and drier in the growing season (EPA, 2016; Frumhoff
et al., 2007), which could reduce forest productivity by directly reducing
tree growth and mortality or indirectly introducing disturbances
including insect outbreaks, drought, and storms.

2.2. Integrated forest sector model

The empirical models of timber supply developed for this study
consist of three components: a forest landscape model, a land use change
model, and harvest choice models. Forest sector models generally
include forest area change, timber removals and standing volumes
(Turner et al., 2006). Empirical estimation methods have been used to
model land use change with drivers based on historic data (Agarwal
et al., 2002). Harvest volume has also been estimated using econometric
models, which express volume as a function of stumpage price, forest
stock, forest ownership types, biophysical variables, and socioeconomic
variables (Hu et al., 2018; Polyakov et al., 2010; Zhao et al., 2020).

The development of five SSPs (1-5) for the Maine forest sector are
described in Zhao et al. (2022a) and the five climate change (RCPs
baseline - 8.5 W/m?) effects on forest yields are simulated in LANDIS-IL.
Fig. 1 depicts how we integrated climate change and socioeconomic
projections with our forest growth, land use allocation, and harvest
choice models.

2.3. Forest growth simulation

To estimate the climate change effects on forest growth, we used a
spatially explicit forest landscape modeling framework, LANDIS-II v7.0
(Scheller et al., 2007; Wei and Larsen, 2018), together with the PnET-
Succession extension v3.4 (de Bruijn et al., 2014). LANDIS-II is a well-
known forest landscape model (FLM) that has already been applied in
a variety of climate change research. It is designed to simulate broad-
scale (>105 ha) forest landscape dynamics with different simulation
extensions in user-defined time step (>1 year) (Scheller and Mladenoff,
2007; Wei and Larsen, 2019), including succession, competition, cohort
growth, biomass accumulation, insect disturbance, carbon fluxes, and
impacts of climate change (Dymond et al., 2016). The model allows
landscape conditions and forest dynamics to be parameterized using
empirical data that reflect historical conditions. The PnET-Succession
extension implements succession in each grid cell with cohorts defined
by age ranges and including biomass per cohort. LANDIS-II and its PnET-
Succession extension require information on the study area landscape,
tree species coverage, forest stand age, tree species parameters, distur-
bance information, and weather. It can simulate cohort biomass changes
due to climate change as each cohort regenerates, ages, and dies. The
model also simulates the annual net primary productivity (ANPP) and
aboveground biomass (AGB), which can then be quantified as above-
ground carbon (AGC) stocks.

Climate data including monthly maximum and minimum tempera-
tures as well as monthly precipitation come from USGS’ Geo Data Por-
tal."") Historic climate data are used to simulate tree biomass up to the
model start time (2006) during model spin-up. The scenario period starts
in 2006 and runs through 2100. Climate change in the baseline simu-
lation is based on randomly assigning 55 years of observed climate
(1950-2005). Future climate change data are outputs from the Hadley
global environment model v2-earth system (HadGEM2) and the com-
munity climate system model v4.0 (CCSM4 model) participating in the
Coupled Model Intercomparison Project Phase 5 (CMIP5). Weather data
input for the period from 2006 to 2100 was calculated using the per-
centage changes in temperature and precipitation from simulated
weather data to ensure a smooth transition between the historical and

! https://cida.usgs.gov/gdp/.
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projected climate. According to these climate scenarios, the annual
mean temperature in Maine would increase at a higher rate than in the
past, warming by about 1.2 °C (RCP2.6) to 6.9 °C (RCP8.5) by 2100. The
average annual precipitation is projected to increase at a rate of
1.12-3.18 mm per year, higher than the past 1.14 mm per year during
1950-2005, adding 106.68 mm (RCP2.6) to 299.72 mm (RCP8.5) by
2100. The core climate change impacts analysis assumed that CO,
remained constant at 390 ppm out to 2100, but we relaxed this
assumption as a sensitivity analysis.

The input landscape contains interacting cells with user-defined
resolution, where an individual cell has homogeneous forest cover,
light, and soil conditions (Scheller and Mladenoff, 2007). In our simu-
lation, we used a 2700 x 2700 grid map to represent Maine's forest
landscape, with the cell size within that landscape set at 100 x 100 m.
The simulated forests included thirteen tree species, including American
beech (Fagus grandifolia), balsam fir (Abies balsamea), black spruce (Picea
mariana), red spruce (Picea rubens), white spruce (Picea glauca), yellow
birch (Betula alleghaniensis), eastern hemlock (Tsuga canadensis), paper
birch (Betula papyrifera), red maple (Acer rubrum), sugar maple (Acer
saccharum), northern white cedar (Thuja occidentals), eastern white pine
(Pinus strobus), and yellow birch (Betula alleghaniensis). Tree species are
represented in each grid cell as 5-year age cohorts, where forest
composition and structure information in each cell were initialized using
forest data obtained from US Forest Service Forest Inventory and
Analysis (FIA). We then used a Python script to randomly generate
stands on the landscape. The simulation time step in the PnET-
Succession extension was also five years to be consistent with LANDIS-II.

2.4. Land use allocation and harvest choice simulation

Forest area change (i.e., land use allocation) was estimated by a
probability function (p) contingent on socioeconomic and/or biophysi-
cal variables. The detailed estimation and results of the forest area
change are described in Zhao et al. (2022a). The harvesting intensity for
three distinct wood classes ¢ (sawlogs, pulplogs, or low-diameter) was
determined using logistic functions of linear combinations of a vector of
explanatory variables, X, and a vector of unknown parameters, f:

lo L%J =x,f+0; ¢))
where Yj; is the dichotomous response of plot i at time j, xU represents the
covariate's preceding biomass, stand biomass and net growth, and v; is
the random subject distributed NID(0, ¢2).

The harvest choice model for three wood classes was estimated by a
conditional logit model, integrating forest management type-specific
coefficients for discounted revenues, individual-specific coefficients
for site characteristics and socioeconomic values. The corresponding
probability distribution (P) for selecting alternative j is articulated as:

exp <ﬂjrx,- + Zg Y)
ST exp (ﬂ/.rxi +7 Y)

Where, the dependent variable y;. categorized into three options j
(no activity, partial harvest, or full harvest), respecting to three specific
wood classes ¢ (sawlogs, pulplogs, or low-diameter). Parameters x;
denote individual-specific attributes, e.g., mill numbers, distance to the
nearest road, land value, etc. f; is the coefficient associated with the
individual-specific attributes x; for alternative j. Parameters z; represent
choice-specific attributes, such as discounted revenue of forest man-
agement types, 1 represents the observed values of the choice-specific
attributes for alternative j and individual plot i. ﬂjT and zg are the

(2)

P()’i,(» :j|xi7zi1-, ~~-,Zim) =

transposes of the coefficient vectors f; and z;, respectively. >, exp

(/3].Txi +z§)’> represents the summation over all the alternatives (no
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Fig. 1. Schematic diagram of data and models applied in this analysis.

activity, partial harvest, and full harvest) for a specific wood class c.
This empirical equation can be mathematically expressed as:

four climate change projections (RCP2.6, RCP4.5, RCP6.0, and RCP8.5)
and five shared socioeconomic pathways (SSP 1-5) to model a total of 20

logit(p(i, ) ) = By + Y *Revenueypresmp. + B, *Biomass + p,*Biomass* + By *Mills + p,LandValue + Bs* HighwayDist + ¢ * Conservation + &; 3)

where forest type revenue of three possible management decisions was
calculated at the previous period and the end of the period. The growing
stock volume functions for three wood products were determined by
regression analysis of no harvest activity plot records. Timber supply
was aggregated through interpolation of the predicted individual stand
harvest decisions and corresponding harvest intensities to cover all 7
million ha of forested area in Maine. Revenue is the discounted revenue
($ ha ') of each forest type (e.g., spruce-fir), Biomass is the amount of
standing biomass on the stand (ton ha™? yr’l), Mills is the number of
mills within a specific buffer around the plot, LandValue is the assessed
forestland value ($ ha’l), which accounts for the fair market value of
timberland. HighwayDist is the distance from the plot to a primary
highway (km), and Conservation is an indicator variable describing the
category of plot ownership status (0 = non-conservation; 1 = public
conservation; 2 = private conservation), noting that most conservation
land in Maine is working forest and open to logging. As characteristics
such as the distribution of private forestland ownership (e.g., industrial,
small) and land use policy are likely to vary across the state, the model
also includes county-level fixed effects. Table A1 provides more details
and sources of key data for our harvest model.

The growing stocks were calibrated by the simulated aboveground
biomass outputs from the LANDIS-II model; therefore, climate change
would impact the harvest decisions by directly changing the discounted
revenue and standing biomass. This approach allows us to project har-
vest volume under different climate scenarios while isolating the other
effects such as changes in fiber prices and land ownership.

2.5. Scenario analysis

Our analysis employs the RCP-SSP framework, a scenario-based
approach developed to explore and understand how socioeconomic
factors interact with climate change and how different policy decisions
and socioeconomic pathways may shape future climate outcomes (Riahi
et al., 2017). This framework supports the examination of wide-ranging
combinations of socioeconomic and climate variables and has been used
extensively by the Intergovernmental Panel on Climate Change (IPCC) in
its assessments (O'Neill et al., 2020). Our analysis uses a combination of

scenarios. We note that while some RCP-SSP combinations (e.g., RCP
8.5-SSP1, RCP 2.6-SSP3) are less likely than others (O'Neill et al., 2020),
we opt to include all 20 scenarios in our analysis to present the full scope
of impacts from climate and socioeconomic change that could occur in
Maine's forests from 2020 to 2100.

Maine's forest SSP development was driven by the general principles
of global forest SSPs (Daigneault et al., 2019), and tailored to fit the local
characteristics of Maine, following Zhao et al. (2022a). SSP1 moves
towards more sustainable development, with low challenges to adap-
tation and mitigation, denoted by high GDP growth and strong land-use
regulations. SSP2 describes a middle-of-the road development that
largely follows historical patterns, showing moderate GDP and tech-
nology growth. SSP3 represents a regional rivalry that focuses more on
local issues and experiences high adaptation and mitigation challenges,
slow GDP growth, and weak land-use regulations. SSP4 follows an
inequality development of regional disparities, with varied GDP growth
by regions based on development levels. SSP5 assumes rapid economic
development because of continued reliance on fossil fuels and advanced
technologies. Key elements that vary across our SSP scenarios include
economic growth, wood product demand, land use regulation, and
technology development (Fig. 2). These variations are incorporated into
our analysis by exogenously specifying changes in variables used to
parameterize the land use allocation and harvest choice simulation
models, including timber prices, land ownership, mill capacity, and land
value. More details on our SSP development and parameterization are
provided in Supplementary Material (Text S1) and Zhao et al. (2022a).

We model forest responses to baseline and climate change pro-
jections from two climate models (CCSM4 and HadGEM2), driven by
low (RCP2.6), moderate (RCP 4.5, RCP 6.0), and high (RCP 8.5) emis-
sion scenarios. Each emission scenario was simulated three times using
two climate models, namely CCSM4 and HadGEM2, for a total of 24
forest landscape climate change impacts scenarios. For each climate
forcing scenario, we ran the LANDIS-II simulations with four replicates
for 100 years at 5-year time steps starting in the year 2000. Natural
disturbances and harvests were not included in these climate simula-
tions, as the focus was on isolating the forest growth changes from
anthropogenic forcing impacts, which we captured in the harvest choice
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Fig. 2. Shared socioeconomic pathways (SSPs) featured in this analysis. +/— indicate degree of change from baseline (2020) conditions, “+”, “++7, “+++" denoted

low, moderate, and high degree of change.

model. Model parameters for the LANDIS-II model were calibrated in the
spin-up phase with historic climate data (1950-2005) as initial biomass
grew up to the biomass reported in the FIA data. Calibrated baseline
parameters were then run for the 2016-2100 period for all simulations.
The stochastic variation among replicates was minor, so we used the
mean value AGB comparisons and visual inspection of graphs to assess
trends among RCPs. The model was primarily calibrated through the
comparison of simulated results in the initial year (i.e., spin-up values)
and the observed forest inventory data in 2016, more details on model
validation and calibration are provided in Supplenmentary Material
(Text S2).

2.6. Sensitivity analysis

Factors in our models were measured in different units, therefore
their relative influences on results change cannot be directly compared
based on their unit change. Thus, we used an elasticity-based method-
ology to measure how supply or carbon stocks respond to an increase in
socioeconomic factors. The measure of the sensitivity of supply or car-
bon stocks to factors was calculated by dividing the percent change in
their quantity by the percent change in each factor of interest. We
recognize that the price elasticities of fiber supply often differ among
various types of forest products (Tian et al., 2017), so we quantified the
impacts across three distinct wood product grades (i.e., sawlogs, pul-
plogs, and low-diameter biomass) and estimated how these products
respond to their own or cross-prices. Income and population were also
evaluated, as they vary widely across the SSPs.

To understand the effect of increasing CO2 levels on biomass growth,
we rerun the LANDIS-II model for our study area with GHG concentra-
tions following the projected increases under the different climate sce-
narios. we also conducted an additional sensitivity analysis to better
understand the effect of increasing CO2 levels on biomass growth across
a wide range of future pathways. This involved rerunning the LANDIS-II
model for our study area, taking into account GHG concentrations
following the projected increases under the different climate scenarios.
Following this, we compared the biomass change in climate change
projections for a subset of scenarios, combining RCP 4.5, RCP 8.5, SSP1,
and SSP3 under both increasing CO2 fertilization and constant CO2

400
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<
100
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o = RCP6.0 RCPS8.5
T T T T T
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Fig. 3. Trends in total aboveground biomass (AGB; t ha™!) for all Maine forest
species simulated under Baseline, RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5
climate scenarios without harvesting.

fertilization assumptions. This comprehensive approach helped us to
identify and quantify the impacts of rising CO2 levels on harvesting and
carbon storage under various possible future pathways.

3. Results
3.1. Climate change impacts

Without harvesting, forest ecosystems in Maine have the potential
for a large and sustained increase in biomass stocks regardless of the
climate change scenario. If left to grow under current climate conditions
(Baseline), the simulated AGB is projected to increase by 2.04 tons ha™*
yr~!, from 123 tons/ha in 2016 up to 295 tons/ha in 2100, a 140% gain
over the 80-year simulation (Fig. 3). Climate change typically had a
positive effect on Maine's forest biomass; the increment in AGB was
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Fig. 4. Mean AGC density (tons/ha) with the continuation of historical harvest

rates and under the Baseline climate and four climate change scenarios.

minor in the lowest emission scenario (RCP 2.6), with an average gain of
2.11 tons ha™! yr’1 (144%), followed by the medium emission scenario
(RCP 4.5 and RCP 6.0), with an average gain of 2.24 tons ha ! yr~!
(152%). The largest biomass change occurred in the highest emission
scenario (RCP8.5), increasing by an average of 2.40 tons ha™! yr_1
(164%). Results indicate that biomass increases were largely driven by
continued recovery dynamics from leaving the forest unharvested over
the next 80-years, which would result in a 140% increase or about 1.1%
yr L. In comparison, climate change only resulted in an additional
5-24% of biomass relative to the ‘Baseline’ climate conditions.
Continued successional dynamics are also projected to drive forest AGB
towards fast growing species, such as eastern white pine, red maple and
sugar maple, regardless of the climate scenario (Fig. A.1). Compared to
the Baseline climate simulation, climate change resulted in a greater
AGB in all thirteen species but had minor effects on the relative species
composition.

Assuming Maine's forests continue to be harvested over time at his-
torical rates (approx. 11 Mt. AGB yr 1) and the climate aligns with
current trends, we estimate that the mean aboveground carbon density
would accumulate at a rate of 0.19% yr:1 resulting in 16% additional
AGC by 2100 (Fig. 4). Moderate climate change scenarios (RCP 4.5 and
6.0) with harvesting experience an increase in AGC of 0.22% yr_l. The
largest effects of climate on overall forest growth when harvests are
accounted for is the high emission scenario (RCP 8.5) in which carbon
density increased by 0.26% yr~! or a total of 23% between 2020 and
2100. These results highlight that harvesting dynamics can have a
noticeable influence on Maine's forest carbon stocks when only ac-
counting for the effects of climate change. In comparison, the coupled
effects of climate and socioeconomic changes are more dramatic, as
outlined in the following section.

p / (SE)
0.723%**
(0.019)
0.141%**
(0.002)
0.019%**
(0.001)
—19.249%**
(0.286)
6117
—19,896
39,802
39,835

p_T1

Pulplog
Parameters
Price_Pulp_T1
Biomass_Pul,
Biomass_LD_T1

significant at 0.10;

7/ (SE)
0.882%***
(0.027)
0.103*
(0.011)
0.052%**
(0.019)
—0.001***
(0.0001)
0.955%**
(0.073)
—0.111%**
(0.012)
—24.046%***
(0.441)
6117
—12,867
25,750
25,804

3.2. Integrated forest sector model analysis

3.2.1. Econometric model

In the harvest intensity model (Table 1), pulplog price and initial
biomass of three wood classes were found to have a significant positive
correlation with harvest intensity for all wood classes. Harvest intensity
for low-diameter woods was also positively related to sawlog and
biomass prices. Harvest intensity for sawlogs was positively related to
sawlog growth but negatively related to pulplog growth.

Table 2 summarizes the estimated coefficients of the explanatory
variables, standard errors, and their statistical significance for harvest-
ing models. As expected, all coefficients for discounted revenue were
positive (four out of six of these coefficients were statistically

significant at 0.01; ** = significant at 0.05; *

p_T1

p.T1

Sawlog_growth_Net

Sawlog
Parameters
Price_Pul
Biomass_Pul,
Biomass_Saw_T1
Biomass_Saw_T1?2
Pulp_growth_Net
Constant
Observations
Log Likelihood
Akaike Inf. Crit.
Bayesian Inf. Crit.

Harvest intensity model estimates.

Table 1
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Table 2
Harvest choice model estimates.

Variables Full harvest (clearcut) Partial harvest
Commercial Hardwoods Revenue 0.0009***
Hemlock Revenue (0.0009)
Other Softwood Revenue 0.0011*
Other Hardwood Revenue (0.0002)
Spruce-fir Revenue 0.0099
Eastern White Pine Revenue (0.0005)
0.0014+*
(0.0002)
0.0012%*
(0.0001)
0.0010
(0.0001)
Biomass 0.0089%** 0.0177%**
(0.0037) (0.0023)
Biomass? —0.00005%** —0.00004***
(0.00001) (0.000007)
Mills 0.0199 0.0157
(0.0115) (0.0071)
Conservation (private) —0.0292 0.0449
(0.1745) (0.1273)
Conservation (public) —1.0966*** —1.1017%**
(0.2834) (0.2199)
Highway Distance 6.7444 —1.4905)
(7.4566) (6.5501)
Land value 0.0000001 —0.000004**
0.000004 0.000003
Constant —3.4073%** —3.5046%***
(0.2610) (0.1908)
Observations 6117
Log Likelihood —3196.1
LR Test 332.703*** (df = 30)
McFadden pseudo-R? 0.10

***% — significant at 0.01; ** = significant at 0.05; * = significant at 0.10;

significant), indicating that the probabilities of choosing management
for different forest types are positively related to their potential dis-
counted revenue. We also found that biomass and conservation lands
had a statistically significant effect on timber harvesting preferences.
These estimates were then combined with the land use change model
presented in Zhao et al. (2022a) to project the forest area, harvest level,
and carbon stocks under the five shared socioeconomic pathways and
four climate change scenarios.
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3.2.2. Fiber production

Harvests were projected to peak around 2060 in most scenarios,
before declining at various rates up to 2100. This trend suggests that
while socioeconomic and climate factors can significantly influence
forest harvesting in the near-term, their impact gradually diminishes
towards the end of the century. Specifically, forest harvests were highest
in RCP8.5 x SSP5 scenario, nearly doubling by 2060 before seeing a
modest increase of 15% by 2100. The RCP8.5 x SSP1 scenario follows a
similar trajectory, with an 83% increase by 2060 and a 29% increase by
2100. While, RCPs x SSP3/SSP4 even show a reduction in harvests of

2020 2040

2060 2080 2100

RCP2.6_SSP1 RCP2.6_SSP2 RCP2.6_SSP3 RCP2.6_SSP4 RCP2.6_SSP5
RCP4.5_SSP1 RCP4.5_SSP2 RCP4.5_SSP3 RCP4.5_SSP4 -RCP4.5_SSPS|
RCP6.0_SSP1 RCP6.0_SSP2 RCP6.0_SSP3 RCP6.0_SSP4———RCP6.0_SSP5|
——RCP8.5_SSP1 RCP8.5_SSP2 RCP8.5_SSP3——RCP8.5_SSP4——RCP8.5_SSP5|

Fig. 5. Projected forest harvest volume (Mt/yr) under different SSP x RCP combinations.
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Fig. 6. Maine forest a) aboveground carbon (AGC; Mt./yr) and b) AGC + harvested wood products (HWP; Mt./yr) carbon by SSP x RCP scenario.
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Fig. 7. Estimated range and mean values in total Maine a) timber harvest volume and b) forest carbon (HWP and AGC; Mt. C) by SSP and RCP scenarios between

2060 and 2100.

about 8-29% from 2020 to 2100 (Fig. 5).

The relative rank of the line color groups from upper dark to lower
light indicated that a larger harvest was expected in scenarios with rapid
warming and more climate change (RCP8.5) and a smaller harvest was
expected in scenarios with the least amount of warming and limited
climate change (RCP2.6). The distinct color clusters of SSPs highlighted
that the largest variations among these 20 scenarios were due to SSPs
assumptions (i.e., harvest trends are highly clustered around each SSP
regardless of the RCP). This suggests that socioeconomic factors (as
represented by the SSPs) might have a more substantial effect on future
forest harvest trends than the rate of climate change (as represented by
the RCPs).

In detail, harvests in SSPs were projected to increase 0.6%-1.6% per
year by 2060 and 0.3%-0.7% per year by 2100 in SSP1/SSP2/SSP5
(Fig. 7a). In contrast, slight reductions in harvests were observed in SSP3
and SSP4. On the climate side, the annual increase rate for RCPs fell
within a narrow range from 0.7%-1.0% per year by 2060, decreasing to
around 0.1% per year by 2100. This further demonstrates that the so-
cioeconomic factors may have a larger influence on forest harvest than
climate change. The notable disparity in mean values observed among
the SSP groups further demonstrate that the socioeconomic factors had
larger effects on forest harvest than climate change did.

Finally, similar trends in harvests for sawlogs and pulplogs were
found, with increased harvests in RCPs x SSP1/SSP2/SSP5 scenarios and



J. Zhao et al. Ecological Economics 214 (2023) 107979

. Total fiber supply 3 Sawlog supply

Income “ POP ”P_Biomass ||P_Pulplogs“P_Sawlogs Income POP ||P_Biomass P_Pulplogs”P_Sawlogs
0.5 ; 0.5
2 | . 2
3 | | | W 3 A
| = C % o s
0.0 T Sp— : : 0.0 | oo T . o
oo cmm P T p—
-0.5 -0.5
2060 2100 2060 2100 2060 2100 2060 2100 2060 2100 2060 2100 2060 2100 2060 2100 2060 2100 2060 2100
1.0 Pulplog supply - Biomass supply
Income I POP ”P_Biomass P_Pulplogs ||P_Sawlogs e ” POP ||P_Biomass||P_Pu]plogs| P_Sawlogs|
0.5 0.5 : ” =
g g s
= sl "
m : —_— ‘
0.0 5 afoo oo & P % 0.0 i afo o é Ghe
ofity  coo | acfoen  commo
-0.5 3
2060 2100 2060 2100 2060 2100 2060 2100 2060 2100 03 73060 2100 2060 2100 2060 2100 2060 2100 2060 2100
1o Jotal Carbon | o Harvested wood product carbon
— ” PoP ”P_meass”P_Pulplogs”P_Sawiogs ’ Income ” POP ||P_BiomassHP_Pulplogs“P_Sawlogs
05 0s |
2
3 g
a =
s &
m S =
0.0 il == m <ge o agpy cxmm
R o e #; ol # 0.0 8 os oD QEmD (GoEmD ol G
o oo &

2060 2100 2060 2100 2060 2100 2060 2100 2060 2100 W 2060 2100 2060 2100 2060 2100 2060 2100 2060 2100

Fig. 8. Box and whisker plot of estimated socioeconomic variables of elasticities of fiber supply and forest carbon stock dynamics. (Income = income per capita; POP
= population density; P_biomass = biomass price; P_Pulplogs = pulplogs price; P_Sawlogs = sawlogs price).

decreased harvests in SSP3/SSP4. However, the trend for low-diameter 2060, or 2070, depending on the specific combination of SSPs and RCPs

harvests differed slightly, with the largest harvest by 2100 observed in (Fig. 6). The most significant increase in carbon stocks was found in the
RCPs x SSP3 and the only decrease in RCPs x SSP4. RCPs x SSP1 scenarios, with peak annual rates rising by 0.47%-0.65%

above the 2020 AGC levels by 2060. This was followed by RCPs x SSP2,
3.2.3. Forest carbon which showed peak annual rates of 0.13%-0.27% more AGC by 2070.

Based on these estimations, AGC peaks could be observed in 2050, The RCPs x SSP5 scenarios peaked the earliest, in 2050, with AGC
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Table 3

Maine harvest and forest carbon stock estimates for CO, fertilization sensitivity analysis.
Scenario No CO,, Fertilization CO,, Fertilization % Change

2040 2070 2100 2040 2070 2100 2040 2070 2100

Total Harvest (Mt/yr)
RCP4.5-SSP1 15.0 18.5 14.5 16.5 18.6 14.4 10% 0.4% —0.5%
RCP4.5-SSP2 11.9 13.3 12.3 13.0 13.4 12.3 10% 1.2% 0.2%
RCP4.5-SSP3 10.8 9.9 10.6 11.8 10.2 10.6 9% 2.7% 0.6%
RCP4.5-SSP4 11.0 10.7 8.0 12.0 11.0 8.0 9% 2.3% 0.3%
RCP4.5-SSP5 14.6 19.3 12.8 16.0 19.4 12.8 10% 0.5% —0.5%
RCP8.5-SSP1 15.7 19.3 14.3 18.9 20.4 14.7 20% 5.8% 2.5%
RCP8.5-SSP2 12.4 139 12.4 14.9 15.2 12.9 20% 9.0% 4.4%
RCP8.5-SSP3 11.3 10.5 10.8 13.5 119 11.4 20% 13% 5.8%
RCP8.5-SSP4 11.5 11.4 8.1 13.8 12.7 8.6 20% 12% 6.6%
RCP8.5-SSP5 15.2 20.1 12.7 18.3 21.0 13.0 20% 4.6% 1.6%
Total Forest Carbon (MtC)
RCP4.5-SSP1 544 575 561 555 583 565 2.1% 1.4% 0.8%
RCP4.5-SSP2 490 516 488 500 524 492 2.2% 1.6% 0.8%
RCP4.5-SSP3 463 435 393 473 442 396 2.2% 1.7% 0.8%
RCP4.5-SSP4 470 455 424 480 463 427 2.2% 1.6% 0.8%
RCP4.5-SSP5 507 492 430 517 497 432 2.0% 1.1% 0.5%
RCP8.5-SSP1 556 594 571 579 621 592 4.0% 4.6% 3.5%
RCP8.5-SSP2 500 534 496 522 559 513 4.2% 4.7% 3.3%
RCP8.5-SSP3 473 450 399 493 473 412 4.3% 5.1% 3.3%
RCP8.5-SSP4 481 471 431 501 494 446 4.3% 4.8% 3.5%
RCP8.5-SSP5 518 506 436 538 524 448 3.9% 3.5% 2.7%

increasing rates of 0.36%-0.49% per year. In contrast, RCPs x SSP3/
SSP4 exhibited a different trend, with their carbon stocks starting at
their highest in 2020 and continuously declining by average 0.18% per
year for RCPs x SSP4 and 0.30% per year for RCPs x SSP3.

In detail, reductions in forest carbon were observed in RCPs x SSP3/
SSP4 scenarios by 2060. By 2100, only RCPs x SSP1/SSP2 scenarios
projected an expansion of carbon pools (Fig. 7b). Total AGC stocks
increased by an average (across all RCPs) of 94 Mt. C (0.2%/yr) in SSP1
by 2100, while in SSP2, the increase was 21 Mt. C (0.1%/yr). The largest
reductions in AGC were found in the SSP3 groups, with a loss of 74 Mt. C
(0.2%/yr) between 2020 and 2100. SSP4/SSP5 experienced a cumula-
tive loss of 43 and 37 Mt. C (0.1%/yr) by 2100. Looking strictly at the
effect of climate change, we estimate that RCPs on their own would
contribute to a 0.1-16 Mt. C loss in AGC stocks between now and the end
of the century if all socioeconomic effects are held constant.

3.3. Carbon and timber supply elasticities

This study found that socioeconomic factors, more than climate
change, played a major role in the estimated changes in timber supply
and carbon stocks in Maine's forests. Results also indicated that both
timber supply and carbon stocks have inelastic responses to socioeco-
nomic factors (i.e., timber price/demand, population, income), as all key
elasticity estimates are <1, indicating that a 1% increase in the ‘input’
factor of interest leads to a <1% change in output (Fig. 8). The results
showed negative elasticity for per capita income and population density,
averaging —0.2 and — 0.02, respectively, across all harvest and forest
stock estimates. This result indicates that when all else held equal, an
increase in income or population would cause a decrease in both fiber
and carbon stocks, primarily because these factors have a strong influ-
ence on converting forestland to development (see Zhao et al., 2022a).

Timber price elasticity was positive and varied over time, with
higher effects observed in the early part of the century (2020-2060).
Sawlog prices generally had the highest elasticity value with the
response of different forest products and carbon stocks. In addition, the
supply of sawlogs was slightly more sensitive to price changes than the
supply of pulplogs. The findings also indicated that large changes in
biomass prices result in very little change in sawlog and pulplog supply.
However, with respect to biomass supply, the median elasticities of
sawlog price (0.58), pulplog price (—0.01), and biomass price (0.23)
reveal that a high sawlog price could indirectly increase the supply of

10

low-diameter timber.

For AGC, the elasticity ranged from —0.22 for income to 0.05 for
sawlog prices. Nearly all total aboveground carbon stock elasticities
were negative, except for the early-period sawlog price elasticity. These
responses indicated that in most cases, forest carbon stocks would
decrease with high economic growth, except for the case where a 1%
increase in sawlog prices could produce a modest (0.05%) increase in
total carbon stocks. Similarly, the elasticity estimates for HWP carbon
were very inelastic, ranging from —0.06 for income to +0.05 for sawlog
prices, indicating that changes in key model inputs have minimal to no
impact on total HWP carbon. These results underline that forest carbon
stocks and the carbon stored in harvested wood products are relatively
insensitive to changes in these socioeconomic factors, strategies aimed
at mitigating climate change through increased forest carbon storage
might not be significantly affected by shifts in income or product prices.

3.4. CO; fertilization sensitivity analysis

The LANDIS-II model simulations show that rising atmospheric CO2
concentrations, also known as the CO2 fertilization effect, can stimulate
greater biomass growth in forests than if concentrations were held
constant. The estimates indicate that increasing CO2 will result in more
biomass growth than if concentrations were held constant. The exact
magnitude of this effect varies, with higher biomass growth observed for
RCP 8.5 scenario, little difference in biomass growth for RCP 2.6. The
sensitivity analysis (Table 3) examined a range of scenarios (RCP 4.5,
RCP 8.5, SSP1, and SSP3) under both increasing CO2 fertilization and
constant CO2 fertilization assumptions. The findings highlight that
incorporating CO2 fertilization assumptions in climate change pro-
jections might have limited effects on biomass growth and carbon
storage. The CO2 fertilization effect can be complex and is not guaran-
teed to persist in the long term, as indicated by the modest influence on
forest biomass at 2100, even under RCP 8.5. Intriguingly, the analysis
reveals an initial surge in total harvest under the CO2 fertilization
assumption, particularly noticeable in 2040 data. This could be due to a
variety of factors such as changes in forest composition, growth rates,
and the maturity of trees that are ideal for harvest.

4. Discussion

Using an integrated modeling framework that included forest
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dynamics, harvest, and land use changes for Maine, USA, we estimated
that continued forest succession and growth contribute to a substantial
increase in carbon stock in the Baseline scenario, which could poten-
tially increase by 2.40 times the annual level from 2100 to 2020 if there
are no human activities (e.g., harvests). Climate change has a relatively
small but positive impact on forest carbon dynamics, with 2100 AGC
increasing by 2.44-2.64 times the 2020 estimate under various climate
scenarios. However, the introduction of harvesting activities to the
model substantially mitigated this increase, resulting in only a 16% in-
crease in AGC between 2020 and 2100 relative to the baseline scenario.
For comparison, Wu et al. (2020) also indicated that changes in forest
AGB are mostly driven by succession and harvest, while Albani et al.
(2006) estimated that biomass from the eastern United States will keep
growing at least through 2100. These findings are similar to other forest
growth and disturbance modeling studies for the region, including
Daigneault et al. (2021), Duveneck and Thompson (2019). The study
showed that forest succession contributed to the largest increase in
Maine's AGB and AGC, reflecting that the relative lower average live
aboveground biomass and forest carbon density in Maine's present
landscape compared to landscapes dominated by late-successional for-
ests. This aligns with Thompson et al. (2011)’s points that sustained
forest recovery will continue to be the main mechanism affecting forest
carbon dynamics, considering the legacy of agricultural abandonment
and policies restricting clear-cutting.

Moreover, climate change (temperature and precipitation) had a net
positive impact on our forest biomass accumulation estimates, which is
consistent with other studies conducted at various scales (Campbell
et al., 2009; Favero et al., 2018; Thompson et al., 2011). In our simu-
lations, climate change brought the addition of 5%-24% more AGB/
AGC by 2100 in RCP2.6-RCP8.5 scenarios, with higher increases
occurring under the more serious climate change scenario. These find-
ings are in line with the estimates of a 10-15% increase in regional forest
biomass from climate change reported in Thompson et al. (2011),
Duveneck and Thompson (2019), and Daigneault et al. (2021).

The simulated biomass might accrue faster or slower than actual
rates, without accounting for impacts of emerging natural disturbances
in our simulations. However, our projected patterns of forest biomass
change in the northeast US under different climate change pathways are
likely reasonable (Thompson et al., 2011; Duveneck and Thompson,
2019; Simons-Legaard et al., 2013). In addition, while our study
included a broad range of alternative socioeconomic and climate fu-
tures, the probability that each of the RCP-SSP combinations will vary
(Riahi et al., 2017). A strong sustainability SSP1 pathway will more
likely lead to a future climate in the RCP 2.6 to 4.5 W m™2 range, while a
fossil fueled SSP5 pathway is likely to fall within RCP 4.5 to 8.5 W m ™2
(Rogelj et al., 2018). For example, multi integrated assessment model
analyses have resulted in infeasible solutions for some of the SSP and
RCP extremes (e.g., SSP5-RCP1.9) due to the incompatibility between
the economic growth, technological change, and fossil fuel use as-
sumptions (Riahi et al., 2017; Rogelj et al., 2018). In response, decision
makers should take caution when interpreting individually modeled
scenarios.

While the study estimated only minor impacts of climate change on
the relative composition of the 13 species modeled, some studies have
found that climate change might shift tree species distributions in the
Northeast (Iverson et al., 2004; Janowiak et al., 2018; Simons-Legaard
et al., 2013), particularly of keystone species like spruce-fir in Maine
(Andrews et al., 2022). In addition, our LANDIS-II model simulations
estimated that continued recovery dynamics will favor fast-growing (e.
g., eastern white pine and red maple) and shade-tolerant species (e.g.,
red spruce, white spruce, eastern hemlock, northern white cedar). Pre-
vious studies also found that balsam fir and white birch were projected
to decline in responding to increasing temperatures (Ashraf et al., 2015),
while red spruce could growth could increase (Kosiba et al., 2018).
However, future carbon dynamics could be potential altered by distur-
bances like spruce budworm outbreaks (Chen et al., 2019) or hemlock
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wolly adelgid expansions (Dunckel et al., 2017), which were not
included in our simulations.

Forest harvests were highest in the high climate change and socio-
economic development scenarios (RCP8.5 x SSP1/SSP5), with an esti-
mated 15-29% increase in harvest volume by 2100 compared to 2020.
Low socioeconomic development scenarios (RCPs x SSP3/SSP4) resulted
in 8-29% harvest reductions by 2100, but the low-diameter harvest was
projected to be the highest in RCPs x SSP3. Results were fairly consistent
with other forest SSP studies that estimate fiber supplies to be higher in
SSP5 and SSP1 and lower in SSP3 (Daigneault and Favero, 2021; Favero
et al., 2020; Hu et al., 2018; Daigneault et al., 2022).

Forest C pools were only estimated to increase by the end of the
century in RCPs x SSP1/SSP2, with 81-102 Mt. C (17-22%) accumu-
lated in SSP1 groups and 13-29 Mt. C (3-6%) in SSP2 groups.
Conversely, other SSP groups lost about 36-80 Mt. C (8-17%) between
2020 and 2100. The study's findings highlight that socioeconomic fac-
tors (SSPs) have a greater impact on timber harvest and carbon stocks
than climate change (RCPs), a conclusion in line with other studies
showing that the impact of SSP on changes in land use and commodity
production is much greater than that of the RCP-only scenario (Ausseil
et al., 2019; Favero et al., 2017; Popp et al., 2017; Tian et al., 2016).

Sensitivity analysis indicated that sawlog and pulplog prices were
key factors driving changes for the SSPs. We also found positive sawlog
price elasticities and negative income per capita and population density
elasticities of supply and carbon stocks. Because the urban share of land
increases as a function of increasing population and personal income
(Hardie et al., 2000), economic and population growth could drive more
conversion of forested land to urban lands (Chen et al., 2020; Wade
etal., 2022; Zhao et al., 2022a), which has generally been relatively low
in parts of New England when compared to other portions of the eastern
USA (Puhlick et al., 2017). These negative responses indicated that
forest carbon stocks could decrease with high economic growth, while
pulplog and sawlog prices may increase, which again is consistent with
other recent forest sector analyses (Daigneault et al., 2022; Nepal et al.,
2019).

We take an in-depth look at the complex effects of both climate and
socioeconomic change on Maine's forests at a relatively fine scale, but
note some limitations to our approach. First, our econometric modeling
is only as robust as the data available dependent on projections from
other studies or expert-based assumptions to assign quantitative inputs
to our qualitative narratives. However, this is an issue to some degree in
every SSP-based forest sector study regardless of whether it employs
econometric (e.g., Hu et al., 2018; Johnston and Radeloff, 2019) or
dynamic optimization (e.g., Lauri et al., 2019; Daigneault and Favero,
2021) modeling. Second, we use a deterministic model and thus are not
able to account for adaptive behavior from possible stochastic shocks to
the socioeconomic (business cycle) or ecological (biological thresholds)
system. However, stochastic forestry models are typically restricted to
conducting stand-level analysis with exogenous price and cost assump-
tions to solve (e.g., Amacher et al., 2005; Susaeta and Carney, 2023),
although recent efforts have been made to better incorporate natural
hazards and risk into regional forest sector analyses (Chudy et al., 2016;
Riviere et al., 2022). Third, we assume that Maine's forest sector is a
price-taker and hence must follow our exogenously specified price tra-
jectories. This is a reasonable approach given the relatively small
contribution of Maine's forests to the global timber market and that we
model a wide range set of price changes across our full suite of scenarios.
However, other regional studies have endogenously modeled the effect
of climate change on the forest sector and found that timber prices are
typically lower under the long run due to increased growth (e.g., Favero
et al., 2018; Henderson et al., 2020). Fourth, our data do not differen-
tiate across private landowner types (e.g., corporate, non-industrial,
etc.), so we are unable to assess the potential impact this might have
on Maine's timber supply and forest carbon stocks. While we do use
county-level fixed effects to account for this to some degree, results
could vary with better ownership data. Other model and data limitations
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that could be explored in future research include expanding the options
for climate adaptation beyond changing the harvest timing and in-
tensity, improving our representation of management costs, and adding
more non-timber and amenity values that landowners take into
consideration.

Forest landscape modeling enabled us to perform an assessment of
climate change impacts on forestland, while the SSPs framework
enabled us to capture the influence of social and economic de-
velopments and environmental policy on forestland and the forest
products industry. This regional framework could give insights into the
implications of climate and socioeconomic factors for Maine's forest
sector and could isolate (or integrate) the effects of climate change from
(or into) socioeconomic conditions. Our study integrated a harvest
choice model with socioeconomic and climate change pathways to es-
timate the future of Maine's forest sector under a range of plausible fu-
tures. While the comprehensive approach to our study includes more
than twenty scenarios and robust sensitivity analysis, there is still un-
certainty associated with model parameterization and the socioeco-
nomic assumptions. As a result, it is not intended to be an accurate
prediction of the future but rather a tool to help evaluate what Maine's
forest sector could look like under a range of conditions. In terms of
climate change, this analysis represents plausible scenarios based on the
continuation of recent trends or emission assumptions. As highlighted
above, the study did not account for fires, windstorms, pests, disease, or
nutrient limitations on forest growth. Previous research has indicated
that the effects of factors like wildfires, pests, and diseases might
counteract the tree growth promoted by climate change (Loehman et al.,
2018). Disturbances such as hurricanes and insect outbreaks could delay
or even decrease biomass accrual rates, while CO4 fertilization could
accelerate biomass growth (Ausseil et al., 2019; Ollinger et al., 2008).
These factors should be considered in future research to provide a more
comprehensive understanding of the potential impacts of climate
change on Maine's forests.

Our core analysis did not account for the potential effects of
increasing carbon fertilization due uncertainties of how northeast US
forests may respond to increasing GHG concentrations, including
nutrient and water availability, ozone pollution, and tree species, age,
and size. Instead, we conducted a sensitivity analysis to evaluate the
impact of including the CO2 fertilization assumption in our climate
change projections (Ollinger et al., 2008; Jones et al., 2014; Janowiak
et al., 2018). We found that inclusion of increasing CO2 fertilization in
climate projections might have somewhat limited positive impacts on
biomass growth, compared to scenarios with constant CO2 concentra-
tions. Although we observed an initial surge in total harvest under RCP
8.5, the effects of CO2 fertilization beyond 600 ppm were not typically
considered in previous studies (Janowiak et al., 2018). The literature
appears to be inconclusive as to whether elevated GHG concentrations
will cause forests to grow faster and store more carbon (Korner et al.,
2005; Hickler et al., 2008; Jones et al., 2014; Dai et al., 2016). This
intricate relationship between CO2 fertilization, biomass growth, and
forest management could be explored in more depth in future analyses.

We used a uniform landscape to represent the forest landscape in
LANDIS-II, as this approach is effective and efficient in capturing total
biomass change across the entire landscape. However, one major limi-
tation is that it doesn't account for spatial variation in factors such as
soil, topography, and hydrography, which are known to influence AGB.
Despite these noted limitations, we believe that our approach for
modeling the complex forest growth and harvest dynamics across a
diverse set of local climate and socioeconomic drivers can be leveraged
to inform state and regional forest policies under a wide range of
alternative futures.

5. Conclusions

This paper provides an integrated modeling framework and over-
view of potential impacts of climate change and socio-economic changes
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on forest biomass and timber harvests in Maine, USA. A detailed
modeling approach integrated the climate change effects, as modeled by
LANDIS-II, with the socioeconomic effects encapsulated in SSPs into an
econometric-based land allocation and harvest choice model that
incorporated nearly 9000 stand-level observations to project impacts
from 2020 to 2100.

Shared socioeconomic pathways were downscaled to the regional
level and narratives were provided to explore the consequences of so-
cioeconomic elements on the future forest sector. Quantitative as-
sumptions were combined with a stand-level harvest choice and land use
change model developed in Zhao et al. (2022a). Four emission scenarios
(RCP2.6-RCP8.5) were combined with two climate models to yield a
range of warming scenarios through 2100. The LANDIS-II model was run
with these scenarios to simulate climate change impacts on AGB. These
outcomes were used to normalize and calibrate forest yield curves that
were linked with the stand-level harvest choice model. We then com-
bined the SSPs framework with harvest choice models to explore the
physical impacts of climate change as well as socioeconomic drivers on
Maine's forest sector.

Our results revealed that continued forest successional dynamics
contribute to the largest increase in Maine's AGB/AGC followed by
harvesting, with harvesting practices coming next, and climate change
having the least impact. In the absence of human activities, the potential
aboveground carbon stock by 2100 could be as high as 2.40 times the
level of forest C in 2020. Climate change may slightly elevate this figure,
leading to AGC in 2100 being 2.44-2.64 times the 2020 levels. However,
harvesting activities have significant influence over forest C dynamics,
such that AGC in 2100 only reaches 1.16 times the amount of forest C
since 2020.

Socioeconomic factors (SSPs) had larger effects on timber harvest
and carbon stocks than climate change (RCPs). Under medium or high
socioeconomic development pathways (SSP1/SSP2/SSP5), we projected
9-29% higher harvest volumes by 2100, while unfavorable socioeco-
nomic development scenarios (RCPs x SSP3/SSP4) were estimated to
result in 8-29% harvest reductions by 2100. Forest C pools were only
estimated to increase through 2100 in RCPs x SSP1/SSP2, with 17-22%
more C accumulated in RCPs x SSP1 and up to 6% in RCPs x SSP2.
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Appendix A. Appendices

Table Al
Summary of key Maine harvest choice model variables.
Variable Description Units Source
Harvestsaw, pulp, low-diameter Harvest choices and intensity by fiber grade: none, partial, or full harvest -
Revenueroresitype Revenue earned from harvest by forest species type: commercial hardwoods, hemlock, spruce-fir, eastern white pine, other $ 1,2
softwood, other hardwood ha™!
Total Biomass Total aboveground biomass of all species and fiber grades tha™! 1
Biomass Growthsaw, pulp, low Net biomass growth over five-year period by fiber grade tha™! 1
diameter
PriceSawcounty Mean 5-year county-level price of sawlogs $t! 2
PricePulpcounty Mean 5-year county-level price of pulplogs $t! 2
LDBiocounty Mean 5-year county-level price of low-diameter biomass $t! 2
Millsay, pulp Number of saw and pulp mills within 50 km radius buffer # 3
LandValue Average ad valorem value of forestland by municipality $ 4
ha”!
HighwayDist Distance to nearest national highway km 5
Conservationnen, private, public Conserved land designation: Non, private, public - 6

Sources: 1. USDA Forest Service. (2020). Forest Inventory and Analysis National Program (link). 2. Maine Forest Service. (2018). 2017 Stumpage Price Report (link);
3. University of Maine. (2020). Maine Mill Database (link); 4. Maine Revenue Service. (2018). 2017 Municipal Valuation Return Statistical Summary (link); 5. U.S.
Geological Survey (2017). National Transportation Dataset. January 1, 2017 version (link); 6. Maine Office of Geographic Information Systems (2019). Maine
Conserved Lands. Augusta ME, Maine GIS Data Catalog (link).
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Fig. A.1. Trends in total aboveground biomass (AGB; t hal) for key Maine forest species simulated under Baseline, RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5
climate scenarios.
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Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecolecon.2023.107979.
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