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A B S T R A C T   

Shallow groundwater resources overlaying deep saline formations used in carbon storage applications are sub
jected to a potential contamination threat by CO2/brine leakage via natural or anthropogenically-induced 
conductive pathways in the confining caprock. Identifying the leakage source location and rate is critical for 
developing remediation plans and designing corrective actions. Owing to limited information about the flow and 
transport characteristics of deep regimes and high cost of obtaining data on their response to CO2 injection 
operation, estimating accurate source settings (i.e., location and rate) can be extremely challenging. Under such 
conditions, Bayesian inverse frameworks become useful tools to help identify potential leakage patterns. This 
study tests and validates an ensemble-based data-assimilation approach that reduces the uncertainty in the prior 
knowledge about source settings through conditioning forward transport models using relatively inexpensive 
easy-to-acquire shallow zone data. The approach incorporates the newly developed ensemble smoother tool in 
the inversion code “PEST++” with the transport code “FEFLOW” to perform history matching and uncertainty 
analysis. A novel parameterization method that allows the disposition of potential source was used to search the 
leakage location during calibration process. In the absence of field data, the approach was validated using 
experimental data generated in ~8 m long soil tank simulating leakage from storage zone migrating to the 
shallow aquifer. The results show that source location uncertainty can be reasonably reduced using shallow zone 
data collected from near-surface aquifers. However, more prior information about the system and deeper data are 
essential to estimate a practical probability range for the leakage rate.   

1. Introduction 

CO2 concentrations in the atmosphere have crossed a new climate- 
change threshold in 2023 by reaching +419 ppm (SIO, 2023), which 
adversely contributes to the global warming of the earth (Ajayi et al., 
2019; Celia et al., 2015). It has been estimated that 440 ± 20 gigatons of 
carbon (1015 gs) were emitted as CO2 to the atmosphere from 1850 to 
2018 due to fossil fuel burning (Friedlingstein et al., 2019). Carbon 
geologic sequestration (CGS) has been recognized as one of the prom
ising strategies that can reduce CO2 loadings to the air while main
taining the use of fossil fuels as a main source of energy (IPCC, 2005; 
Lackner, 2003; Bachu, 2003; U.S. DOE, 2015; Looney, 2020). CGS 
technology involves capturing the CO2 at the source (e.g., power plants) 
and then injecting it into deep geological formations under high pres
sure. Deep saline formations represent ideal CO2 repositories among all 

geological options because of their abundance and enormous storage 
capacity (Grobe et al., 2009). CO2 injection pressure poses a leakage risk 
from natural or induced conductive pathways (i.e., faults or fractures) in 
the confining caprock, which threatens the water quality in the shallow 
aquifers that are used as potable resources (Gasda et al., 2004; Rutqvist 
et al., 2007; 2008; Celia et al., 2011). 

Identifying the leakage source location and rate is essential for 
effective planning, designing and implementation of corrective actions 
and remediation measures (Jung et al., 2013). Various approaches have 
been discussed in the literature to characterize the contaminant source 
settings through optimization, analytical, direct, probabilistic, and in
verse methods (Atmadja and Bagtzoglou, 2001). Of particular interest to 
this study are the approaches that identify the contaminant source 
location and reproduce its release history, which can be found in Gor
elick et al. (1983), Wagner (1992), Skaggs and Kabala (1995), Dimov 
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et al. (1996), Neupauer and Wilson (1999; 2001; 2002), Mahar and 
Datta (2000), Atmadja and Bagtzoglou (2001), Mahar and Datta (2001), 
Aral et al. (2001), Singh et al. (2004), Mahinthakumar and Sayeed 
(2005), Neupauer and Lin (2006), Singh and Datta (2007), and Srivas
tava and Singh (2014). The challenge with implementing any of these 
methods to characterize the deep leakage source settings in CGS projects 
is the scarcity and low accuracy of available prior information about the 
geological and transport properties of the system. These conditions 
make most of the modeling parameters and boundary conditions (BCs) 
uncertain, which exponentially enlarge the inverse problem dimensions, 
hindering the applicability of certain Bayesian inverse frameworks due 
to scalability issues (Knowling et al., 2019; Wu et al., 2020; Omagbon 
et al., 2021; Kugler et al., 2022). In the same context, Milnes and Per
rochet (2007) emphasized the necessity of acquiring detailed informa
tion about the velocity and transport parameters of the system as well as 
accurate BCs to reasonably estimate the contaminate source settings 
using such classical optimization approaches, which can be practically 
infeasible in the case of CGS sites. 

For CGS applications, different monitoring techniques have been 
developed and applied to detect any anomaly in the pressure and water 
quality in the shallow and deep overlying formations that indicate CO2/ 
brine leakage event (Ajayi et al., 2019; Vermeul et al., 2016; NETL, 
2017). Due to cost and safety constraints, while a comparatively large 
number of monitoring wells are usually available in the shallow aquifer, 
a limited number of sensors can be placed in the deep overlying for
mations (Nordbotten et al., 2004; Tsang et al., 2008; Hovorka et al., 
2013; Vermeul et al., 2016). Therefore, an approach that can appro
priately and rigorously utilize the available shallow data in CGS sites to 
reduce the uncertainty in the system properties and identify the leakage 
source location and rate is needed for developing remediation and 
mitigation plans in case a leakage event occurs. This approach should 
also be able to deal with both uncertainties in field-data and prior in
formation about the hydraulic and structural configuration of the deep 
formations (e.g., heterogeneity of the storage zone permeability and 
caprock-fracture structure). 

Lately, researchers have started to use the technique of ensemble 
smoothing in the history matching of contamination data and source 
identification due to its scalability and efficiency in handling high 
dimensional parameter spaces of real-world class models (Todaro et al., 
2021; LIU et al., 2021; Jiang et al., 2022; Xu et al., 2022; Zheng et al., 
2022; Chen et al., 2022). White (2018) incorporated the method of 
ensemble smoothing in PEST++ (i.e., PESTPP-IES) to enable the quan
tification of uncertainty in calibrated model parameters and predicted 
system behaviors while maintaining a reasonable computational effort 
(White et al., 2020). PESTPP-IES tool was recently applied to address 
different groundwater problems associated with a considerable margin 
of uncertainty in available information, such as evaluating the risk of 
groundwater contamination by conventional gas development (Rassam 
et al., 2022), delineating the probabilistic recharge areas of priority 
water-supply wells (Fienen et al., 2022), and quantifying the uncertainty 
in the predicted production-pressures and temperatures of 
high-enthalpy geothermal reservoirs (Bjarkason et al., 2020). 

A few synthetic-data-based studies that utilized different data 
assimilation techniques to identify and evaluate CO2/brine leakage risk 
were found in literature. González-Nicolás et al. (2015) used the single 
iteration ensemble smoother (SIES) and restart ensemble Kalman filter 
techniques with pressure data, collected from the caprock top surface, to 
locate permeable conductive pathways. The authors attributed the poor 
performance of the SIES to the fact that the code adjusts the parameter 
ensemble in a single comprehensive data assimilation step, which does 
not allow the parameter ensemble to evolve gradually over multiple 
iterations. Moreover, the authors pointed out the challenges of assimi
lating data to a non-gaussian permeability field that represent caprock 
discontinuities. Cameron et al. (2016) incorporated a particle swarm 
optimization tool with above-zone pressure data to estimate the size and 
location of CO2 leaky pathways. Sun and Durlofsky (2019) applied a 

data-space inversion method to predict the CO2 plume location within 
the storage unit using pressure and CO2 saturation data. Ma et al. (2019) 
also used pressure and CO2 saturation data but with time-lapse seismic 
data in an ensemble Kalman filter inversion framework to estimate the 
storage formation hydraulic properties and predict CO2 migration. 
Tadjer A. and Bratvold R. B. (2021) combined a Bayesian evidential 
learning protocol with data-space inversion to reduce uncertainty in the 
predicted CO2 mass in the storage formation and its corresponding 
leakage risk using CO2 saturation data. 

This study aims to test and evaluate the efficacy of using PESTPP-IES 
as a tool for characterizing the source settings of brine leakage from CO2 
repositories using easily-available, comparatively inexpensive shallow 
data only. Source identification comprises determining the most prob
able range of leakage location in the caprock and leakage rate that are 
both essential for remediation studies. In related and similar studies, 
where field data was not available (Keating et al. 2010) and synthetic 
data representation of leakage process can be questionable for such 
testing and validation, researchers used intermediate scale test systems 
to generate high-resolution experimental data (Luyun Jr et al., 2011; 
Trevisan et al., 2017; Agartan 2015; Askar et al., 2021a). In this study, 
we applied the same method of using data produced in a lab experiment, 
conducted in a soil tank mimicking brine leakage from a CO2 storage 
formation (Askar et al., 2021a). The brine migration in the tank was 
numerically simulated using a flow and transport model developed 
using the finite element transport code of FEFLOW (Diersch, 2014), 
which was then utilized as a forward base-model under PESTPP-IES for 
history matching and uncertainty analysis (UA). The testing and vali
dation analysis included multiple scenarios for both system information 
uncertainty (i.e., hydraulic, and structural settings of the storage zone 
and fractured caprock) and spatial data resolution (i.e., shallow, and 
relatively deep data). 

2. Methods and approaches 

This section presents a brief description of the experimental system 
where data was generated. In addition, the forward model setup, 
parameterization, data assimilation, and UA methods, as well as testing- 
scenarios are discussed. 

2.1. Experimental data 

Data used in this study is a subset of a dataset generated by Askar 
et al. (2021a) using an ~8 m long soil tank, where brine leakage 
migration from a storage unit (Zone 1) to a shallow aquifer (Zone 3) 
across multiple intermediate layers (Zone 2) was simulated (Fig. 1). A 
thick plexiglass sheet, with six openings, was placed to separate Zones 1 
and 2 representing the fractured caprock. Askar et al. (2021a) used a 
horizontal soil tank to simulate the vertical plume migration in the field, 
as it was not feasible to set up a vertical tank in the laboratory. In this 
test configuration, to minimize the density contrast between the leakage 
plume and the background water, thus eliminating any potential 
density-driven flow, a low-concentration NaBr solution was used as a 
brine surrogate. The NaBr tracer was introduced to the system through 
the lowest injection port in the tank (marked by a red circle in Fig. 1). 
The tank was heterogeneously packed following specific architectures of 
designed correlated random fields of sand permeability. More infor
mation about the experiment conceptualization, tank con
struction/assembly and system design can be found in Askar et al. 
(2021a). 

In the experiment, four different boundary conditions (BCs) were 
assigned at the top and bottom boundaries of both ends of the tank to 
produce the required flow-field across the three zones; constant-head 
and no-flow BCs were assigned to the top and bottom ends of Zone 1, 
respectively. While constant-head and constant-flux BCs were pre
scribed for the top and bottom ends of Zone 3, respectively. A no-flow BC 
was used with the outlet of Zone 1 to represent a screen that was clogged 
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by fine particles and rust during the experiment (Askar et al., 2021a). 
Those BCs generated a flow-field that included relatively vertical flows 
in Zones 1 and 3 and horizontal flow across Zone 2. 

The subset of experimental data used in this study comprised 
timeseries of hydraulic heads and plume concentrations, collected from 
30 monuments and 205 sampling ports in the tank, respectively (ma
nometers and sampling ports are respectively marked by blue-crosses 
and red-dots in Fig. 1). As the experiment was running under steady- 
state flow conditions (Askar et al., 2021a), the twice-a-day collected 
head readings from each manometer were almost constant, thus average 
values over time were used to represent the system hydraulic head at 
each manometer location during the experiment. 

On a different note, the aqueous samples were not taken on a 
constant-interval basis, but rather when the dyed tracer was seen to 
approach a septa port location using the transparent side of the tank 
(Askar et al., 2021a). Such sampling strategy allowed for developing 
smooth breakthrough curves of NaBr at each port location. Approxi
mately a period of 190 h was required to run the experiment and develop 
such dataset. It should be noted that the data was divided into two 
groups based on their locations; shallow data points in Zone 3 and 
relatively-deep data points in the shallow part of Zone 2 (Fig. 1), to 
investigate the sensitivity of source identification results to data 
location. 

2.2. Base-Model setup 

The model described herein is referred to as the “base-model”, which 
can be seen as a numerical testbed for different uncertainty scenarios in 
the prior knowledge of the system so that we can evaluate the efficacy of 
source identification using the proposed method under various degrees 
of field data scarcity and lack of information. 

A 2D base-model (with steady-state flow and transient transport 
conditions) was developed using FEFLOW to simulate the brine migra
tion across the experimental tank and to underlie PESTPP-IES as a for
ward model during history-matching and UA. The model domain was 
spatially discretized using 134.5 K elements with an average area of 
approximately 0.37 ± 0.32 cm2 to cover the full dimensions of the tank. 
In the source vicinity, the model mesh was significantly refined to 
reduce the grid-Péclet number and thus ensure low numerical dispersion 
(smallest element size was about 1.24E-04 cm2). Moreover, such high- 
resolution of spatial discretization at the source area allows for high 
precision in source location identification using the proposed approach. 

The base-model space discretization, including mesh refinements, 

was carefully implemented to maintain a reasonable run time of the 
transient model, hence enabling the formulation of a highly parame
terized inverse problem that is necessary for the UA analysis. Moreover, 
the predictor-corrector time integrator algorithm, introduced by Gresho 
et al. (1979) and improved by Bixler (1989), was used to implement a 
reasonably high-resolution of time discretization, particularly in early 
simulation times, while maintaining a small total run time for the model 
(i.e., ~2.2 mins). Additional time steps were added to the model to 
acquire the simulation results at the recorded times of head and con
centration data. 

Similar BCs to those applied in the experiment were prescribed in the 
base-model using Dirichlet and Neuman BC types with values shown in 
Fig. 2. The sand packing configurations of the tank’s three zones were 
explicitly represented in the base-model. The initial hydraulic and 
transport properties (i.e., hydraulic conductivity (K), porosity, and dis
persivity) of the sand media were defined in the base-model using the 
calibrated values presented by Askar et al. (2021a). It is important to 
emphasize that such initial values have been changed according to the 
uncertainty scenario under study. For example, to address a scenario 
where limited knowledge about the permeability field of the storage 
formation is available, Zone 1 in the model was re-parameterized using 
pilot-points (pp) with initial Ks based on column-scale experiments for 
the sand types used in Zone 1 (i.e., non-calibrated values). 

2.3. Source identification approach 

The following steps were adapted to characterize the contamination 
source (i.e., location and rate): (1) PESTPP-IES was connected to the 
“base-model” via standard PEST-style model-interface files, (2) prior 
probability density functions (PDFs) were defined for model parameters 
pertained to each uncertainty scenario, (3) a set of equally-likely re
alizations (i.e., prior ensemble) were generated by PESTPP-IES by 
randomly sampling the defined PDFs, and (4) finally, PESTPP-IES iter
atively modifies the ensemble of parameter realizations through history 
matching using the ensemble smoothing technique to produce a poste
rior parameter ensemble. By that, the most probable range of source 
location and leakage rate (i.e., narrowest range) can be statistically 
estimated simultaneously with other (uncertain) model parameters, so 
that any non-identifiabilities/non-uniqueness between the estimated 
source settings and other uncertain model parameters can be rigorously 
represented. It should be noted that the prior PDFs of all model pa
rameters were described using a gaussian distribution with a standard 
deviation determined by dividing the distance between the parameters’ 

Fig. 1. Schematic demonstrating the location of experimental data (red dots) as well as the experiment setup, including the packing heterogeneity and tank 
instrumentation, used to generate this data (modified after Askar et al. (2021b)). Note, the flow occurs from right to left. 
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upper and lower bounds by four (i.e., 95% confidence interval). The 
theory underpinning PESTPP-IES process can be found in White (2018) 
and White et al. (2020). 

For this analysis, different modeling workflow tools were incorpo
rated, including PESTPP-IES, pyEMU and FEFLOW-IFM to develop an 
automated and reproducible workflow that parameterizes the base- 
model according to the uncertainty scenario to be addressed, then run 
PESTPP-IES and finally, plot the results. pyEMU, a Python package that 
enables defining the inputs, running, and postprocessing all PEST++

uncertainty analyses (White et al., 2016), was used to retrieve and plot 
the recorded model results of interest from the PESTPP-IES output files. 
FEFLOW-IFM, a Python programming Interface for FEFLOW, was used 
to facilitate model parameterization under each uncertainty scenario, 
run the model under PESTPP-IES and retrieve model results. 

2.4. Uncertainty scenarios and data-availability cases 

Multiple uncertainty scenarios were developed to examine the 
capability of available observation data to appropriately characterize 
source settings under different parameterization scenarios, where each 
parameterization scenario represents a possible inverse problem design 
regarding what model inputs are treated as “uncertain”. Testing 
different parameterization scenarios enabled us to reasonably identify 
the most critical information related to uncertain model inputs needed 
to characterize the source. Table 1 presents eight uncertainty scenarios 
developed for this analysis to test the influence of various sources of 
model input uncertainty on the resulting ability to resolve the source 
settings in a Bayesian framework. It should be noted that the 8th sce
nario represents the ideal case of having complete knowledge about the 
system, which was treated as a reference scenario for evaluating the 
results from the rest. For all parameterization scenarios, the injection 
source location and rate were treated as “uncertain” using the same prior 
parameter. Model inputs that were excluded from a given scenario were 
held constant at the calibrated values described in Askar et al. (2021a). 

In addition to the parameterization scenarios, two distinct calibra
tion datasets, containing observations from different distances from the 
source were used to test the sensitivity of source identification accuracy 
to the location of available data. The first tested dataset, referred to here 
as “shallow data” includes concentration measurements collected from 

Zone 3 only (representing the easily available data from the near-surface 
aquifers in the field, which can typically be collected in high spatial 
resolution). While the second tested dataset, referred to here as “rela
tively-deep data” includes deeper concentration measurements 
collected from the shallow part of Zone 2. This dataset represents the 
collected data using comparatively deep sensors that may exist in 
shallow overlying formations. Two data-availability cases were evalu
ated in this study, the first included the shallow dataset only, while the 
second included both shallow and relatively-deep datasets. It is worth 
mentioning that both cases included head measurements from the three 
zones in the tank (i.e., across the entire system depth), as the latest 
advances in monitoring technologies and geophysical techniques allow 
for reasonably mapping the pressure field inside and over the CO2 
storage formation (U.S. EPA, 2013; Zhou et al., 2016; NETL, 2017; 
Mortezaei et al., 2018). 

2.5. Parameterization and prior definition 

Various degrees of knowledge about aquifer properties were 
assumed for the shallow (Zone 3) and deep formations (Zone 2 and 1). 
Full knowledge about the hydraulic properties and heterogeneity ar
chitecture of Zone 3 was assumed known to focus the data-assimilation 
process and fully utilize the information content of the data towards 
characterizing the source settings instead of calibrating Zone 3 param
eters/properties that are not among our interest in this analysis. 
Particularly that shallow aquifers (Zone 3) can be characterized sepa
rately (away from this analysis) with reasonable cost using numerous 
investigation techniques that cannot be applied to deep units (Zones 1 
and 2). In addition, the shallow aquifer (Zone 3), where the contami
nation plume will be first detected, will be subjected to a rigorous regime 
of investigation and monitoring campaigns for local remediation-related 
objectives, which will provide detailed information about its hydraulic 
and transport properties that can be effectively utilized in source iden
tification analysis. However, for Zones 1 and 2, only some soft data (e.g., 
geophysical surveys) describing the heterogeneity architecture of their 
permeability field was assumed to be known. 

Different techniques and scales of parameterization were adapted to 
represent model parameters under each tested uncertainty scenario to
wards a holistic and more representative inclusion of model input un
certainty with the Bayesian inverse problem. Table 2 presents the initial 
values, lower/upper bounds, and the used parameterization technique 
with the considered adjustable parameters in each uncertainty scenario. 

The uncertainty in the storage formation flow gradient and perme
ability field was represented in the inverse problem by allowing the 
constant head BC and K-field of Zone 1 to vary within the bounds pre
sented in Table 2. The BC nodes of Zone 1 were represented in the in
verse problem using a single constant parameter, while the K-field of 
Zone 1 was represented using 77 spatially distributed pilot points 
(Fig. 3). Such pilot points assign the K values to mesh elements using 
kriging interpolation based on a predefined exponential covariance. The 
covariance parameters (i.e., range = 11.2 cm and sill =1.1) and 

Fig. 2. Base-model setup including hydraulic properties, initial and boundary conditions.  

Table 1 
Tested uncertainty scenarios.  

Scenario # Uncertain model inputs 

1 Storage zone flow field/gradient + Source settings 
2 Storage zone permeability field + Source settings 
3 Caprock fracture settings + Source settings 
4 Overlaying formations’ permeabilities + Source settings 
5 Overlaying formations’ porosities + Source settings 
6 Model dispersivity + Source settings 
7 All above model inputs + Source settings 
8 Source settings only  
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anisotropy structure of the actual heterogeneity in Zone 1 were assumed 
to be known, as in the field, feasible geophysical techniques can be used 
to estimate these statistical parameters (Yu et al., 2008; Nalonnil and 
Marion, 2012). The bounds of the K-field pilot points were determined 
based on the maximum and minimum K values resulted from 
column-scale tests for the packed types of sand in Zone 1. The initial 
values of the K-field pilot points were set equal to the column-scale 
estimated K for the most dominant sand type in Zone 1. 

The hydraulic properties of Zone 2 (i.e., K and porosity) were 
parametrized using piecewise-constant parameter zones (Fig. 3a), as in 
the field, different seismic geophysical survey methods could be 
employed to map the overlying formations’ interfaces with acceptable 
accuracy (Zweigel et al., 2004; Torp and Gale, 2004; Hermanrud et al., 
2009). Column-scale estimated K and porosity values for the sand types 
used in Zone 2 were utilized to determine the bounding values for these 
constant parameters. It should be noted that the porosity of Zone 1 was 

Table 2 
Priori parameter summary.  

Parameter Type Count Initial 
Value4 

Lower 
Bounds 

Upper 
Bounds 

Parameterization 
method 

Uncertainty 
Scenarios1 

Notes/Comments 

Zone 1 BCE (m) 1 1.8 1.6 2 Constant parameter 1 and 7 Only the upper constant head of Zone 1 was adjustable. 
Zone 1 K-field (m/d) 77 150 5 445 Pilot points 

parameters 
2 and 7 Staggery distributed PPs with maximum spacing of 7 cm was 

implemented (Fig. 3) 
Fractures’ Ks (m/d) 6 250 1 500 Constant parameters 3 and 7 Wide range of the fracture permeabilities was given. 
Fractures’ widths 

(m) 
12 Varies2 Varies2 Varies2 Mobile/Dynamic 

parameters 
3 and 7 The y-coordinates of the six fractures’ edges were adjustable 

within the limits shown in Fig. 3. 
Zone 2 K-field (m/d) 

(Lay: 1, 5, 9, 13)3 
4 296 148 445 Constant parameters 4 and 7 The permeability of the 16 overlaying units were 

parameterized as constant zones (Fig. 3). 
Zone 2 K-field (m/d) 

(Lay.: 2, 6, 10, 
14)3 

4 152 85 219 Constant parameters 4 and 7 

Zone 2 K-field (m/d) 
(Lay: 3, 7, 11, 15)3 

4 86 40 132 Constant parameters 4 and 7 

Zone 2 K-field (m/d) 
(Lay: 2, 8, 12, 16)3 

4 26 10 42 Constant parameters 4 and 7 

Zone 2 Porosity-field 
(-) 

16 0.3 0.01 0.6 Constant parameters 5 and 7 The porosity of the 16 overlaying layers were parameterized as 
constant zones (Fig. 3) 

Long. and Trans 
Dispersivity (m) 

2 5.05E-04 1.00E-05 1.00E-03 Constant parameters 6 and 7 Constant longitudinal and transversal dispersivities for the 
whole system were assumed 

Source location (m) 1 1 0.65 1.53 Mobile/Dynamic 
parameters 

1 to 8 Only the y-coordinate of the source location was set adjustable, 
while the x-coordinate was calculated using the equation of x=- 
y + 1.052. 

Leakage/Injection 
Rate (mL/min) 

1 7.5 6 10 Constant parameter 1 to 8 Leakage rate was applied to the selected mesh elements by the 
source location parameter  

1 Scenarios are described in Section 2.4 
2 Fracture edges’ bounds are presented in Fig. 3c 
3 Lay stands for layer, and Zone 2 layers are presented in Fig. 3a. 
4 For all parameters except Zone 1 K-field, the initial values were derived by calculating the mean between the upper and lower limits. 

Fig. 3. The various parametrization schemes used with the different zones and features of the model for history matching process and uncertainty analysis. (a) The 
16 constant-zone parameters used for representing Zone 2 layers. (b) The Mobile/Dynamic constant zone used for source searching. (c) The expandable constant 
zones used for parameterizing the caprock openings/fractures. 
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not parameterized as it was outside the transport domain of the NaBr 
migration. 

The fractured caprock (i.e., openings width and K) and source set
tings (i.e., injection/leakage location and rate) were parametrized in the 
inverse problem using a novel approach referred to herein as the “Mo
bile/Dynamic Constant Zones” (MDCZs). Such MDCZs were used to 
introduce flexibility in the constant zone size and position across the 
model domain or within specific areas. For example, the fracture widths 
were parameterized using six expandable and mobile rectangular zones 
that assign constant high K values (i.e., K-fractures) to the caprock mesh- 
elements located within each of these zones. The coordinates of the 
upper and lower edges of these rectangular zones were set as parameters 
to be varied by PESTPP-IES within the limits presented in Fig. 3c and 
Table 2. By that, the caprock fracture sizes and locations can be counted 
as adjustable parameters in the inverse problem during history- 
matching. 

The same technique was adapted to parametrize the source settings 
(i.e., leakage location and rate), where a circular zone with a radius of 
0.3 cm was allowed to roam the area downstream the injection point and 
then select a set of mesh elements to assign constant mass flux BC to 
represent tracer injection (i.e., leakage source) (Fig. 3b). The co
ordinates of the circular zone center (i.e., x and y) were determined by a 
linear function (i.e., x=-y + 1.052), where the y-coordinate was the only 
adjustable parameter by PESTPP-IES. Notably, the source size (the cir
cular zone radius) was assumed known since the size of the potentially 
leaking fractures in the caprock can be predicted using geomechanical 
modeling (Feng et al., 2018). Collectively, the parameterization of both 
caprock fractures and source settings work together to represent a wide 
range of source-leakage configurations. 

As discussed in Section 2.4, complete knowledge about the shallow 
aquifer hydraulic properties and sand heterogeneity was assumed. Thus, 
Zone 3 was not parameterized for the present UA and the calibrated 
parameters of Askar et al. 2021a were fixed for this zone in the UA. 
Finally, two constant zones were used to represent the longitudinal and 
transversal dispersivities for the whole system. By that, a total of 132 
parameters were included in the UA performed in this study. 

2.6. Data assimilation and observations 

The ultimate goal of the conducted analysis herein is to reduce the 
uncertainty in our prior knowledge about leakage/injection source and 
rate (denoted as leakage source and rate henceforth) through data 
assimilation process (Doherty and Moore, 2019). To achieve this goal, a 
total of 1315 concentration data points and 30 head records from the 
tank experiment were used as observations for history matching. A 
subjective likelihood function was applied through assigning observa
tion weights that first guarantee balanced contributions from all data 
types towards the objective function and second emphasize the impor
tance of fitting the zero concentration points located outside the plume 
body. These zero concentration data points were given weights three 
times larger than of those assigned to the rest of the concentration data. 
By that, we focus the data assimilation process on preferentially repro
ducing the plume migration pathway over precisely predicting the inner 
concentration distribution of the plume in attempt to reduce the un
certainty in the leakage source location and rate predictions (Doherty 
and Welter, 2010). 

2.7. Implementation and evaluation 

The source identification approach outlined in Section 2.3 was 
implemented under an ensemble size of 500 realizations, which was 
considered reasonable given the available computational capacity at the 
time of conducting this study. The prior parameter ensemble was locally 
evaluated using PESTPP-IES through running a python script, based on 
FEFLOW-IFM that takes each realization parameters and map them to 
the base-model, run the simulation, and post-process the results. 

Minimum of four PESTPP-IES iterations, including the base run (i.e., 
zero-iteration) were performed for data-assimilation process and 
history-matching prior parameters to observed data. 

Since the problem under study does not include time-dependent 
parameters (e.g., extraction rates and recharge), the automatic adap
tive localization, encoded in PESTPP-IES (White et al., 2020; Luo and 
Bhakta, 2020), was considered adequate to remove any statistically 
spurious correlations between parameters and observations. 

It should also be noted that PESTPP-IES was set up to iteratively omit 
any non-behavioral realizations from the data-assimilation analysis; 
non-behavioral realizations can be defined as the ones that result in a phi 
value (objective function output) that exceeds the ensemble mean-phi 
plus two standard divisions (STDs). Moreover, the observations that 
showed statistically significant conflict with model outputs (i.e., their 
residuals were larger than three STDs from the mean of all simulated 
values across the prior simulated ensemble for a given observation), 
were removed from the data-assimilation process as well. Finally, the 
parameter realizations that took larger than twofold of the average run 
time of the entire ensemble were stopped and treated as failed runs in 
history-matching. Readers are referred to White et al. (2020) for more 
information about the available options in PESTPP-IES to setup a well 
constrained high-dimensional inverse problem. 

The history-matching results were evaluated by calculating the 
Average Normalized Root Mean Square (ANRMS) at every observation 
point and then plot the results over the tank domain for comparison. The 
ANRMS was estimated by determining the root mean square error 
(RMSE) of the simulated data at each observation point and then 
normalize it on the maximum observed value of this type of observation 
(e.g., concentration and head data) and finally take the average of the 
normalized RMSEs over the ensemble size. The RMSE was normalized so 
that the concentration and head data are comparable in the same plot in 
terms of data-fitting goodness. Equation 1 presents the components of 
the calculated ANRMS for each observation point used in this analysis. 

ANRMS =
∑nT

1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑nR
1

(Sm−So)2

nR

√

Smax

/

nT (1)  

where Sm, So and Smax are respectively the simulated, observed, and 
maximum values of the system state variable of interest (e.g., head and 
concentration). While nR and nT are the number of realizations and 
observed data points over time at each monitoring port. 

3. Results and discussion 

In this section, the results of history-matching and source identifi
cation under both cases of data availability (i.e., shallow, and relatively- 
deep datasets) are presented and discussed. 

3.1. History matching 

Data-assimilation leverage and data-fit are presented graphically by 
plotting both the phi trajectories for every ensemble member after 4 
iterations of data assimilation (besides the base run) and the ANRMS for 
all observation points under each uncertainty scenario (Figs. 4 and 5). It 
should be noted that these plots were developed and discussed for the 
shallow-data case only, as this case contains the least amount of infor
mation and yields the largest posterior uncertainties, thus representing 
the worst conditions for data-availability. 

Fig. 4 shows that shallow observed data can condition model pa
rameters and reduce the prior ensemble phi several orders of magnitude 
under all uncertainty scenarios except scenarios 2 and 8. The results of 
scenario 8 suggest that treating source settings as the only source of 
model-input uncertainty (i.e., leakage location and rate) does not pro
vide enough degrees of freedom to fit shallow observed concentration 
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data, evidence of the importance of considering source, property, and BC 
uncertainty simultaneously. As varying the source settings may alter the 
overall migration pathway and plume shape, as discussed by Askar et al. 
(2021a), but cannot change the inner concentration distribution of the 
plume in the shallow aquifer. 

By incorporating the K-field of Zone 1 to the parameterization 
scheme with source settings (Scenario 2), a markedly less reduction in 
the phi was obtained. This can be attributed to two main factors. First, 
the counter-interaction between the effects of changing Zone 1 K-field 
and source settings, which basically comes from the great effect that 
Zone 1 K-field can have on the local flow field at the source vicinity 
(Askar et al., 2021a). For example, placing a low-permeability area in 
Zone 1 below the fractures/openings repeals the effect of increasing the 
leakage rate. Second, the significant nonlinearity imposed by Zone 1 
K-field in the parameters-data relationship; the sensitive portion of 
K-field towards data continuously varies with source location adjust
ment, which affects the data-assimilation efficiency. For instance, when 
PESTPP-IES moves the source location to the top part of the tank, the 
most sensitive portion of the K-field becomes the upper section of Zone 1 

and vice versa. In contrast, adding Zone 1 BCE to the parameterization 
scheme (Scenario 1) enhances the phi reduction (Fig. 4), as it does not 
introduce the same nonlinearity as the Zone-1 K-field. 

The maximum reduction in phi was found under scenarios 3, 5, and 
6, which included the fracture/opening settings, Zone 2 porosity, and 
entire model dispersivity, respectively. The reasonable data-fitting 
resulted under these scenarios was due to the significant effect of the 
considered parameters on plume propagation velocity (porosity and 
fracture settings) and concentration distribution (dispersivity and frac
ture settings), which both are essential to fully assimilate the informa
tion in the shallow-aquifer (Zone 3). However, when all parameters 
were included in the calibration process, a less reduction in phi was 
obtained because of the complexity added to the solution space by the 
high nonlinearity introduced to the inverse problem in this scenario and 
the counter-interaction between the effects of some parameters, as dis
cussed earlier. 

The effect of limited phi reduction in scenarios 2 and 8 can also be 
seen in Fig. 5, where the ANRMS of concentration data (marked by 
circles) was considerably high for most monitoring locations in these 

Fig. 4. The objective function results (phi) for the predictive ensemble after 4 iterations using the shallow dataset (purple dots represent the start and end of a 
single iteration). 
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scenarios compared to others. However, head data (marked by crosses) 
was reasonably fitted under all scenarios. This suggests the high sensi
tivity of head data to the source settings and Zone 1 K-field compared to 
concentration data due to the proximity of deep head data to the source 
vicinity and deep formation (Zone 1), which is in good agreement with 
the findings of Askar et al. (2021a; 2021b). Fig. 5 also shows that the 
zero concentration points located at the shallow aquifer entry (Zone 3 
deep section) were reasonably fitted in all scenarios due to the large 
weight given to them, which helps in reproducing the plume migration 
pathway and thus finding an improved simulated location of the 
leakage. 

3.2. Source characterization 

The accuracy of source identification and leakage rate prediction was 
evaluated by comparing the posterior distributions of these parameters 
with their true values (e.g. source y-coordinate and injection rate). 
Figs. 6 and 7, respectively show the prior (gray bars) and posterior 
(purple bars) histograms of the predictions of interest in this analysis (i. 
e., source location and leakage rate) relative to the true values measured 

during the experiment. In general terms, all scenarios revealed a 
reasonable reduction in the source location uncertainty and almost zero 
change in the prior uncertainty of the leakage rate, with some scenarios 
showing biased estimates of the leakage rate. 

Results demonstrate that shallow data was able to reduce the un
certainty associated with the prior knowledge of source location by 
more than ~70% under all scenarios while maintaining a reasonable 
bracketing of the true y-coordinate (i.e., 0.803 m). Moreover, less than 
10% error was obtained in the mean of estimated source locations across 
the posterior ensemble, indicating a high sensitivity of this parameter to 
the shallow data used in this analysis. The largest uncertainty reduction 
and smallest error in the posterior ensemble mean of leakage location 
were found under scenarios number 6, 5, 4, and 3 reflecting the impact 
of history matching on source identification. This suggests the impor
tance of including system dispersivity, fracture settings, overlaying 
formations’ porosities and permeabilities in the inverse problem for 
better source characterization outcomes. 

On a different note, source characterization results show that with 
the relatively poor fitting of the data under scenarios 2 and 8 (as dis
cussed above), PESTPP-IES could still reasonably narrow the possible 

Fig. 5. The average normalized root mean square (ANRMS) of observed data residuals at each monitoring port in the tank after 4 iterations using the shallow dataset.  
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range of leakage source locations. Therefore, a high degree of data 
fitting may not be needed for source identification, which can signifi
cantly reduce the computational burden of the history-matching pro
cess. It should also be noted that under extreme uncertainty conditions 
in model parameters (scenario 7), PESTPP-IES was still capable of 
identifying a fair accurate range of possible source location. 

As evidenced by the parameterization scenarios tested, the degree of 
biasness in the leakage rate estimates can be attributed to inappropri
ately reducing or removing otherwise uncertain model inputs from the 
data assimilation process. When uncertain parameters are removed from 
the data assimilation process, the information contained in the obser
vation data that would have conditioned these missing parameters is 
now erroneously used to condition the remaining adjustable parameters. 
This erroneous adjustment is referred to in the literature as “parameter 
compensation” (Clark and Vrugt, 2006; White et al., 2014). Note that 
this parameter compensation cannot be detected in more traditional 
inverse problem settings, where the true value of the parameters is not 
known. 

Regarding leakage rate characterization, either a very limited un
certainty reduction or an erroneous estimate was obtained. In scenarios 

3, 5 and 6, where a reduction of more than 70% was obtained in the 
prior uncertainty, an error of more than 20% in the mean of estimated 
leakage rates across the posterior ensemble was resulted. While for all 
other scenarios, a significantly small uncertainty reduction, less than 
20%, was achieved, reflecting a limited informativity of the shallow data 
to the deep leakage rate parameter. Hence, we decided to extend this 
analysis and investigate the impact of data proximity to the source on 
the identification accuracy of the leakage location and rate. Fig. 8 pre
sents the source characterization results for scenarios 7 and 8 after 
adding the relatively-deep dataset (Fig. 1) to the calibration targets used 
in the previous UA and history matching (i.e., shallow data). Such 
analysis represents the testing of the 2nd data-availability case described 
in Section 2.4. 

Fig. 8 shows a slight enhancement in source location identification 
under scenario 7 (78% instead of 74% uncertain reduction) by incor
porating the relatively-deep data in history matching. However, an extra 
20% of reduction in the source location uncertainty was obtained under 
scenario 8 compared to the previous shallow-data-only based analysis. 
With these improvements, the source location estimates across the 
posterior ensemble in both scenarios 7 and 8 were still reasonably 

Fig. 6. The prior and posterior (post) parameter ensemble of source location, after 4 iterations using shallow dataset, with the true value represented by the red 
dashed line. All scenarios include uncertainty in source settings. 
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bracketing the true value with an error less than 7% in the ensemble 
mean. For the leakage rate, the additional deep data did not provide 
better uncertainty reduction for scenario 7 but at least it was able to 
mitigate the parameter compensation and thus not providing an erro
neous estimate of the leakage rate range. This indicates how hard it is to 
predict the leakage rate under field conditions where many aspects of 
the system are uncertain, which was confirmed by the results of scenario 
8, where a significant decrease in the uncertainty of the leakage rate was 
obtained (84% instead of 15% uncertain reduction). 

3.3. Summary discussion 

The above analysis highlighted the possibility of characterizing the 
leakage source settings, in terms of location and rate, under uncertainty 
conditions using PESTPP-IES. Relatively inexpensive shallow data was 
found adequate to identify the most probable range of leakage source 
location, even under low degree of data-fitting. However, estimating the 
leakage rate was more challenging using shallow data only and the re
sults revealed that deeper data with additional prior knowledge about 
the system properties are needed for accurate assessment of the leakage 

rate. Hence, it is recommended to use the easily available shallow data 
to obtain a rough estimate of the possible locations of the leakage and 
then perform additional targeted data collection at these locations to 
acquire data that can help accurately estimating the leakage rate. By 
that, the cost of pre-remediation investigation work will be significantly 
reduced, which can be critical for operators and environmental 
authorities. 

In field settings, multiple potential leakage sources may exist due to 
the extended size of the injection-pressure footprint (Birkholzer et al., 
2009, 2011; Cavanagh and Wildgust, 2011). To account for such con
ditions, a large number of MDCZ parameters may be needed in modeling 
analysis to search for and identify all possible leakage sources in the 
caprock that may individually or collectively provide a good match to 
the data. Such augmentation in the parameter space can significantly 
increase the ill-posedness of the inverse problem, which can affect the 
ability to uniquely identify the “true” leakage settings’ ranges. For that, 
geo-mechanical models can be incorporated in the UA process to reduce 
the solution space size through identifying the most critical zones in the 
caprock (Min et al., 2004; Rutqvist et al., 2007; 2008; Pan et al., 2013; 
Figueiredo et al., 2015; Feng et al., 2018). Several geophysical 

Fig. 7. The prior and posterior (post) parameter ensemble of leakage rate, after 4 iterations using shallow dataset, with the true value represented by the red dashed 
line. All scenarios include uncertainty in source settings. 
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techniques can also be used to find the potential sites of pressure-driven 
fractures in the top seal of CO2 storage confining layer (Ingram and 
Urai, 1999; Ligtenberg 2005; Lohr et al., 2008; Krawczyk et al., 2015; 
Ziesch et al., 2019). 

Finally, it should be pointed out that the use of the validated 
approach in this study could be extended to identify the source location 
and discharge-history of a contaminant in the shallow aquifers for ap
plications less complicated than CGS. In that case, an improved perfor
mance of PESTPP-IES can be expected due to the plenty of available data 
and better-known system properties. 

4. Conclusions 

This study explored and validated the capabilities of the inversion 
tool “PESTPP-IES” to characterize the source settings (i.e., location and 
rate) of brine leakage from CO2 storage formations under considerable 
margin of uncertainty in the system properties and limited available 
data. We basically tested the technical feasibility of using less expensive 
shallow data to condition model parameters and thus identify the 
leakage source settings. The data used in this study was generated by 
Askar et al. (2021a) using an intermediate-scale experiment conducted 
in an ~8 m long soil-tank. A base-model that reproduces the leakage 
migration in the tank was developed using FEFLOW as a process-based 
simulator within a formal data assimilation through history-matching 
performed using an iterative ensemble smoother. Besides a set of clas
sical methods used to parameterize the system hydraulic properties, a 
novel approach was developed and employed to search the leakage 
source location and incorporate uncertainty in the caprock fractur sizes. 
For that, a technique called dynamic/mobile constant-zones was applied 
to set up parameters that can change in size and move across the model 
domain to select mesh elements/nodes for either assigning mass-flux BC 
(to prescribe a leakage source) or to introduce high-permeability areas 
into the caprock layer (to represent a facture/opening). A set of 

conclusions were derived from the conducted source characterization 
analysis in this study which can be summarized as follows:  

1 Shallow data was informative enough to condition the base-model 
and reduce the prior uncertainty in source location by about 70% 
under all scenarios, highlighting the sensitivity of source location to 
near-surface, relatively inexpensive data.  

2 Characterizing the leakage rate needed deeper data with higher level 
of prior knowledge about the system properties so that more reliable 
probability ranges can be obtained.  

3 Such findings introduce the opportunity of using iterative ensemble 
smoother with shallow data to obtain a rough estimate of possible 
source locations, where extra site exploration work can be conducted 
to acquire deeper data and make reasonable prediction of the leakage 
rate.  

4 Source identification results emphasized the importance of including 
the system dispersivity, fracture geometrical settings (i.e., sizes), 
overlaying formations’ porosities and permeabilities as parameters 
in the inverse problem for better reduction in the leakage location 
uncertainty.  

5 The history-matching results demonstrated that low-to-moderate 
degree of data fitting could be sufficient to identify the leakage 
source using shallow data, which minimizes the required computa
tional resources for such analysis,  

6 Caution must be taken while selecting the parameterization scheme, 
as some parameters together can introduce complexity into the data- 
assimilation process (e.g., storage zone permeability field with 
source settings) due to their counter-interactions, 

7 The dynamic/mobile constant zones parameterization can be uti
lized to reduce the extent of the model domain, by representing the 
leakage source as a constant flux BC instead of a high-K zone in the 
cap-rock, which will significantly reduce the domain extent and thus 

Fig. 8. The prior and posterior (post) parameter ensemble of source location and leakage rate, after 4 iterations using relatively-deep dataset, with the true values 
represented by the red dashed lines. All scenarios include uncertainty in source settings. Both shallow and relatively deep datasets were used in generating 
these results. 
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the computational burden of the ensemble-based data assimilation 
process,  

8 For the possibility of multiple damage zones existing in the caprock, 
geo-mechanical models can be coupled with transport models to 
reduce the size of the solution space for better performance of the 
data assimilation. 

The authors are aware that due to the absence of field data, the 
findings of this study are based on lab-scale experimental data, which 
may make them not directly applicable to field-scale problems. How
ever, the study results still provide useful insights regarding the poten
tial applicability of the proposed approach (based on using an iterative 
ensemble smoother) to identify the leakage source settings for actual 
CGS sites. Notably, the conducted analysis in this study was not feasible 
using data either from actual or pilot CGS sites because simply such data 
is not available; there are no detected brine leakage events in any 
commercial-scale CGS site till now and well-engineered pilot sites are 
basically designed not to leak to test CO2 trapping efficacy (Keating 
et al., 2010). Moreover, relying solely on error-free synthetic data to 
validate the proposed approach can also lead to questionable findings 
due to the limitations of numerical models to capture micro/sub-grid 
processes affecting plume migrations. By that, the only option left to 
develop this study was to use intermediate-scale experiments, which 
allows us to generate field-like data under fully controlled conditions of 
the system. 

CRediT authorship contribution statement 

Ahmad H. Askar: Conceptualization, Methodology, Validation, 
Visualization, Formal analysis, Resources, Investigation, Writing – 
original draft, Writing – review & editing. Jeremy T. White: Method
ology, Investigation, Writing – review & editing. Tissa H. Ill
angasekare: Conceptualization, Methodology, Writing – review & 
editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data used in this study is publicly available and stored in the 
HydroShare digital repository https://doi.org/10.4211/hs.557dc95994 
7842eb8aaf5d5427a21be3. 

Acknowledgements 

The authors acknowledge the support of INTERA Inc. for this study, 
represented in providing the needed computational resources and 
allowing employees to conduct research work during normal working 
hours. We are also grateful for the NSF funding (Award# 1702060) that 
supported the experimental work which helped generating the data used 
in this research. Authors would like to express appreciation to DHI, USA 
for supporting this research by offering an academic license of FEFLOW. 

References 

Agartan, E., 2015. Fundamental Study On the Effects of Heterogeneity On Trapping of 
Dissolved CO2 in Deep Geological Formations Through Intermediate-Scale Testing 
and Numerical Modeling. Colorado School of mines, Golden. PhD Dissertation.  

Ajayi, T., Gomes, J.S., Bera, A., 2019. A review of CO2 storage in geological formations 
emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 16 
(5), 1–36. 

Aral, M.M., Guan, J., Maslia, M.L., 2001. Identification of contaminant source location 
and release history in aquifers. J. Hydrol. Eng. 6 (3), 225–234. 

Askar, A.H., Illangasekare, T.H., Ilie, A.M.C., 2021b. Monitoring brine leakage from deep 
geologic formations storing carbon dioxide: design framework validation using 
intermediate-scale experiment. Water Resour. Res. 57 e2021WR031005.  

Askar, A.H., et al., 2021a. Exploring the impacts of source condition uncertainties on far- 
field brine leakage plume predictions in geologic storage of CO2: integrating 
intermediate-scale laboratory testing with numerical modeling. Water Resour. Res. 
57 e2021WR029679.  

Atmadja, J., Bagtzoglou, A.C., 2001. State of the art report on mathematical methods for 
groundwater pollution source identification. Environ. Forensics 2 (3), 205–214. 

Bachu, S., 2003. Screening and ranking of sedimentary basins for sequestration of CO2 in 
geological media in response to climate change. Environ. Geol. 44 (3), 277–289. 

Birkholzer, J.T., et al., 2011. Brine flow up a well caused by pressure perturbation from 
geologic carbon sequestration: static and dynamic evaluations. Int. J. Greenhouse 
Gas Control 5 (4), 850–861. 

Birkholzer, J.T., Zhou, Q., Tsang, C.F., 2009. Large-scale impact of CO2 storage in deep 
saline aquifers: a sensitivity study on pressure response in stratified systems. Int. J. 
Greenhouse Gas Control 3 (2), 181–194. 

Bixler, N.E., 1989. An improved time integrator for finite element analysis. Commun. 
Appl. Numer. Methods 5 (2), 69–78. 

Bjarkason, E. et al., 2020. Uncertainty Quantification of Highly-Parameterized 
Geothermal Reservoir Models Using Ensemble-Based Methods. s.l., World 
Geothermal Congress (p. 1). 

Cameron, D.A., Durlofsky, L.J., Benson, S.M., 2016. Use of above-zone pressure data to 
locate and quantify leaks during carbon storage operations. Int. J. Greenhouse Gas 
Control 52, 32–43. 

Cavanagh, A., Wildgust, N., 2011. Pressurization and brine displacement issues for deep 
saline formation CO2 storage. Energy Procedia 4, 4814–4821. 

Celia, M.A., Bachu, S., Nordbotten, J.M., Bandilla, K., 2015. Status of CO2 storage in 
deep saline aquifers with emphasis on modeling approaches and practical 
simulations. Water Resour. Res. 51 (9), 6846–6892. 

Celia, M.A., et al., 2011. Field-scale application of a semi-analytical model for estimation 
of CO2 and brine leakage along old wells. Int. J. Greenhouse Gas Control 5 (2), 
257–269. 

Chen, Z., et al., 2022. Reconstructing the release history of a contaminant source with 
different precision via the ensemble smoother with multiple data assimilation. 
J. Contam. Hydrol. 21, 104115. 

Clark, M.P., Vrugt, J.A., 2006. Unraveling uncertainties in hydrologic model calibration: 
addressing the problem of compensatory parameters. Geophys. Res. Lett. 33 (6). 

Diersch, G.H.J., 2014. FEFLOW: Finite Element Modeling of flow, Mass and Heat 
Transport in Porous and Fractured Media. Springer Science & Business Media, 
Heidelberg doi, 10, 978-3.  

Dimov, I., Jaekel, U., Vereecken, H., 1996. A numerical approach for determination of 
sources in transport equations. Comput. Math. Appl. 32 (5), 31–42. 

Doherty, J., Moore, C., 2019. Decision support modeling: data assimilation, uncertainty 
quantification, and strategic abstraction. Groundwater 58 (3), 327–337. 

Doherty, J., Welter, D., 2010. A short exploration of structural noise. Water Resour. Res. 
46 (5), W05525. 

Feng, J., et al., 2018. An improved geomechanical model for the prediction of fracture 
generation and distribution in brittle reservoirs. PLoS One 13 (11), e0205958 (1:28).  

Fienen, M.N., et al., 2022. Risk-Based Wellhead Protection Decision Support: a 
Repeatable Workflow Approach. Groundwater 60 (1), 71–86. 

Figueiredo, B., Tsang, C.F., Rutqvist, J., Niemi, A., 2015. A study of changes in deep 
fractured rock permeability due to coupled hydro-mechanical effects. Int. J. Rock 
Mech. Min. Sci. 79, 70–85. 

Friedlingstein, P., et al., 2019. Global carbon budget 2019. Earth System Science Data 11 
(4), 1783–1838. 

Gasda, S.E., Bachu, S., Celia, M.A., 2004. Spatial characterization of the location of 
potentially leaky wells penetrating a geological formation in a mature sedimentary 
basin. Environ. Geol. 46 (6–7), 707–720. 
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Kugler, B., Forbes, F., Douté, S., 2022. Fast Bayesian Inversion for high dimensional 
inverse problems. Stat Comput 32 (2), 1–23. 

Lackner, K.S., 2003. A guide to CO2 sequestration. Science 300 (5626), 1677–1678. 
Ligtenberg, J.H., 2005. Detection of fluid migration pathways in seismic data: 

implications for fault seal analysis. Basin Res. 17 (1), 141–153. 
LIU, J.B., et al., 2021. Groundwater contaminant source identification based on QS- 

ILUES. J. Groundwater Sci. Eng. 9 (1), 73–82. 
Lohr, T., et al., 2008. Prediction of subseismic faults and fractures: integration of three- 

dimensional seismic data, three-dimensional retrodeformation, and well data on an 
example of deformation around an inverted fault. Am. Assoc. Pet. Geol. Bull. 92 (4), 
473–485. 

Looney, B., 2020. Statistical Review of World Energy. Edition: 69: Bp.  
Luo, X., Bhakta, T., 2020. Automatic and adaptive localization for ensemble-based 

history matching. J. Pet. Sci. Eng. 184, 106559. 
Luyun Jr, R., Momii, K., Nakagawa, K., 2011. Effects of recharge wells and flow barriers 

on seawater intrusion. Groundwater 49 (2), 239–249. 
Mahar, P.S., Datta, B., 2000. Identification of pollution sources in transient groundwater 

systems. Water Resour. Manage. 14 (3), 209–227. 
Mahar, P.S., Datta, B., 2001. Optimal identification of groundwater pollution sources and 

parameter estimation. J. Water Resour. Plann. Manage. 127 (1), 20–29. 
Mahinthakumar, G., Sayeed, M., 2005. Hybrid genetic algorithm—Local search methods 

for solving groundwater source identification inverse problems. J. Water Resour. 
Plann. Manage. 131 (1), 45–57. 

Ma, W., Jafarpour, B., Qin, J., 2019. Dynamic characterization of geologic CO2 storage 
aquifers from monitoring data with ensemble Kalman filter. Int. J. Greenhouse Gas 
Control 81, 199–215. 

Milnes, E., Perrochet, P., 2007. Simultaneous identification of a single pollution point- 
source location and contamination time under known flow field conditions. Adv 
Water Resour 30 (12), 2439–2446. 

Min, K.B., Rutqvist, J., Tsang, C.F., Jing, L., 2004. Stress-dependent permeability of 
fractured rock masses: a numerical study. Int. J. Rock Mech. Min. Sci. 41 (7), 
1191–1210. 

Mortezaei, K., Amirlatifi, A., Ghazanfari, E., Vahedifard, F., 2018. Potential CO2 leakage 
from geological storage sites: advances and challenges. Environmental Geotechnics 8 
(1), 3–27. 

Nalonnil, A., Marion, B., 2012. High-resolution reservoir monitoring using crosswell 
seismic. SPE Reservoir Eval. Eng. 15 (01), 25–30. 

NETL, 2017. BEST PRACTICES: Monitoring, Verification, and Accounting (MVA) For 
Geologic Storage Projects DOE/NETL-2017/1847. National Energy Technology 
Laboratory, Anchorage, AK.  

Neupauer, R.M., Lin, R., 2006. Identifying sources of a conservative groundwater 
contaminant using backward probabilities conditioned on measured concentrations. 
Water Resour. Res. 42 (3), W03424 (1-13).  

Neupauer, R.M., Wilson, J.L., 1999. Adjoint method for obtaining backward-in-time 
location and travel time probabilities of a conservative groundwater contaminant. 
Water Resour. Res. 35 (11), 3389–3398. 

Neupauer, R.M., Wilson, J.L., 2001. Adjoint-derived location and travel time 
probabilities for a multidimensional groundwater system. Water Resour. Res. 37 (6), 
1657–1668. 

Neupauer, R.M., Wilson, J.L., 2002. Backward probabilistic model of groundwater 
contamination in non-uniform and transient flow. Adv Water Resour 25 (7), 
733–746. 

Nordbotten, J.M., Celia, M.A., Bachu, S., 2004. Analytical solutions for leakage rates 
through abandoned wells. Water Resour. Res. 40 (4). 

Omagbon, J., et al., 2021. Case studies of predictive uncertainty quantification for 
geothermal models. Geothermics 97, 102263. 

Pan, P., Rutqvist, J., Feng, X., Yan, F., 2013. Modeling of caprock discontinuous 
fracturing during CO2 injection into a deep brine aquifer. Int. J. Greenhouse Gas 
Control 19, 559–575. 

Rassam, D., et al., 2022. Stochastic Assessment of Groundwater Contamination Risks 
From Onshore Gas Development Using Computationally Efficient Analytical and 
Numerical Transport Models. Front. Water 3, 799738. 

Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.F., 2007. Estimating maximum 
sustainable injection pressure during geological sequestration of CO2 using coupled 
fluid flow and geomechanical fault-slip analysis. Energy Convers. Manage. 48 (6), 
1798–1807. 

Rutqvist, J., Birkholzer, J.T., Tsang, C.F., 2008. Coupled reservoir–geomechanical 
analysis of the potential for tensile and shear failure associated with CO2 injection in 
multilayered reservoir–caprock systems. Int. J. Rock Mech. Min. Sci. 45 (2), 
132–143. 

Singh, R.M., Datta, B., 2007. Artificial neural network modeling for identification of 
unknown pollution sources in groundwater with partially missing concentration 
observation data. Water Resour. Manage. 21 (3), 557–572. 

Singh, R.M., Datta, B., Jain, A., 2004. Identification of unknown groundwater pollution 
sources using artificial neural networks. J. Water Resour. Plann. Manage. 130 (6), 
506–514. 

SIO, 2023. The Keeling Curve. [Online] Available at: https://keelingcurve.ucsd. 
edu/[Accessed 1 1 2023]. 

Skaggs, T., Kabala, Z., 1995. Recovering the history of a groundwater contaminant 
plume: method of quasi-reversibility. Water Resour. Res. 31 (11), 2669–2673. 

Srivastava, D., Singh, R.M., 2014. Breakthrough curves characterization and 
identification of an unknown pollution source in groundwater system using an 
artificial neural network (ANN). Environ. Forensics 15 (2), 175–189. 

Sun, W., Durlofsky, L.J., 2019. Data-space approaches for uncertainty quantification of 
CO2 plume location in geological carbon storage. Adv Water Resour 123, 234–255. 

Tadjer, A., Bratvold, R.B., 2021. Managing uncertainty in geological CO2 storage using 
Bayesian evidential learning. Energies 14 (6), 1557. 
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