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Shallow groundwater resources overlaying deep saline formations used in carbon storage applications are sub-
jected to a potential contamination threat by COg/brine leakage via natural or anthropogenically-induced
conductive pathways in the confining caprock. Identifying the leakage source location and rate is critical for
developing remediation plans and designing corrective actions. Owing to limited information about the flow and
transport characteristics of deep regimes and high cost of obtaining data on their response to CO injection
operation, estimating accurate source settings (i.e., location and rate) can be extremely challenging. Under such
conditions, Bayesian inverse frameworks become useful tools to help identify potential leakage patterns. This
study tests and validates an ensemble-based data-assimilation approach that reduces the uncertainty in the prior
knowledge about source settings through conditioning forward transport models using relatively inexpensive
easy-to-acquire shallow zone data. The approach incorporates the newly developed ensemble smoother tool in
the inversion code “PEST++" with the transport code “FEFLOW” to perform history matching and uncertainty
analysis. A novel parameterization method that allows the disposition of potential source was used to search the
leakage location during calibration process. In the absence of field data, the approach was validated using
experimental data generated in ~8 m long soil tank simulating leakage from storage zone migrating to the
shallow aquifer. The results show that source location uncertainty can be reasonably reduced using shallow zone
data collected from near-surface aquifers. However, more prior information about the system and deeper data are
essential to estimate a practical probability range for the leakage rate.

geological options because of their abundance and enormous storage
capacity (Grobe et al., 2009). CO3 injection pressure poses a leakage risk

1. Introduction

CO- concentrations in the atmosphere have crossed a new climate-
change threshold in 2023 by reaching +419 ppm (SIO, 2023), which
adversely contributes to the global warming of the earth (Ajayi et al.,
2019; Celia et al., 2015). It has been estimated that 440 + 20 gigatons of
carbon (1015 gs) were emitted as CO5 to the atmosphere from 1850 to
2018 due to fossil fuel burning (Friedlingstein et al., 2019). Carbon
geologic sequestration (CGS) has been recognized as one of the prom-
ising strategies that can reduce CO, loadings to the air while main-
taining the use of fossil fuels as a main source of energy (IPCC, 2005;
Lackner, 2003; Bachu, 2003; U.S. DOE, 2015; Looney, 2020). CGS
technology involves capturing the CO5 at the source (e.g., power plants)
and then injecting it into deep geological formations under high pres-
sure. Deep saline formations represent ideal CO, repositories among all
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from natural or induced conductive pathways (i.e., faults or fractures) in
the confining caprock, which threatens the water quality in the shallow
aquifers that are used as potable resources (Gasda et al., 2004; Rutqvist
et al., 2007; 2008; Celia et al., 2011).

Identifying the leakage source location and rate is essential for
effective planning, designing and implementation of corrective actions
and remediation measures (Jung et al., 2013). Various approaches have
been discussed in the literature to characterize the contaminant source
settings through optimization, analytical, direct, probabilistic, and in-
verse methods (Atmadja and Bagtzoglou, 2001). Of particular interest to
this study are the approaches that identify the contaminant source
location and reproduce its release history, which can be found in Gor-
elick et al. (1983), Wagner (1992), Skaggs and Kabala (1995), Dimov
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et al. (1996), Neupauer and Wilson (1999; 2001; 2002), Mahar and
Datta (2000), Atmadja and Bagtzoglou (2001), Mahar and Datta (2001),
Aral et al. (2001), Singh et al. (2004), Mahinthakumar and Sayeed
(2005), Neupauer and Lin (2006), Singh and Datta (2007), and Srivas-
tava and Singh (2014). The challenge with implementing any of these
methods to characterize the deep leakage source settings in CGS projects
is the scarcity and low accuracy of available prior information about the
geological and transport properties of the system. These conditions
make most of the modeling parameters and boundary conditions (BCs)
uncertain, which exponentially enlarge the inverse problem dimensions,
hindering the applicability of certain Bayesian inverse frameworks due
to scalability issues (Knowling et al., 2019; Wu et al., 2020; Omagbon
et al., 2021; Kugler et al., 2022). In the same context, Milnes and Per-
rochet (2007) emphasized the necessity of acquiring detailed informa-
tion about the velocity and transport parameters of the system as well as
accurate BCs to reasonably estimate the contaminate source settings
using such classical optimization approaches, which can be practically
infeasible in the case of CGS sites.

For CGS applications, different monitoring techniques have been
developed and applied to detect any anomaly in the pressure and water
quality in the shallow and deep overlying formations that indicate COy/
brine leakage event (Ajayi et al., 2019; Vermeul et al., 2016; NETL,
2017). Due to cost and safety constraints, while a comparatively large
number of monitoring wells are usually available in the shallow aquifer,
a limited number of sensors can be placed in the deep overlying for-
mations (Nordbotten et al., 2004; Tsang et al., 2008; Hovorka et al.,
2013; Vermeul et al., 2016). Therefore, an approach that can appro-
priately and rigorously utilize the available shallow data in CGS sites to
reduce the uncertainty in the system properties and identify the leakage
source location and rate is needed for developing remediation and
mitigation plans in case a leakage event occurs. This approach should
also be able to deal with both uncertainties in field-data and prior in-
formation about the hydraulic and structural configuration of the deep
formations (e.g., heterogeneity of the storage zone permeability and
caprock-fracture structure).

Lately, researchers have started to use the technique of ensemble
smoothing in the history matching of contamination data and source
identification due to its scalability and efficiency in handling high
dimensional parameter spaces of real-world class models (Todaro et al.,
2021; LIU et al., 2021; Jiang et al., 2022; Xu et al., 2022; Zheng et al.,
2022; Chen et al., 2022). White (2018) incorporated the method of
ensemble smoothing in PEST++ (i.e., PESTPP-IES) to enable the quan-
tification of uncertainty in calibrated model parameters and predicted
system behaviors while maintaining a reasonable computational effort
(White et al., 2020). PESTPP-IES tool was recently applied to address
different groundwater problems associated with a considerable margin
of uncertainty in available information, such as evaluating the risk of
groundwater contamination by conventional gas development (Rassam
et al., 2022), delineating the probabilistic recharge areas of priority
water-supply wells (Fienen et al., 2022), and quantifying the uncertainty
in the predicted production-pressures and temperatures of
high-enthalpy geothermal reservoirs (Bjarkason et al., 2020).

A few synthetic-data-based studies that utilized different data
assimilation techniques to identify and evaluate COy/brine leakage risk
were found in literature. Gonzdlez-Nicolas et al. (2015) used the single
iteration ensemble smoother (SIES) and restart ensemble Kalman filter
techniques with pressure data, collected from the caprock top surface, to
locate permeable conductive pathways. The authors attributed the poor
performance of the SIES to the fact that the code adjusts the parameter
ensemble in a single comprehensive data assimilation step, which does
not allow the parameter ensemble to evolve gradually over multiple
iterations. Moreover, the authors pointed out the challenges of assimi-
lating data to a non-gaussian permeability field that represent caprock
discontinuities. Cameron et al. (2016) incorporated a particle swarm
optimization tool with above-zone pressure data to estimate the size and
location of CO; leaky pathways. Sun and Durlofsky (2019) applied a
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data-space inversion method to predict the CO, plume location within
the storage unit using pressure and CO3 saturation data. Ma et al. (2019)
also used pressure and CO, saturation data but with time-lapse seismic
data in an ensemble Kalman filter inversion framework to estimate the
storage formation hydraulic properties and predict CO, migration.
Tadjer A. and Bratvold R. B. (2021) combined a Bayesian evidential
learning protocol with data-space inversion to reduce uncertainty in the
predicted CO» mass in the storage formation and its corresponding
leakage risk using CO saturation data.

This study aims to test and evaluate the efficacy of using PESTPP-IES
as a tool for characterizing the source settings of brine leakage from CO4
repositories using easily-available, comparatively inexpensive shallow
data only. Source identification comprises determining the most prob-
able range of leakage location in the caprock and leakage rate that are
both essential for remediation studies. In related and similar studies,
where field data was not available (Keating et al. 2010) and synthetic
data representation of leakage process can be questionable for such
testing and validation, researchers used intermediate scale test systems
to generate high-resolution experimental data (Luyun Jr et al., 2011;
Trevisan et al., 2017; Agartan 2015; Askar et al., 2021a). In this study,
we applied the same method of using data produced in a lab experiment,
conducted in a soil tank mimicking brine leakage from a CO, storage
formation (Askar et al., 2021a). The brine migration in the tank was
numerically simulated using a flow and transport model developed
using the finite element transport code of FEFLOW (Diersch, 2014),
which was then utilized as a forward base-model under PESTPP-IES for
history matching and uncertainty analysis (UA). The testing and vali-
dation analysis included multiple scenarios for both system information
uncertainty (i.e., hydraulic, and structural settings of the storage zone
and fractured caprock) and spatial data resolution (i.e., shallow, and
relatively deep data).

2. Methods and approaches

This section presents a brief description of the experimental system
where data was generated. In addition, the forward model setup,
parameterization, data assimilation, and UA methods, as well as testing-
scenarios are discussed.

2.1. Experimental data

Data used in this study is a subset of a dataset generated by Askar
et al. (2021a) using an ~8 m long soil tank, where brine leakage
migration from a storage unit (Zone 1) to a shallow aquifer (Zone 3)
across multiple intermediate layers (Zone 2) was simulated (Fig. 1). A
thick plexiglass sheet, with six openings, was placed to separate Zones 1
and 2 representing the fractured caprock. Askar et al. (2021a) used a
horizontal soil tank to simulate the vertical plume migration in the field,
as it was not feasible to set up a vertical tank in the laboratory. In this
test configuration, to minimize the density contrast between the leakage
plume and the background water, thus eliminating any potential
density-driven flow, a low-concentration NaBr solution was used as a
brine surrogate. The NaBr tracer was introduced to the system through
the lowest injection port in the tank (marked by a red circle in Fig. 1).
The tank was heterogeneously packed following specific architectures of
designed correlated random fields of sand permeability. More infor-
mation about the experiment conceptualization, tank con-
struction/assembly and system design can be found in Askar et al.
(2021a).

In the experiment, four different boundary conditions (BCs) were
assigned at the top and bottom boundaries of both ends of the tank to
produce the required flow-field across the three zones; constant-head
and no-flow BCs were assigned to the top and bottom ends of Zone 1,
respectively. While constant-head and constant-flux BCs were pre-
scribed for the top and bottom ends of Zone 3, respectively. A no-flow BC
was used with the outlet of Zone 1 to represent a screen that was clogged
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Fig. 1. Schematic demonstrating the location of experimental data (red dots) as well as the experiment setup, including the packing heterogeneity and tank
instrumentation, used to generate this data (modified after Askar et al. (2021b)). Note, the flow occurs from right to left.

by fine particles and rust during the experiment (Askar et al., 2021a).
Those BCs generated a flow-field that included relatively vertical flows
in Zones 1 and 3 and horizontal flow across Zone 2.

The subset of experimental data used in this study comprised
timeseries of hydraulic heads and plume concentrations, collected from
30 monuments and 205 sampling ports in the tank, respectively (ma-
nometers and sampling ports are respectively marked by blue-crosses
and red-dots in Fig. 1). As the experiment was running under steady-
state flow conditions (Askar et al., 2021a), the twice-a-day collected
head readings from each manometer were almost constant, thus average
values over time were used to represent the system hydraulic head at
each manometer location during the experiment.

On a different note, the aqueous samples were not taken on a
constant-interval basis, but rather when the dyed tracer was seen to
approach a septa port location using the transparent side of the tank
(Askar et al., 2021a). Such sampling strategy allowed for developing
smooth breakthrough curves of NaBr at each port location. Approxi-
mately a period of 190 h was required to run the experiment and develop
such dataset. It should be noted that the data was divided into two
groups based on their locations; shallow data points in Zone 3 and
relatively-deep data points in the shallow part of Zone 2 (Fig. 1), to
investigate the sensitivity of source identification results to data
location.

2.2. Base-Model setup

The model described herein is referred to as the “base-model”, which
can be seen as a numerical testbed for different uncertainty scenarios in
the prior knowledge of the system so that we can evaluate the efficacy of
source identification using the proposed method under various degrees
of field data scarcity and lack of information.

A 2D base-model (with steady-state flow and transient transport
conditions) was developed using FEFLOW to simulate the brine migra-
tion across the experimental tank and to underlie PESTPP-IES as a for-
ward model during history-matching and UA. The model domain was
spatially discretized using 134.5 K elements with an average area of
approximately 0.37 + 0.32 cm? to cover the full dimensions of the tank.
In the source vicinity, the model mesh was significantly refined to
reduce the grid-Péclet number and thus ensure low numerical dispersion
(smallest element size was about 1.24E-04 cm?). Moreover, such high-
resolution of spatial discretization at the source area allows for high
precision in source location identification using the proposed approach.

The base-model space discretization, including mesh refinements,

was carefully implemented to maintain a reasonable run time of the
transient model, hence enabling the formulation of a highly parame-
terized inverse problem that is necessary for the UA analysis. Moreover,
the predictor-corrector time integrator algorithm, introduced by Gresho
et al. (1979) and improved by Bixler (1989), was used to implement a
reasonably high-resolution of time discretization, particularly in early
simulation times, while maintaining a small total run time for the model
(i.e., ~2.2 mins). Additional time steps were added to the model to
acquire the simulation results at the recorded times of head and con-
centration data.

Similar BCs to those applied in the experiment were prescribed in the
base-model using Dirichlet and Neuman BC types with values shown in
Fig. 2. The sand packing configurations of the tank’s three zones were
explicitly represented in the base-model. The initial hydraulic and
transport properties (i.e., hydraulic conductivity (K), porosity, and dis-
persivity) of the sand media were defined in the base-model using the
calibrated values presented by Askar et al. (2021a). It is important to
emphasize that such initial values have been changed according to the
uncertainty scenario under study. For example, to address a scenario
where limited knowledge about the permeability field of the storage
formation is available, Zone 1 in the model was re-parameterized using
pilot-points (pp) with initial Ks based on column-scale experiments for
the sand types used in Zone 1 (i.e., non-calibrated values).

2.3. Source identification approach

The following steps were adapted to characterize the contamination
source (i.e., location and rate): (1) PESTPP-IES was connected to the
“base-model” via standard PEST-style model-interface files, (2) prior
probability density functions (PDFs) were defined for model parameters
pertained to each uncertainty scenario, (3) a set of equally-likely re-
alizations (i.e., prior ensemble) were generated by PESTPP-IES by
randomly sampling the defined PDFs, and (4) finally, PESTPP-IES iter-
atively modifies the ensemble of parameter realizations through history
matching using the ensemble smoothing technique to produce a poste-
rior parameter ensemble. By that, the most probable range of source
location and leakage rate (i.e., narrowest range) can be statistically
estimated simultaneously with other (uncertain) model parameters, so
that any non-identifiabilities/non-uniqueness between the estimated
source settings and other uncertain model parameters can be rigorously
represented. It should be noted that the prior PDFs of all model pa-
rameters were described using a gaussian distribution with a standard
deviation determined by dividing the distance between the parameters’
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Fig. 2. Base-model setup including hydraulic properties, initial and boundary conditions.

upper and lower bounds by four (i.e., 95% confidence interval). The
theory underpinning PESTPP-IES process can be found in White (2018)
and White et al. (2020).

For this analysis, different modeling workflow tools were incorpo-
rated, including PESTPP-IES, pyEMU and FEFLOW-IFM to develop an
automated and reproducible workflow that parameterizes the base-
model according to the uncertainty scenario to be addressed, then run
PESTPP-IES and finally, plot the results. pyEMU, a Python package that
enables defining the inputs, running, and postprocessing all PEST+-+
uncertainty analyses (White et al., 2016), was used to retrieve and plot
the recorded model results of interest from the PESTPP-IES output files.
FEFLOW-IFM, a Python programming Interface for FEFLOW, was used
to facilitate model parameterization under each uncertainty scenario,
run the model under PESTPP-IES and retrieve model results.

2.4. Uncertainty scenarios and data-availability cases

Multiple uncertainty scenarios were developed to examine the
capability of available observation data to appropriately characterize
source settings under different parameterization scenarios, where each
parameterization scenario represents a possible inverse problem design
regarding what model inputs are treated as “uncertain”. Testing
different parameterization scenarios enabled us to reasonably identify
the most critical information related to uncertain model inputs needed
to characterize the source. Table 1 presents eight uncertainty scenarios
developed for this analysis to test the influence of various sources of
model input uncertainty on the resulting ability to resolve the source
settings in a Bayesian framework. It should be noted that the 8th sce-
nario represents the ideal case of having complete knowledge about the
system, which was treated as a reference scenario for evaluating the
results from the rest. For all parameterization scenarios, the injection
source location and rate were treated as “uncertain” using the same prior
parameter. Model inputs that were excluded from a given scenario were
held constant at the calibrated values described in Askar et al. (2021a).

In addition to the parameterization scenarios, two distinct calibra-
tion datasets, containing observations from different distances from the
source were used to test the sensitivity of source identification accuracy
to the location of available data. The first tested dataset, referred to here
as “shallow data” includes concentration measurements collected from

Table 1
Tested uncertainty scenarios.

Scenario # Uncertain model inputs

Storage zone flow field/gradient + Source settings
Storage zone permeability field + Source settings
Caprock fracture settings + Source settings

Overlaying formations’ permeabilities + Source settings
Overlaying formations’ porosities + Source settings
Model dispersivity + Source settings

All above model inputs + Source settings

Source settings only

W NOU A WN

Zone 3 only (representing the easily available data from the near-surface
aquifers in the field, which can typically be collected in high spatial
resolution). While the second tested dataset, referred to here as “rela-
tively-deep data” includes deeper concentration measurements
collected from the shallow part of Zone 2. This dataset represents the
collected data using comparatively deep sensors that may exist in
shallow overlying formations. Two data-availability cases were evalu-
ated in this study, the first included the shallow dataset only, while the
second included both shallow and relatively-deep datasets. It is worth
mentioning that both cases included head measurements from the three
zones in the tank (i.e., across the entire system depth), as the latest
advances in monitoring technologies and geophysical techniques allow
for reasonably mapping the pressure field inside and over the COy
storage formation (U.S. EPA, 2013; Zhou et al., 2016; NETL, 2017;
Mortezaei et al., 2018).

2.5. Parameterization and prior definition

Various degrees of knowledge about aquifer properties were
assumed for the shallow (Zone 3) and deep formations (Zone 2 and 1).
Full knowledge about the hydraulic properties and heterogeneity ar-
chitecture of Zone 3 was assumed known to focus the data-assimilation
process and fully utilize the information content of the data towards
characterizing the source settings instead of calibrating Zone 3 param-
eters/properties that are not among our interest in this analysis.
Particularly that shallow aquifers (Zone 3) can be characterized sepa-
rately (away from this analysis) with reasonable cost using numerous
investigation techniques that cannot be applied to deep units (Zones 1
and 2). In addition, the shallow aquifer (Zone 3), where the contami-
nation plume will be first detected, will be subjected to a rigorous regime
of investigation and monitoring campaigns for local remediation-related
objectives, which will provide detailed information about its hydraulic
and transport properties that can be effectively utilized in source iden-
tification analysis. However, for Zones 1 and 2, only some soft data (e.g.,
geophysical surveys) describing the heterogeneity architecture of their
permeability field was assumed to be known.

Different techniques and scales of parameterization were adapted to
represent model parameters under each tested uncertainty scenario to-
wards a holistic and more representative inclusion of model input un-
certainty with the Bayesian inverse problem. Table 2 presents the initial
values, lower/upper bounds, and the used parameterization technique
with the considered adjustable parameters in each uncertainty scenario.

The uncertainty in the storage formation flow gradient and perme-
ability field was represented in the inverse problem by allowing the
constant head BC and K-field of Zone 1 to vary within the bounds pre-
sented in Table 2. The BC nodes of Zone 1 were represented in the in-
verse problem using a single constant parameter, while the K-field of
Zone 1 was represented using 77 spatially distributed pilot points
(Fig. 3). Such pilot points assign the K values to mesh elements using
kriging interpolation based on a predefined exponential covariance. The
covariance parameters (i.e., range = 11.2 cm and sill =1.1) and
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Table 2
Priori parameter summary.
Parameter Type Count Initial Lower Upper Parameterization Uncertainty ~ Notes/Comments
Value® Bounds Bounds method Scenarios’
Zone 1 BCE (m) 1 1.8 1.6 2 Constant parameter 1and7 Only the upper constant head of Zone 1 was adjustable.
Zone 1 K-field (m/d) 77 150 5 445 Pilot points 2and 7 Staggery distributed PPs with maximum spacing of 7 cm was
parameters implemented (Fig. 3)

Fractures’ Ks (m/d) 6 250 1 500 Constant parameters 3and 7 Wide range of the fracture permeabilities was given.

Fractures’ widths 12 Varies” Varies” Varies” Mobile/Dynamic 3and7 The y-coordinates of the six fractures’ edges were adjustable
(m) parameters within the limits shown in Fig. 3.

Zone 2 K-field (m/d) 4 296 148 445 Constant parameters 4 and 7 The permeability of the 16 overlaying units were
(Lay: 1, 5,9, 13)3 parameterized as constant zones (Fig. 3).

Zone 2 K-field (m/d) 4 152 85 219 Constant parameters 4 and 7
(Lay.: 2, 6, 10,
14)°

Zone 2 K-field (m/d) 4 86 40 132 Constant parameters 4 and 7
(Lay: 3,7, 11, 15)°

Zone 2 K-field (m/d) 4 26 10 42 Constant parameters 4 and 7
(Lay: 2, 8,12,16)°

Zone 2 Porosity-field 16 0.3 0.01 0.6 Constant parameters 5and 7 The porosity of the 16 overlaying layers were parameterized as
) constant zones (Fig. 3)

Long. and Trans 2 5.05E-04 1.00E-05 1.00E-03 Constant parameters 6 and 7 Constant longitudinal and transversal dispersivities for the
Dispersivity (m) whole system were assumed

Source location (m) 1 1 0.65 1.53 Mobile/Dynamic 1to8 Only the y-coordinate of the source location was set adjustable,

parameters while the x-coordinate was calculated using the equation of x=-
¥+ 1.052.
Leakage/Injection 1 7.5 6 10 Constant parameter 1to8 Leakage rate was applied to the selected mesh elements by the

Rate (mL/min)

source location parameter

1 Scenarios are described in Section 2.4
2 Fracture edges’ bounds are presented in Fig. 3¢
3 Lay stands for layer, and Zone 2 layers are presented in Fig. 3a.

* For all parameters except Zone 1 K-field, the initial values were derived by calculating the mean between the upper and lower limits.

(a) Zone 2 — 16 constant lK and Porosity zones

\—Y—!

Source Location - mobile
constant zone

l 40, 0.4)

Y
Zone 1 — pilot points for K

Fig. 3. The various parametrization schemes used with the different zones and features of the model for history matching process and uncertainty analysis. (a) The
16 constant-zone parameters used for representing Zone 2 layers. (b) The Mobile/Dynamic constant zone used for source searching. (c) The expandable constant

zones used for parameterizing the caprock openings/fractures.

anisotropy structure of the actual heterogeneity in Zone 1 were assumed
to be known, as in the field, feasible geophysical techniques can be used
to estimate these statistical parameters (Yu et al., 2008; Nalonnil and
Marion, 2012). The bounds of the K-field pilot points were determined
based on the maximum and minimum K values resulted from
column-scale tests for the packed types of sand in Zone 1. The initial
values of the K-field pilot points were set equal to the column-scale
estimated K for the most dominant sand type in Zone 1.

The hydraulic properties of Zone 2 (i.e., K and porosity) were
parametrized using piecewise-constant parameter zones (Fig. 3a), as in
the field, different seismic geophysical survey methods could be
employed to map the overlying formations’ interfaces with acceptable
accuracy (Zweigel et al., 2004; Torp and Gale, 2004; Hermanrud et al.,
2009). Column-scale estimated K and porosity values for the sand types
used in Zone 2 were utilized to determine the bounding values for these
constant parameters. It should be noted that the porosity of Zone 1 was
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not parameterized as it was outside the transport domain of the NaBr
migration.

The fractured caprock (i.e., openings width and K) and source set-
tings (i.e., injection/leakage location and rate) were parametrized in the
inverse problem using a novel approach referred to herein as the “Mo-
bile/Dynamic Constant Zones” (MDCZs). Such MDCZs were used to
introduce flexibility in the constant zone size and position across the
model domain or within specific areas. For example, the fracture widths
were parameterized using six expandable and mobile rectangular zones
that assign constant high K values (i.e., K-fractures) to the caprock mesh-
elements located within each of these zones. The coordinates of the
upper and lower edges of these rectangular zones were set as parameters
to be varied by PESTPP-IES within the limits presented in Fig. 3¢ and
Table 2. By that, the caprock fracture sizes and locations can be counted
as adjustable parameters in the inverse problem during history-
matching.

The same technique was adapted to parametrize the source settings
(i.e., leakage location and rate), where a circular zone with a radius of
0.3 cm was allowed to roam the area downstream the injection point and
then select a set of mesh elements to assign constant mass flux BC to
represent tracer injection (i.e., leakage source) (Fig. 3b). The co-
ordinates of the circular zone center (i.e., x and y) were determined by a
linear function (i.e., x=-y + 1.052), where the y-coordinate was the only
adjustable parameter by PESTPP-IES. Notably, the source size (the cir-
cular zone radius) was assumed known since the size of the potentially
leaking fractures in the caprock can be predicted using geomechanical
modeling (Feng et al., 2018). Collectively, the parameterization of both
caprock fractures and source settings work together to represent a wide
range of source-leakage configurations.

As discussed in Section 2.4, complete knowledge about the shallow
aquifer hydraulic properties and sand heterogeneity was assumed. Thus,
Zone 3 was not parameterized for the present UA and the calibrated
parameters of Askar et al. 2021a were fixed for this zone in the UA.
Finally, two constant zones were used to represent the longitudinal and
transversal dispersivities for the whole system. By that, a total of 132
parameters were included in the UA performed in this study.

2.6. Data assimilation and observations

The ultimate goal of the conducted analysis herein is to reduce the
uncertainty in our prior knowledge about leakage/injection source and
rate (denoted as leakage source and rate henceforth) through data
assimilation process (Doherty and Moore, 2019). To achieve this goal, a
total of 1315 concentration data points and 30 head records from the
tank experiment were used as observations for history matching. A
subjective likelihood function was applied through assigning observa-
tion weights that first guarantee balanced contributions from all data
types towards the objective function and second emphasize the impor-
tance of fitting the zero concentration points located outside the plume
body. These zero concentration data points were given weights three
times larger than of those assigned to the rest of the concentration data.
By that, we focus the data assimilation process on preferentially repro-
ducing the plume migration pathway over precisely predicting the inner
concentration distribution of the plume in attempt to reduce the un-
certainty in the leakage source location and rate predictions (Doherty
and Welter, 2010).

2.7. Implementation and evaluation

The source identification approach outlined in Section 2.3 was
implemented under an ensemble size of 500 realizations, which was
considered reasonable given the available computational capacity at the
time of conducting this study. The prior parameter ensemble was locally
evaluated using PESTPP-IES through running a python script, based on
FEFLOW-IFM that takes each realization parameters and map them to
the base-model, run the simulation, and post-process the results.
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Minimum of four PESTPP-IES iterations, including the base run (i.e.,
zero-iteration) were performed for data-assimilation process and
history-matching prior parameters to observed data.

Since the problem under study does not include time-dependent
parameters (e.g., extraction rates and recharge), the automatic adap-
tive localization, encoded in PESTPP-IES (White et al., 2020; Luo and
Bhakta, 2020), was considered adequate to remove any statistically
spurious correlations between parameters and observations.

It should also be noted that PESTPP-IES was set up to iteratively omit
any non-behavioral realizations from the data-assimilation analysis;
non-behavioral realizations can be defined as the ones that result in a phi
value (objective function output) that exceeds the ensemble mean-phi
plus two standard divisions (STDs). Moreover, the observations that
showed statistically significant conflict with model outputs (i.e., their
residuals were larger than three STDs from the mean of all simulated
values across the prior simulated ensemble for a given observation),
were removed from the data-assimilation process as well. Finally, the
parameter realizations that took larger than twofold of the average run
time of the entire ensemble were stopped and treated as failed runs in
history-matching. Readers are referred to White et al. (2020) for more
information about the available options in PESTPP-IES to setup a well
constrained high-dimensional inverse problem.

The history-matching results were evaluated by calculating the
Average Normalized Root Mean Square (ANRMS) at every observation
point and then plot the results over the tank domain for comparison. The
ANRMS was estimated by determining the root mean square error
(RMSE) of the simulated data at each observation point and then
normalize it on the maximum observed value of this type of observation
(e.g., concentration and head data) and finally take the average of the
normalized RMSEs over the ensemble size. The RMSE was normalized so
that the concentration and head data are comparable in the same plot in
terms of data-fitting goodness. Equation 1 presents the components of
the calculated ANRMS for each observation point used in this analysis.

S
ANRMS = 257" /nr )
1 max

where Sy, S, and Spayx are respectively the simulated, observed, and
maximum values of the system state variable of interest (e.g., head and
concentration). While ng and nr are the number of realizations and
observed data points over time at each monitoring port.

3. Results and discussion

In this section, the results of history-matching and source identifi-
cation under both cases of data availability (i.e., shallow, and relatively-
deep datasets) are presented and discussed.

3.1. History matching

Data-assimilation leverage and data-fit are presented graphically by
plotting both the phi trajectories for every ensemble member after 4
iterations of data assimilation (besides the base run) and the ANRMS for
all observation points under each uncertainty scenario (Figs. 4 and 5). It
should be noted that these plots were developed and discussed for the
shallow-data case only, as this case contains the least amount of infor-
mation and yields the largest posterior uncertainties, thus representing
the worst conditions for data-availability.

Fig. 4 shows that shallow observed data can condition model pa-
rameters and reduce the prior ensemble phi several orders of magnitude
under all uncertainty scenarios except scenarios 2 and 8. The results of
scenario 8 suggest that treating source settings as the only source of
model-input uncertainty (i.e., leakage location and rate) does not pro-
vide enough degrees of freedom to fit shallow observed concentration
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Fig. 4. The objective function results (phi) for the predictive ensemble after 4 iterations using the shallow dataset (purple dots represent the start and end of a

single iteration).

data, evidence of the importance of considering source, property, and BC
uncertainty simultaneously. As varying the source settings may alter the
overall migration pathway and plume shape, as discussed by Askar et al.
(2021a), but cannot change the inner concentration distribution of the
plume in the shallow aquifer.

By incorporating the K-field of Zone 1 to the parameterization
scheme with source settings (Scenario 2), a markedly less reduction in
the phi was obtained. This can be attributed to two main factors. First,
the counter-interaction between the effects of changing Zone 1 K-field
and source settings, which basically comes from the great effect that
Zone 1 K-field can have on the local flow field at the source vicinity
(Askar et al., 2021a). For example, placing a low-permeability area in
Zone 1 below the fractures/openings repeals the effect of increasing the
leakage rate. Second, the significant nonlinearity imposed by Zone 1
K-field in the parameters-data relationship; the sensitive portion of
K-field towards data continuously varies with source location adjust-
ment, which affects the data-assimilation efficiency. For instance, when
PESTPP-IES moves the source location to the top part of the tank, the
most sensitive portion of the K-field becomes the upper section of Zone 1

and vice versa. In contrast, adding Zone 1 BCE to the parameterization
scheme (Scenario 1) enhances the phi reduction (Fig. 4), as it does not
introduce the same nonlinearity as the Zone-1 K-field.

The maximum reduction in phi was found under scenarios 3, 5, and
6, which included the fracture/opening settings, Zone 2 porosity, and
entire model dispersivity, respectively. The reasonable data-fitting
resulted under these scenarios was due to the significant effect of the
considered parameters on plume propagation velocity (porosity and
fracture settings) and concentration distribution (dispersivity and frac-
ture settings), which both are essential to fully assimilate the informa-
tion in the shallow-aquifer (Zone 3). However, when all parameters
were included in the calibration process, a less reduction in phi was
obtained because of the complexity added to the solution space by the
high nonlinearity introduced to the inverse problem in this scenario and
the counter-interaction between the effects of some parameters, as dis-
cussed earlier.

The effect of limited phi reduction in scenarios 2 and 8 can also be
seen in Fig. 5, where the ANRMS of concentration data (marked by
circles) was considerably high for most monitoring locations in these
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Fig. 5. The average normalized root mean square (ANRMS) of observed data residuals at each monitoring port in the tank after 4 iterations using the shallow dataset.

scenarios compared to others. However, head data (marked by crosses)
was reasonably fitted under all scenarios. This suggests the high sensi-
tivity of head data to the source settings and Zone 1 K-field compared to
concentration data due to the proximity of deep head data to the source
vicinity and deep formation (Zone 1), which is in good agreement with
the findings of Askar et al. (2021a; 2021b). Fig. 5 also shows that the
zero concentration points located at the shallow aquifer entry (Zone 3
deep section) were reasonably fitted in all scenarios due to the large
weight given to them, which helps in reproducing the plume migration
pathway and thus finding an improved simulated location of the
leakage.

3.2. Source characterization

The accuracy of source identification and leakage rate prediction was
evaluated by comparing the posterior distributions of these parameters
with their true values (e.g. source y-coordinate and injection rate).
Figs. 6 and 7, respectively show the prior (gray bars) and posterior
(purple bars) histograms of the predictions of interest in this analysis (i.
e., source location and leakage rate) relative to the true values measured

during the experiment. In general terms, all scenarios revealed a
reasonable reduction in the source location uncertainty and almost zero
change in the prior uncertainty of the leakage rate, with some scenarios
showing biased estimates of the leakage rate.

Results demonstrate that shallow data was able to reduce the un-
certainty associated with the prior knowledge of source location by
more than ~70% under all scenarios while maintaining a reasonable
bracketing of the true y-coordinate (i.e., 0.803 m). Moreover, less than
10% error was obtained in the mean of estimated source locations across
the posterior ensemble, indicating a high sensitivity of this parameter to
the shallow data used in this analysis. The largest uncertainty reduction
and smallest error in the posterior ensemble mean of leakage location
were found under scenarios number 6, 5, 4, and 3 reflecting the impact
of history matching on source identification. This suggests the impor-
tance of including system dispersivity, fracture settings, overlaying
formations’ porosities and permeabilities in the inverse problem for
better source characterization outcomes.

On a different note, source characterization results show that with
the relatively poor fitting of the data under scenarios 2 and 8 (as dis-
cussed above), PESTPP-IES could still reasonably narrow the possible
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Fig. 6. The prior and posterior (post) parameter ensemble of source location, after 4 iterations using shallow dataset, with the true value represented by the red

dashed line. All scenarios include uncertainty in source settings.

range of leakage source locations. Therefore, a high degree of data
fitting may not be needed for source identification, which can signifi-
cantly reduce the computational burden of the history-matching pro-
cess. It should also be noted that under extreme uncertainty conditions
in model parameters (scenario 7), PESTPP-IES was still capable of
identifying a fair accurate range of possible source location.

As evidenced by the parameterization scenarios tested, the degree of
biasness in the leakage rate estimates can be attributed to inappropri-
ately reducing or removing otherwise uncertain model inputs from the
data assimilation process. When uncertain parameters are removed from
the data assimilation process, the information contained in the obser-
vation data that would have conditioned these missing parameters is
now erroneously used to condition the remaining adjustable parameters.
This erroneous adjustment is referred to in the literature as “parameter
compensation” (Clark and Vrugt, 2006; White et al., 2014). Note that
this parameter compensation cannot be detected in more traditional
inverse problem settings, where the true value of the parameters is not
known.

Regarding leakage rate characterization, either a very limited un-
certainty reduction or an erroneous estimate was obtained. In scenarios

3, 5 and 6, where a reduction of more than 70% was obtained in the
prior uncertainty, an error of more than 20% in the mean of estimated
leakage rates across the posterior ensemble was resulted. While for all
other scenarios, a significantly small uncertainty reduction, less than
20%, was achieved, reflecting a limited informativity of the shallow data
to the deep leakage rate parameter. Hence, we decided to extend this
analysis and investigate the impact of data proximity to the source on
the identification accuracy of the leakage location and rate. Fig. 8 pre-
sents the source characterization results for scenarios 7 and 8 after
adding the relatively-deep dataset (Fig. 1) to the calibration targets used
in the previous UA and history matching (i.e., shallow data). Such
analysis represents the testing of the 2nd data-availability case described
in Section 2.4.

Fig. 8 shows a slight enhancement in source location identification
under scenario 7 (78% instead of 74% uncertain reduction) by incor-
porating the relatively-deep data in history matching. However, an extra
20% of reduction in the source location uncertainty was obtained under
scenario 8 compared to the previous shallow-data-only based analysis.
With these improvements, the source location estimates across the
posterior ensemble in both scenarios 7 and 8 were still reasonably
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Fig. 7. The prior and posterior (post) parameter ensemble of leakage rate, after 4 iterations using shallow dataset, with the true value represented by the red dashed

line. All scenarios include uncertainty in source settings.

bracketing the true value with an error less than 7% in the ensemble
mean. For the leakage rate, the additional deep data did not provide
better uncertainty reduction for scenario 7 but at least it was able to
mitigate the parameter compensation and thus not providing an erro-
neous estimate of the leakage rate range. This indicates how hard it is to
predict the leakage rate under field conditions where many aspects of
the system are uncertain, which was confirmed by the results of scenario
8, where a significant decrease in the uncertainty of the leakage rate was
obtained (84% instead of 15% uncertain reduction).

3.3. Summary discussion

The above analysis highlighted the possibility of characterizing the
leakage source settings, in terms of location and rate, under uncertainty
conditions using PESTPP-IES. Relatively inexpensive shallow data was
found adequate to identify the most probable range of leakage source
location, even under low degree of data-fitting. However, estimating the
leakage rate was more challenging using shallow data only and the re-
sults revealed that deeper data with additional prior knowledge about
the system properties are needed for accurate assessment of the leakage
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rate. Hence, it is recommended to use the easily available shallow data
to obtain a rough estimate of the possible locations of the leakage and
then perform additional targeted data collection at these locations to
acquire data that can help accurately estimating the leakage rate. By
that, the cost of pre-remediation investigation work will be significantly
reduced, which can be critical for operators and environmental
authorities.

In field settings, multiple potential leakage sources may exist due to
the extended size of the injection-pressure footprint (Birkholzer et al.,
2009, 2011; Cavanagh and Wildgust, 2011). To account for such con-
ditions, a large number of MDCZ parameters may be needed in modeling
analysis to search for and identify all possible leakage sources in the
caprock that may individually or collectively provide a good match to
the data. Such augmentation in the parameter space can significantly
increase the ill-posedness of the inverse problem, which can affect the
ability to uniquely identify the “true” leakage settings’ ranges. For that,
geo-mechanical models can be incorporated in the UA process to reduce
the solution space size through identifying the most critical zones in the
caprock (Min et al., 2004; Rutqvist et al., 2007; 2008; Pan et al., 2013;
Figueiredo et al., 2015; Feng et al., 2018). Several geophysical
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these results.

techniques can also be used to find the potential sites of pressure-driven
fractures in the top seal of COy storage confining layer (Ingram and
Urai, 1999; Ligtenberg 2005; Lohr et al., 2008; Krawczyk et al., 2015;
Ziesch et al., 2019).

Finally, it should be pointed out that the use of the validated
approach in this study could be extended to identify the source location
and discharge-history of a contaminant in the shallow aquifers for ap-
plications less complicated than CGS. In that case, an improved perfor-
mance of PESTPP-IES can be expected due to the plenty of available data
and better-known system properties.

4. Conclusions

This study explored and validated the capabilities of the inversion
tool “PESTPP-IES” to characterize the source settings (i.e., location and
rate) of brine leakage from CO; storage formations under considerable
margin of uncertainty in the system properties and limited available
data. We basically tested the technical feasibility of using less expensive
shallow data to condition model parameters and thus identify the
leakage source settings. The data used in this study was generated by
Askar et al. (2021a) using an intermediate-scale experiment conducted
in an ~8 m long soil-tank. A base-model that reproduces the leakage
migration in the tank was developed using FEFLOW as a process-based
simulator within a formal data assimilation through history-matching
performed using an iterative ensemble smoother. Besides a set of clas-
sical methods used to parameterize the system hydraulic properties, a
novel approach was developed and employed to search the leakage
source location and incorporate uncertainty in the caprock fractur sizes.
For that, a technique called dynamic/mobile constant-zones was applied
to set up parameters that can change in size and move across the model
domain to select mesh elements/nodes for either assigning mass-flux BC
(to prescribe a leakage source) or to introduce high-permeability areas
into the caprock layer (to represent a facture/opening). A set of
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conclusions were derived from the conducted source characterization
analysis in this study which can be summarized as follows:

1 Shallow data was informative enough to condition the base-model
and reduce the prior uncertainty in source location by about 70%
under all scenarios, highlighting the sensitivity of source location to
near-surface, relatively inexpensive data.

2 Characterizing the leakage rate needed deeper data with higher level
of prior knowledge about the system properties so that more reliable
probability ranges can be obtained.

3 Such findings introduce the opportunity of using iterative ensemble
smoother with shallow data to obtain a rough estimate of possible
source locations, where extra site exploration work can be conducted
to acquire deeper data and make reasonable prediction of the leakage
rate.

4 Source identification results emphasized the importance of including
the system dispersivity, fracture geometrical settings (i.e., sizes),
overlaying formations’ porosities and permeabilities as parameters
in the inverse problem for better reduction in the leakage location
uncertainty.

5 The history-matching results demonstrated that low-to-moderate
degree of data fitting could be sufficient to identify the leakage
source using shallow data, which minimizes the required computa-
tional resources for such analysis,

6 Caution must be taken while selecting the parameterization scheme,
as some parameters together can introduce complexity into the data-
assimilation process (e.g., storage zone permeability field with
source settings) due to their counter-interactions,

7 The dynamic/mobile constant zones parameterization can be uti-
lized to reduce the extent of the model domain, by representing the
leakage source as a constant flux BC instead of a high-K zone in the
cap-rock, which will significantly reduce the domain extent and thus
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the computational burden of the ensemble-based data assimilation
process,

8 For the possibility of multiple damage zones existing in the caprock,
geo-mechanical models can be coupled with transport models to
reduce the size of the solution space for better performance of the
data assimilation.

The authors are aware that due to the absence of field data, the
findings of this study are based on lab-scale experimental data, which
may make them not directly applicable to field-scale problems. How-
ever, the study results still provide useful insights regarding the poten-
tial applicability of the proposed approach (based on using an iterative
ensemble smoother) to identify the leakage source settings for actual
CGS sites. Notably, the conducted analysis in this study was not feasible
using data either from actual or pilot CGS sites because simply such data
is not available; there are no detected brine leakage events in any
commercial-scale CGS site till now and well-engineered pilot sites are
basically designed not to leak to test COy trapping efficacy (Keating
et al., 2010). Moreover, relying solely on error-free synthetic data to
validate the proposed approach can also lead to questionable findings
due to the limitations of numerical models to capture micro/sub-grid
processes affecting plume migrations. By that, the only option left to
develop this study was to use intermediate-scale experiments, which
allows us to generate field-like data under fully controlled conditions of
the system.
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