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Edge stabilization in the homology of graph braid groups
BYUNG HEE AN

GABRIEL C. DRUMMOND-COLE

BEN KNUDSEN

We introduce a novel type of stabilization map on the configuration spaces of a
graph, which increases the number of particles occupying an edge. There is an
induced action on homology by the polynomial ring generated by the set of edges,
and we show that this homology module is finitely generated. An analogue of
classical homological and representation stability for manifolds, this result implies
eventual polynomial growth of Betti numbers. We calculate the exact degree of this
polynomial, in particular verifying an upper bound conjectured by Ramos. Because
the action arises from a family of continuous maps, it lifts to an action at the level
of singular chains, which contains strictly more information than the homology
level action. We show that the resulting differential graded module is almost never
formal over the ring of edges.

20F36, 55R80, 13D40; 05C40

1 Introduction

Configuration spaces of manifolds have numerous applications in algebraic topology
and homotopy theory—see Arnold [3], McDuff [22], and Cohen–Lada–May [6] for
a few notable examples. More recently, there has been a growing swell of interest in
configuration spaces of graphs. For a graph �—which is to say a finite, 1-dimensional
cell complex—we write

Bk(�) =
�

(x1, . . . , xk) 2 �
k : xi 6= xj if i 6= j

 
/⌃k

for the kth unordered configuration space of �. First considered by Ghrist [11] from the
point of view of robotics and motion planning, these spaces were shown by Abrams [1,
Corollary 3.11] to be aspherical for � connected and so classify their respective fun-
damental groups, the graph braid groups of �. Much effort has been dedicated to
understanding the homological, geometric, and combinatorial properties of these
groups by a number of different researchers and groups. A non-exhaustive list in-
cludes [2, 4, 8, 9, 12, 13, 16, 18, 19, 20, 21, 25, 26, 27].
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1.1 Stability phenomena

Configuration spaces of different cardinalities relate to one another in a variety of ways,
and it is often simpler to study the graded space B(�) =

F
k�0 Bk(�). For example, if

M is a manifold with non-empty boundary, there is a stabilization map

� : B(M)! B(M)

which inserts a new particle near the boundary. This map increases the cardinality k
by 1, and, for sufficiently large k, a theorem of McDuff asserts that the induced map
Hi(Bk(M)) ! Hi(Bk+1(M)) is an isomorphism [22, Theorem 1.2]. One says that the
configuration spaces of such manifolds exhibit homological stability.

One can define such a map on the configuration spaces of a graph, inserting a new
particle at the end of a dangling edge, but stability almost never occurs. In order to
remedy this defect, we draw inspiration from a related situation in which homological
stability fails, namely that of the ordered configuration spaces Confk(M). Although the
Betti numbers of these spaces do not stabilize, the symmetric group representations
occurring in homology do. This phenomenon of representation stability, as formalized
by Church–Ellenberg–Farb, may be summarized in the statement that the collection
{H⇤(Confk(M))}k�0 is a finitely generated module over a certain combinatorial category
[5, Theorem 6.2.1].

In light of these results, a philosophy has emerged that a good notion of homological
stability in a given context should be the property of finite generation with respect to
some naturally occurring action. For example, in hindsight, one interprets the theorem
of McDuff mentioned above as a statement about the action of the polynomial ring
Z[�⇤].

1.2 Edge stabilization

In this paper, we investigate a new stability phenomenon in the homology H⇤(B(�)),
which takes the form of an action by the polynomial ring generated by the edges of
�. We prove the following analogue of the homological and representation stability
enjoyed by configuration spaces of manifolds.

Theorem 1.1 Let � be a graph with set of edges E. For any i � 0, the Z[E]-module

Hi(B(�);Z) is finitely generated.

Geometry & Topology XX (20XX)



Edge stabilization in the homology of graph braid groups 1003

In fact, since finite generation and presentation are equivalent over Noetherian rings,
the module is finitely presented. By a theorem of Hilbert, Theorem 1.1 implies eventual
polynomial growth of Betti numbers. Our next result gives the exact degree of this
polynomial in terms of a certain connectivity invariant �i

�, which is roughly the largest
number of connected components of edges obtainable by removing i essential vertices
from �—see Definition 3.1 for a precise definition. In stating the result, we assume that
� is not a discrete graph, for which the question is trivial.

Theorem 1.2 Let F be a field and � a graph with at least one edge. For k sufficiently

large, dimF Hi(Bk(�);F) coincides with a polynomial in k of degree �i
� � 1.

First introduced and exploited as a purely algebraic phenomenon by Ramos in [25,
§3.2] for trees and by the authors of the present paper [2, §4.2] in general, this module
structure has a simple topological origin. The edge stabilization map

�e : B(�)! B(�)

acts by replacing the subconfiguration of particles on e with the collection of averages
of consecutive particles or endpoints—see Figure 1 and Section 2.2 below.

+

Figure 1: Edge stabilization

1.3 Edge formality

Because the various edge stabilization maps commute on the nose—not merely up
to homotopy—the action of Z[E] on homology arises from a Z[E]-action on singular
chains. This chain level structure is surprisingly rich; indeed, we show that it almost
always carries strictly more information than the action on homology.

Theorem 1.3 Let � be a graph with set of edges E and R a commutative ring. The

singular chain complex of B(�) with coefficients in R is formal as a differential bigraded

R[E]-module if and only if � is a small graph.

Here we declare a graph to be small if, after smoothing as many bivalent vertices as
possible, no vertex has three distinct edges—see Definition 2.3. Small graphs are very
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I C L 8 H

Figure 2: Homeomorphism types of connected small graphs

primitive objects; indeed, each connected component of a small graph is an isolated
vertex, an interval I, a cycle C, a lollipop L, a figure-eight 8, or a handcuff H. See
Figure 2.

This result is a measure of the inherent complexity of the family of graph braid groups
of �. It also provides an explanation for this complexity, as all non-formal behavior
arises from variations on the following simple example. The configuration space of
two points in a star graph with three edges is homotopy equivalent to a circle. The
fundamental class of this circle is represented by a cycle where the two points orbit one
another by taking turns passing through the central vertex. This cycle is decomposable
over the ring of edges, but the class itself is indecomposable, and non-formality follows.

1.4 Techniques and previous work

We prove our theorems by appealing to a small and explicit chain complex S(�) with
an action of Z[E]—see Theorem 2.10—which functorially computes the homology
and non-functorially models the singular chains of B(�), both as Z[E]-modules. In
the proof of Theorem 1.2, we exploit a family of spectral sequences computing the
homology of this complex—see Remark 2.14 and Section 3. These spectral sequences
are an expansion of the “vertex explosion” technique introduced by the authors in [2,
Definition 5.14], and we expect them to prove useful in future computations.

The Świątkowski complex S(�) first arose as the cellular chain complex of a cubical
deformation retract of B(�) [27, §1] and was later derived independently by the authors
of this paper from ideas involved in factorization homology and discrete Morse theory
[2, §4.2]. We use features of both approaches to S(�), so we must compare them. This
comparison, which appears as Proposition 5.11, is both a key technical step and a
unification of perspectives.

For the case of configuration spaces of trees, Theorem 1.2 was proven by direct com-
putation of all Betti numbers by Maciążek and Sawicki [20, Equation (23)] and by
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Ramos [25, Theorem A], who also stated the upper bound half of the general case as a
conjecture.

Ramos’ methods involved a phenomenon similar to edge stabilization. In his work, the
action of Z[E] is purely algebraic, occurring at the level of discrete Morse complexes,
and limited to trees. We expect the two actions on homology to coincide.

1.5 Questions

Our work invites the following questions.

(1) Is there an analogue of edge stabilization for ordered configuration spaces of
graphs?

Lütgehetmann and Recio-Mitter recently constructed a stabilization map on ordered
configuration spaces of graphs on an edge near an essential vertex [19, Proposition 5.6]
using other information at the vertex. The nature of the optimal algebraic structure
organizing these maps remains unclear.

(2) Are there analogues of edge stabilization for higher dimensional cells?

One conceptual explanation for edge stabilization is that the unordered configuration
spaces of an edge are all contractible, which guarantees that a certain extension problem
is unobstructed. In the context of both of these questions, the corresponding extension
problems are obstructed. This fact explains why Lütgehetmann and Recio-Mitter’s
stabilization involves additional information beyond the choice of an edge. It also
indicates that stabilization for higher dimensional cells would likely have to involve a
similar choice of further local information or, more radically, some kind of non-local
invariants.

(3) What is the significance of the invariant �i
�? For example, is its role here

connected to its appearance in the “cut polynomials” of right-angled Artin groups
studied by Papadima and Suciu [23, §4.2]?

(4) Is there a simple characterization, extending Theorem 1.3 and Proposition 4.9
below, of the subsets E0 ✓ E for which formality holds over Z[E0]?

(5) Our proof of Theorem 3.1 shows that the W-tori of Definition 3.11 account
for a positive fraction of the homology of configuration spaces of graphs—see
Remark 3.14 for further discussion of this point. Can this estimate be improved
and/or extended to other families of generators?
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1.6 Linear outline

The paper following the introduction is divided into five sections. In Section 2, we
introduce edge stabilization and the Świątkowski complex, and we connect the two via
the statement of Theorem 2.10, which implies Theorem 1.1. Section 3 is concerned
with the lower and upper bounds on growth necessary to establish Theorem 1.2, and
Section 4 assembles the proof of Theorem 1.3. Finally, in Sections 5 and 6, we return
to complete the proof of Theorem 2.10, in the process forging a connection between the
cellular models of Abrams and Świątkowski.

1.7 Conventions

Bigradings of modules are by degree and weight, and all are non-negative. The braiding
isomorphism for a tensor product of modules has a sign which depends on degree and
not on weight: if x and y have degree i and j, the braiding isomorphism takes x⌦ y to
(�1)ijy⌦ x. We write [m] for the degree shift functor by m and {n} for the weight shift
functor by n so that the degree i and weight j homogeneous component of M[m]{n}
is the degree i� m and weight j� n homogeneous component of M. In a differential
graded context, differentials preserve weight.

The category Mod has objects pairs (R,M) where R is a weight-graded commutative
unital ring and M a differential bigraded R-module. A morphism in Mod between
(R1,M1) and (R2,M2) is a pair (f , g), where f is a weight-graded ring morphism from
R1 to R2 and g is a differential bigraded R1-module morphism from M1 to f ⇤M2 (that is,
M2 with the action rm := f (r)m).

Acknowledgements

The first two authors were supported by IBS-R003-D1. The third author was supported
by NSF award 1606422. The authors would like to thank Daniel Lütgehetmann, Hyo
Won Park, and Eric Ramos for illuminating conversations.

2 Edge stabilization

After establishing terminology and notation regarding graphs, we define the edge
stabilization map �e : B(�) ! B(�), where e is an edge of the graph �. At the level
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of homology, these maps give rise to an action by the polynomial ring generated by
the edges of �. In Theorem 2.10, we present a small chain complex computing this
homology, together with its module structure.

2.1 A category of graphs

A graph � is a finite 1-dimensional CW complex. Its 0-cells and open 1-cells are its
vertices and edges, and the set of such is denoted V(�) and E(�), or simply V and E,
respectively. A half-edge is an end of an edge, and the set of such is denoted H(�)
or simply H. The vertices of an edge V(e) are the vertices contained in the closure
of that edge in �. The edges of a vertex E(v) are the edges incident to the vertex v.
The half-edges of a vertex H(v) (or of an edge H(e)) are the half-edges incident to v
(contained in e). For h in H, we write v(h) and e(h) for the corresponding vertex and
edge.

The valence of a vertex v is the cardinality of H(v), denoted d(v). The vertex v is
isolated if d(v) = 0 and essential if d(v) � 3. We shall sometimes write V�2 and Vess

for the set of vertices of valence at least 2 and the set of essential vertices, respectively.
An edge with a 1-valent vertex is a tail. A self-loop at a vertex is an edge whose entire
boundary is attached at that vertex.

Example 2.1 The cone on {1, . . . , n} is a graph Sn with n + 1 vertices, with one of
valence n and n of valence 1. These graphs are called star graphs and the cone point
the star vertex.

S1 S2 S3 S4

Figure 3: Star graphs

A parametrization of a graph � is a set of homeomorphisms Dh : e(h) ! (0, 5) for
h 2 H such that

(1) Dh maps the h end of e(h) to the 0 end of (0, 5), and

(2) if h1 6= h2 2 H(e), then Dh2 = 5� Dh1 .

Geometry & Topology XX (20XX)
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Making a choice of parametrization does not affect the homeomorphism type of config-
uration spaces. We will sometimes implicitly identify an edge of a parametrized graph
with the interval (0, 5). Up to homotopy, all constructions on parametrized graphs will
be independent of the choice of parametrization.

Definition 2.2 Let f : �1 ! �2 be a continuous map between graphs. We say that f is
a graph morphism if

(1) the inverse image f�1(V(�2)) is contained in V(�1) and
(2) the map f is injective.

We call a graph morphism a smoothing if it is a homeomorphism and a graph embedding
if it preserves vertices. A graph morphism can be factored into a graph embedding
followed by a smoothing. At times, we may refer to the inverse of a smoothing as a
subdivision, and we caution the reader that these are typically not graph morphisms.

The composite of graph morphisms is a graph morphism, and we obtain in this way a cat-
egory Gph. Although the objects of Gph are simply finite 1-dimensional CW complexes,
not all morphisms are cellular. A subgraph is the image of a graph embedding.

Figure 4: There is a graph morphism (in fact a smoothing) from left to right but not from right
to left

Since graph morphisms are injective, they induce maps at the level of configuration
spaces. Thus, it is natural to view H⇤(B(�)) as a functor from the category Gph
to bigraded Abelian groups, where the weight grading records the cardinality of a
configuration. As we will see in the following section, there is more structure to be
found.

We close this section with the following pair of definitions premised on our notion of a
smoothing.

Definition 2.3 Let � be a graph.

(1) We say that � is smooth if every smoothing with domain � is an isomorphism.
(2) We say that � is small if, in any maximal smoothing of �, there is no vertex with

three distinct edges. Otherwise, � is large.

Smoothness is almost, but not quite, equivalent to having no bivalent vertices; indeed,
the cycle C (see Figure 2) is smooth.
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2.2 Topological edge action

We now introduce the promised stabilization.

Definition 2.4 Let � be a parametrized graph and e an edge. Edge stabilization at e is
the map �e : B(�)! B(�) that preserves partial configurations in the complement of
(2, 3) ✓ e and replaces the partial configuration {x1  · · ·  xj} ✓ (2, 3) with

⇢
2 + x1

2
,

x1 + x2

2
, . . . ,

xj�1 + xj

2
,

xj + 3
2

�
.

It is a direct verification that the map �e is continuous and independent of parametriza-
tion up to homotopy. See Figure 5 for a depiction of this map.

+

Figure 5: Edge stabilization redux

Remark 2.5 Parametrizing edges by (0, 5) and stabilizing in the subinterval (2, 3)
are choices designed to interface well with the arguments of Section 5. The more
obvious choices of parametrizing edges by (0, 1) and stabilizing in this entire interval
(see Figure 1) lead to maps that differ only up to homotopy.

Remark 2.6 Stabilization by adding points to the tails of a graph has been consid-
ered [9, §5], and addition of points near the boundary of a manifold is a well-studied
phenomenon—see [22, §4], for example. The existence of stabilization maps at internal
edges is new, but see [25, §3.2] for a related algebraic stabilization mechanism in the
context of trees.

Passing to homology, we obtain an action of the weight graded ring Z[E] on H⇤(B(�)).
This action is natural in the sense that a graph morphism from �1 to �2 induces a
commutative diagram

Z[E(�1)]⌦ H⇤(B(�1)) Z[E(�2)]⌦ H⇤(B(�2))

H⇤(B(�2)) H⇤(B(�2)).

In this way, the homology of configuration spaces of graphs lifts to a functor H⇤(B(�)) :
Gph!Mod.
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2.3 The Świątkowski complex

We now present a convenient chain model for H⇤(B(�)), thought of as a functor valued
in Mod via edge stabilization.

Definition 2.7 Let � be a graph and let R be a commutative ring. For v 2 V , set
S(v) = Zh?, v, h 2 H(v)i. The Świątkowski complex of � (with coefficients in R) is the
R[E]-module

S(�; R) = R[E]⌦Z
O

v2V

S(v),

endowed with the bigrading |?| = (0, 0), |v| = |e| = (0, 1), and |h| = (1, 1), together
with the differential @ determined by setting @(h) = e(h)� v(h).

Typically, the ring R will be Z or a field. When the coefficient ring is Z, we omit it from
the notation.

Remark 2.8 The following geometric heuristic is often helpful in dealing with the
Świątkowski complex.

(1) We think of a generator of S(v) as prescribing the local “state” of a configuration
near v. Specifically, the generator ? represents the absence of a particle at v, the
generator v represents the presence of a stationary particle at v, and the generator
h 2 H(v) represents an infinitesimal path of a particle exiting v in the direction
of h. See Figure 6.

(2) We think of a monomial in Z[E] as prescribing the state of a configuration on the
edges of �; for example, the generator e1e2

2 represents the presence of a stationary
particle on e1 and two stationary particles on e2. See Figure 6.

(3) A basis element of the Świątkowski complex is a prescription of a global state,
which is to say that we choose a local state from each S(v) and populate the edges
with a monomial in E.

(4) The first grading is the natural homological grading, since h 2 H is a path and
all other generators involve stationary particles, and the second grading is given
by counting the number of particles.

(5) The differential takes a path to the difference of its endpoints.

Notation 2.9 We systematically omit all factors of ? and all tensor symbols from the
notation, and we regard half-edge generators at different vertices as permutable up to
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? v h

e1

e2
2

Figure 6: Local states near a vertex v and the state e1e2
2

sign. Thus, if � is the interval with vertices 0 and 1, half-edges h0 and h1, and edge e,
then we write

e3 ⌦?⌦? = e3

e3 ⌦?⌦ h2 = e3h2

e3 ⌦ h1 ⌦ h2 = e3h1h2 = �e3h2h1.

See Figure 7.

e3

e3h2

e3h1h2

Figure 7: Three global states on the interval

A graph morphism f : �1 ! �2 determines a map S(f ; R) : S(�1; R) ! S(�2; R) as
follows [2, §4.2]: an edge is sent to its image under f ; for a vertex v such that f (v) is
also a vertex, there is an evident map S(v)! S(f (v)); and, for a vertex such that f (v) is
an edge, we instead use the map S(v)! Z[f (v)] sending ? to 1, v to e, and half-edges
to 0. This map respects the bigrading, differential, and module structures, so we obtain
a functor S(�; R) : Gph ! Mod. Since @ is R[E]-linear by definition, this module
structure descends to homology.

Theorem 2.10 There is a natural isomorphism

H⇤(B(�); R) ⇠= H⇤(S(�; R))

of functors from Gph to Mod.
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At the level of bigraded Abelian groups, this natural isomorphism was established in
[2, Theorem 4.5]—see Theorem 5.4 below. To conclude the full statement over Z,
we will check that this isomorphism is compatible with the respective Z[E]-actions, a
task which we take up in Section 5 below. The general case follows by the universal
coefficients theorem.

Since S(�) is finitely generated over Z[E] by definition, and since Z[E] is Noetherian,
Theorem 1.1 follows immediately from Theorem 2.10.

We close this section with an introduction of a smaller variant of the Świątkowski
complex, which is often more convenient.

Definition 2.11 Let � be a graph. For each v 2 V , let eS(v) ✓ S(v) be the subspace
spanned by ? and the differences hij := hi� hj of half-edges. The reduced Świątkowski
complex with coefficients in R is

eS (�; R) := R[E]⌦Z
O

v2V

eS(v),

considered as a subcomplex and submodule of S(�; R). To be explicit, the differential is
determined by @(hij) = e(hi)� e(hj).

The inclusion eS (�; R) ✓ S(�; R) is an R[E]-linear quasi-isomorphism. The R = Z
case is [2, Proposition 4.9], and the general case follows by the universal coefficients
theorem. Note that eS (�; R) is functorial for graph morphisms.

2.4 Vertex explosion and star classes

In this section, we review some tools from [2, §5] afforded by the Świątkowski complex,
which will play an important role in the proofs of Theorems 1.2 and 1.3. The first of
these is an exact sequence which is useful in reducing computations of H⇤(B(�)) to
computations for simpler graphs.

Definition 2.12 For v 2 V , we write �v for the vertex explosion of � at v, which is the
graph obtained by

(1) replacing the vertex v with {v}⇥ H(v) and
(2) modifying the attaching maps for half-edges at v by attaching h to (v, h).

There is a graph morphism from �v to � which takes each edge to itself, takes the vertex
(v, h) to e(h), and takes each other vertex to itself. Defining this morphism requires
choices of precisely where in e(h) to send (v, h), but the isotopy class of this graph
morphism is unique. See Figure 8.
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�

smoothing ����� graph embedding ���������

�v

Figure 8: A local picture of vertex explosion along with an intermediate graph which admits a
graph morphism from �v and a smoothing to �

Proposition 2.13 ([2, Corollary 5.16]) Fix a half-edge h0 2 H(v). There is a short

exact sequence of differential bigraded R[E]-modules

0! eS (�v; R)! eS (�; R)  �!
M

h2H(v)\{h0}

eS (�v; R) [1]{1}! 0,

where  sends an element of eS (�; R), written uniquely as � +
P

h2H(v)\{h0}(h� h0)↵h

with � involving no half-edges incident on v, to (↵h)h2H(v)\{h0}.

The result in [2] is only taken with Z coefficients. Since eS (�v) is degreewise flat,
tensoring with R preserves exactness.

In the homology long exact sequence corresponding to this short exact sequence of chain
complexes, the connecting homomorphism � from

L
H⇤(eS (�v; R)){1}! H⇤(eS (�v; R))

is given by the formula
��h = (e(h)� e(h0))�h.

Remark 2.14 This exact sequence is a degenerate example of a spectral sequence
interpolating between the homology groups of the configuration spaces of � and those
of the graph obtained by exploding a specified collection of vertices. This type of
spectral sequence will play an important role in Section 3 below.

The second tool is a type of atomic homology class. Recall that the configuration space
of two points in the star S3 is homotopy equivalent to a circle.

Definition 2.15 [2, §5.1] Let S3 ! � be a graph morphism. A star class is a class
in H1(B2(�); R) which is the image under the induced morphism of the generator ↵ in
H1(B2(�); R) ' R represented by the chain a 2 S(S3; R)

a := e1(h2 � h3) + e2(h3 � h1) + e3(h1 � h2),

where hi is the half-edge of ei adjacent to the star vertex of S3.
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We refer to the chain a, and to its image, as the standard representative of ↵. See
Figure 9. Given m graph morphisms S3 ! � with pairwise disjoint images, we obtain a
degree m homology class, called the external product of the star classes [2, Definition
5.10], whose standard representative is the tensor product of the standard representatives
of the factors.

� + � + �

e2h3e3h1 e1h2 e1h3e3h2 e2h1

Figure 9: The standard representative of a star class

3 Growth of Betti numbers

Theorem 1.1 implies that the F-Betti numbers of Bk(�) are eventually given by a
polynomial in k for any field F (see, eg, [7, Theorem 1.11]). In this section, we
determine the exact degree of this polynomial.

3.1 Connectivity and growth

We write Di
�(F) for the degree of eventual polynomial growth of the F-dimension of

Hi(Bk(�);F) in the weight k. By convention, Di
�(F) = �1 if Hi(Bk(�);F) = 0 for

k� 0.

This degree of growth is controlled by a certain elementary connectivity invariant. In
order to define this invariant, we introduce the following equivalence relation.

Definition 3.1 Let � be a smooth graph. A subset W ✓ V�2 determines an equivalence
relation ⇠W on the edges of �, where e⇠We0 if and only if [e] = [e0] in ⇡0(� \ W).
Writing EW = E/⇠W for the set of equivalence classes, we define

�W
� = |EW | , �i

� = max�W
� .

where the maximum is taken over subsets W of cardinality i of V�2. We use the
convention that �i

� = �1 if i > |V�2|. If � is not smooth, define �i
� as �i

�0 where �
0

is a smooth graph homeomorphic to �.
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See Figure 10.

Figure 10: A graph with a choice of W in red, and the seven equivalence classes of edges under
⇠W

Remark 3.2 Although we work with a different set of conventions, this invariant was
essentially defined by Ramos [25, page 2306], who conjectured Proposition 3.9 below.

Example 3.3 Here are some basic examples of the behavior of the invariant �i
�.

(1) If � is an isolated vertex, then �0
� = 0.

(2) If � is an isolated edge, then �0
� = 1.

(3) If � is a cycle, then �0
� = �1

� = 1.

In these examples, �i
� = �1 for all other values of i.

(4) For � = �1 t �2 a disjoint union of (not necessarily connected) graphs,

�i
� = max

a+b=i
(�a

�1
+�b

�2
).

We recall the statement of Theorem 1.2.

Degree Theorem If � has at least one edge, then Di
�(F) = �i

� � 1.

Remark 3.4 A statement valid for an arbitrary graph is available for the sum

kX

`=0

dimF Hi(B`(�);F),

which exhibits eventual polynomial growth of degree �i
�.
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Example 3.5 For n � 3, let ⇥n denote the Theta-n graph, which is the double cone on
n points, as shown:

⇥n := ...

It is known that

dimF Hi(Bk(⇥n);F) =

8
>>>>>><

>>>>>>:

1 i = 0;✓
n
2

◆
i = 1;

✓
n
2

◆
� 1 +

2X

j=0

(1� n)j
✓

2
j

◆✓
k � j + n� 1

n� 1

◆
i = 2.

Calculating the zeroth Betti number is trivial, the first is given in [16, Lemma 3.14], and
the second follows from these and knowledge of the Euler characteristic for Bk(⇥n),
which can be extracted from [10, Theorem 2] and is given explicitly in [2, Corol-
lary 5.11]. These Betti numbers exhibit polynomial growth of degree 0 for i  1 and
n� 1 for i = 2, and these numbers are one less than respective numbers of components
obtained by removing i vertices. Thus, the theorem holds in this example.

Example 3.6 For the complete graph K4, the explicit formula for the ith Betti number
dimF Hi(Bk(K4);F) in terms of k can be computed directly from [2, §5.6]. Table 1 shows
the growth Di

K4
(F) of the Betti number and the invariant �i

K4
, verifying Theorem 1.2

for K4.

Definition 3.7 We say that a graph � is normal if it is connected, smooth, and has an
essential vertex.

The bulk of the theorem is contained in the following two results, whose proofs will
occupy the rest of the section. The second is essentially Conjecture 4.3 of [25].

Proposition 3.8 If � is normal, then Di
�(F) � �i

� � 1.

Proposition 3.9 If � is normal, then Di
�(F)  �i

� � 1.

Assuming these results for the moment, we complete the proof.

Proof of Theorem 1.2 We may assume that � is smooth. Since the presence or ab-
sence of finitely many isolated vertices in � does not change the eventual growth rate,
we may further assume that each connected component of � contains an edge. Thus,
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i dimF Hi(Bk(K4);F) Di
K4

(F) �i
K4

(K4)W

0 1 0 1

1 4 (for k > 1) 0 1

2 6k � 15 (for k > 2) 1 2

3 4
�k�3

3
�

3 4

4
�k�3

5
�

5 6

� 5 0 �1 �1

Table 1: For the complete graph K4, a table containing the Betti number dimF Hi(Bk(K4);F),
the growth rate Di

K4
(F), the invariant �i

K4
, and the corresponding complement (K4)W

each connected component of � is either normal, an interval, or a cycle. The theorem
is known for each of these components; indeed, Propositions 3.8 and 3.9 supply the
normal case, and the other cases are classical. This observation forms the base case for
an induction on |⇡0(�)|.

For the inductive step, we make use of “big theta” notation [14, page 19] defined as
follows:

f (k) = ⇥(g(k))() 9c,C > 0 : c · g(k)  f (k)  C · g(k) 8k� 0.

Consider a decomposition of a smooth graph into two non-empty graphs � = �1 t �2,
and assume that the degree theorem holds for each of �1 and �2. By the Künneth
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theorem, we have

dimF(Hi(Bk(�);F)) =
kX

`=0

X

a+b=i

dimF(Ha(B`(�1);F)) dimF(Hb(Bk�`(�2);F))

=
X

a+b=i

⇥

 
kX

`=0

`
�a

�1
�1(k � `)�

b
�2
�1

!

=
X

a+b=i

⇥

 
k�

a
�1
+�b

�2
�1

kX

`=0

1
k

✓
`

k

◆�a
�1
�1✓

1� `

k

◆�b
�2
�1
!

=
X

a+b=i

⇥
⇣

k�
a
�1
+�b

�2
�1
⌘Z 1

0
x�

a
�1
�1(1� x)�

b
�1
�1dx,

where the second equality uses our assumption on �1 and �2. By our assumption on the
connected components of �, both �a

�1
and �b

�2
are nonzero for every a and b, so the

integral shown is a nonnegative rational number independent of k. The largest exponent
of k present in this sum is

max
a+b=i

�
�a

�1
+�b

�2
� 1
�
= �i

� � 1,

as desired—see Example 3.3.

3.2 Lower bound

To prove Proposition 3.8, we will define a special kind of homology class, called a
W-torus, depending on a set of vertices W. For a suitable choice of W, we will show
that a W-torus exists and generates an F[E]-submodule with polynomial growth of the
expected degree.

Throughout this section, we assume that � is normal. Given a set W of vertices, we
write �W for the graph obtained from � by successive explosion of each vertex of W.

Definition 3.10 A subset W ✓ Vess is well-separating if the open star of each v 2 W
intersects more than one connected component of �W .

The empty set is vacuously well-separating. We fix a field F and a subset W ✓ Vess for
the remainder of this section, and we write F`H⇤(B(�);F) for the filtration on homology
induced by filtering eS (�;F) by the number of half-edge generators at vertices of W.
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�1 �2

�4 �3

W

�1

�2

�3

W 0

Figure 11: A well-separating subset W and a non-well-separating subset W 0 (assuming �1 \ W 0

is connected)

Definition 3.11 A class ↵ 2 H|W|(B(�);F) is a W-torus if ↵ is the external product of
classes {↵v}v2W , where ↵v is a star class at v. We call ↵v a star factor of ↵. We further
say that ↵ is rigid if W is well-separating and ↵ lies in F|W|H|W|(B(�);F) but not in
F|W|�1H|W|(B(�);F).

↵ =

�1 �2

�4 �3

W

Figure 12: A W-torus which Lemma 3.15 shows to be rigid

Example 3.12 There is a unique ?-torus, namely the class of the empty configuration
in H0(B0(�);F), and this class is rigid since F�1H0(B(�);F) = 0.

Example 3.13 Consider the theta graph ⇥3, which is the double cone on three points
with vertices the cone points v and w as depicted in Figure 13. According to the ⇥-
relation [2, Lemma 5.8(4) and Definition 5.9(4)], any star class ↵v at v is equal to some
star class ↵w at w. We have defined rigidity only for well-separating W because if W is
not well-separating in �, pulling the ⇥-relation back along a smoothing ⇥

0
3 ! ⇥3 and
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then pushing forward along a graph embedding ⇥
0
3 ! � shows that no W-torus could

ever have a rigidity property.

We can use the same strategy to give examples of non-rigid W-tori in cases where W is
well-separating. To wit, consider the graph ⇥

+
3 of Figure 13. There is an evident graph

morphism ◆ from ⇥3 to ⇥3+. The vertex set W = {v0} is well-separating in ⇥
+
3 but the

star class ◆(↵v) is not rigid because it is equal to the star class ◆(↵w) by pushing forward
the ⇥-relation.

v w

⇥3

v0
w0

⇥
+
3

Figure 13: The theta graph ⇥3 and a graph ⇥
+
3 with a well-separating vertex set W = {v0} and

a non-rigid W-torus (indicated in bold)

Remark 3.14 (Universal Generators) The definition and use of W-tori can be viewed
as an outgrowth of the study of an important question in configuration spaces of graphs.

This question is to determine a universal presentation for the homology of configuration
spaces of graphs (or of specific classes of graphs). By a universal presentation we mean

(1) a set of homology classes (universal generators) which generate all homol-
ogy groups of configuration spaces of graphs under pushforward along graph
morphisms, edge stabilization, and external products

(2) a set of universal relations which generate all relations among universal genera-
tors under the same three operations.

For example, the empty configuration is a universal generator for degree 0 homology
while star classes and loop classes (see [2, Definition 5.3]) are universal generators
for degree 1 homology. The Proof of Theorem 1.2 for the special case of trees in [20,
Theorem V.3] amounts to showing that star classes are in fact universal generators for
all homology groups for trees (it is known that this is not true for general graphs). In
later work, the same authors show that the same statement holds for wheel graphs [21,
§5.4].

One small step in the study of universal presentations is to ask quantitatively how much
of the homology for a given graph or class of graphs is generated by such tori in general.
Our proof of Proposition 3.8 implies that for any graph and in any homological degree
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the amount of homology generated by such tori makes up a positive proportion of all
homology as the weight increases. But this is a very crude estimate and it would be
useful to have further information about this in order to know where to look for new
universal generators and relations.

Set RW = F[EW] and write ⇡W for the projection from F[E] to RW . If ↵ is a W-torus,
then the surjection F[E]h↵i ! F[E] · ↵ factors through ⇡W , since any two edges in a
connected component of �W may be connected by a path of edges disjoint from the
standard representative of ↵.

Lemma 3.15 Let W be well-separating and let ↵ be a W-torus. The following are

equivalent.

(1) The W-torus ↵ is rigid.

(2) The action of F[E] induces an isomorphism

RWh↵i
'�! F[E] · ↵.

(3) The standard representative of every star factor ↵v involves edges in at least two

distinct connected components of �W .

The third condition is a little technical but is also easier than the other two to check. In
some sense it says that to guarantee rigidity, it is enough to avoid the class of “obvious”
pitfalls illustrated in Example 3.13. In particular, it has the following corollary.

Corollary 3.16 For any well-separating subset W, there is a rigid W-torus.

Proof Choose a star class ↵v at each v 2 W. Since W is well-separating, the star class
↵v may be chosen to satisfy the star factor condition (3).

Remark 3.17 For an arbitrary set of vertices W, one could instead filter according to a
maximal well-separating subset W0 ✓ W. The resulting generalized rigid W-tori do not
exist for arbitrary W, F, and �; however, if F = Z/2Z or if � is planar, then such classes
exist for any W. To construct one, use Corollary 3.16 to generate a rigid W0-torus and
form the external product with a star class at each vertex in W \ W0. Either assumption
implies that this external product is nonzero, and the proof of rigidity proceeds along
similar lines.

In the situation of interest, we can guarantee that W is well-separating.
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Lemma 3.18 If W ✓ Vess
with |W| = i is such that �W

� = �i
�, then either W is

well-separating or i = �i
� = 1.

Assuming these lemmas, we can establish the lower bound.

Proof of Proposition 3.8 Let W ✓ Vess be a subset with |W| = i such that �W
� = �i

�.
Except in the special case i = �i

� = 1, Lemma 3.18 guarantees that W is well-
separating, so Corollary 3.16 supplies a rigid W-torus ↵. The dimension of Hi(Bk(�);F)
is no less than that of the submodule F[E] · ↵, which is isomorphic to RWh↵i by
Lemma 3.15. Suppose ↵ is in Hi(Bk0(�);F). Then the F-dimension of the space of
monomials in RW of weight k � k0 is exactly

��W
� +(k�k0)�1
�W

� �1

�
and hence F[E] · ↵ has

polynomial growth of degree �W
� � 1.

For the special case i = �i
� = 1, we must verify that H1(Bk(�);F) is eventually

non-zero, which is well known—see [16, Theorem 3.16], for example.

It remains to prove Lemmas 3.15 and 3.18. In the proof, we make use of the spectral
sequence arising from the filtration F`H⇤(B(�);F) introduced above, which we denote
by Er

p,q. This spectral sequence is a spectral sequence of F[E]-modules.

Proof of Lemma 3.15 The unique ?-torus is rigid, and clearly F[E] · [?] ⇠= R?. In
the remainder of the proof, we take W 6= ?.

We prove first that (1) implies (2). Suppose that ↵ is rigid, and write

[↵] = ↵+ F|W|�1H|W|(B(�);F) 2 E1
|W|,0

for the resulting element in the associated graded. Since ↵ is rigid, [↵] cannot be zero.
We wish to show that the lefthand map in the composite

RWh↵i ! F[E] · ↵! F[E] · [↵]

is an isomorphism. Since this map is surjective, it suffices to show that the composite
is injective. We will show that E1

|W|,0 is a submodule of a free RW-module RWhXi for
some set X. Writing {[↵]x}x2X for the coordinates of [↵] in this basis, the kernel of the
map in question is

T
x2X AnnRW ([↵]x). Since [↵] 6= 0 and RW has no zero divisors, one

of the terms of this intersection is zero, implying the claim.

Our spectral sequence is concentrated in the first quadrant, so we have the containment
E1
|W|,0 ✓ E2

|W|,0, and, since E1
|W|+1,0 = 0, we have the further containment E2

|W|,0 ✓
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E1
|W|,0. Both are containments of F[E]-submodules. Since � has no isolated vertices,

there is a F[E]-linear isomorphism

E1
|W|,0
⇠= H0(B(�W);F)⌦ FhXi ⇠= RW ⌦ FhXi,

where X is the set of generators of eS (�) of the form
N

v2W hv with hv a difference of
half-edge generators at v. This module is the desired RW-free module.

We prove that (2) implies (3) by proving the contrapositive. Let ↵v be a star factor
represented by a graph morphism ◆ : S3 ! � whose image intersects only one connected
component of �W , and extend ◆ to a graph morphism b◆ : ⇥0

3 ! � with the same property,
where ⇥0

3 is a subdivision of ⇥3 (in other words, there is a smoothing f : ⇥0
3 ! ⇥3). By

pulling back via f the ⇥-relation on ⇥3 as seen in Example 3.13, we have the ⇥-relation
on ⇥

0
3 as well and so ↵v = ↵w for some star class ↵w at w if we write w for the image

of the other essential vertex of ⇥0
3 under b◆. Replacing ↵v by ↵w in the external product

defining ↵, we conclude that ↵ has a representative a that does not involve v. Since W
is well-separating, there are edges ei and ej at v lying in distinct connected components
of �W , and appending the generator hij to a produces an element whose boundary is
(ei � ej)↵. Thus, the map RWh↵i ! F[E] · ↵ has nonzero kernel.

Finally, we prove that (3) implies (1). Throughout, products and tensor products are
indexed by W. At each v 2 W, choose a basis for the half-edge generators at v such that
↵v is represented by hv

12(ev
1�ev

3)�hv
13(ev

1�ev
2). By our assumption (3), we may assume

that ev
1 and ev

3 intersect distinct connected components of �W . We claim that
N

hv
12

appears with a nonzero F[E]-coefficient in every chain representative of ↵, implying in
particular that ↵ /2 F|W|�1H|W|(B(�);F), as desired.

We begin by examining the coefficient
Q

(ev
1�ev

3) of
N

hv
12 in the standard representative

a of ↵. We apply ⇡W to this coefficient to obtain an element of RW . By construction,
⇡W(ev

1 � ev
3) 6= 0 for each v. Choose an ordering of ⇡0(�W) and write ⇡W(ev

1 � ev
3) =

±(�v
i � �

v
j ) with �

v
i < �

v
j in the ordering. The leading term

Q
�

v
i appears with

coefficient ±1 in the polynomial ⇡W(
Q

ev
1 � ev

3), so
Q

(ev
1 � ev

3) 6= 0, establishing the
claim for the standard representative a.

Suppose now that a � a0 = @c. In our preferred basis for the tensor product, c is
necessarily a sum of elementary tensors of (|W| + 1) half-edge generators, some of
which are of the form

(1) p(E)hij ⌦
O

hv
12

for some half-edge generator hij at a vertex away from W. Terms not of this form
contain strictly fewer than |W| tensor factors of the form hv

12, and the boundary of such
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a term is a sum of terms containing strictly fewer than |W| tensor factors of the form
hv

12. On the other hand, the boundary of (1) is a sum of terms containing strictly fewer
than |W| tensor factors of the form hv

12, together with the term

p(E)(ei � ej)
O

hv
12.

By our assumption on hij, ei and ej lie in the same connected component of �W , so
⇡W (p(E)(ei�ej)) = 0. Thus, the coefficient of

N
hv

12 in a0 coincides with the coefficient
in a modulo ker⇡W , so this coefficient is nonzero by the previous paragraph.

Remark 3.19 The same techniques serve to establish a version of Lemma 3.15 for
toric classes with some factors given by loop classes.

Proof of Lemma 3.18 If |W| = 0, or if |W| = 1 and �W
� > 1, then the claim is

obvious. If |W| > 1 and W is not well-separating, then there is a vertex v 2 W whose
open star intersects only one connected component of �W . We claim that there is a
second vertex v0 2 Vess \ W lying in this component of �W and sharing an edge e with
some vertex of W \ {v}.

Given such a vertex, we replace v with v0 in W to obtain a set W 0 with �W0
� � �W

� + 1.
Indeed, the relations ⇠W and ⇠W\{v} are identical, but the equivalence class of e under
the relation ⇠W is split into at least two distinct equivalence classes under ⇠W0 . Thus,
�W

� does not achieve the maximum value �i
�.

Assume for contradiction that such a v0 does not exist, and suppose there is a reduced
edge path in � beginning at v, terminating at some other vertex of W, and passing
through no third vertex of W. Such a path is necessarily contained in the connected
component of �W containing the open star of v. Since this path is reduced and �

has no bivalent vertices, the path passes only through essential vertices. We obtain
a contradiction of the non-existence of v0 unless all such paths have length one; in
other words, every edge at v terminates either at a vertex of W or a vertex of valence 1.
Therefore, either the valence of v is 1, or the open star of v intersects more than one
component of �W . Either is a contradiction, so we conclude that no edge path exists
between v and any other vertex of W. Since |W| > 1, it follows that � is disconnected,
a contradiction.

3.3 Upper bound

Let � be a graph and F be a field. Given a subset W ✓ Vess and a vertex v, we write
EW (v) ✓ EW for the set of equivalence classes of edges edges adjacent to v 2 V . We set

eSW(�;F) := eS (�W ;F)⌦F[E] F[EW].
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The action of F[E] on F[EW ] is weight-respecting so the complex eSW is weight-graded.
Since eS? is simply the reduced Świątkowski complex over F, Proposition 3.9 is a
special case of the following result.

Proposition 3.20 Let � be smooth and contain no isolated vertices. For any W ✓ Vess
,

the dimension of Hi(eSW (�;F)) is eventually polynomial in the weight of degree at most

�i
� � 1.

Remark 3.21 Geometrically, the weight k subcomplex of eSW(�) corresponds to the
space of configurations of k points in � which are permitted to collide at vertices in
W—see [4, §2] and [24, §1.1].

Note in particular that the behavior of eSW(�) is different from that of eS (�W). In both
cases, there is no local homological information near W, but particles pass freely
through vertices in W in the former while in the latter they avoid W. This is easiest to
see in the star graph Sn, where the former models a contractible space and the latter a
space with n contractible components.

The strategy of the proof of Proposition 3.20 will be to show that the desired growth
rate is already achieved on the E2 page of a certain spectral sequence converging to
the homology of eSW(�;F). In order to introduce this spectral sequence, we require
the following notation. Given a vertex v 2 V \ W, we write Sv for a star graph of
maximal valence equipped with a graph morphism ◆ : Sv ! � sending the star vertex to
v. Setting RW,v = F[EW(v)], we write CW,v for the chain complex

CW,v := eS (Sv;F)⌦F[E(Sv)] RW,v

of RW,v-modules. The chain complex CW,v is finitely generated over RW,v because
eS (Sv;F) is finitely generated over F[E(Sv)].

Lemma 3.22 Let v be an essential vertex of V \ W in �. There is a convergent,

homological, weight-graded spectral sequence of F[EW]-modules

E2
p,q
⇠= Hp

⇣
eSW(�v;F)⌦RW,v Hq(CW,v)

⌘
=) Hp+q(eSW(�;F)).

Proof We write the differential of eSW(�;F) as @ = @v + @�, where @v is the sum of
the terms of the differential involving half-edges at v. These two operators square to
zero individually and commute, giving eSW (�;F) the structure of a bicomplex of F[EW ]-
modules. The desired spectral sequence is the spectral sequence of this bicomplex with
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zeroth differential @v and first differential @�—see Figure 14. Since this bicomplex is
concentrated in finitely many bidegrees, the spectral sequence collapses and in particular
converges.

Using the decomposition eS (�) ⇠= eS (�v)⌦Z[E(v)] eS (Sv), we obtain the isomorphism

E0 ⇠=
⇣
eSW(�v;F)⌦RW,v CW,v, 1⌦ @

⌘

of trigraded F[EW]-modules, where the homological bidegree on the righthand side is
the natural bigrading of the tensor product. Since eSW(�v;F) is F[EW]-free, and hence
RW,v-free, the Künneth isomorphism gives

E1 ⇠=
⇣
eSW(�v;F)⌦RW,v H⇤(CW,v), @ ⌦ 1

⌘
,

completing the proof.

E0
0,1 · · · E0

p�1,1 E0
p,1 · · · E0

|V|,1

E0
0,0 · · · E0

p�1,0 E0
p,0 · · · E0

|V|,0

d0

d1 d1

d0 d0

d1 d1 d1

d0

d1 d1 d1 d1 d1

Figure 14: The potentially nonzero entries of the E0 page of the spectral sequence for the
bicomplex (eSW (�;F), @v, @�)

The key to the desired growth estimate is the following technical lemma.

Lemma 3.23 Let (M, @M) be a differential bigraded RW,v-module and N a bigraded

RW,v-module with N finitely generated and concentrated in strictly positive homological

degrees. If dimF Hj(M) is eventually polynomial in weight of degree at most d for every

0  j < i, then dimF Hi(M ⌦RW,v N, @M ⌦ 1) is as well.

We assume this result for the moment.

Proof of Proposition 3.20 Let � be smooth with no isolated vertices. We proceed by
induction on |Vess \ W|.

For the base case W = Vess, the complex eSW (�;F) is isomorphic to F[EW ] concentrated
in degree 0. In weight k, the dimension of this vector space is the number of ways of
putting k indistinguishable balls in EW distinct bins, which is polynomial of degree
EW � 1 = �|W|

� � 1, as desired.
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For the inductive step, suppose the statement has been shown true for |Vess \ W| < r
and let |Vess \ W| = r > 0. Fixing a vertex v in Vess \ W, it will suffice to show that
the E2

i,0 and E2
i�1,1 entries of the spectral sequence of Lemma 3.22 each have eventual

polynomial growth of degree at most �i
� � 1 (since CW,v is concentrated in degrees 0

and 1, these are the only nonzero entries in the appropriate degree on the E2 page).

We note first that H0(CW,v) is one-dimensional in each weight, since there is a degree 1
chain interpolating between any two edges of Sv. Thus,

E2
i,0
⇠= Hi(eSW(�v;F)⌦RW,v F)
⇠= Hi(eS

�
�Wt{v};F

�
⌦F[E] F[EW]⌦RW,v F)

⇠= Hi(eSWt{v}(�;F)),

and the latter has polynomial growth of degree at most �i
� � 1 by induction (we have

used the isomorphism F[EWt{v}] ⇠= F[EW]⌦RW,v F).

Next, we have E2
i�1,1

⇠= Hi(M ⌦RW,v N), where M = eSW(�v;F) and N = H1(CW,v).
As previously noted, CW,v is finitely generated over the Noetherian ring RW,v, so N
is finitely generated, as well as concentrated in strictly positive degrees by definition.
Moreover, M is degreewise free and thus degreewise flat. Since � was smooth and
contained no isolated vertices, the same is true of �v. Then the inductive hypothesis
guarantees that, for j < i, the homology group Hj(M) is eventually polynomial in the
weight of degree at most

�j
�v
� 1  �j+1

� � 1  �i
� � 1,

so Lemma 3.23 implies that dimF E2
i�1,1 has the same property.

We conclude with the proof of the technical lemma.

Proof of Lemma 3.23 Up to associated graded, the homology group Hi(M ⌦RW,v N)
is the sum of the ith anti-diagonal on the E1 page of a first-quadrant (hence convergent)
Künneth spectral sequence. Thus, it suffices to bound the growth of the ith antidiagonal
of

E2 ⇠= TorRW,v(H⇤(M),N).

To calculate these Tor groups, we resolve N. Since RW,v is Noetherian of finite global
dimension, and since N is finitely generated, there is a finite length resolution P of
N by finitely generated projective RW,v-modules. By the Quillen–Suslin theorem, P
is in fact a free resolution, generated by a trigraded F-vector space G =

L
Ga,b{k}

in which every summand is finite dimensional and almost all vanish. The trigraded
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complex H⇤(M)⌦RW,v P computes the desired (weight-graded) Tor groups. Since N is
concentrated in strictly positive homological degrees, P is as well, so the ith antidiagonal
of this complex is isomorphic to

i�1M

j=0

M

a+b=i�j

M

k

Hj(M)⌦F Ga,b{k},

which is a finite sum of vector spaces having eventual polynomial growth of degree at
most d.

4 Edge formality

We now undertake the in-depth study of one aspect of the chain level R[E]-module
structure induced by edge stabilization, namely the question of its formality.

4.1 Edge formality

Recall that a differential bigraded A-module is said to be formal if it is connected to its
homology by a finite zig-zag of (bigraded) quasi-isomorphisms:

(M, d) ' � (M1, d1) '�! (M2, d2) ' � · · · '�! (H(M, d), 0).

Definition 4.1 We say that a graph � is edge formal over the commutative ring R if
the the singular chain complex of B(�) with coefficients in R is formal as a differential
bigraded R[E]-module.

The goal of this section is to prove Theorem 1.3, which gives a complete characterization
of edge formal graphs independent of coefficient ring. We first recall the statement of
this theorem—see Definition 2.3 for a reminder on terminology.

Formality Theorem A graph is edge formal if and only if it is small.

In proving this theorem, we may replace the large and unwieldy complex of singular
chains with the smaller complex S(�; R); indeed, as we will see below in Corollary
5.12, this R[E]-module is quasi-isomorphic to the R[E]-module of singular chains with
coefficients in R. Moreover, we may work interchangeably with the complexes S(�; R)
and eS (�; R). Since the underlying bigraded R[E]-module of S(�; R) (resp. eS (�; R))
is free, we may use the following criterion, whose proof is a standard argument in
homotopical algebra.
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Lemma 4.2 Let A be a weight-graded commutative ring and M a differential bigraded

A-module which is projective in each homological degree. Then M is formal if and only

if there is a map of differential bigraded A-modules M ! H⇤(M) inducing the identity

on homology.

Thus, Theorem 1.3 amounts to characterizing the (non-)existence of such maps.

Remark 4.3 We caution the reader that the notion of an edge formal graph has no direct
connection with that of a formal topological space in the sense of rational homotopy
theory. For partial results about this other kind of formality, see [15, Theorems 1.2
and 1.3], where a necessary and sufficient criterion is given for B4(�) to be formal as a
space.

4.2 Small graphs are formal

We begin with a classification of smooth small graphs—see Figure 2.

Lemma 4.4 If � is a small graph that is both connected and smooth, then � is isomor-

phic to an isolated vertex, an interval I, a cycle C, a lollipop L, a figure-eight 8, or a

handcuff H.

Proof Any vertex of a small graph must be either isolated, 1-valent, 2-valent (with
either two distinct edges or a self-loop), 3-valent, with one self-loop, or 4-valent, with 2
self-loops. A connected graph with a vertex which is isolated, 2-valent with a self-loop,
or 4-valent with 2 self-loops is necessarily an isolated vertex, the cycle graph C, or
the figure-eight graph 8, respectively. A graph containing a 2-valent vertex with two
distinct edges cannot be smooth. Then in any remaining case, every vertex must be
1-valent or 3-valent with one self-loop. A connected graph all of whose vertices are of
these two kinds must have precisely two vertices; then there are three cases, namely the
interval I, the lollipop graph L, and the handcuff graph H.

This gives us most of what we need, since smoothings reflect formality.

Lemma 4.5 Let f : �! �
0

be a smoothing. If �
0

is edge formal over R, then so is �.

Proof The hypothesis guarantees the existence of the middle arrow in the diagram

S(�; R) S(f ;R)���! S(�0; R) 99K H⇤(S(�0; R)) H⇤(S(f ;R)) ������ H⇤(S(�; R))

of quasi-isomorphisms of R[E(�)]-modules, where R[E(�)] acts on the middle two
entries by restriction.
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We can also eliminate self-loops by making choices.

Lemma 4.6 Let � be a graph with a self-loop e at the vertex v. Let �� be the graph

obtained by replacing e with an edge which is not a loop to a new vertex. Then the

reduced Świątkowski complex eS (�; R) (unnaturally) decomposes as a direct sum of

differential graded R[E]-modules as

eS (�v; R) [1]{1}� eS
�
��; R

� ⇠= eS (�; R) .

In particular, � is edge formal over R if and only if both �v and �� are so.

Proof Let h1 and h2 be the two half-edges of e. Write all half-edge generators at v as
differences h1i = h1 � hi We obtain a direct sum decomposition of eS (�; R) by grouping
generators (using this choice of presentation at v) according to whether or not they
involve h12. Since h12 is closed, this decomposition respects the differential, and it
respects the R[E]-action by inspection.

Now, there is a graph morphism ◆ from �� to � taking the half-edge of e to h1, and
we obtain a map (↵,�) 7! h12↵+ ◆⇤(�). It is an immediate verification that this map
realizes the direct sum decomposition.

Removing a vertex or turning a self-loop to an edge as in this lemma preserves smallness.

Proof of Theorem 1.3, “if” direction By Lemmas 4.5 and 4.6, we may assume that
� is a smooth graph without self-loops. By Lemma 4.4, � is a disjoint union of isolated
vertices and intervals. But then eS (�; R) has no differential, and there is nothing to
prove.

4.3 Paradoxically decomposable cycles

We will derive the “only if” direction of Theorem 1.3 from the existence of certain
cycles that we dub paradoxically decomposable.

Definition 4.7 Let A be a commutative ring, I ✓ A an ideal, M a differential graded
A-module, and b 2 M a cycle.

(1) We say that b is decomposable with respect to I if b 2 IM.

(2) We say that b is paradoxically decomposable with respect to I if

(a) b is decomposable with respect to I in M, and
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(b) [b] is not decomposable with respect to I in H⇤(M).

Lemma 4.8 Let M be a differential graded A-module that is projective in each degree,

I ✓ A an ideal, and b 2 M a cycle. If b is paradoxically decomposable with respect to I,

then M is not formal.

Proof Assume that M is formal. Then, by our hypothesis on M and Lemma 4.2, there
is a map f : M ! H⇤(M) of A-modules inducing the identity on homology. Since
b is decomposable with respect to I, we may write b =

P
ribi with ri 2 I, whence

f (b) =
P

rif (bi); thus, f (b) is decomposable with respect to I. But b is a cycle and f
induces the identity on homology, so f (b) = [b], a contradiction.

We briefly detour from our main discussion to present the following result, which is of
independent interest, particularly from the point of view of [2, Theorem 3.20].

Proposition 4.9 Let � be a graph with tails e1, e2, and e3 in the same connected

component, and let R be Z or Z/2Z. Then S(�; R) is not formal over R[e1, e2, e3].

Proof We will show that the S(�; R) has a parodoxically decomposable cycle with
respect to the ideal I generated by e1, e2, and e3.

Because e1, e2, and e3 lie in the same connected component, there is a subgraph �0 ✓ �

containing these three edges and admitting a smoothing �0 ! S3. We will show that the
corresponding star class ↵ 2 H⇤(B(�0); R) ⇠= H⇤(B(S3); R) is not decomposable with
respect to I, which will imply the claim, since a decomposable representative for this
class is given by

P
pijek, where pij is the unique element in S(�0; R) with @pij = ei � ej.

Recall the canonical homomorphism � : H1(B2(�); R) ! Z/2Z that records the
permutation of the endpoints of a braid. Since ↵ is a star class, �(↵) = 1. On the other
hand, �(e�) = 0 for any e 2 {e1, e2, e3} and � 2 H1(B1(�); R) because e is a tail and
thus is not part of the simple closed curve representing �. Then the assumption that ↵
is decomposable with respect to I implies the contradiction �(↵) = 0.

We expect this statement is true with arbitrary coefficients.

Next, we will use paradoxically decomposable cycles to establish non-formality in two
basic cases, from which we will deduce the statement for a general large graph. For the
rest of this section, we shall only consider decomposability with respect to the ideal
generated by E.
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We write N for the number of essential vertices of �. As is well known, the homology
of Bk(�) vanishes above degree N; indeed, the Świątkowski complex itself vanishes
in these degrees (see [11, Theorem 3.3] for an earlier argument). Moreover, this top
homology is nonzero, since there can be no boundaries in degree N, and since the
external product of standard star class representatives at the essential vertices of � is a
nonzero cycle in the Świątkowski complex.

Lemma 4.10 Let � be a graph with no self-loops all of whose vertices are of valence

1 or 3. If � has a vertex of valence 3, then � is not edge formal.

Proof By [2, Proposition 5.25], HN(Bk(�); R) is 0 for k < 2N and is one dimensional
for k = 2N, spanned by a W-torus, where W is the set of trivalent vertices. This class is
not decomposable, since there is nothing in lower weight and degree N, but its standard
representative is decomposable. The claim now follows from Lemma 4.8.

For the second result, we require the following preliminary notion:

Definition 4.11 We say that a vertex v is simple if there are no self-loops at v and no
vertex w with multiple edges between v and w.

Lemma 4.12 If � has a simple essential vertex, then � is not edge formal.

Proof Let v be a simple essential vertex of �, and assume without loss of generality
that � has no vertices of valence 2. Then HN(B(�); R) 6= 0, so HN�1(B(�v); R) 6= 0
by Proposition 2.13. Choose a nonzero class �v in the group HN�1(Bk(�v); R) with k
chosen minimally so that this group is nonzero, and write � for the external product of
�v and a star class at v. Since � is represented by a nonzero cycle b in top degree, we
conclude that � 6= 0. There are no boundaries in top degree, so the cycle b is necessarily
unique, and it is decomposable, since the standard representative of the star class is so.
Thus, it suffices to show that � is not decomposable.

Applying Proposition 2.13 at v, we obtain the following piece of the exact sequence

0! HN(Bk+1(�); R)!
`�1M

HN�1(Bk(�v; R)) ��! HN�1(Bk+1(�v; R))

where ` := d(v). Since � is a nonzero element of HN(Bk+2(�); R), the assumption of
decomposability is the assumption that � is a nontrivial R[E]-linear combination of
elements from HN(Bk+1(�); R). Therefore it will suffice to show that HN(Bk+1(�); R)
vanishes, ie, that the connecting homomorphism � is injective. Since �v has N � 1
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essential vertices, this degree is the top homological degree for Bk(�v), so homology and
cycles coincide. It follows that the kernel of � consists of tuples of cycles (b2, . . . , b`)
in the weight N summand of SN�1(�v; R) such that

X̀

j=2

bj(ej � e1) = 0

where ej is the jth edge incident on v. The ej are distinct by the simplicity of v. We may
assume without loss of generality that b2 6= 0.

Let bj,1 be the chain obtained from bj by replacing e` with e1. Since the differential is
R[E]-linear, each bj,1 is again a cycle. We claim further that bj,1 is nonzero if bj was. To
see this, we note that the difference bj � bj,1 is divisible by (e` � e1), so that, if bj,1 = 0,
we may conclude that bj is the product of (e` � e1) and a cycle of top degree in weight
k � 1, which is necessarily not a boundary. Since k was chosen to be minimal with
respect to the existence of such a cycle, this is a contradiction.

Thus, the sum
P`�1

j=2 bj,1(ej� e1) vanishes modulo (e`� e1) and so vanishes, since none
of the terms contain e` by construction. Applying this procedure repeatedly, we obtain
a nonzero cycle b2,`�2 with b2,`�2(e2 � e1) = 0, a contradiction.

4.4 Large graphs are not formal

In order to reduce the case of a general large graph to the cases already considered, we
will make use of the following device:

Definition 4.13 Let M1 be a differential graded A1-module and M2 be a differential
graded A2-module. An (A1,A2)-retraction of M2 onto M1 consists of

• a retraction of rings A1
◆�! A2

⇡�! A1, and

• a retraction of Z-modules M1
i�! M2

p�! M1

where i is A1-linear with respect to the A1-module structure on M2 induced by ◆ and p is
A2-linear with respect to the A2-module structure on M1 induced by ⇡.

The relation of this notion to questions of formality is the following:

Lemma 4.14 Let M1 and M2 be differential graded A1- and A2-modules, respectively,

and suppose that there exists an (A1,A2)-retraction of M2 onto M1. If M2 is projective

in each degree and formal over A2, then M1 is formal over A1.
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Proof Our hypotheses on M2 and Lemma 4.2 guarantee the existence of a map M2 !
H⇤(M2) of differential graded A2-modules inducing the identity on homology. It follows
that the map in homology induced by the composite

M1 ! M2 ! H⇤(M2)! H⇤(M1)

is H⇤(p) � idH⇤(M2) � H⇤(i) = idH⇤(M1), so it suffices to check that this map is A1-linear,
which follows from a diagram chase.

Definition 4.15 Let � and �
0 be graphs. An algebraic retraction (over R) from �

0

to � is a (R[E(�)],R[E(�0)])-retraction of eS(�0; R) onto eS(�; R). In the presence of an
algebraic retraction, we say that � is an algebraic retract of �0 (over R).

The composition of algebraic retractions is an algebraic retraction. An algebraic
retraction need not arise from a topological retraction between configuration spaces.

The “only if” direction of Theorem 1.3 is an immediate consequence of the following re-
sult in combination with Lemmas 4.10, 4.12, and 4.14 (see Figure 15 for an explanation
of unfamiliar terminology).

Lemma 4.16 If � is a smooth large graph, then � has one of the following graphs as

an algebraic retract:

(1) a graph with a simple essential vertex,

(2) the theta graph ⇥3, or

(3) the A graph A.

A⇥3

Figure 15: The theta graph and the A graph

The proof of this result relies on the fact that algebraic retractions arise geometrically
as the result of surgeries on graphs (see Figure 16).

Lemma 4.17 Let � and �
0

be graphs, and suppose that � is obtained from �
0

by

replacing a connected subgraph �, attached to the rest of � only at the vertices v1 6= v2,

with a single edge e0 between v1 and v2, ie,

�
0 = (� \ e0)

a

v1[v2

�

Then � is an algebraic retract of �
0

over any R.
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We call this operation a surgery. Assuming this result momentarily, we complete the

�

+

Figure 16: Depiction of a surgery

proof of Theorem 1.3.

Proof of Lemma 4.16 A connected component is an algebraic retract and largeness is
a local property so it suffices to consider the connected case. Suppose � has a vertex of
valence strictly greater than three with a self-loop. The direct sum decomposition of
Lemma 4.6 gives an algebraic retraction from � to the graph �� obtained by replacing a
self-loop with a tail. The graph �� is smooth, connected, and large if � was. Suppose �
has a vertex of valence three with a self-loop. There is a surgery replacing the closed
star of the vertex with a tail which preserves smoothness and largeness. Then iteratively
we may assume � contains no self-loops.

Suppose that � has a pair of vertices sharing three edges. We obtain an algebraic
retraction onto ⇥3 using Lemma 4.17 with � the complement in � of two of these
(open) edges. See Figure 17(a). Suppose that � has a pair of vertices v and w sharing
two edges e1 and e2. Since � is smooth, each of v and w has a third edge. If there
is a path of edges disjoint from e1 and e2 connecting v and w, then surgery produces
an algebraic retraction onto ⇥3. See Figure 17(b). If not, two surgeries produce an
algebraic retraction onto A. See Figure 17(c).

Then if there is no algebraic retraction from � onto ⇥3 or A, the removal of self-loops
constitutes an algebraic retraction onto a connected smooth large graph with a simple
essential vertex.

To prepare for the proof of the surgery lemma, we observe that the Świątkowski complex
enjoys a certain non-canonical functoriality for subdivisions. More precisely, the map
induced by a smoothing f : �1 ! �2 admits a non-canonical left inverse, which we
regard as corresponding to the subdivision f�1. It suffices to construct this morphism in
the case of a subdivision of a single edge e with half-edges h1 and h2 into two edges e1
and e2 meeting at the common vertex v with corresponding half-edges hv1 and hv2. We
define the map in this case by the assignments e 7! e1, h1 7! h1, and h2 7! hv1�hv2+h2.
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�

+

(a)

�

+

(b)

�1 �2

+
�2

+

(c)

Figure 17: Surgeries for the proof of Lemma 4.16

See Figure 18. This map is a map of differential bigraded R[E2]-modules, where the
action of R[E2] on the target is via the map R[E2]! R[E1] just constructed and hence
also non-canonical. The same remarks hold for reduced complexes.

v1 v2
hv2hv1 h2h1

v1
h2h1 v2

Figure 18: A choice of left inverse for the map induced by a smoothing

Proof of Lemma 4.17 There is a (non-canonical) graph embedding of a subdivision
of � into �

0, where only the edge e0 is subdivided. Thus, for any surgery, there is a
non-canonical map eS(�; R)! eS(�0; R). This non-canonical map admits a left inverse r,
defined as follows. Write �

0 as (� \ e0)
`

v1[v2
�. Then:

r(h) =

8
>><

>>:

hi h 2 H(�), v(h) = vi

0 h 2 H(�), v(h) 6= vi

h h 62 H(�)

r(e) =

(
e0 e 2 E(�)
e e 62 E(�).

The map on edges endows eS(�; R) with a R[E(�0)]-module structure, and linearity is a
direct verification. By inspection, these maps constitute a retraction both at the level of
modules and at the level of rings.
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5 Two isomorphisms

We return to the proof of Theorem 2.10. Along the way, we will encounter two very
different routes to the Świątkowski complex. In Section 5.1, we review the method of
[2], which has the advantage that it naturally outputs a functor on the category Gph.
On the other hand, there is the cubical deformation retract introduced by Świątkowski
[27], which offers a more direct and geometric comparison to B(�) at the cost of non-
functorial choices. Our argument will combine the advantages of these two approaches.

In this section and the next, we write Csing(X) for the singular chain complex of the
topological space X. If X is a CW complex, we denote the cellular chain complex of X
by C(X). We will make use of the existence of a zig-zag

Csing ⇠ � • ⇠�! C

of quasi-isomorphisms connecting these complexes, which is natural for cellular maps.
The specifics of the intermediate object will play no role here, but see [2, Construction
2.22] for one option.

5.1 Functorial model

We now recall some of the work of [2]. The starting point is a cell complex introduced
by Abrams [1, Definition 2.1].

Definition 5.1 Let X be a cell complex. The kth unordered configuration complex of
X is the subspace

B⇤
k (X) =

0

@
[

ci\cj=?
c1 ⇥ · · ·⇥ ck

1

A

/⌃k

✓ Bk(X)

where the union is taken over the set of k-tuples of disjoint open cells of X.

The configuration complexes of X are approximations to the configuration spaces of X
by cell complexes, and the accuracy of this approximation improves with subdivision.
Following [8, §3], we say that a graph � is sufficiently subdivided for k if, first, every
path in � between essential vertices passes through at least k � 1 edges, and, second,
every loop passes through at least k + 1 edges.

Theorem 5.2 ([1, Theorem 2.1]) Let � ! �
0

be a subdivision with �
0

sufficiently

subdivided for k. The inclusion B⇤
k (�0)! Bk(�) is a deformation retract.
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In order to work functorially and with all k at once, it is more convenient to consider all
subdivisions simultaneously. Denoting by P the set of subdivisions of �, viewed as a
category under refinement, Theorem 5.2 implies that the natural map

colim
�02P

B⇤
k (�0)! Bk(�)

is a weak homotopy equivalence [2, Theorem 2.8].

Including arbitrary subdivisions has the further benefit of allowing one to work locally
on �. In order to leverage this flexibility, we return to the heuristic interpretation
of Remark 2.8, in which generators of S(�) represent “states” in B(�) obtained by
prescribing “local states” near vertices and along edges, which are compatible on
half-edges.

More precisely, define S⌅ (Sn) to be the subcomplex of S(Sn) spanned over Z[E] by the
symbols ?, the star vertex and half-edges at the star vertex. For e an edge, viewed as
a 1-cell, define S⌅ (e) as the subcomplex of S(e) spanned by basis elements with no
vertices or half-edges (then S⌅ (e) is canonically isomorphic to Z[e]). For these atomic
graphs, one can write down a map C(B⇤(�0))! S⌅ (�) and check by hand that it is a
quasi-isomorphism for sufficiently fine subdivisions—see [2, §4.2–4.3].

Now, for ⌅ a disjoint union of star graphs and edges, define S⌅ (⌅) to be the tensor
product over the connected components of ⌅ of the corresponding subcomplexes defined
above. Then there is an isomorphism

S(�) ⇠= S⌅
 
a

v2V

Sd(v)

!
O

S⌅((`e2E I)⇥EH)
S⌅
 
a

e2E

I

!
.

We now introduce a device that aids in piecing together these local identifications.
Recall that each edge of � is identified with (0, 5) via its parametrization. We define a
map ⇡ : �! [0, 1] by setting

⇡(t) =

8
>>>><

>>>>:

t � 1 t 2 [1, 2] ✓ e
1 t 2 [2, 3] ✓ e
4� t t 2 [3, 4] ✓ e
0 otherwise,

and by sending every vertex of � to 0.

Definition 5.3 A gap in � is a subspace of the form A = ⇡�1(A0), where A0 ✓ [0, 1]
is a nonempty open subset such that
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(1) the complement [0, 1] \ A0 is a (possibly empty) finite union of closed intervals
of positive length, and

(2) if i 2 {0, 1} lies in the closure of A0, then i 2 A0.

See Figure 19. We write G for the poset of gaps.

1

1

2

2( ) (

( ) (

4

1

3

2( ) (

( ) (

4

4

3

3( ) (

( ) (

⇡

( ) (
0 1

Figure 19: A gap in the complete graph K3

Since the complement of a gap is a disjoint union of stars and intervals, we have a map
C(B⇤(�0 \ A))! S⌅ �

� \ A
�

whenever A is a gap and �
0 is a subdivision in which A is a

union of cells. In this way, we obtain the following zig-zag of quasi-isomorphisms:

colim
�02P

Csing(B⇤(�0)) Csing(B(�))

•

colim
�02P

C(B⇤(�0))

hocolim
A2Gop

colim
�02PA

C(B⇤(�0 \ A))

hocolim
A2Gop

S⌅ �
� \ A

�
S(�).

⇠

o

o

o

o

⇠

Here, PA ✓ P contains only those subdivisions of � in which A is a union of cells. For
details on why these maps are quasi-isomorphisms and why the resulting isomorphism
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on homology is functorial, see [2, §4].

Theorem 5.4 ([2, Theorem 4.5]) There is a natural isomorphism

H⇤(B(�)) ⇠= H⇤(S(�))

of functors from Gph to bigraded Abelian groups.

5.2 Cubical model

We now recall the cubical model of B(�) introduced in [27] and corrected in [4, §2.1].
Given a graph �, we write A(�) for the set of labelings

� : E t V ! Z�0 t V t H t {?}

such that �(e) 2 Z�0 and �(v) 2 {?, v} t H(v).

Construction 5.5 (Świątkowski) Define a space UK(�) as the quotient

UK(�) =
a

�2A(�)

{�}⇥ [0, 1]�
�1(H)

�⇠,

where the equivalence relation is determined as follows. Fix a half-edge h with edge e
and vertex v. Suppose �, �0, and �1 are labellings which agree except on v and e, where

�(v) = h �0(v) = v �1(v) = ?
�(e) = n �0(e) = n �1(e) = n + 1.

Then we glue according to the following identifications for ✏ 2 {0, 1}:

{�✏}⇥ [0, 1]�
�1
✏ (H) ⇠= {�}⇥ [0, 1]�

�1(H\{h}) ⇥ {✏}

as a subset of {�}⇥ [0, 1]��1(H).

To specify a point in UK(�), it is enough to give a labeling � 2 A(�) together with
numbers t(h) 2 [0, 1] for each h 2 ��1(H).

We endow the set A(�) with a bigrading by declaring that

|�| =
 
|��1(H)|,

X

E

�(e) + |��1(V)|+ |��1(H)|
!

and note that UK(�) splits as a disjoint union of cell complexes UKk(�) whose i-cells
are those in bigrading (i, k).
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Observation 5.6 By inspection, the map

C(UK(�))! S(�) � 7!
 
Y

E

e�(e)

!
⌦
O

V

�(v)

is a bigraded chain isomorphism.

Remark 5.7 To make Observation 5.6 precise, we should take care with orientations.
One way to specify an orientation on a cube which is a product of intervals indexed by
a set J is to give an order on J up to even permutation. One way to specify the correct
sign on a tensor product of odd degree vector spaces indexed by a set J is to give an
order on J up to even permutation. Then, with appropriate conventions as to which is
the “positive” and which is the “negative” end of an interval, the map of the observation
intertwines these conventions.

Remark 5.8 In previous work along these lines [4, 17, 27], neither 2-valent nor
1-valent vertices were considered, but there is no obstruction to this mild generalization.

We now show that the complex UK(�) is homotopy equivalent to the configuration
space of interest. Apart from slight modifications for simplicity and compatibility with
our setup, this argument is essentially that of [4, §2.1].1 In particular, our homotopy
equivalence will be homotopic to the one considered in that work.

In order to compare B(�) and UK(�), we first deform B(�) onto the subspace eB(�) of
configurations x with the property that, for each vertex v, at most one coordinate lies in
the open star st1(v) of radius 1 at v. This deformation is achieved by radial expansion in
each star simultaneously. Having taken this intermediate step, we define our comparison
map ⇢ as the composite

⇢ : B(�)! eB(�)! UK(�),

where the second map records the presence or absence of particles at vertices, the
coordinate of any particle in st1(v) \ {v} ⇠= H(v)⇥ (0, 1), and the number of particles
lying in the subinterval [1, 4] of each edge. The details of the deformation are given
below in Construction 5.10; for now, we state the following result concerning ⇢.

Proposition 5.9 The map ⇢ is a homotopy equivalence.

1As observed by Lütgehetmann, the map defined by Świątkowski is not quite a retraction
[17, p. 24]. Unfortunately, the replacement retraction constructed by Lütgehetmann is not
continuous, as one can see by comparing the formulas for tx(s) appearing on p. 22 for k = 2
and k = 3 in a situation in which the first of three particles in an edge approaches the initial
endpoint of that edge. Chettih–Lütgehetmann give a continuous retraction.
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Construction 5.10 We define the deformation of B(�) onto eB(�) as follows. For each
vertex v, we have st2(v) \ {v} ⇠= H(v)⇥ (0, 2]. On each of these intervals, for a fixed
configuration x, we use the homotopy

(s, t) 7! 2
✓

1
2

s
◆e�t

0

1

2

0 1 2 3

s

t

on all points of x \ ({h}⇥ (0, 2]) simultaneously. Here, s 2 (0, 2] and t 2 [0, t(x, v)],
where t(x, v) is the least t such that the resulting configuration has at most one particle
in st1(v).2 Since t(x, v) is continuous in x, and since t(x, v) = 0 for x 2 eB(�), this
prescription defines a deformation retraction.

Proof of Proposition 5.9 Chettih–Lütgehetmann [4, §2.1] define a cube complex
fUKk(�) which is a deformation retract of the ordered configuration space of k points
in �. Their cube complex is a ⌃k-cover of the weight k subcomplex of UK(�). Their
deformation retraction is equivariant and so passes to a deformation retraction of B(�)
onto UK(�). The composite B(�) ⇢�! UK(�) ! B(�) with the inclusion of this quo-
tient deformation retract differs from the identity only in the positions of particles in
individual open edges. Therefore, the two maps are homotopic by edgewise straight
line homotopies. It follows that ⇢ is a one-sided homotopy inverse to a homotopy
equivalence and hence itself a homotopy equivalence.

5.3 Comparison of models

We have two isomorphisms H⇤(B(�)) ⇠= H⇤(S(�)). The isomorphism of Theorem 5.4
is an isomorphism of functors on the category Gph. This naturality is a powerful tool
in applications [2, §5]. On the other hand, the isomorphism obtained by combining
Proposition 5.9 and Observation 5.6 is more geometric in nature. Fortunately, we need
not choose between these virtues.

2Explicitly, t(x, v) is 0 if there are fewer than 2 points in st2(v) and otherwise log(1� log2(sv))
where sv is the distance from v to the second closest point in st2(v) in x.
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Proposition 5.11 The diagram of isomorphisms

H⇤(B(�)) H⇤(UK(�))

H⇤(S(�))
Theorem (5.4)

'

Proposition (5.9)
'

Observation (5.6)
'

commutes.

The proof of this result will occupy Section 6 below. For now, we will use it to deduce
the desired conclusion regarding edge stabilization.

For � 2 A(�), write e� for the labeling that differs from � only in that e�(e) = �(e) + 1
(in particular, ��1(H) = (e�)�1(H)). There is a version of edge stabilization at the level
of UK(�) which sends � to e� and fixes all th coordinates. The induced Z[E]-action on
C(UK(�)) coincides, through the isomorphism of Observation 5.6, with the canonical
action on S(�).

Proof of Theorem 2.10 It suffices by Proposition 5.11 to show that the map

⇢⇤ : H⇤(B(�))! H⇤(eB(�))! H⇤(UK(�))

is Z[E]-linear. By inspection, we have the commuting diagram

eB(�) UK(�)

eB(�) UK(�),

�e

so the second map in this composite is Z[E]-linear. In order to show that the first
map is also Z[E]-linear, we note that the inverse, which is induced by the inclusion
eB(�) ✓ B(�), is Z[E]-linear.

We also record the following useful conclusion.

Corollary 5.12 The differential bigraded Z[E]-modules Csing(B(�)) and S(�) are quasi-

isomorphic.

Proof We have the zig-zag of Z[E]-linear quasi-isomorphisms

Csing(B(�)) ⇠ � Csing(eB(�)) ⇠�! Csing(UK(�)) ⇠ � • ⇠�! C(UK(�)) ⇠= S(�).

Unlike the homology isomorphism, this quasi-isomorphism is not natural, since it relies
on a choice of parametrization.
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6 Long ends and the proof of Proposition 5.11

In this section, we compare the two isomorphisms H⇤(B(�)) ⇠= H⇤(S(�)). The key
observation is that, for a certain class of subdivision �! �

0, the natural map

B⇤
k (�0) ✓ Bk(�0) ⇠= Bk(�)! UKk(�)

from Abrams’ model to Świątkowski’s model is cellular. With this observation in hand,
Proposition 5.11 follows after checking that this collection of special subdivisions is
large enough to support the argument of [2].

6.1 Long ends

In this section, we fix a parametrization of a graph �, identifying each edge with (0, 5).
Given a subdivision �! �

0, we do not independently parametrize �
0. Rather, we use

the homeomorphism underlying the subdivision to identify �
0 with �. This allows us

to specify the data of the subdivision �
0 up to isomorphism by naming a finite set of

points in (0, 5) for each edge of �.

Definition 6.1 We say that a subdivision �! �
0 has long ends if, for every edge of �,

the induced subdivision {0, t1, . . . , tr, 5} of [0, 5] has t1 = 1 and tr = 4.

If �0 has long ends, we identify a half-edge h of � with the corresponding 1-cell of
length 1 in �

0. The following observation is the heart of our comparison of the two
models in question.

Lemma 6.2 If �! �
0

has long ends, then the composite

B⇤
k (�0) ✓ Bk(�) ⇢k�! UKk(�)

is cellular.

Proof A cell of B⇤
k (�0) is specified by a function µ from the set of cells of �0 to {0, 1}

with the following properties:

(1)
P

c µ(c) = k

(2) if ci \ cj 6= ?, then µ(ci) + µ(cj)  1.
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The degree of the cell µ is the sum of µ over the 1-cells of �0.

By inspection, the composite in question maps the cell µ onto the cell �µ with

�µ(v) =

8
>><

>>:

v µ(v) = 1
h µ(h) = 1
? otherwise.

and �µ(e) defined by summing µ over all cells of the induced subdivision on [1, 4].
Since the degree of �µ is at most the degree of µ, this claim implies the lemma.

Write L for the category of subdivisions of � with long ends. Although this category is
filtered, it is not convergent in the sense of [2, Definition 2.6]. Nevertheless, we have
the following.

Lemma 6.3 For every k � 0, the natural map

colim
L

C(B⇤
k (�0))! colim

P
C(B⇤

k (�0))

is a quasi-isomorphism.

Proof Let Pk ✓ P denote the subcategory of subdivisions of � that are sufficiently
subdivided for k, and set Lk = L \ Pk. Since Lk is final in L and Pk in P, the vertical
arrows in the commuting diagram

colimLk C(B⇤
k (�0)) colimPk C(B⇤

k (�0))

colimL C(B⇤
k (�0)) colimP C(B⇤

k (�0))

are isomorphisms, so it suffices to show that the top arrow is a quasi-isomorphism. By
sufficient subdivision and Theorem 5.2, every arrow in Pk induces a quasi-isomorphism
on C(B⇤

k (�)), so the claim follows from the observation that the inclusion of Lk in Pk

induces a weak homotopy equivalence on nerves, since both nerves are contractible.
Indeed, both L and P are filtered, hence contractible, and final functors induce weak
equivalences on nerves.

Lemma 6.4 Let A = ⇡�1(A0) be a gap. If A0 \ {0, 1} = ?, then the natural map

colim
�02L\PA

C(B⇤(�0 \ A))! colim
�02PA

C(B⇤(�0 \ A))

is a quasi-isomorphism.
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Proof The category of subdivisions of �0 \A that are sufficiently subdivided for a fixed
k is final in the category of subdivisions restricted from P. Because A0 \ {0, 1} = ?,
the same is true for L, so the claim follows in the manner of Lemma 6.3.

Lemma 6.5 Suppose that �! �
0

has long ends, and let A be a gap in � that is a union

of cells of �
0
. The following diagram of chain maps commutes:

C(B⇤(�0 \ A)) C(B⇤(�0)) C(UK(�))

S⌅ �
� \ A

�
S(�).

C(⇢)

o

Proof The claim is immediate from the explicit description of the value of ⇢ on
cells given in Lemma 6.2 and the description of the lefthand vertical map given in [2,
Definitions 4.13 and 4.15].

6.2 Proof of Proposition 5.11

We wish to compare two isomorphisms identifying H⇤(B(�)) with H⇤(S(�)). The first is
induced on homology by the zig-zag of quasi-isomorphisms in the righthand portion of
the diagram of Figure 20, in which each of the square subdiagrams commutes. The first

colim
�02L

Csing(B⇤(�0)) colim
�02P

Csing(B⇤(�0)) Csing(B(�))

• •

colim
�02L

C(B⇤(�0)) colim
�02P

C(B⇤(�0))

hocolim
A2Gop

colim
�02L\PA

C(B⇤(�0 \ A)) hocolim
A2Gop

colim
�02PA

C(B⇤(�0 \ A))

hocolim
A2Gop

S⌅ �
� \ A

�
S(�)

⇠

(1)

(2)

o

o
(3)

(4)

o

o

⇠

Figure 20: A commutative diagram of quasi-isomorphisms for the proof of Proposition 5.11
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step in the proof is to verify that all of the maps in the diagram are quasi-isomorphisms,
so that we may replace this zig-zag with the outer zig-zag in the diagram.

(1)–(2) These maps are induced by natural quasi-isomorphisms after taking the colimit
over L. Since L is filtered, the claim follows.

(3) This quasi-isomorphism is supplied by Lemma 6.3.

(4) This quasi-isomorphism follows from Lemma 6.4 and the observation that the
poset of gaps satisfying the hypotheses of that lemma is homotopy initial in G

(hence homotopy final in Gop).

The remaining arrows are quasi-isomorphisms by two-out-of-three.

The second isomorphism H⇤(B(�)) ! H⇤(S(�)) is induced by the map ⇢ : B(�) !
UK(�) of topological spaces, together with the identification of S(�) with cellular chains
on UK(�). In order to compare this isomorphism with the previous, we note that Lemma
6.2 supplies the dashed fillers in the commuting diagram

Csing(B⇤(�0)) Csing(B(�)) Csing(UK(�))

• •

C(B⇤(�0)) C(UK(�))

⇠

o

o

o

o

whenever �! �
0 has long ends. Passing to the colimit over L, we obtain the diagram

colim
�02L

Csing(B⇤(�0)) Csing(B(�)) Csing(UK(�))

• •

colim
�02L

C(B⇤(�0)) C(UK(�))

hocolim
A2Gop

colim
�02L\PA

C(B⇤(�0 \ A))

hocolim
A2Gop

S⌅ �
� \ A

�
S(�).

⇠ ⇠

o

o

o

o

o

o

o

⇠

The upper portion of the diagram commutes by what has already been said, and the
bottom portion of the diagram commutes by Lemma 6.5 and the universal properties of
the colimit and the homotopy colimit. We established in the first half of the proof that the
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first of the isomorphisms in question is induced on homology by the counterclockwise
zig-zag from Csing(B(�)) to S(�). Since the clockwise zig-zag induces the second of the
isomorphisms, the proof is complete.
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