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Abstract. We prove that the ordered configuration spaces of planar graphs
have the highest possible topological complexity generically, as predicted by a
conjecture of Farber. Our argument establishes the same generic maximality
for all higher topological complexities. We include some discussion of the non-
planar case, demonstrating that the standard approach to the conjecture fails
at a fundamental level.

1. Introduction

The problem of multiple occupancy in a space X is captured by the topology of
the configuration spaces

Confk(X) = {(x1, . . . , xk) 2 X
k : xi 6= xj if i 6= j}.

The problem of movement within X is reflected in its topological complexity TC(X),
a numerical invariant introduced by Farber [7], whose magnitude reflects the con-
straints in motion planning imposed by the shape of X.

Combining these ideas, one is led to study the topological complexity of con-
figuration spaces as a measure of the difficulty of collision-free motion planning
[10, 6]. On the edge of a future of automated factories and autonomous vehicles,
graphs form a natural class of background spaces in which to study this problem
[11]. Configuration spaces of graphs have been the subject of considerable recent
research, including partial results on their topological complexity [2, 8, 9, 13, 15].
Nevertheless, a definitive calculation has remained conjectural for 15 years [8, §9].

The aim of this paper is to perform this calculation in the planar case; in fact,
we will calculate all of the “higher” topological complexities TCr as well [14]. Write
m(�) for the number of essential (valence at least 3) vertices of the graph �.

Theorem 1.1. Let � be a connected planar graph with m(�) � 2. For k � 2m(�),
we have the equality

TCr(Confk(�)) = rm(�).

The value rm(�) is an upper bound for dimensional reasons, so the result should
be read as saying that the maximum value is achieved generically. This generic
maximality or stability is an example of a more widespread phenomenon awaiting
systematic explanation.

The proof proceeds by establishing a general lower bound in Theorem 7.1, which
coincides with the upper bound in the range of interest. For this result, we adapt
a now standard cohomological argument of [8] (see also [2, 13]). Our innovation is
to work instead with the cohomology of the configuration spaces of the plane via a
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planar embedding. In this way, we circumvent the difficulty posed by our relative
lack of knowledge of the cohomology of Confk(�) for general �.

Farber’s conjecture is that Theorem 1.1 holds in the case r = 2 without the
assumption of planarity. We discuss the non-planar case in Section 8, proving that
the standard cohomological argument cannot possibly succeed (Theorem 8.1). We
believe that genuinely new methods are required to (dis)prove the non-planar case
of the conjecture.

1.1. Conventions. Unless otherwise specified, (co)homology is implicitly taken
with coefficients in F2. A graph is a finite CW complex of dimension 1. Given an
injective continuous map ' : X ! Y , we abuse the letter ' in using it again to
denote the induced map on configuration spaces.

1.2. Acknowledgements. The author thanks Byung Hee An and Jesus Gonzalez
for helpful conversations. Special thanks are due to Andrea Bianchi, who discovered
the error in an incorrect proof of the general case of Farber’s conjecture appearing
in an earlier version. The author learned of Farber’s conjecture at the AIM work-
shop “Configuration spaces of graphs” and was reminded of it at the BIRS–CMO
workshop “Topological complexity and motion planning.” While writing, the au-
thor benefited from the hospitality of the MPIM and was supported by NSF grant
DMS 1906174.

2. Topological complexity

Although we will not use it directly, we give the definition of topological com-
plexity for the sake of completeness.

Definition 2.1. The rth topological complexity of a space X, denoted TCr(X), is
one more than the minimal cardinality of an open cover U of X with the property
that the map

X
[0,1] �! X

r

� 7!
✓
�

✓
0

r � 1

◆
, �

✓
1

r � 1

◆
, . . . , �

✓
r � 1

r � 1

◆◆

admits a local section over each member of U.

Remark 2.2. Our convention is that the topological complexity of a point is 0 rather
than 1. Both choices are common in the literature.

In this paper, we interact with topological complexity exclusively through two
inequalities. Before stating them, we recall the following definition. As usual, we
denote diagonal maps of spaces generically by �.

Definition 2.3. Fix a topological space X. An element ⇣ 2 H
⇤(Xr) is called

an r-fold zero-divisor if �⇤
⇣ = 0. The rth zero-divisor cup length of X, denoted

zclr(X), is the maximal cardinality of a set of r-fold zero-divisors whose cup product
is nonzero.

In view of the Künneth isomorphism, we usually fail to distinguish between
H

⇤(Xr) and H
⇤(X)⌦r.
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Example 2.4. Given ↵ 2 H
⇤(X), the element ⇣(↵) := ↵ ⌦ 1 + 1 ⌦ ↵ is a zero-

divisor. More generally, given 1  a < b  r, the element ⇣ab(↵) := ⇡
⇤
ab(↵̄) is an

r-fold zero-divisor, where ⇡ab : Xr ! X
2 is the projection onto the ath and bth

factors. Note that the parameter r is implicit in this notation.

We have the following well-known result, which we do not state in the greatest
possible generality.

Theorem 2.5 ([7, 4]). If X has the homotopy type of a connected CW complex of
dimension m, then

zclr(X)  TCr(X)  rm.

We close this section with a simple device for interacting with zero-divisors.

Definition 2.6. A witness for the cohomology class ↵ 2 H
⇤(A) is a map f with

target A such that f
⇤
↵ 6= 0.

The following result allows inequalities involving zero-divisor cup lengths to be
moved between spaces.

Lemma 2.7. Let ⇣1, . . . , ⇣s 2 H
⇤(Y r) be r-fold zero-divisors and f : Xr ! Y

r a
continuous map. If a witness for the product ⇣ = ⇣1 · · · ⇣s factors through f , then
zclr(X) � s.

Proof. If f � g is a witness for ⇣, then g is a witness for f
⇤
⇣ =

Qs
i=1 f

⇤
⇣i. Since

f
⇤
⇣i is an r-fold zero-divisor for each i by naturality of the diagonal, the claim

follows. ⇤

3. Euclidean configuration spaces

In this section, we recall some standard facts pertaining to the cohomology of
the ordered configuration spaces of Rn, where n > 1. Although the language differs,
our perspective is heavily influenced by the beautiful and systematic treatment of
[16].

We begin by recalling that, for each 1  i 6= j  k, one has the Gauss map

�ij : Confk(Rn) ! S
n�1

sending the configuration (x1, . . . , xk) to the unit vector from xi to xj . We obtain a
class ↵ij 2 H

n�1(Confk(Rn)) by pulling the fundamental class of Sn�1 back along
�ij . Note that our notation does not reflect the dependence on k (or on n).

In the case k = 2, the map � := �12 is a homotopy equivalence. More specifically,
considering the antipodal embedding

S
n�1 ◆�! Conf2(Rn)

x 7! (�x, x),

we have the following standard result.

Lemma 3.1. The composite ��◆ is the identity, and the composite ◆�� is homotopic
to the identity.

We now introduce a combinatorial notion for organizing constructions of more
elaborate (co)homology classes.
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Definition 3.2. Fix a finite ground set S. A partial binary cover of S is a finite
collection � of subsets of S of cardinality 2. We say that � is a binary cover if the
union of its members is S, a partial binary partition if its members are disjoint, and
a binary partition if both of these conditions hold.

Given a partial binary cover � of {1, . . . , k}, we obtain the cohomology class

↵� =
Y

{i,j}2�

↵ij 2 H
|�|(n�1)(Confk(Rn)).

Note that the product is well-defined since we work over F2. If � is a partial
binary partition, then we also have the homology class ⌧� given by the image of the
fundamental class of the torus

'� : (Sn�1)�
◆��! Conf2(Rn)� ✓ Conf2(Rn)� ⇥ Conf1(Rn)k�2|�| ! Confk(Rn).

Here, the inclusion is induced by the inclusion of any point in the second factor,
and the second map is induced by any choice of |�|+k�2|�| orientation preserving
self-embeddings of Rn with pairwise disjoint images. The space of such embeddings
is connected, so '� is well-defined up to homotopy and ⌧� therefore well-defined.

Lemma 3.3. Let � be a partial binary partition.
(1) If {i, j} 2 �, then �ij �'� is homotopic to projection onto the corresponding

factor of (Sn�1)�.
(2) If {i, j} /2 �, then �ij � '� is nullhomotopic.

Proof. Supposing that {i, j} 2 �, we may choose the embeddings used in its defi-
nition so as to guarantee that '� fits into the commuting diagram

(Sn�1)�

✏✏

'�
// Confk(Rn)

⇡

✏✏

�ij
// S

n�1

S
n�1 ◆ // Conf2(Rn)

�
// S

n�1
,

where ⇡ denotes the coordinate projection. The claim now follows from Lemma
3.1.

Supposing that {i, j} /2 �, we may choose the embeddings to guarantee the
existence of a single hyperplane separating xi from xj for every (x1, . . . , xk) 2
im('�). It follows that �ij � '� is not surjective, implying the claim. ⇤

We write � for the Kronecker delta function and h�,�i for the Kronecker pairing
of cohomology and homology.

Lemma 3.4. Given a partial binary partition � and a partial binary cover µ of
{1, . . . , k},

h↵µ, ⌧�i = �(�, µ).

Proof. Note that ↵� is obtained from the fundamental class of (Sn�1)� by pullback
along the second map in the composite

(Sn�1)�
'���! Confk(Rn)

(�ij){i,j}2��������! (Sn�1)�.

If � = µ, then Lemma 3.3 shows that this composite is homotopic to the identity.
If � 6= µ, then the same lemma shows that this composite factors up to homotopy
through a subtorus of positive codimension. In either case, the claim follows. ⇤
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4. Orthogonality and zero-divisors

In this section, we construct some nonvanishing products of zero-divisors. We
largely follow [2], although our notation differs.

Definition 4.1. We say that partial binary covers �1 and �2 are orthogonal if
�1 \ �2 = ?.

Given a partial binary partition � of {1, . . . , k}, and fixing r and 1  a < b  r,
we have the following r-fold zero-divisor (see Example 2.4):

⇣
ab
� =

Y

{i,j}2�

⇣
ab(↵ij) 2 H

⇤(Confk(Rn))⌦r
.

Alternatively, we have the formula

⇣
ab
� =

X

µ✓�
1⌦ · · ·⌦ ↵µ ⌦ · · ·⌦ ↵µc ⌦ · · ·⌦ 1,

with ↵µ and ↵µc appearing in the ath and bth factor, respectively.

Lemma 4.2. Suppose given partial binary partitions �j for 1  j  r. If �1 ? �2,
then *

⇣
12
�1
⇣
12
�2

rY

j=3

⇣
(j�1)j
�j

,

rO

j=1

⌧�j

+
= 1.

Proof. We first consider the case r = 2, which is the claim h⇣�1⇣�2 , ⌧�1 ⌦ ⌧�2i = 1.
Since ↵2

ij = 0, this inner product is a sum of terms of the form h↵µ1⌦↵µ2 , ⌧�1⌦⌧�2i,
where µ1 and µ2 are partial binary covers. By Lemma 3.4, such a term is equal
to �(�1, µ1)�(�2, µ2). Since �1 ? �2, there is precisely one term with �1 = µ1 and
�2 = µ2, and the claim follows.

In the general case, we note that all but the first two factors of the product class
in question coincide with those of

rY

j=3

⇣
(j�1)j
�j

=
X

µj✓�j , 3jr

1⌦ ↵µ3 ⌦ ↵µc
3
↵µ4 ⌦ · · ·⌦ ↵µc

r�1
↵µr ⌦ ↵µc

r
.

For degree reasons, the only terms in this expression not annihilated by evaluation
on 1⌦ 1⌦ ⌧�3 ⌦ · · ·⌦ ⌧�r are those with µj = ? for every j, whence

*
⇣
12
�1
⇣
12
�2

rY

j=3

⇣
(j�1)j
�j

,

rO

j=1

⌧�j

+
= h⇣�1⇣�2 , ⌧�1 ⌦ ⌧�2i ·

rY

j=3

⌦
↵�j , ⌧�j

↵

= h⇣�1⇣�2 , ⌧�1 ⌦ ⌧�2i
= 1

by Lemma 3.4 and the previous case. ⇤
We close this section by recording the following simple observation.

Lemma 4.3. For any d > 1, there exists an orthogonal pair of binary partitions of
{1, . . . , 2d}

Proof. The sets {{1, 2}, {3, 4}, . . . , {2d� 1, 2d}} and {{2, 3}, {4, 5}, . . . , {2d, 1}} are
both binary partitions, which are orthogonal for d > 1 (the two are equal for
d = 1). ⇤
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5. Stars and circles

We write S3 for the star graph with three edges, which is the cone on the discrete
space {1, 2, 3} with its canonical cell structure. It will be convenient to work with
the coordinates

S3 =
�
(t1, t2, t3) 2 [0, 1]3 | #{i : ti 6= 0}  1

 
.

We have the following standard result concerning the configuration space of two
points in this graph—see [1], for example. Write ✏ for the sixfold concatenated path

✏ = (e1, ē2) ? (ē1, e3) ? (e2, ē3) ? (ē2, e1) ? (e3, ē1) ? (ē3, e2),

where ei : [0, 1] ! S3 is the unique path with ti = ei(t), and ēi is its reverse.

Lemma 5.1. The subspace im(✏) ✓ Conf2(S3) is a topological circle and a defor-
mation retract.

The parametrization ✏ supplies an orientation, which is tied to the canonical
cyclic ordering of the edges of S3. Via the standard orientation of R2, any piecewise
smooth embedding ' : S3 ! R2 induces a second cyclic ordering on this set.

Definition 5.2. Let ' : S3 ! R2 be a piecewise smooth embedding.
(1) We say that ' is orientation preserving if it induces the canonical cyclic

ordering on the edges of S3.
(2) We say that an orientation preserving, piecewise linear embedding ' is stan-

dard if the vectors '(1, 0, 0), '(0, 1, 0), and '(0, 0, 1) are pairwise linearly
independent.

We now state the main result of this section.

Proposition 5.3. For any orientation preserving, piecewise smooth embedding ' :
S3 ! R2, the composite map

S
1 ✏�! Conf2(S3)

'�! Conf2(R2)
��! S

1

has degree 1.

Lemma 5.4. Given an orientation preserving, piecewise smooth embedding ' :
S3 ! R2, there is a diagram

S3

✏✏

// R2

✏✏

S3
'
// R2

commuting up to piecewise smooth isotopy fixing the 0-skeleton of S3, in which the
righthand map is an orientation preserving embedding, the lefthand map the embed-
ding of a piecewise linear isotopy retract, and the top map a standard embedding.

Proof. In a sufficiently small geodesic neighborhood of the image of the essential
vertex of S3, the map ' is isotopic to the piecewise linear embedding given by
the respective one-sided derivatives, which is orientation preserving since ' was.
If necessary, a second isotopy guarantees that this piecewise linear embedding is
standard. ⇤
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Proof of Proposition 5.3. If ' is standard, then the composite in question is bijec-
tive, hence a homeomorphism, and it is easily checked to be orientation preserving.
In the general case, we appeal to Lemma 5.4 to obtain the homotopy commutative
middle square in the diagram

Conf2(S3)

✏✏

// Conf2(R2)

✏✏

�

$$

S
1

✏

::

✏

$$

S
1

Conf2(S3)
'
// Conf2(R2).

�
::

Since each vertical map is homotopic to the appropriate identity map, the two
triangles are also homotopy commutative, so the upper and lower total composites
are homotopic. By the previous case, the upper total composite has degree 1, so
the claim follows by homotopy invariance of the degree. ⇤

6. A diagram

Fixing a set W of essential vertices of the planar graph � of cardinality d, a binary
partitition � of {1, . . . , 2d}, and a bijection W ⇠= �, we explain the construction of
the commuting diagram

Conf2(S3)W

))Q
v2W  v

✏✏

(4)
// Conf2(S3)W ⇥ Confk�2d(R)

(3)
// Confk(�)

✏✏

✏✏

Q
v2W Conf2(Uv)

(2)

))

Confk(R2)

⇡

✏✏

Conf2(R2)W

⇠=

(1)
55

// Conf2d(R2),

where ⇡ denotes the coordinate projection.
We begin by choosing a piecewise smooth embedding � ✓ R2. Next, for each

v 2 W , we choose a coordinate neighborhood v 2 Uv ✓ R2 with the property that
Uv \ � is connected and contains no vertex of � other than v. We further require
the Uv to be pairwise disjoint. The first numbered map is determined by choosing
an orientation preserving diffeomorphism R2 ⇠= Uv for each v 2 W . The second
numbered map is determined by the inclusions Uv ✓ R2 and the bijection W ⇠= �.

Finally, for each v 2 W , we choose a piecewise linear embedding S3 ! � with
image lying in Uv (in particular, the image of the essential vertex is v). We further
require that the composite of each such embedding with ◆ be orientation preserving.
Separately, we choose a smooth embedding of R into an edge of � with image disjoint
from each Uv. The third numbered map is determined by these embeddings and
the bijection W ⇠= �, and the fourth numbered map is determined by choosing any
point in Confk�2d(R).

The remainder of the diagram is determined by commutativity. In particular, we
obtain the maps  v, concerning which we have the following immediate consequence
of Proposition 5.3.
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Corollary 6.1. For each v 2 W , the composite

S
1 ! Conf2(S3)

 v��! Conf2(R2)
��! S

1

has degree 1.

7. Planar graphs

The goal of this section is to establish the following lower bound, from which
Theorem 1.1 will easily follow.

Theorem 7.1. Let � be a connected planar graph. For any r > 0 and k � 4, we
have the inequality

TCr(Confk(�)) � rmin

⇢�
k

2

⌫
,m(�)

�
.

Given an integer d such that d  m(�) and 2d  k, together with (not necessarily
distinct) binary partitions �j of {1, . . . , 2d} for 1  j  r, the construction of the
previous section provides the diagram

rY

j=1

Conf2(S3)
�j

✏✏

// Confk(�)r

✏✏rY

j=1

(S1)�j

Q
✏�j

77

Q
◆�j

//

Q
'�j

((

rY

j=1

Conf2(R2)�j

✏✏

Confk(R2)r

✏✏

Conf2d(R2)r Conf2d(R2)r,

in which the rectangular and lower triangular subdiagrams are commutative. More-
over, Lemmas 3.1 and 5.1 and Corollary 6.1 imply that the upper triangular sub-
diagram is homotopy commutative.

Proof of Theorem 7.1. The cases m(�) 2 {0, 1} are easily treated by other means,
so we assume that m(�) � 2. In light of this inequality and the assumption that
k � 4, there is an integer d satisfying the inequalities 1 < d  m(�) and 2d  k. It
suffices to show that TCr(Confk(�)) � rd for every such d.

By Lemma 4.3, we may find binary partitions �j of {1, . . . , 2d} for 1  j  r

with �1 ? �2. Considering the diagram shown above, it follows from orthogo-
nality and Lemma 4.2 that the bottom diagonal map is a witness for the prod-
uct class ⇣12�1

⇣
12
�2

Qr
j=3 ⇣

(j�1)j
�j

. By commutativity and Lemma 2.7, it follows that
zclr(Confk(�)) � rd, whence TCr(Confk(�)) � rd by Theorem 2.5. ⇤

Proof of Theorem 1.1. The assumption and Theorem 7.1 gives the lower bound.
The upper bound bound is implied by Theorem 2.5, since Confk(�) has the homo-
topy type of a CW complex of dimension m(�) for k � m(�) by [17]. ⇤
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8. Non-planar graphs

The proof of Theorem 1.1, as with its predecessors [2, 8, 13], is premised on
the recognition that an essential vertex and a pair of particles give rise to a circle
(Lemma 5.1), whence d essential vertices and 2d particles give rise to a torus of
dimension d. When d = m(�), this dimension is that of the configuration space at
large, and one shows that the bounds of Theorem 2.5 coincide by building long cup
products out of cohomology classes detecting circle factors of the torus.

The following result, and Corollary 8.4 below, show that no such approach can
possibly succeed in the non-planar case.

Theorem 8.1. A graph � is non-planar if and only if there is a topological embed-
ding S3 ! � inducing the zero homomorphism on H1(Conf2(�);Z).

Theorem 8.1 is more or less implicit in the work of Ko–Park [12], but we believe
the simple argument below to be of independent value. This argument is premised
on certain atomic relations in H1(Conf2(�);Z), which become twice the Q- and
⇥-relations of [3] after projection to the unordered configuration space. We refer
to the graphs depicted in Figure 1.

L ⇥3

Figure 1. The lollipop graph and the theta graph

We distinguish four classes H1(Conf2(L);Z) (in fact, these classes span subject
to the single relation below). The star class � is defined as in Section 5 by allowing
the two particles to orbit one another clockwise by passing through the essential
vertex; the class �i for i = 1, 2 is defined by allowing the ith particle to traverse the
cycle counterclockwise while the other particle remains stationary on the leaf; and
the class �12 is defined by allowing both particles to traverse the cycle antipodally
counterclockwise.

Lemma 8.2 (2Q-relation). In H1(Conf2(L);Z), there is the relation

� = �1 + �2 � �12.

Proof. By inspection, the relation holds at the chain level in the ordered Świątkowski
complex—see [5, §2.1], for example. ⇤

Write �1 for the star class in H1(Conf2(⇥3);Z) at the top vertex and �2 for the
star class at the bottom vertex, both oriented clockwise. Applying the 2Q-relation
twice, we obtain the following relation.

Corollary 8.3 (2⇥-relation). In H1(Conf2(⇥3);Z), there is the relation

�1 = �2.

Proof of Theorem 8.1. The “if” direction is an easy consequence of Proposition 5.3.
For the converse, suppose that � is non-planar. By Kuratowski’s theorem, we may
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assume that � is the complete graph K5 or the complete bipartite graph K3,3. In
either case, via Corollary 8.3, the same argument employed in the unordered setting
in [3, Lem. C.4] shows that � = �� for any star class � in �. Since H1(Conf2(�);Z)
is torsion-free [12, Cor. 3.22], the claim follows. ⇤

In what follows, a topological spanning tree is a subspace of a graph homeomor-
phic to a tree and containing an open neighborhood of every essential vertex.

Corollary 8.4. A graph � is planar if and only if there is a topological spanning
tree T ✓ �, a piecewise smooth embedding ' : T ! R2, and a cohomology class
↵
�
12 2 H

1(Conf2(�)) such that ↵�
12|T = '

⇤
↵12.

Proof. If � admits the (without loss of generality) piecewise smooth planar embed-
ding  , then we may choose T ✓ R2 arbitrarily and set ' =  |T and ↵�

12 =  
⇤
↵12.

If � is non-planar, we may consider the embedding S3 ! � supplied by Theorem 8.1,
whose image we may take to lie in T without loss of generality. Our assumptions
give rise to the following commutative diagram

H1(Conf2(S3);Z)

uu

0

))

H1(Conf2(T );Z)

'

✏✏

// H1(Conf2(�);Z)

↵�
12

✏✏

H1(Conf2(R2);Z) ↵12 // F2.

Since the counterclockwise composite is nonzero by Proposition 5.3, we obtain a
contradiction. ⇤
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